Commit 227858d1 by Diego Novillo

[multiple changes]

2005-06-01  Diego Novillo  <dnovillo@redhat.com>

	PR 14341, PR 21332, PR 20701, PR 21029, PR 21086, PR 21090
	PR 21289, PR 21348, PR 21367, PR 21368, PR 21458.
	* fold-const.c (invert_tree_comparison): Make extern.
	* tree-flow.h (enum value_range_type): Move to tree-ssa-propagate.
	(struct value_range_def): Limewise.
	(get_value_range): Remove.
	(dump_value_range): Remove.
	(dump_all_value_ranges): Remove.
	(debug_all_value_ranges): Remove.
	(vrp_evaluate_conditional): Declare.
	* tree-ssa-propagate.c (struct prop_stats_d): Add field
	num_pred_folded.
	(substitute_and_fold): Add argument use_ranges_p.
	Update all callers.
	If use_ranges_p is true, call fold_predicate_in to fold
	predicates using range information.
	Ignore ASSERT_EXPRs.
	Change debugging output to only show statements that have been
	folded.
	(replace_phi_args_in): Move debugging output code from
	substitute and fold.
	(fold_predicate_in): New local function.
	* tree-ssa-propagate.h (enum value_range_type): Move from
	tree-flow.h.
	(struct value_range_d): Likewise.
	Add field 'equiv'.
	(value_range_t): Rename from value_range.
	* tree-vrp.c (found_in_subgraph): Rename from found.
	(get_opposite_operand): Remove.
	(struct assert_locus_d): Declare.
	(assert_locus_t): Declare.
	(need_assert_for): Declare.
	(asserts_for): Declare.
	(blocks_visited): Declare.
	(vr_value): Declare.
	(set_value_range): Add argument 'equiv'.
	Don't drop to VARYING ranges that cover all values in the
	type.
	Make deep copy of equivalence set 'equiv'.
	(copy_value_range): New local function.
	(set_value_range_to_undefined): New local function.
	(compare_values): Return -2 if either value has overflowed.
	(range_includes_zero_p): New local function.
	(extract_range_from_assert): Flip the predicate code if the
	name being asserted is on the RHS of the predicate.
	Avoid creating unnecessary symbolic ranges if the comparison
	includes another name with a known numeric range.
	Update the equivalnce set of the new range when asserting
	EQ_EXPR predicates.
	(extract_range_from_ssa_name): Update the equivalence set of
	the new range with VAR.
	(extract_range_from_binary_expr): Also handle TRUTH_*_EXPR.
	If -fwrapv is used, set the resulting range to VARYING if the
	operation overflows.  Otherwise, use TYPE_MIN_VALUE and
	TYPE_MAX_VALUE to represent -INF and +INF.
	Fix handling of *_DIV_EXPR.
	(extract_range_from_unary_expr): Handle MINUS_EXPR and
	ABS_EXPR properly by switching the range around if necessary.
	(extract_range_from_comparison): New local function.
	(extract_range_from_expr): Call it.
	(adjust_range_with_scev): Do not adjust the range if using
	wrapping arithmetic (-fwrapv).
	(dump_value_range): Also show equivalence set.
	Show -INF and +INF for TYPE_MIN_VALUE and TYPE_MAX_VALUE.
	(build_assert_expr_for): Also build ASSERT_EXPR for EQ_EXPR.
	(infer_value_range): Change return value to bool.
	Add arguments 'comp_code_p' and 'val_p'.
	Do not attempt to infer ranges from statements that may throw.
	Store the comparison code in comp_code_p.
	Store the other operand to be used in the predicate in val_p.
	(dump_asserts_for): New.
	(debug_asserts_for): New.
	(dump_all_asserts): New.
	(debug_all_asserts): New.
	(register_new_assert_for): New.
	(register_edge_assert_for): New.
	(find_conditional_asserts): New.
	(find_assert_locations): New.
	(process_assert_insertions_for): New.
	(process_assert_insertions): New.
	(insert_range_assertions): Initialize found_in_subgraph,
	blocks_visited, need_assert_for and asserts_for.
	Call find_assert_locations and process_assert_insertions.
	(remove_range_assertions): Add more documentation.
	(vrp_initialize): Change return type to void.
	Do not try to guess if running VRP is worth it.
	(compare_name_with_value): New.
	(compare_names): New.
	(vrp_evaluate_conditional): Add argument 'use_equiv_p'.  If
	use_equiv_p is true, call compare_names and
	compare_name_with_value to compare all the ranges for every
	name in the equivalence set of the predicate operands.
