Commit 245f6de1 by Jakub Jelinek Committed by Jakub Jelinek

re PR tree-optimization/78821 (GCC7: Copying whole 32 bits structure field by…

re PR tree-optimization/78821 (GCC7: Copying whole 32 bits structure field by field not optimised into copying whole 32 bits at once)

	PR tree-optimization/78821
	* gimple-ssa-store-merging.c: Update the file comment.
	(MAX_STORE_ALIAS_CHECKS): Define.
	(struct store_operand_info): New type.
	(store_operand_info::store_operand_info): New constructor.
	(struct store_immediate_info): Add rhs_code and ops data members.
	(store_immediate_info::store_immediate_info): Add rhscode, op0r
	and op1r arguments to the ctor, initialize corresponding data members.
	(struct merged_store_group): Add load_align_base and load_align
	data members.
	(merged_store_group::merged_store_group): Initialize them.
	(merged_store_group::do_merge): Update them.
	(merged_store_group::apply_stores): Pick the constant for
	encode_tree_to_bitpos from one of the two operands, or skip
	encode_tree_to_bitpos if neither operand is a constant.
	(class pass_store_merging): Add process_store method decl.  Remove
	bool argument from terminate_all_aliasing_chains method decl.
	(pass_store_merging::terminate_all_aliasing_chains): Remove
	var_offset_p argument and corresponding handling.
	(stmts_may_clobber_ref_p): New function.
	(compatible_load_p): New function.
	(imm_store_chain_info::coalesce_immediate_stores): Terminate group
	if there is overlap and rhs_code is not INTEGER_CST.  For
	non-overlapping stores terminate group if rhs is not mergeable.
	(get_alias_type_for_stmts): Change first argument from
	auto_vec<gimple *> & to vec<gimple *> &.  Add IS_LOAD, CLIQUEP and
	BASEP arguments.  If IS_LOAD is true, look at rhs1 of the stmts
	instead of lhs.  Compute *CLIQUEP and *BASEP in addition to the
	alias type.
	(get_location_for_stmts): Change first argument from
	auto_vec<gimple *> & to vec<gimple *> &.
	(struct split_store): Remove orig_stmts data member, add orig_stores.
	(split_store::split_store): Create orig_stores rather than orig_stmts.
	(find_constituent_stmts): Renamed to ...
	(find_constituent_stores): ... this.  Change second argument from
	vec<gimple *> * to vec<store_immediate_info *> *, push pointers
	to info structures rather than the statements.
	(split_group): Rename ALLOW_UNALIGNED argument to
	ALLOW_UNALIGNED_STORE, add ALLOW_UNALIGNED_LOAD argument and handle
	it.  Adjust find_constituent_stores caller.
	(imm_store_chain_info::output_merged_store): Handle rhs_code other
	than INTEGER_CST, adjust split_group, get_alias_type_for_stmts and
	get_location_for_stmts callers.  Set MR_DEPENDENCE_CLIQUE and
	MR_DEPENDENCE_BASE on the MEM_REFs if they are the same in all stores.
	(mem_valid_for_store_merging): New function.
	(handled_load): New function.
	(pass_store_merging::process_store): New method.
	(pass_store_merging::execute): Use process_store method.  Adjust
	terminate_all_aliasing_chains caller.

	* gcc.dg/store_merging_13.c: New test.
	* gcc.dg/store_merging_14.c: New test.

From-SVN: r254391
parent 248b06ba
2017-11-03 Jakub Jelinek <jakub@redhat.com>
PR tree-optimization/78821
* gimple-ssa-store-merging.c: Update the file comment.
(MAX_STORE_ALIAS_CHECKS): Define.
(struct store_operand_info): New type.
(store_operand_info::store_operand_info): New constructor.
(struct store_immediate_info): Add rhs_code and ops data members.
(store_immediate_info::store_immediate_info): Add rhscode, op0r
and op1r arguments to the ctor, initialize corresponding data members.
(struct merged_store_group): Add load_align_base and load_align
data members.
(merged_store_group::merged_store_group): Initialize them.
(merged_store_group::do_merge): Update them.
(merged_store_group::apply_stores): Pick the constant for
encode_tree_to_bitpos from one of the two operands, or skip
encode_tree_to_bitpos if neither operand is a constant.
(class pass_store_merging): Add process_store method decl. Remove
bool argument from terminate_all_aliasing_chains method decl.
(pass_store_merging::terminate_all_aliasing_chains): Remove
var_offset_p argument and corresponding handling.
(stmts_may_clobber_ref_p): New function.
(compatible_load_p): New function.
(imm_store_chain_info::coalesce_immediate_stores): Terminate group
if there is overlap and rhs_code is not INTEGER_CST. For
non-overlapping stores terminate group if rhs is not mergeable.
(get_alias_type_for_stmts): Change first argument from
auto_vec<gimple *> & to vec<gimple *> &. Add IS_LOAD, CLIQUEP and
BASEP arguments. If IS_LOAD is true, look at rhs1 of the stmts
instead of lhs. Compute *CLIQUEP and *BASEP in addition to the
alias type.
(get_location_for_stmts): Change first argument from
auto_vec<gimple *> & to vec<gimple *> &.
(struct split_store): Remove orig_stmts data member, add orig_stores.
(split_store::split_store): Create orig_stores rather than orig_stmts.
(find_constituent_stmts): Renamed to ...
(find_constituent_stores): ... this. Change second argument from
vec<gimple *> * to vec<store_immediate_info *> *, push pointers
to info structures rather than the statements.
(split_group): Rename ALLOW_UNALIGNED argument to
ALLOW_UNALIGNED_STORE, add ALLOW_UNALIGNED_LOAD argument and handle
it. Adjust find_constituent_stores caller.
(imm_store_chain_info::output_merged_store): Handle rhs_code other
than INTEGER_CST, adjust split_group, get_alias_type_for_stmts and
get_location_for_stmts callers. Set MR_DEPENDENCE_CLIQUE and
MR_DEPENDENCE_BASE on the MEM_REFs if they are the same in all stores.
(mem_valid_for_store_merging): New function.
(handled_load): New function.
(pass_store_merging::process_store): New method.
(pass_store_merging::execute): Use process_store method. Adjust
terminate_all_aliasing_chains caller.
2017-11-03 Wilco Dijkstra <wdijkstr@arm.com>
* config/aarch64/aarch64.c (aarch64_legitimate_constant_p):
......@@ -19,7 +19,8 @@
<http://www.gnu.org/licenses/>. */
/* The purpose of this pass is to combine multiple memory stores of
constant values to consecutive memory locations into fewer wider stores.
constant values, values loaded from memory or bitwise operations
on those to consecutive memory locations into fewer wider stores.
For example, if we have a sequence peforming four byte stores to
consecutive memory locations:
[p ] := imm1;
......@@ -29,21 +30,49 @@
we can transform this into a single 4-byte store if the target supports it:
[p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
Or:
[p ] := [q ];
[p + 1B] := [q + 1B];
[p + 2B] := [q + 2B];
[p + 3B] := [q + 3B];
if there is no overlap can be transformed into a single 4-byte
load followed by single 4-byte store.