	Update all callers.
	(vrp_meet): Try harder not to derive a VARYING range.
	If two values meet, the resulting equivalence set is the
	intersection of the two equivalence sets.
	(vrp_visit_phi_node): Call copy_value_range to get the current
	range information of the LHS.
	(vrp_finalize): Create a value vector representing all the
	names that ended up with exactly one value in their range.
	Call substitute_and_fold.
	(execute_vrp): Document equivalence sets in ranges.
	* tree.h (SSA_NAME_VALUE_RANGE): Remove.
	(struct tree_ssa_name): Remove field value_range.
	(invert_tree_comparison): Declare.

testsuite/ChangeLog

2005-06-01  Diego Novillo  <dnovillo@redhat.com>

	PR 14341, PR 21332, PR 20701, PR 21086, PR 21090
	PR 21289, PR 21348, PR 21367, PR 21368, PR 21458.
	* gcc.dg/tree-ssa/pr14341.c: New test.
	* gcc.dg/tree-ssa/pr14841.c: New test.
	* gcc.dg/tree-ssa/pr20701.c: New test.
	* gcc.dg/tree-ssa/pr21086.c: New test.
	* gcc.dg/tree-ssa/pr21090.c: New test.
	* gcc.dg/tree-ssa/pr21332.c: New test.
	* gcc.dg/tree-ssa/pr21458.c: New test.
	* gcc.dg/tree-ssa/pr21658.c: New test.
	* gcc.dg/tree-ssa/vrp01.c: New test.
	* gcc.dg/tree-ssa/vrp02.c: New test.
	* gcc.dg/tree-ssa/vrp03.c: New test.
	* gcc.dg/tree-ssa/vrp04.c: New test.
	* gcc.dg/tree-ssa/vrp05.c: New test.
	* gcc.dg/tree-ssa/vrp06.c: New test.
	* gcc.dg/tree-ssa/vrp07.c: New test.
	* gcc.dg/tree-ssa/vrp08.c: New test.
	* gcc.dg/tree-ssa/vrp09.c: New test.
	* gcc.dg/tree-ssa/vrp10.c: New test.
	* gcc.dg/tree-ssa/vrp11.c: New test.
	* gcc.dg/tree-ssa/vrp12.c: New test.
	* gcc.dg/tree-ssa/vrp13.c: New test.

2005-06-01  Alexandre Oliva  <aoliva@redhat.com>

	PR 21029
	* gcc.dg/tree-ssa/pr21029.c: New test.

From-SVN: r100478
parent 292a398f
2005-06-01 Diego Novillo <dnovillo@redhat.com>
PR 14341, PR 21332, PR 20701, PR 21029, PR 21086, PR 21090
PR 21289, PR 21348, PR 21367, PR 21368, PR 21458.
* fold-const.c (invert_tree_comparison): Make extern.
* tree-flow.h (enum value_range_type): Move to tree-ssa-propagate.
(struct value_range_def): Limewise.
(get_value_range): Remove.
(dump_value_range): Remove.
(dump_all_value_ranges): Remove.
(debug_all_value_ranges): Remove.
(vrp_evaluate_conditional): Declare.
* tree-ssa-propagate.c (struct prop_stats_d): Add field
num_pred_folded.
(substitute_and_fold): Add argument use_ranges_p.
Update all callers.
If use_ranges_p is true, call fold_predicate_in to fold
predicates using range information.
Ignore ASSERT_EXPRs.
Change debugging output to only show statements that have been
folded.
(replace_phi_args_in): Move debugging output code from
substitute and fold.
(fold_predicate_in): New local function.
* tree-ssa-propagate.h (enum value_range_type): Move from
tree-flow.h.
(struct value_range_d): Likewise.
Add field 'equiv'.
(value_range_t): Rename from value_range.
* tree-vrp.c (found_in_subgraph): Rename from found.
(get_opposite_operand): Remove.
(struct assert_locus_d): Declare.
(assert_locus_t): Declare.
(need_assert_for): Declare.
(asserts_for): Declare.
(blocks_visited): Declare.
(vr_value): Declare.
(set_value_range): Add argument 'equiv'.
Don't drop to VARYING ranges that cover all values in the
type.
Make deep copy of equivalence set 'equiv'.
(copy_value_range): New local function.
(set_value_range_to_undefined): New local function.
(compare_values): Return -2 if either value has overflowed.
(range_includes_zero_p): New local function.
(extract_range_from_assert): Flip the predicate code if the
name being asserted is on the RHS of the predicate.
Avoid creating unnecessary symbolic ranges if the comparison
includes another name with a known numeric range.
Update the equivalnce set of the new range when asserting
EQ_EXPR predicates.
(extract_range_from_ssa_name): Update the equivalence set of
the new range with VAR.
(extract_range_from_binary_expr): Also handle TRUTH_*_EXPR.
If -fwrapv is used, set the resulting range to VARYING if the
operation overflows. Otherwise, use TYPE_MIN_VALUE and
TYPE_MAX_VALUE to represent -INF and +INF.
Fix handling of *_DIV_EXPR.
(extract_range_from_unary_expr): Handle MINUS_EXPR and
ABS_EXPR properly by switching the range around if necessary.
(extract_range_from_comparison): New local function.
(extract_range_from_expr): Call it.
(adjust_range_with_scev): Do not adjust the range if using
wrapping arithmetic (-fwrapv).
(dump_value_range): Also show equivalence set.
Show -INF and +INF for TYPE_MIN_VALUE and TYPE_MAX_VALUE.
(build_assert_expr_for): Also build ASSERT_EXPR for EQ_EXPR.
(infer_value_range): Change return value to bool.
Add arguments 'comp_code_p' and 'val_p'.
Do not attempt to infer ranges from statements that may throw.
Store the comparison code in comp_code_p.
Store the other operand to be used in the predicate in val_p.
(dump_asserts_for): New.
(debug_asserts_for): New.
(dump_all_asserts): New.
(debug_all_asserts): New.
(register_new_assert_for): New.
(register_edge_assert_for): New.
(find_conditional_asserts): New.
(find_assert_locations): New.
(process_assert_insertions_for): New.
(process_assert_insertions): New.
(insert_range_assertions): Initialize found_in_subgraph,
blocks_visited, need_assert_for and asserts_for.
Call find_assert_locations and process_assert_insertions.
(remove_range_assertions): Add more documentation.
(vrp_initialize): Change return type to void.
Do not try to guess if running VRP is worth it.
(compare_name_with_value): New.
(compare_names): New.
(vrp_evaluate_conditional): Add argument 'use_equiv_p'. If
use_equiv_p is true, call compare_names and
compare_name_with_value to compare all the ranges for every
name in the equivalence set of the predicate operands.
Update all callers.
(vrp_meet): Try harder not to derive a VARYING range.
If two values meet, the resulting equivalence set is the
intersection of the two equivalence sets.
(vrp_visit_phi_node): Call copy_value_range to get the current
range information of the LHS.
(vrp_finalize): Create a value vector representing all the
names that ended up with exactly one value in their range.
Call substitute_and_fold.
(execute_vrp): Document equivalence sets in ranges.
* tree.h (SSA_NAME_VALUE_RANGE): Remove.
(struct tree_ssa_name): Remove field value_range.
(invert_tree_comparison): Declare.
2005-06-01 Daniel Berlin <dberlin@dberlin.org> 2005-06-01 Daniel Berlin <dberlin@dberlin.org>
Fix PR tree-optimization/21839 Fix PR tree-optimization/21839
......
...@@ -89,7 +89,6 @@ static tree negate_expr (tree); ...@@ -89,7 +89,6 @@ static tree negate_expr (tree);
static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int); static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
static tree associate_trees (tree, tree, enum tree_code, tree); static tree associate_trees (tree, tree, enum tree_code, tree);
static tree const_binop (enum tree_code, tree, tree, int); static tree const_binop (enum tree_code, tree, tree, int);
static enum tree_code invert_tree_comparison (enum tree_code, bool);
static enum comparison_code comparison_to_compcode (enum tree_code); static enum comparison_code comparison_to_compcode (enum tree_code);
static enum tree_code compcode_to_comparison (enum comparison_code); static enum tree_code compcode_to_comparison (enum comparison_code);
static tree combine_comparisons (enum tree_code, enum tree_code, static tree combine_comparisons (enum tree_code, enum tree_code,
...@@ -2119,7 +2118,7 @@ pedantic_non_lvalue (tree x) ...@@ -2119,7 +2118,7 @@ pedantic_non_lvalue (tree x)
comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
as well: if reversing the comparison is unsafe, return ERROR_MARK. */ as well: if reversing the comparison is unsafe, return ERROR_MARK. */
static enum tree_code enum tree_code
invert_tree_comparison (enum tree_code code, bool honor_nans) invert_tree_comparison (enum tree_code code, bool honor_nans)
{ {
if (honor_nans && flag_trapping_math) if (honor_nans && flag_trapping_math)
......