Or:
[p ] := [q ] ^ imm1;
[p + 1B] := [q + 1B] ^ imm2;
[p + 2B] := [q + 2B] ^ imm3;
[p + 3B] := [q + 3B] ^ imm4;
if there is no overlap can be transformed into a single 4-byte
load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
The algorithm is applied to each basic block in three phases:
1) Scan through the basic block recording constant assignments to
1) Scan through the basic block recording assignments to
destinations that can be expressed as a store to memory of a certain size
at a certain bit offset. Record store chains to different bases in a
hash_map (m_stores) and make sure to terminate such chains when appropriate
(for example when when the stored values get used subsequently).
at a certain bit offset from expressions we can handle. For bit-fields
we also note the surrounding bit region, bits that could be stored in
a read-modify-write operation when storing the bit-field. Record store
chains to different bases in a hash_map (m_stores) and make sure to
terminate such chains when appropriate (for example when when the stored
values get used subsequently).
These stores can be a result of structure element initializers, array stores
etc. A store_immediate_info object is recorded for every such store.
Record as many such assignments to a single base as possible until a
statement that interferes with the store sequence is encountered.
Each store has up to 2 operands, which can be an immediate constant
or a memory load, from which the value to be stored can be computed.
At most one of the operands can be a constant. The operands are recorded
in store_operand_info struct.
2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
store_immediate_info objects) and coalesce contiguous stores into
merged_store_group objects.
merged_store_group objects. For bit-fields stores, we don't need to
require the stores to be contiguous, just their surrounding bit regions
have to be contiguous. If the expression being stored is different
between adjacent stores, such as one store storing a constant and
following storing a value loaded from memory, or if the loaded memory
objects are not adjacent, a new merged_store_group is created as well.
For example, given the stores:
[p ] := 0;
......@@ -134,8 +163,35 @@
#define MAX_STORE_BITSIZE (BITS_PER_WORD)
#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
/* Limit to bound the number of aliasing checks for loads with the same
vuse as the corresponding store. */
#define MAX_STORE_ALIAS_CHECKS 64
namespace {
/* Struct recording one operand for the store, which is either a constant,
then VAL represents the constant and all the other fields are zero,
or a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
and the other fields also reflect the memory load. */
struct store_operand_info
{
tree val;
tree base_addr;
unsigned HOST_WIDE_INT bitsize;
unsigned HOST_WIDE_INT bitpos;
unsigned HOST_WIDE_INT bitregion_start;
unsigned HOST_WIDE_INT bitregion_end;
gimple *stmt;
store_operand_info ();
};
store_operand_info::store_operand_info ()
: val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
bitregion_start (0), bitregion_end (0), stmt (NULL)
{
}
/* Struct recording the information about a single store of an immediate
to memory. These are created in the first phase and coalesced into
merged_store_group objects in the second phase. */
......@@ -149,9 +205,17 @@ struct store_immediate_info
unsigned HOST_WIDE_INT bitregion_end;
gimple *stmt;
unsigned int order;
/* INTEGER_CST for constant stores, MEM_REF for memory copy or
BIT_*_EXPR for logical bitwise operation. */
enum tree_code rhs_code;
/* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
just the first one. */
store_operand_info ops[2];
store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
gimple *, unsigned int);
gimple *, unsigned int, enum tree_code,
const store_operand_info &,
const store_operand_info &);
};
store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
......@@ -159,11 +223,22 @@ store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
unsigned HOST_WIDE_INT brs,
unsigned HOST_WIDE_INT bre,
gimple *st,
unsigned int ord)
unsigned int ord,
enum tree_code rhscode,
const store_operand_info &op0r,
const store_operand_info &op1r)
: bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
stmt (st), order (ord)
stmt (st), order (ord), rhs_code (rhscode)
#if __cplusplus >= 201103L
, ops { op0r, op1r }
{
}
#else
{
ops[0] = op0r;
ops[1] = op1r;
}
#endif
/* Struct representing a group of stores to contiguous memory locations.
These are produced by the second phase (coalescing) and consumed in the
......@@ -178,8 +253,10 @@ struct merged_store_group
/* The size of the allocated memory for val and mask. */
unsigned HOST_WIDE_INT buf_size;
unsigned HOST_WIDE_INT align_base;
unsigned HOST_WIDE_INT load_align_base[2];
unsigned int align;
unsigned int load_align[2];
unsigned int first_order;
unsigned int last_order;
......@@ -576,6 +653,20 @@ merged_store_group::merged_store_group (store_immediate_info *info)
get_object_alignment_1 (gimple_assign_lhs (info->stmt),
&align, &align_bitpos);
align_base = start - align_bitpos;
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (op.base_addr == NULL_TREE)
{
load_align[i] = 0;
load_align_base[i] = 0;
}
else
{
get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
load_align_base[i] = op.bitpos - align_bitpos;
}
}
stores.create (1);
stores.safe_push (info);
last_stmt = info->stmt;
......@@ -608,6 +699,19 @@ merged_store_group::do_merge (store_immediate_info *info)
align = this_align;
align_base = info->bitpos - align_bitpos;
}
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (!op.base_addr)
continue;
get_object_alignment_1 (op.val, &this_align, &align_bitpos);
if (this_align > load_align[i])
{
load_align[i] = this_align;
load_align_base[i] = op.bitpos - align_bitpos;
}
}
gimple *stmt = info->stmt;
stores.safe_push (info);
......@@ -682,16 +786,21 @@ merged_store_group::apply_stores ()
FOR_EACH_VEC_ELT (stores, i, info)
{
unsigned int pos_in_buffer = info->bitpos - bitregion_start;
bool ret = encode_tree_to_bitpos (gimple_assign_rhs1 (info->stmt),
val, info->bitsize,
pos_in_buffer, buf_size);
if (dump_file && (dump_flags & TDF_DETAILS))
tree cst = NULL_TREE;
if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
cst = info->ops[0].val;
else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
cst = info->ops[1].val;
bool ret = true;
if (cst)
ret = encode_tree_to_bitpos (cst, val, info->bitsize,
pos_in_buffer, buf_size);
if (cst && dump_file && (dump_flags & TDF_DETAILS))
{
if (ret)
{
fprintf (dump_file, "After writing ");
print_generic_expr (dump_file,
gimple_assign_rhs1 (info->stmt), 0);
print_generic_expr (dump_file, cst, 0);
fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
" at position %d the merged region contains:\n",
info->bitsize, pos_in_buffer);
......@@ -799,9 +908,10 @@ private:
decisions when going out of SSA). */
imm_store_chain_info *m_stores_head;
void process_store (gimple *);
bool terminate_and_process_all_chains ();
bool terminate_all_aliasing_chains (imm_store_chain_info **,
bool, gimple *);
gimple *);
bool terminate_and_release_chain (imm_store_chain_info *);
}; // class pass_store_merging
......@@ -831,7 +941,6 @@ pass_store_merging::terminate_and_process_all_chains ()
bool
pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
**chain_info,
bool var_offset_p,
gimple *stmt)
{
bool ret = false;
......@@ -845,37 +954,21 @@ pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
of a chain. */
if (chain_info)
{
/* We have a chain at BASE and we're writing to [BASE + <variable>].