2005-06-01 Diego Novillo <dnovillo@redhat.com>
PR 14341, PR 21332, PR 20701, PR 21086, PR 21090
PR 21289, PR 21348, PR 21367, PR 21368, PR 21458.
* gcc.dg/tree-ssa/pr14341.c: New test.
* gcc.dg/tree-ssa/pr14841.c: New test.
* gcc.dg/tree-ssa/pr20701.c: New test.
* gcc.dg/tree-ssa/pr21086.c: New test.
* gcc.dg/tree-ssa/pr21090.c: New test.
* gcc.dg/tree-ssa/pr21332.c: New test.
* gcc.dg/tree-ssa/pr21458.c: New test.
* gcc.dg/tree-ssa/pr21658.c: New test.
* gcc.dg/tree-ssa/vrp01.c: New test.
* gcc.dg/tree-ssa/vrp02.c: New test.
* gcc.dg/tree-ssa/vrp03.c: New test.
* gcc.dg/tree-ssa/vrp04.c: New test.
* gcc.dg/tree-ssa/vrp05.c: New test.
* gcc.dg/tree-ssa/vrp06.c: New test.
* gcc.dg/tree-ssa/vrp07.c: New test.
* gcc.dg/tree-ssa/vrp08.c: New test.
* gcc.dg/tree-ssa/vrp09.c: New test.
* gcc.dg/tree-ssa/vrp10.c: New test.
* gcc.dg/tree-ssa/vrp11.c: New test.
* gcc.dg/tree-ssa/vrp12.c: New test.
* gcc.dg/tree-ssa/vrp13.c: New test.
2005-06-01 Alexandre Oliva <aoliva@redhat.com>
PR 21029
* gcc.dg/tree-ssa/pr21029.c: New test.
2005-06-01 Roger Sayle <roger@eyesopen.com> 2005-06-01 Roger Sayle <roger@eyesopen.com>
* gfortran.dg/logint-1.f: New test case. * gfortran.dg/logint-1.f: New test case.
......
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
void fn_call (int);
int h(int, int);
void t()
{
int i;
int x;
for( i = 0; i < 100000000; i++ ){
fn_call (i < 100000000);
}
}
/* { dg-final { scan-tree-dump-times "fn_call \\(1\\)" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
...@@ -25,5 +25,5 @@ foo (void) ...@@ -25,5 +25,5 @@ foo (void)
link_error (); link_error ();
} }
/* { dg-final { scan-tree-dump-times "with if \\(0\\)" 1 "store_ccp"} } */ /* { dg-final { scan-tree-dump-times "Folded statement: if " 1 "store_ccp"} } */
/* { dg-final { cleanup-tree-dump "store_ccp" } } */ /* { dg-final { cleanup-tree-dump "store_ccp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
typedef struct {
int code;
} *rtx;
int
can_combine_p (rtx insn, rtx elt)
{
rtx set;
set = 0;
if (insn->code == 3)
set = insn;
else
{
set = elt;
if (set == 0)
return 0;
}
if (set == 0)
return 1;
return 0;
}
/* { dg-final { scan-tree-dump-times "Folding predicate.*to 0" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do run } */
/* { dg-options "-O2 -fwrapv" } */
/* PR tree-optimization/21029
f() used to get optimized to an infinite loop by tree-vrp, because
j is assumed to be non-negative. Even though the conversion from
unsigned to signed has unspecified results if the expression value
is not representable in the signed type, the compiler itself (e.g.,
the Ada front end) depends on wrap-around behavior. */
unsigned int f(void) {
unsigned char i = 123;
signed char j;
do
if ((j = (signed char) i) < 0)
break;
else
i++;
while (1);
return i;
}
/* Now let's torture it a bit further. Narrowing conversions need
similar treatment. */
unsigned int f1 (void) {
unsigned short i = 123;
signed char j;
do
if ((j = (signed char) i) < 0)
break;
else
i++;
while (1);
return i;
}
/* And so do widening conversions. */
unsigned int f2 (void) {
unsigned char i = 123;
signed short j;
do
if ((j = (signed short) (signed char) i) < 0)
break;
else
i++;
while (1);
return i;
}
/* Check same-sign truncations with an increment that turns into
decrements. */
unsigned int f3 (void) {
signed short i = 5;
signed char j;
do
if ((j = (signed char) i) < 0)
break;
else
i += 255;
while (1);
return i;
}
/* Check that the truncation above doesn't confuse the result of the
test after a widening conversion. */
unsigned int f4 (void) {
signed short i = -123;
signed int j;
do
if ((j = (signed int) (signed char) i) > 0)
break;
else
i += 255;
while (1);
return i;
}
/* Even if we omit the widening truncation, the narrowing truncation
is implementation-defined. */
unsigned int f5 (void) {
signed long i = -123;
signed char j;
do
if ((j = (signed char) i) > 0)
break;
else
i += 255;
while (1);
return i;
}
int main (void) {
f ();
f1 ();
f2 ();
f3 ();
f4 ();
f5 ();
return 0;
}
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
int
foo (int *p)
{
int a = *p;
int b = p != 0;
*p = b;
if (b)
return a;
else
return 0;
}
/* { dg-final { scan-tree-dump-times "Folding predicate " 2 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
int g, h;
int
foo (int a)
{
int *p;
if (a)
p = &g;
else
p = &h;
if (p != 0)
return 1;
else
return 0;
}
/* { dg-final { scan-tree-dump-times "Folding predicate.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do run } */
/* { dg-options "-O2" } */
// this testcase fails also on amd64:
extern void abort (void);
int f ()
{
return -1;
}
int main ()
{
int b, c, i;
b = 0;
c = f ();
if (c <= 0)
{
c = -c;
for (i = 0; i < c; i++)
b = 1;
if (!b)
abort ();
}
return 0;
}
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
extern void g (void);
extern void bar (int);
int
foo (int a)
{
int i;
for (i = 1; i < 100; i++)
{
if (i)
g ();
}
}
/* { dg-final { scan-tree-dump-times "Folding predicate.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
...@@ -17,5 +17,5 @@ f (void) ...@@ -17,5 +17,5 @@ f (void)
link_error (); link_error ();
} }
/* { dg-final { scan-tree-dump-times "with if \\(0\\)" 1 "ccp"} } */ /* { dg-final { scan-tree-dump-times "Folded statement: if " 1 "ccp"} } */
/* { dg-final { cleanup-tree-dump "ccp" } } */ /* { dg-final { cleanup-tree-dump "ccp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int *p, int i)
{
int x;
if (i > 10)
{
if (p)
{
x = *p;
p = 0;
}
}
else
p = 0;
/* This should be folded to if (1), but only if we insert an
assertion on the ELSE edge from the inner 'if (p)'. */
if (p == 0)
return x + 1;
return i;
}
/* { dg-final { scan-tree-dump-times "Folding predicate p_.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
struct A
{
int a;
int b;
};
foo (struct A *p, struct A *q)
{
int x = p->a;
if (p == q)
return q->a;
/* We should fold this to 'if (1)' but the assertion for 'p == q'
was overwriting the assertion 'p != 0' from the first dereference
of 'p'. */
if (p)
return x + p->b;
}
/* { dg-final { scan-tree-dump-times "Folding predicate p_.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
struct A
{
int a;
int b;
};
foo (struct A *p, struct A *q)
{
int *r = 0;
if (p)
{
if (p == q)
{
/* This should be folded to 'if (1)' because q is [p, p]
and p is ~[0, 0]. */
if (q)
r = &q->a;
/* This should be folded to 'if (1)' because q should be
~[0, 0] and thus &q->a should be ~[0, 0]. */
if (r)
return 5;
}
}
return q->a;
}
/* { dg-final { scan-tree-dump-times "Folding predicate q_.*to 1" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "Folding predicate r_.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int a, int b)
{
if (a == b)
/* This should be folded to if (1) */
if (a == b)
return a + b;
}
/* { dg-final { scan-tree-dump-times "Folding predicate a_.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int k, int j)
{
if (k >= 10)
{
if (j > k)
{
/* We should fold this to if (1). */
if (j > 0)
return j;
}
}
return j;
}
/* { dg-final { scan-tree-dump-times "Folding predicate j_.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int i, int j, int a)
{
if (i >= 10)
if (i <= 30)
if (i == j)
{
a--;
/* This should fold to 'if (0)'. */
if (i < 0)
i = baz ();
/* This should fold to 'if (1)'. */
if (j > 0)
a--;
/* This should fold to 'if (0)'. */
if (i != j)
return 0;
}
return i + a + j;
}
/* { dg-final { scan-tree-dump-times "Folding predicate i_.*to 0" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "Folding predicate j_.*to 1" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "Folding predicate i_.*to 0" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp-details" } */
foo (int i, int *p)
{
int j;
if (i > 10)
{
if (p)
{
j = *p;
/* This should be folded to if (1) because of the parent 'if
(p)'. But the dereference of p above does not need an
assertion. */
if (p)
return j + 1;
}
}
else
{
j = *p - 3;
/* This should be folded to if (0), because p has just been
dereferenced. But we were not inserting enough ASSERT_EXPRs
to figure it out. */
if (!p)
return j - 4;
}
return i;
}