This can interfere with any of the stores so terminate
the chain. */
if (var_offset_p)
store_immediate_info *info;
unsigned int i;
FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info)
{
terminate_and_release_chain (*chain_info);
ret = true;
}
/* Otherwise go through every store in the chain to see if it
aliases with any of them. */
else
{
store_immediate_info *info;
unsigned int i;
FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info)
if (ref_maybe_used_by_stmt_p (stmt, gimple_assign_lhs (info->stmt))
|| stmt_may_clobber_ref_p (stmt, gimple_assign_lhs (info->stmt)))
{
if (ref_maybe_used_by_stmt_p (stmt,
gimple_assign_lhs (info->stmt))
|| stmt_may_clobber_ref_p (stmt,
gimple_assign_lhs (info->stmt)))
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"stmt causes chain termination:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
terminate_and_release_chain (*chain_info);
ret = true;
break;
fprintf (dump_file, "stmt causes chain termination:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
terminate_and_release_chain (*chain_info);
ret = true;
break;
}
}
}
......@@ -920,6 +1013,125 @@ pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_inf
return ret;
}
/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
may clobber REF. FIRST and LAST must be in the same basic block and
have non-NULL vdef. */
bool
stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
{
ao_ref r;
ao_ref_init (&r, ref);
unsigned int count = 0;
tree vop = gimple_vdef (last);
gimple *stmt;
gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
do
{
stmt = SSA_NAME_DEF_STMT (vop);
if (stmt_may_clobber_ref_p_1 (stmt, &r))
return true;
/* Avoid quadratic compile time by bounding the number of checks
we perform. */
if (++count > MAX_STORE_ALIAS_CHECKS)
return true;
vop = gimple_vuse (stmt);
}
while (stmt != first);
return false;
}
/* Return true if INFO->ops[IDX] is mergeable with the
corresponding loads already in MERGED_STORE group.
BASE_ADDR is the base address of the whole store group. */
bool
compatible_load_p (merged_store_group *merged_store,
store_immediate_info *info,
tree base_addr, int idx)
{
store_immediate_info *infof = merged_store->stores[0];
if (!info->ops[idx].base_addr
|| (info->ops[idx].bitpos - infof->ops[idx].bitpos
!= info->bitpos - infof->bitpos)
|| !operand_equal_p (info->ops[idx].base_addr,
infof->ops[idx].base_addr, 0))
return false;
store_immediate_info *infol = merged_store->stores.last ();
tree load_vuse = gimple_vuse (info->ops[idx].stmt);
/* In this case all vuses should be the same, e.g.
_1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
or
_1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
and we can emit the coalesced load next to any of those loads. */
if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
&& gimple_vuse (infol->ops[idx].stmt) == load_vuse)
return true;
/* Otherwise, at least for now require that the load has the same
vuse as the store. See following examples. */
if (gimple_vuse (info->stmt) != load_vuse)
return false;
if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
|| (infof != infol
&& gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
return false;
/* If the load is from the same location as the store, already
the construction of the immediate chain info guarantees no intervening
stores, so no further checks are needed. Example:
_1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
if (info->ops[idx].bitpos == info->bitpos
&& operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
return true;
/* Otherwise, we need to punt if any of the loads can be clobbered by any
of the stores in the group, or any other stores in between those.
Previous calls to compatible_load_p ensured that for all the
merged_store->stores IDX loads, no stmts starting with
merged_store->first_stmt and ending right before merged_store->last_stmt
clobbers those loads. */
gimple *first = merged_store->first_stmt;
gimple *last = merged_store->last_stmt;
unsigned int i;
store_immediate_info *infoc;
/* The stores are sorted by increasing store bitpos, so if info->stmt store
comes before the so far first load, we'll be changing
merged_store->first_stmt. In that case we need to give up if
any of the earlier processed loads clobber with the stmts in the new
range. */
if (info->order < merged_store->first_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
return false;
first = info->stmt;
}
/* Similarly, we could change merged_store->last_stmt, so ensure
in that case no stmts in the new range clobber any of the earlier
processed loads. */
else if (info->order > merged_store->last_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
return false;
last = info->stmt;
}
/* And finally, we'd be adding a new load to the set, ensure it isn't
clobbered in the new range. */
if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
return false;
/* Otherwise, we are looking for:
_1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
or
_1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
return true;
}
/* Go through the candidate stores recorded in m_store_info and merge them
into merged_store_group objects recorded into m_merged_store_groups
representing the widened stores. Return true if coalescing was successful
......@@ -967,32 +1179,56 @@ imm_store_chain_info::coalesce_immediate_stores ()
if (IN_RANGE (start, merged_store->start,
merged_store->start + merged_store->width - 1))
{
merged_store->merge_overlapping (info);
continue;
/* Only allow overlapping stores of constants. */
if (info->rhs_code == INTEGER_CST
&& merged_store->stores[0]->rhs_code == INTEGER_CST)
{
merged_store->merge_overlapping (info);
continue;
}
}
/* |---store 1---| <gap> |---store 2---|.
Gap between stores. Start a new group if there are any gaps
between bitregions. */
if (info->bitregion_start > merged_store->bitregion_end)
/* |---store 1---||---store 2---|
This store is consecutive to the previous one.
Merge it into the current store group. There can be gaps in between
the stores, but there can't be gaps in between bitregions. */
else if (info->bitregion_start <= merged_store->bitregion_end
&& info->rhs_code == merged_store->stores[0]->rhs_code)
{
/* Try to apply all the stores recorded for the group to determine
the bitpattern they write and discard it if that fails.
This will also reject single-store groups. */
if (!merged_store->apply_stores ())
delete merged_store;
else
m_merged_store_groups.safe_push (merged_store);
store_immediate_info *infof = merged_store->stores[0];
/* All the rhs_code ops that take 2 operands are commutative,
swap the operands if it could make the operands compatible. */
if (infof->ops[0].base_addr
&& infof->ops[1].base_addr
&& info->ops[0].base_addr
&& info->ops[1].base_addr
&& (info->ops[1].bitpos - infof->ops[0].bitpos
== info->bitpos - infof->bitpos)
&& operand_equal_p (info->ops[1].base_addr,
infof->ops[0].base_addr, 0))
std::swap (info->ops[0], info->ops[1]);
if ((!infof->ops[0].base_addr
|| compatible_load_p (merged_store, info, base_addr, 0))
&& (!infof->ops[1].base_addr
|| compatible_load_p (merged_store, info, base_addr, 1)))
{
merged_store->merge_into (info);
continue;
}
}
merged_store = new merged_store_group (info);
/* |---store 1---| <gap> |---store 2---|.
Gap between stores or the rhs not compatible. Start a new group. */
continue;
}
/* Try to apply all the stores recorded for the group to determine
the bitpattern they write and discard it if that fails.
This will also reject single-store groups. */
if (!merged_store->apply_stores ())
delete merged_store;
else
m_merged_store_groups.safe_push (merged_store);
/* |---store 1---||---store 2---|
This store is consecutive to the previous one.
Merge it into the current store group. */
merged_store->merge_into (info);
merged_store = new merged_store_group (info);
}
/* Record or discard the last store group. */
......@@ -1014,35 +1250,57 @@ imm_store_chain_info::coalesce_immediate_stores ()
return success;
}
/* Return the type to use for the merged stores described by STMTS.
This is needed to get the alias sets right. */
/* Return the type to use for the merged stores or loads described by STMTS.