/* { dg-final { scan-tree-dump-times "Folding predicate p_.*to 1" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "Folding predicate p_.*to 0" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "PREDICATE: p_\[0-9\] ne_expr 0B" 2 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fno-tree-fre -fdump-tree-vrp-details" } */
/* Compile with -fno-tree-fre -O2 to prevent CSEing *p. */
foo (int a, int *p)
{
int x = *p + 2;
int y = *p - 1;
int z = *p + 9;
/* This should be folded to if (1), but only one ASSERT_EXPR should
be inserted. */
if (p)
a = x + y + z;
else
a = x - y;
return a;
}
/* { dg-final { scan-tree-dump-times "Folding predicate p_.*to 1" 1 "vrp" } } */
/* { dg-final { scan-tree-dump-times "PREDICATE: p_. ne_expr 0" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int *p)
{
int x = baz ();
if (p == 0)
goto L78;
else
{
x = *p;
/* This should be folded to if (1). */
if (p)
x = x + 1;
L78:
/* This should not be folded to if (1). */
if (p)
{
x = baz (*p);
/* This should be folded to if (1). */
if (p)
return x + 3;
}
return x - 3;
}
}
/* { dg-final { scan-tree-dump-times "Folding predicate p_.. != 0B to 1" 2 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do run } */
/* { dg-options "-O2" } */
extern void abort (void);
foo (int k, int j)
{
if (k >= 10)
{
if (j > k)
{
/* We should fold this to if (0). */
if (j < 10)
abort ();
}
}
return j;
}
main()
{
foo (10, 3);
return 0;
}
/* { dg-do compile } */
/* { dg-options "-O2 -fdump-tree-vrp" } */
foo (int k, int j, int z)
{
if (k > z)
{
if (j > k)
{
/* We should fold this to if (1). */
if (j > z)
return j;
}
}
return j;
}
/* { dg-final { scan-tree-dump-times "Folding predicate.*to 1" 1 "vrp" } } */
/* { dg-final { cleanup-tree-dump "vrp" } } */
/* { dg-do link } */
/* { dg-options -O2 } */
foo (int i)
{
int x;
x = i;
if (i < -10)
{
x = __builtin_abs (i);
/* VRP was incorrectly folding this to if (1). */
if (x < 0)
link_error ();
}
return x;
}
main()
{
foo (-30);
}
/* { dg-do run } */
/* { dg-options -O2 } */
extern void abort (void);
foo (int i, int j)
{
int k;
/* [-INF, -1] / [1, +INF] should not give [-1, -1]. */
if (i <= -1)
if (j >= 1)
{
k = i / j;
if (k == -1)
abort ();
return k;
}
/* [-20, -10] / [2, 10] should give [-10, -1]. */
if (i >= -20)
if (i <= -10)
if (j >= 2)
if (j <= 10)
{
k = i / j;
if (k < -10)
link_error ();
if (k > -1)
link_error ();
return k;
}
/* [-20, -10] / [-10, -2] should give [1, 10]. */
if (i >= -20)
if (i <= -10)
if (j >= -10)
if (j <= -2)
{
k = i / j;
if (k < 1)
link_error ();
if (k > 10)
link_error ();
return k;
}
/* [-20, 10] / [2, 10] should give [-10, 5]. */
if (i >= -20)
if (i <= 10)
if (j >= 2)
if (j <= 10)
{
k = i / j;
if (k < -10)
link_error ();
if (k > 5)
link_error ();
return k;
}
/* [-20, 10] / [-10, -2] should give [-5, 10]. */
if (i >= -20)
if (i <= 10)
if (j >= -10)
if (j <= -2)
{
k = i / j;
if (k < -5)
link_error ();
if (k > 10)
link_error ();
return k;
}
/* [10, 20] / [2, 10] should give [1, 10]. */
if (i >= 10)
if (i <= 20)
if (j >= 2)
if (j <= 10)
{
k = i / j;
if (k < 1)
link_error ();
if (k > 10)
link_error ();
return k;
}
/* [10, 20] / [-10, -2] should give [-10, -1]. */
if (i >= 10)
if (i <= 20)
if (j >= -10)
if (j <= -2)
{
k = i / j;
if (k > -1)
link_error ();
if (k < -10)
link_error ();
return k;
}
abort ();
}
main()
{
if (foo (-10, 5) != -2)
abort ();
if (foo (-16, 4) != -4)
abort ();
if (foo (-15, -5) != 3)
abort ();
if (foo (8, 2) != 4)
abort ();
if (foo (10, -2) != -5)
abort ();
if (foo (20, 5) != 4)
abort ();
if (foo (15, -3) != -5)
abort ();
return 0;
}
...@@ -83,34 +83,6 @@ struct ptr_info_def GTY(()) ...@@ -83,34 +83,6 @@ struct ptr_info_def GTY(())
}; };
/* Types of value ranges. */
enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
/* Ranges of values that can be associated with an SSA_NAME after VRP
has executed. */
struct value_range_def GTY(())
{
/* Lattice value represented by this range. */
enum value_range_type type;
/* Minimum and maximum values represented by this range. These
values are _CST nodes that should be interpreted as follows:
- If TYPE == VR_UNDEFINED then MIN and MAX must be NULL.