This is needed to get the alias sets right. If IS_LOAD, look for rhs,
otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
of the MEM_REFs if any. */
static tree
get_alias_type_for_stmts (auto_vec<gimple *> &stmts)
get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
unsigned short *cliquep, unsigned short *basep)
{
gimple *stmt;
unsigned int i;
tree lhs = gimple_assign_lhs (stmts[0]);
tree type = reference_alias_ptr_type (lhs);
tree type = NULL_TREE;
tree ret = NULL_TREE;
*cliquep = 0;
*basep = 0;
FOR_EACH_VEC_ELT (stmts, i, stmt)
{
if (i == 0)
continue;
tree ref = is_load ? gimple_assign_rhs1 (stmt)
: gimple_assign_lhs (stmt);
tree type1 = reference_alias_ptr_type (ref);
tree base = get_base_address (ref);
lhs = gimple_assign_lhs (stmt);
tree type1 = reference_alias_ptr_type (lhs);
if (i == 0)
{
if (TREE_CODE (base) == MEM_REF)
{
*cliquep = MR_DEPENDENCE_CLIQUE (base);
*basep = MR_DEPENDENCE_BASE (base);
}
ret = type = type1;
continue;
}
if (!alias_ptr_types_compatible_p (type, type1))
return ptr_type_node;
ret = ptr_type_node;
if (TREE_CODE (base) != MEM_REF
|| *cliquep != MR_DEPENDENCE_CLIQUE (base)
|| *basep != MR_DEPENDENCE_BASE (base))
{
*cliquep = 0;
*basep = 0;
}
}
return type;
return ret;
}
/* Return the location_t information we can find among the statements
in STMTS. */
static location_t
get_location_for_stmts (auto_vec<gimple *> &stmts)
get_location_for_stmts (vec<gimple *> &stmts)
{
gimple *stmt;
unsigned int i;
......@@ -1062,7 +1320,7 @@ struct split_store
unsigned HOST_WIDE_INT bytepos;
unsigned HOST_WIDE_INT size;
unsigned HOST_WIDE_INT align;
auto_vec<gimple *> orig_stmts;
auto_vec<store_immediate_info *> orig_stores;
/* True if there is a single orig stmt covering the whole split store. */
bool orig;
split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
......@@ -1076,21 +1334,20 @@ split_store::split_store (unsigned HOST_WIDE_INT bp,
unsigned HOST_WIDE_INT al)
: bytepos (bp), size (sz), align (al), orig (false)
{
orig_stmts.create (0);
orig_stores.create (0);
}
/* Record all statements corresponding to stores in GROUP that write to
the region starting at BITPOS and is of size BITSIZE. Record such
statements in STMTS if non-NULL. The stores in GROUP must be sorted by
bitposition. Return INFO if there is exactly one original store
in the range. */
/* Record all stores in GROUP that write to the region starting at BITPOS and
is of size BITSIZE. Record infos for such statements in STORES if
non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
if there is exactly one original store in the range. */
static store_immediate_info *
find_constituent_stmts (struct merged_store_group *group,
vec<gimple *> *stmts,
unsigned int *first,
unsigned HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitsize)
find_constituent_stores (struct merged_store_group *group,
vec<store_immediate_info *> *stores,
unsigned int *first,
unsigned HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitsize)
{
store_immediate_info *info, *ret = NULL;
unsigned int i;
......@@ -1119,9 +1376,9 @@ find_constituent_stmts (struct merged_store_group *group,
if (stmt_start >= end)
return ret;
if (stmts)
if (stores)
{
stmts->safe_push (info->stmt);
stores->safe_push (info);
if (ret)
{
ret = NULL;
......@@ -1143,11 +1400,14 @@ find_constituent_stmts (struct merged_store_group *group,
This is to separate the splitting strategy from the statement
building/emission/linking done in output_merged_store.
Return number of new stores.
If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
If SPLIT_STORES is NULL, it is just a dry run to count number of
new stores. */
static unsigned int
split_group (merged_store_group *group, bool allow_unaligned,
split_group (merged_store_group *group, bool allow_unaligned_store,
bool allow_unaligned_load,
vec<struct split_store *> *split_stores)
{
unsigned HOST_WIDE_INT pos = group->bitregion_start;
......@@ -1155,6 +1415,7 @@ split_group (merged_store_group *group, bool allow_unaligned,
unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
unsigned HOST_WIDE_INT group_align = group->align;
unsigned HOST_WIDE_INT align_base = group->align_base;
unsigned HOST_WIDE_INT group_load_align = group_align;
gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
......@@ -1162,9 +1423,14 @@ split_group (merged_store_group *group, bool allow_unaligned,
unsigned HOST_WIDE_INT try_pos = bytepos;
group->stores.qsort (sort_by_bitpos);
if (!allow_unaligned_load)
for (int i = 0; i < 2; ++i)
if (group->load_align[i])
group_load_align = MIN (group_load_align, group->load_align[i]);
while (size > 0)
{
if ((allow_unaligned || group_align <= BITS_PER_UNIT)
if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
&& group->mask[try_pos - bytepos] == (unsigned char) ~0U)
{
/* Skip padding bytes. */
......@@ -1180,10 +1446,34 @@ split_group (merged_store_group *group, bool allow_unaligned,
unsigned HOST_WIDE_INT align = group_align;
if (align_bitpos)
align = least_bit_hwi (align_bitpos);
if (!allow_unaligned)
if (!allow_unaligned_store)
try_size = MIN (try_size, align);
if (!allow_unaligned_load)
{
/* If we can't do or don't want to do unaligned stores
as well as loads, we need to take the loads into account
as well. */
unsigned HOST_WIDE_INT load_align = group_load_align;
align_bitpos = (try_bitpos - align_base) & (load_align - 1);
if (align_bitpos)
load_align = least_bit_hwi (align_bitpos);
for (int i = 0; i < 2; ++i)
if (group->load_align[i])
{
align_bitpos = try_bitpos - group->stores[0]->bitpos;
align_bitpos += group->stores[0]->ops[i].bitpos;
align_bitpos -= group->load_align_base[i];
align_bitpos &= (group_load_align - 1);
if (align_bitpos)
{
unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
load_align = MIN (load_align, a);
}
}
try_size = MIN (try_size, load_align);
}
store_immediate_info *info
= find_constituent_stmts (group, NULL, &first, try_bitpos, try_size);
= find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
if (info)
{
/* If there is just one original statement for the range, see if
......@@ -1191,8 +1481,8 @@ split_group (merged_store_group *group, bool allow_unaligned,
than try_size. */
unsigned HOST_WIDE_INT stmt_end
= ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
info = find_constituent_stmts (group, NULL, &first, try_bitpos,
stmt_end - try_bitpos);
info = find_constituent_stores (group, NULL, &first, try_bitpos,
stmt_end - try_bitpos);
if (info && info->bitpos >= try_bitpos)
{
try_size = stmt_end - try_bitpos;
......@@ -1221,7 +1511,7 @@ split_group (merged_store_group *group, bool allow_unaligned,
nonmasked *= BITS_PER_UNIT;
while (nonmasked <= try_size / 2)
try_size /= 2;
if (!allow_unaligned && group_align > BITS_PER_UNIT)
if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
{
/* Now look for whole padding bytes at the start of that bitsize. */
unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
......@@ -1252,8 +1542,8 @@ split_group (merged_store_group *group, bool allow_unaligned,
{
struct split_store *store
= new split_store (try_pos, try_size, align);
info = find_constituent_stmts (group, &store->orig_stmts,
&first, try_bitpos, try_size);
info = find_constituent_stores (group, &store->orig_stores,
&first, try_bitpos, try_size);
if (info
&& info->bitpos >= try_bitpos
&& info->bitpos + info->bitsize <= try_bitpos + try_size)
......@@ -1288,19 +1578,23 @@ imm_store_chain_info::output_merged_store (merged_store_group *group)
auto_vec<struct split_store *, 32> split_stores;
split_stores.create (0);
bool allow_unaligned
bool allow_unaligned_store
= !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
if (allow_unaligned)
bool allow_unaligned_load = allow_unaligned_store;
if (allow_unaligned_store)
{
/* If unaligned stores are allowed, see how many stores we'd emit
for unaligned and how many stores we'd emit for aligned stores.
Only use unaligned stores if it allows fewer stores than aligned. */
unsigned aligned_cnt = split_group (group, false, NULL);
unsigned unaligned_cnt = split_group (group, true, NULL);
unsigned aligned_cnt
= split_group (group, false, allow_unaligned_load, NULL);
unsigned unaligned_cnt
= split_group (group, true, allow_unaligned_load, NULL);
if (aligned_cnt <= unaligned_cnt)
allow_unaligned = false;
allow_unaligned_store = false;
}
split_group (group, allow_unaligned, &split_stores);
split_group (group, allow_unaligned_store, allow_unaligned_load,
&split_stores);
if (split_stores.length () >= orig_num_stmts)
{
......@@ -1323,9 +1617,37 @@ imm_store_chain_info::output_merged_store (merged_store_group *group)
gimple *stmt = NULL;
split_store *split_store;
unsigned int i;
auto_vec<gimple *, 32> orig_stmts;
tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq,
is_gimple_mem_ref_addr, NULL_TREE);
tree load_addr[2] = { NULL_TREE, NULL_TREE };
gimple_seq load_seq[2] = { NULL, NULL };
gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
for (int j = 0; j < 2; ++j)
{
store_operand_info &op = group->stores[0]->ops[j];
if (op.base_addr == NULL_TREE)
continue;
store_immediate_info *infol = group->stores.last ();
if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
{
load_gsi[j] = gsi_for_stmt (op.stmt);
load_addr[j]
= force_gimple_operand_1 (unshare_expr (op.base_addr),
&load_seq[j], is_gimple_mem_ref_addr,
NULL_TREE);
}
else if (operand_equal_p (base_addr, op.base_addr, 0))
load_addr[j] = addr;
else
load_addr[j]
= force_gimple_operand_1 (unshare_expr (op.base_addr),
&seq, is_gimple_mem_ref_addr,
NULL_TREE);
}
FOR_EACH_VEC_ELT (split_stores, i, split_store)
{
unsigned HOST_WIDE_INT try_size = split_store->size;
......@@ -1337,27 +1659,144 @@ imm_store_chain_info::output_merged_store (merged_store_group *group)
{
/* If there is just a single constituent store which covers
the whole area, just reuse the lhs and rhs. */
dest = gimple_assign_lhs (split_store->orig_stmts[0]);
src = gimple_assign_rhs1 (split_store->orig_stmts[0]);
loc = gimple_location (split_store->orig_stmts[0]);
gimple *orig_stmt = split_store->orig_stores[0]->stmt;
dest = gimple_assign_lhs (orig_stmt);
src = gimple_assign_rhs1 (orig_stmt);
loc = gimple_location (orig_stmt);
}
else
{
store_immediate_info *info;
unsigned short clique, base;
unsigned int k;
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
orig_stmts.safe_push (info->stmt);
tree offset_type
= get_alias_type_for_stmts (split_store->orig_stmts);
loc = get_location_for_stmts (split_store->orig_stmts);
= get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
int_type = build_aligned_type (int_type, align);
dest = fold_build2 (MEM_REF, int_type, addr,
build_int_cst (offset_type, try_pos));
src = native_interpret_expr (int_type,
group->val + try_pos - start_byte_pos,
group->buf_size);
if (TREE_CODE (dest) == MEM_REF)
{
MR_DEPENDENCE_CLIQUE (dest) = clique;
MR_DEPENDENCE_BASE (dest) = base;
}
tree mask
= native_interpret_expr (int_type,
group->mask + try_pos - start_byte_pos,
group->buf_size);
tree ops[2];
for (int j = 0;
j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
++j)
{
store_operand_info &op = split_store->orig_stores[0]->ops[j];
if (op.base_addr)
{
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
orig_stmts.safe_push (info->ops[j].stmt);
offset_type = get_alias_type_for_stmts (orig_stmts, true,
&clique, &base);
location_t load_loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
unsigned HOST_WIDE_INT load_align = group->load_align[j];
unsigned HOST_WIDE_INT align_bitpos
= (try_pos * BITS_PER_UNIT
- split_store->orig_stores[0]->bitpos
+ op.bitpos) & (load_align - 1);
if (align_bitpos)
load_align = least_bit_hwi (align_bitpos);
tree load_int_type
= build_nonstandard_integer_type (try_size, UNSIGNED);
load_int_type
= build_aligned_type (load_int_type, load_align);
unsigned HOST_WIDE_INT load_pos
= (try_pos * BITS_PER_UNIT
- split_store->orig_stores[0]->bitpos
+ op.bitpos) / BITS_PER_UNIT;
ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
build_int_cst (offset_type, load_pos));
if (TREE_CODE (ops[j]) == MEM_REF)
{
MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
MR_DEPENDENCE_BASE (ops[j]) = base;
}
if (!integer_zerop (mask))
/* The load might load some bits (that will be masked off
later on) uninitialized, avoid -W*uninitialized
warnings in that case. */
TREE_NO_WARNING (ops[j]) = 1;
stmt = gimple_build_assign (make_ssa_name (int_type),
ops[j]);
gimple_set_location (stmt, load_loc);
if (gsi_bb (load_gsi[j]))
{
gimple_set_vuse (stmt, gimple_vuse (op.stmt));
gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
}
else
{
gimple_set_vuse (stmt, new_vuse);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
ops[j] = gimple_assign_lhs (stmt);
}
else
ops[j] = native_interpret_expr (int_type,
group->val + try_pos
- start_byte_pos,
group->buf_size);
}
switch (split_store->orig_stores[0]->rhs_code)
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
{
tree rhs1 = gimple_assign_rhs1 (info->stmt);
orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
}
location_t bit_loc;
bit_loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
stmt
= gimple_build_assign (make_ssa_name (int_type),
split_store->orig_stores[0]->rhs_code,
ops[0], ops[1]);
gimple_set_location (stmt, bit_loc);
/* If there is just one load and there is a separate
load_seq[0], emit the bitwise op right after it. */
if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
/* Otherwise, if at least one load is in seq, we need to
emit the bitwise op right before the store. If there
are two loads and are emitted somewhere else, it would
be better to emit the bitwise op as early as possible;
we don't track where that would be possible right now
though. */
else
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
break;
default:
src = ops[0];
break;
}
if (!integer_zerop (mask))
{
tree tem = make_ssa_name (int_type);
......@@ -1382,9 +1821,21 @@ imm_store_chain_info::output_merged_store (merged_store_group *group)
gimple_seq_add_stmt_without_update (&seq, stmt);
tem = gimple_assign_lhs (stmt);
src = wide_int_to_tree (int_type,
wi::bit_and_not (wi::to_wide (src),
wi::to_wide (mask)));
if (TREE_CODE (src) == INTEGER_CST)
src = wide_int_to_tree (int_type,
wi::bit_and_not (wi::to_wide (src),
wi::to_wide (mask)));
else
{
tree nmask
= wide_int_to_tree (int_type,
wi::bit_not (wi::to_wide (mask)));
stmt = gimple_build_assign (make_ssa_name (int_type),
BIT_AND_EXPR, src, nmask);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
stmt = gimple_build_assign (make_ssa_name (int_type),