- If TYPE == VR_RANGE then MIN holds the minimum value and
MAX holds the maximum value of the range [MIN, MAX].
- If TYPE == ANTI_RANGE the variable is known to NOT
take any values in the range [MIN, MAX]. */
tree min;
tree max;
};
typedef struct value_range_def value_range;
/*--------------------------------------------------------------------------- /*---------------------------------------------------------------------------
Tree annotations stored in tree_common.ann Tree annotations stored in tree_common.ann
---------------------------------------------------------------------------*/ ---------------------------------------------------------------------------*/
...@@ -619,12 +591,8 @@ bool fold_stmt_inplace (tree); ...@@ -619,12 +591,8 @@ bool fold_stmt_inplace (tree);
tree widen_bitfield (tree, tree, tree); tree widen_bitfield (tree, tree, tree);
/* In tree-vrp.c */ /* In tree-vrp.c */
value_range *get_value_range (tree);
void dump_value_range (FILE *, value_range *);
void debug_value_range (value_range *);
void dump_all_value_ranges (FILE *);
void debug_all_value_ranges (void);
bool expr_computes_nonzero (tree); bool expr_computes_nonzero (tree);
tree vrp_evaluate_conditional (tree, bool);
/* In tree-ssa-dom.c */ /* In tree-ssa-dom.c */
extern void dump_dominator_optimization_stats (FILE *); extern void dump_dominator_optimization_stats (FILE *);
......
...@@ -580,7 +580,7 @@ static void ...@@ -580,7 +580,7 @@ static void
ccp_finalize (void) ccp_finalize (void)
{ {
/* Perform substitutions based on the known constant values. */ /* Perform substitutions based on the known constant values. */
substitute_and_fold (const_val); substitute_and_fold (const_val, false);
free (const_val); free (const_val);
} }
......
...@@ -894,7 +894,7 @@ fini_copy_prop (void) ...@@ -894,7 +894,7 @@ fini_copy_prop (void)
copy_of[i].value = get_last_copy_of (var); copy_of[i].value = get_last_copy_of (var);
} }
substitute_and_fold (copy_of); substitute_and_fold (copy_of, false);
free (cached_last_copy_of); free (cached_last_copy_of);
free (copy_of); free (copy_of);
......
...@@ -773,6 +773,7 @@ struct prop_stats_d ...@@ -773,6 +773,7 @@ struct prop_stats_d
{ {
long num_const_prop; long num_const_prop;
long num_copy_prop; long num_copy_prop;
long num_pred_folded;
}; };
static struct prop_stats_d prop_stats; static struct prop_stats_d prop_stats;
...@@ -964,6 +965,11 @@ static void ...@@ -964,6 +965,11 @@ static void
replace_phi_args_in (tree phi, prop_value_t *prop_value) replace_phi_args_in (tree phi, prop_value_t *prop_value)
{ {
int i; int i;
bool replaced = false;
tree prev_phi = NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
prev_phi = unshare_expr (phi);
for (i = 0; i < PHI_NUM_ARGS (phi); i++) for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{ {
...@@ -981,6 +987,7 @@ replace_phi_args_in (tree phi, prop_value_t *prop_value) ...@@ -981,6 +987,7 @@ replace_phi_args_in (tree phi, prop_value_t *prop_value)
prop_stats.num_copy_prop++; prop_stats.num_copy_prop++;
propagate_value (PHI_ARG_DEF_PTR (phi, i), val); propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
replaced = true;
/* If we propagated a copy and this argument flows /* If we propagated a copy and this argument flows
through an abnormal edge, update the replacement through an abnormal edge, update the replacement
...@@ -991,19 +998,79 @@ replace_phi_args_in (tree phi, prop_value_t *prop_value) ...@@ -991,19 +998,79 @@ replace_phi_args_in (tree phi, prop_value_t *prop_value)
} }
} }
} }
if (replaced && dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Folded PHI node: ");
print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
fprintf (dump_file, " into: ");
print_generic_stmt (dump_file, phi, TDF_SLIM);
fprintf (dump_file, "\n");
}
}
/* If STMT has a predicate whose value can be computed using the value
range information computed by VRP, compute its value and return true.