BIT_IOR_EXPR, tem, src);
gimple_set_location (stmt, loc);
......@@ -1422,6 +1873,9 @@ imm_store_chain_info::output_merged_store (merged_store_group *group)
print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
}
gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
for (int j = 0; j < 2; ++j)
if (load_seq[j])
gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
return true;
}
......@@ -1520,10 +1974,290 @@ rhs_valid_for_store_merging_p (tree rhs)
GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs)))) != 0;
}
/* If MEM is a memory reference usable for store merging (either as
store destination or for loads), return the non-NULL base_addr
and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
Otherwise return NULL, *PBITPOS should be still valid even for that
case. */
static tree
mem_valid_for_store_merging (tree mem, unsigned HOST_WIDE_INT *pbitsize,
unsigned HOST_WIDE_INT *pbitpos,
unsigned HOST_WIDE_INT *pbitregion_start,
unsigned HOST_WIDE_INT *pbitregion_end)
{
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
unsigned HOST_WIDE_INT bitregion_start = 0;
unsigned HOST_WIDE_INT bitregion_end = 0;
machine_mode mode;
int unsignedp = 0, reversep = 0, volatilep = 0;
tree offset;
tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
*pbitsize = bitsize;
if (bitsize == 0)
return NULL_TREE;
if (TREE_CODE (mem) == COMPONENT_REF
&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
{
get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
if (bitregion_end)
++bitregion_end;
}
if (reversep)
return NULL_TREE;
/* We do not want to rewrite TARGET_MEM_REFs. */
if (TREE_CODE (base_addr) == TARGET_MEM_REF)
return NULL_TREE;
/* In some cases get_inner_reference may return a
MEM_REF [ptr + byteoffset]. For the purposes of this pass
canonicalize the base_addr to MEM_REF [ptr] and take
byteoffset into account in the bitpos. This occurs in
PR 23684 and this way we can catch more chains. */
else if (TREE_CODE (base_addr) == MEM_REF)
{
offset_int bit_off, byte_off = mem_ref_offset (base_addr);
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitpos;
if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
{
bitpos = bit_off.to_shwi ();
if (bitregion_end)
{
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_start;
if (wi::fits_uhwi_p (bit_off))
{
bitregion_start = bit_off.to_uhwi ();
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_end;
if (wi::fits_uhwi_p (bit_off))
bitregion_end = bit_off.to_uhwi ();
else
bitregion_end = 0;
}
else
bitregion_end = 0;
}
}
else
return NULL_TREE;
base_addr = TREE_OPERAND (base_addr, 0);
}
/* get_inner_reference returns the base object, get at its
address now. */
else
{
if (bitpos < 0)
return NULL_TREE;
base_addr = build_fold_addr_expr (base_addr);
}
if (!bitregion_end)
{
bitregion_start = ROUND_DOWN (bitpos, BITS_PER_UNIT);
bitregion_end = ROUND_UP (bitpos + bitsize, BITS_PER_UNIT);
}
if (offset != NULL_TREE)
{
/* If the access is variable offset then a base decl has to be
address-taken to be able to emit pointer-based stores to it.
??? We might be able to get away with re-using the original
base up to the first variable part and then wrapping that inside
a BIT_FIELD_REF. */
tree base = get_base_address (base_addr);
if (! base
|| (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
return NULL_TREE;
base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
base_addr, offset);
}
*pbitsize = bitsize;
*pbitpos = bitpos;
*pbitregion_start = bitregion_start;
*pbitregion_end = bitregion_end;
return base_addr;
}
/* Return true if STMT is a load that can be used for store merging.
In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
BITREGION_END are properties of the corresponding store. */
static bool
handled_load (gimple *stmt, store_operand_info *op,
unsigned HOST_WIDE_INT bitsize, unsigned HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitregion_start,
unsigned HOST_WIDE_INT bitregion_end)
{
if (!is_gimple_assign (stmt) || !gimple_vuse (stmt))
return false;
if (gimple_assign_load_p (stmt)
&& !stmt_can_throw_internal (stmt)
&& !gimple_has_volatile_ops (stmt))
{
tree mem = gimple_assign_rhs1 (stmt);
op->base_addr
= mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
&op->bitregion_start,
&op->bitregion_end);
if (op->base_addr != NULL_TREE
&& op->bitsize == bitsize
&& ((op->bitpos - bitpos) % BITS_PER_UNIT) == 0
&& op->bitpos - op->bitregion_start >= bitpos - bitregion_start
&& op->bitregion_end - op->bitpos >= bitregion_end - bitpos)
{
op->stmt = stmt;
op->val = mem;
return true;
}
}
return false;
}
/* Record the store STMT for store merging optimization if it can be
optimized. */
void
pass_store_merging::process_store (gimple *stmt)
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
unsigned HOST_WIDE_INT bitsize, bitpos;
unsigned HOST_WIDE_INT bitregion_start;
unsigned HOST_WIDE_INT bitregion_end;
tree base_addr
= mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
&bitregion_start, &bitregion_end);
if (bitsize == 0)
return;
bool invalid = (base_addr == NULL_TREE
|| ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
&& (TREE_CODE (rhs) != INTEGER_CST)));
enum tree_code rhs_code = ERROR_MARK;
store_operand_info ops[2];
if (invalid)
;
else if (rhs_valid_for_store_merging_p (rhs))
{
rhs_code = INTEGER_CST;
ops[0].val = rhs;
}
else if (TREE_CODE (rhs) != SSA_NAME || !has_single_use (rhs))
invalid = true;
else
{
gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
if (!is_gimple_assign (def_stmt))
invalid = true;
else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
bitregion_start, bitregion_end))
rhs_code = MEM_REF;
else
switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
tree rhs1, rhs2;
rhs1 = gimple_assign_rhs1 (def_stmt);
rhs2 = gimple_assign_rhs2 (def_stmt);
invalid = true;
if (TREE_CODE (rhs1) != SSA_NAME || !has_single_use (rhs1))
break;
def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
if (!is_gimple_assign (def_stmt1)
|| !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
bitregion_start, bitregion_end))
break;
if (rhs_valid_for_store_merging_p (rhs2))
ops[1].val = rhs2;
else if (TREE_CODE (rhs2) != SSA_NAME || !has_single_use (rhs2))
break;
else
{
def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
if (!is_gimple_assign (def_stmt2))
break;
else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
bitregion_start, bitregion_end))
break;
}
invalid = false;
break;
default:
invalid = true;
break;
}
}
struct imm_store_chain_info **chain_info = NULL;
if (base_addr)
chain_info = m_stores.get (base_addr);
if (invalid)
{
terminate_all_aliasing_chains (chain_info, stmt);
return;
}
store_immediate_info *info;
if (chain_info)
{
unsigned int ord = (*chain_info)->m_store_info.length ();
info = new store_immediate_info (bitsize, bitpos, bitregion_start,
bitregion_end, stmt, ord, rhs_code,
ops[0], ops[1]);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Recording immediate store from stmt:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
(*chain_info)->m_store_info.safe_push (info);
/* If we reach the limit of stores to merge in a chain terminate and
process the chain now. */
if ((*chain_info)->m_store_info.length ()
== (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Reached maximum number of statements to merge:\n");
terminate_and_release_chain (*chain_info);
}
return;
}
/* Store aliases any existing chain? */
terminate_all_aliasing_chains (chain_info, stmt);
/* Start a new chain. */
struct imm_store_chain_info *new_chain
= new imm_store_chain_info (m_stores_head, base_addr);
info = new store_immediate_info (bitsize, bitpos, bitregion_start,
bitregion_end, stmt, 0, rhs_code,
ops[0], ops[1]);
new_chain->m_store_info.safe_push (info);
m_stores.put (base_addr, new_chain);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Starting new chain with statement:\n");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "The base object is:\n");
print_generic_expr (dump_file, base_addr);
fprintf (dump_file, "\n");
}
}
/* Entry point for the pass. Go over each basic block recording chains of
immediate stores. Upon encountering a terminating statement (as defined
by stmt_terminates_chain_p) process the recorded stores and emit the widened
variants. */
immediate stores. Upon encountering a terminating statement (as defined
by stmt_terminates_chain_p) process the recorded stores and emit the widened
variants. */
unsigned int
pass_store_merging::execute (function *fun)
......@@ -1573,175 +2307,9 @@ pass_store_merging::execute (function *fun)
if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
&& !stmt_can_throw_internal (stmt)
&& lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
HOST_WIDE_INT bitsize, bitpos;
unsigned HOST_WIDE_INT bitregion_start = 0;
unsigned HOST_WIDE_INT bitregion_end = 0;
machine_mode mode;
int unsignedp = 0, reversep = 0, volatilep = 0;
tree offset, base_addr;
base_addr
= get_inner_reference (lhs, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (lhs) == COMPONENT_REF
&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (lhs, 1)))
{
get_bit_range (&bitregion_start, &bitregion_end, lhs,
&bitpos, &offset);
if (bitregion_end)
++bitregion_end;
}
if (bitsize == 0)
continue;
/* As a future enhancement we could handle stores with the same
base and offset. */
bool invalid = reversep
|| ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
&& (TREE_CODE (rhs) != INTEGER_CST))
|| !rhs_valid_for_store_merging_p (rhs);
/* We do not want to rewrite TARGET_MEM_REFs. */
if (TREE_CODE (base_addr) == TARGET_MEM_REF)
invalid = true;
/* In some cases get_inner_reference may return a
MEM_REF [ptr + byteoffset]. For the purposes of this pass
canonicalize the base_addr to MEM_REF [ptr] and take
byteoffset into account in the bitpos. This occurs in
PR 23684 and this way we can catch more chains. */
else if (TREE_CODE (base_addr) == MEM_REF)
{
offset_int bit_off, byte_off = mem_ref_offset (base_addr);
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitpos;
if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
{
bitpos = bit_off.to_shwi ();
if (bitregion_end)
{
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_start;
if (wi::fits_uhwi_p (bit_off))
{
bitregion_start = bit_off.to_uhwi ();
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_end;
if (wi::fits_uhwi_p (bit_off))
bitregion_end = bit_off.to_uhwi ();
else
bitregion_end = 0;
}
else
bitregion_end = 0;
}
}
else
invalid = true;
base_addr = TREE_OPERAND (base_addr, 0);
}
/* get_inner_reference returns the base object, get at its
address now. */
else
{
if (bitpos < 0)
invalid = true;
base_addr = build_fold_addr_expr (base_addr);
}
if (!bitregion_end)
{
bitregion_start = ROUND_DOWN (bitpos, BITS_PER_UNIT);
bitregion_end = ROUND_UP (bitpos + bitsize, BITS_PER_UNIT);
}
if (! invalid
&& offset != NULL_TREE)
{
/* If the access is variable offset then a base
decl has to be address-taken to be able to
emit pointer-based stores to it.
??? We might be able to get away with
re-using the original base up to the first
variable part and then wrapping that inside
a BIT_FIELD_REF. */
tree base = get_base_address (base_addr);
if (! base
|| (DECL_P (base)
&& ! TREE_ADDRESSABLE (base)))
invalid = true;
else
base_addr = build2 (POINTER_PLUS_EXPR,
TREE_TYPE (base_addr),
base_addr, offset);
}
struct imm_store_chain_info **chain_info
= m_stores.get (base_addr);
if (!invalid)
{
store_immediate_info *info;
if (chain_info)
{
unsigned int ord = (*chain_info)->m_store_info.length ();
info = new store_immediate_info (bitsize, bitpos,
bitregion_start,
bitregion_end,
stmt, ord);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Recording immediate store from stmt:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
(*chain_info)->m_store_info.safe_push (info);
/* If we reach the limit of stores to merge in a chain
terminate and process the chain now. */
if ((*chain_info)->m_store_info.length ()
== (unsigned int)
PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Reached maximum number of statements"
" to merge:\n");
terminate_and_release_chain (*chain_info);
}
continue;
}
/* Store aliases any existing chain? */
terminate_all_aliasing_chains (chain_info, false, stmt);
/* Start a new chain. */
struct imm_store_chain_info *new_chain
= new imm_store_chain_info (m_stores_head, base_addr);
info = new store_immediate_info (bitsize, bitpos,
bitregion_start,
bitregion_end,
stmt, 0);
new_chain->m_store_info.safe_push (info);
m_stores.put (base_addr, new_chain);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Starting new chain with statement:\n");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "The base object is:\n");
print_generic_expr (dump_file, base_addr);
fprintf (dump_file, "\n");
}
}
else
terminate_all_aliasing_chains (chain_info,
offset != NULL_TREE, stmt);
continue;
}
terminate_all_aliasing_chains (NULL, false, stmt);
process_store (stmt);
else
terminate_all_aliasing_chains (NULL, stmt);
}
terminate_and_process_all_chains ();
}
......
2017-11-03 Jakub Jelinek <jakub@redhat.com>
PR tree-optimization/78821
* gcc.dg/store_merging_13.c: New test.
* gcc.dg/store_merging_14.c: New test.
2017-11-03 Steven G. Kargl <kargl@gcc.gnu.org>
* gfortran.dg/large_real_kind_2.F90: Test passes on FreeBSD. Remove
......