Otherwise, return false. */
static bool
fold_predicate_in (tree stmt)
{
tree *pred_p = NULL;
tree val;
if (TREE_CODE (stmt) == MODIFY_EXPR
&& COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
pred_p = &TREE_OPERAND (stmt, 1);
else if (TREE_CODE (stmt) == COND_EXPR)
pred_p = &COND_EXPR_COND (stmt);
else
return false;
val = vrp_evaluate_conditional (*pred_p, true);
if (val)
{
if (dump_file)
{
fprintf (dump_file, "Folding predicate ");
print_generic_expr (dump_file, *pred_p, 0);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, val, 0);
fprintf (dump_file, "\n");
}
prop_stats.num_pred_folded++;
*pred_p = val;
return true;
}
return false;
} }
/* Perform final substitution and folding of propagated values. */ /* Perform final substitution and folding of propagated values.
PROP_VALUE[I] contains the single value that should be substituted
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
substituted.
If USE_RANGES_P is true, statements that contain predicate
expressions are evaluated with a call to vrp_evaluate_conditional.
This will only give meaningful results when called from tree-vrp.c
(the information used by vrp_evaluate_conditional is built by the
VRP pass). */
void void
substitute_and_fold (prop_value_t *prop_value) substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
{ {
basic_block bb; basic_block bb;
if (prop_value == NULL && !use_ranges_p)
return;
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
"\nSubstituing values and folding statements\n\n");
memset (&prop_stats, 0, sizeof (prop_stats)); memset (&prop_stats, 0, sizeof (prop_stats));
...@@ -1013,41 +1080,51 @@ substitute_and_fold (prop_value_t *prop_value) ...@@ -1013,41 +1080,51 @@ substitute_and_fold (prop_value_t *prop_value)
block_stmt_iterator i; block_stmt_iterator i;
tree phi; tree phi;
/* Propagate our known values into PHI nodes. */ /* Propagate known values into PHI nodes. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) if (prop_value)
{ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Replaced ");
print_generic_stmt (dump_file, phi, TDF_SLIM);
}
replace_phi_args_in (phi, prop_value); replace_phi_args_in (phi, prop_value);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " with ");
print_generic_stmt (dump_file, phi, TDF_SLIM);
fprintf (dump_file, "\n");
}
}
for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i)) for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
{ {
bool replaced_address, did_replace; bool replaced_address, did_replace;
tree prev_stmt = NULL;
tree stmt = bsi_stmt (i); tree stmt = bsi_stmt (i);
/* Ignore ASSERT_EXPRs. They are used by VRP to generate
range information for names and they are discarded
afterwards. */
if (TREE_CODE (stmt) == MODIFY_EXPR
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
continue;
/* Replace the statement with its folded version and mark it /* Replace the statement with its folded version and mark it
folded. */ folded. */
did_replace = false;
replaced_address = false;
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
prev_stmt = unshare_expr (stmt);
/* If we have range information, see if we can fold
predicate expressions. */
if (use_ranges_p)
did_replace = fold_predicate_in (stmt);
if (prop_value)
{ {
fprintf (dump_file, "Replaced "); /* Only replace real uses if we couldn't fold the
print_generic_stmt (dump_file, stmt, TDF_SLIM); statement using value range information (value range
information is not collected on virtuals, so we only
need to check this for real uses). */
if (!did_replace)
did_replace |= replace_uses_in (stmt, &replaced_address,
prop_value);
did_replace |= replace_vuses_in (stmt, &replaced_address,
prop_value);
} }
replaced_address = false; /* If we made a replacement, fold and cleanup the statement. */
did_replace = replace_uses_in (stmt, &replaced_address, prop_value);
did_replace |= replace_vuses_in (stmt, &replaced_address, prop_value);
if (did_replace) if (did_replace)
{ {
tree old_stmt = stmt; tree old_stmt = stmt;
...@@ -1068,13 +1145,15 @@ substitute_and_fold (prop_value_t *prop_value) ...@@ -1068,13 +1145,15 @@ substitute_and_fold (prop_value_t *prop_value)
rhs = get_rhs (stmt); rhs