/* { dg-do compile } */
/* { dg-require-effective-target store_merge } */
/* { dg-options "-O2 -fdump-tree-store-merging" } */
struct S { unsigned char a, b; unsigned short c; unsigned char d, e, f, g; unsigned long long h; };
__attribute__((noipa)) void
f1 (struct S *p)
{
p->a = 1;
p->b = 2;
p->c = 3;
p->d = 4;
p->e = 5;
p->f = 6;
p->g = 7;
}
__attribute__((noipa)) void
f2 (struct S *__restrict p, struct S *__restrict q)
{
p->a = q->a;
p->b = q->b;
p->c = q->c;
p->d = q->d;
p->e = q->e;
p->f = q->f;
p->g = q->g;
}
__attribute__((noipa)) void
f3 (struct S *p, struct S *q)
{
unsigned char pa = q->a;
unsigned char pb = q->b;
unsigned short pc = q->c;
unsigned char pd = q->d;
unsigned char pe = q->e;
unsigned char pf = q->f;
unsigned char pg = q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f4 (struct S *p, struct S *q)
{
unsigned char pa = p->a | q->a;
unsigned char pb = p->b | q->b;
unsigned short pc = p->c | q->c;
unsigned char pd = p->d | q->d;
unsigned char pe = p->e | q->e;
unsigned char pf = p->f | q->f;
unsigned char pg = p->g | q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f5 (struct S *p, struct S *q)
{
unsigned char pa = p->a & q->a;
unsigned char pb = p->b & q->b;
unsigned short pc = p->c & q->c;
unsigned char pd = p->d & q->d;
unsigned char pe = p->e & q->e;
unsigned char pf = p->f & q->f;
unsigned char pg = p->g & q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f6 (struct S *p, struct S *q)
{
unsigned char pa = p->a ^ q->a;
unsigned char pb = p->b ^ q->b;
unsigned short pc = p->c ^ q->c;
unsigned char pd = p->d ^ q->d;
unsigned char pe = p->e ^ q->e;
unsigned char pf = p->f ^ q->f;
unsigned char pg = p->g ^ q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
struct S s = { 20, 21, 22, 23, 24, 25, 26, 27 };
struct S t = { 0x71, 0x72, 0x7f04, 0x78, 0x31, 0x32, 0x34, 0xf1f2f3f4f5f6f7f8ULL };
struct S u = { 28, 29, 30, 31, 32, 33, 34, 35 };
struct S v = { 36, 37, 38, 39, 40, 41, 42, 43 };
int
main ()
{
asm volatile ("" : : : "memory");
f1 (&s);
asm volatile ("" : : : "memory");
if (s.a != 1 || s.b != 2 || s.c != 3 || s.d != 4
|| s.e != 5 || s.f != 6 || s.g != 7 || s.h != 27)
__builtin_abort ();
f2 (&s, &u);
asm volatile ("" : : : "memory");
if (s.a != 28 || s.b != 29 || s.c != 30 || s.d != 31
|| s.e != 32 || s.f != 33 || s.g != 34 || s.h != 27)
__builtin_abort ();
f3 (&s, &v);
asm volatile ("" : : : "memory");
if (s.a != 36 || s.b != 37 || s.c != 38 || s.d != 39
|| s.e != 40 || s.f != 41 || s.g != 42 || s.h != 27)
__builtin_abort ();
f4 (&s, &t);
asm volatile ("" : : : "memory");
if (s.a != (36 | 0x71) || s.b != (37 | 0x72)
|| s.c != (38 | 0x7f04) || s.d != (39 | 0x78)
|| s.e != (40 | 0x31) || s.f != (41 | 0x32)
|| s.g != (42 | 0x34) || s.h != 27)
__builtin_abort ();
f3 (&s, &u);
f5 (&s, &t);
asm volatile ("" : : : "memory");
if (s.a != (28 & 0x71) || s.b != (29 & 0x72)
|| s.c != (30 & 0x7f04) || s.d != (31 & 0x78)
|| s.e != (32 & 0x31) || s.f != (33 & 0x32)
|| s.g != (34 & 0x34) || s.h != 27)
__builtin_abort ();
f2 (&s, &v);
f6 (&s, &t);
asm volatile ("" : : : "memory");
if (s.a != (36 ^ 0x71) || s.b != (37 ^ 0x72)
|| s.c != (38 ^ 0x7f04) || s.d != (39 ^ 0x78)
|| s.e != (40 ^ 0x31) || s.f != (41 ^ 0x32)
|| s.g != (42 ^ 0x34) || s.h != 27)
__builtin_abort ();
return 0;
}
/* { dg-final { scan-tree-dump-times "Merging successful" 6 "store-merging" } } */
/* { dg-do compile } */
/* { dg-require-effective-target store_merge } */
/* { dg-options "-O2 -fdump-tree-store-merging" } */
struct S { unsigned int i : 8, a : 7, b : 7, j : 10, c : 15, d : 7, e : 10, f : 7, g : 9, k : 16; unsigned long long h; };
__attribute__((noipa)) void
f1 (struct S *p)
{
p->a = 1;
p->b = 2;
p->c = 3;
p->d = 4;
p->e = 5;
p->f = 6;
p->g = 7;
}
__attribute__((noipa)) void
f2 (struct S *__restrict p, struct S *__restrict q)
{
p->a = q->a;
p->b = q->b;
p->c = q->c;
p->d = q->d;
p->e = q->e;
p->f = q->f;
p->g = q->g;
}
__attribute__((noipa)) void
f3 (struct S *p, struct S *q)
{
unsigned char pa = q->a;
unsigned char pb = q->b;
unsigned short pc = q->c;
unsigned char pd = q->d;
unsigned short pe = q->e;
unsigned char pf = q->f;
unsigned short pg = q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f4 (struct S *p, struct S *q)
{
unsigned char pa = p->a | q->a;
unsigned char pb = p->b | q->b;
unsigned short pc = p->c | q->c;
unsigned char pd = p->d | q->d;
unsigned short pe = p->e | q->e;
unsigned char pf = p->f | q->f;
unsigned short pg = p->g | q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f5 (struct S *p, struct S *q)
{
unsigned char pa = p->a & q->a;
unsigned char pb = p->b & q->b;
unsigned short pc = p->c & q->c;
unsigned char pd = p->d & q->d;
unsigned short pe = p->e & q->e;
unsigned char pf = p->f & q->f;
unsigned short pg = p->g & q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
__attribute__((noipa)) void
f6 (struct S *p, struct S *q)
{
unsigned char pa = p->a ^ q->a;
unsigned char pb = p->b ^ q->b;
unsigned short pc = p->c ^ q->c;
unsigned char pd = p->d ^ q->d;
unsigned short pe = p->e ^ q->e;
unsigned char pf = p->f ^ q->f;
unsigned short pg = p->g ^ q->g;
p->a = pa;
p->b = pb;
p->c = pc;
p->d = pd;
p->e = pe;
p->f = pf;
p->g = pg;
}
struct S s = { 72, 20, 21, 73, 22, 23, 24, 25, 26, 74, 27 };
struct S t = { 75, 0x71, 0x72, 76, 0x7f04, 0x78, 0x31, 0x32, 0x34, 77, 0xf1f2f3f4f5f6f7f8ULL };
struct S u = { 78, 28, 29, 79, 30, 31, 32, 33, 34, 80, 35 };
struct S v = { 81, 36, 37, 82, 38, 39, 40, 41, 42, 83, 43 };
int
main ()
{
asm volatile ("" : : : "memory");
f1 (&s);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != 1 || s.b != 2 || s.j != 73 || s.c != 3 || s.d != 4
|| s.e != 5 || s.f != 6 || s.g != 7 || s.k != 74 || s.h != 27)
__builtin_abort ();
f2 (&s, &u);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != 28 || s.b != 29 || s.j != 73 || s.c != 30 || s.d != 31
|| s.e != 32 || s.f != 33 || s.g != 34 || s.k != 74 || s.h != 27)
__builtin_abort ();
f3 (&s, &v);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != 36 || s.b != 37 || s.j != 73 || s.c != 38 || s.d != 39
|| s.e != 40 || s.f != 41 || s.g != 42 || s.k != 74 || s.h != 27)
__builtin_abort ();
f4 (&s, &t);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != (36 | 0x71) || s.b != (37 | 0x72) || s.j != 73
|| s.c != (38 | 0x7f04) || s.d != (39 | 0x78)
|| s.e != (40 | 0x31) || s.f != (41 | 0x32)
|| s.g != (42 | 0x34) || s.k != 74 || s.h != 27)
__builtin_abort ();
f3 (&s, &u);
f5 (&s, &t);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != (28 & 0x71) || s.b != (29 & 0x72) || s.j != 73
|| s.c != (30 & 0x7f04) || s.d != (31 & 0x78)
|| s.e != (32 & 0x31) || s.f != (33 & 0x32)
|| s.g != (34 & 0x34) || s.k != 74 || s.h != 27)
__builtin_abort ();
f2 (&s, &v);
f6 (&s, &t);
asm volatile ("" : : : "memory");
if (s.i != 72 || s.a != (36 ^ 0x71) || s.b != (37 ^ 0x72) || s.j != 73
|| s.c != (38 ^ 0x7f04) || s.d != (39 ^ 0x78)
|| s.e != (40 ^ 0x31) || s.f != (41 ^ 0x32)
|| s.g != (42 ^ 0x34) || s.k != 74 || s.h != 27)
__builtin_abort ();
return 0;
}
/* { dg-final { scan-tree-dump-times "Merging successful" 6 "store-merging" } } */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment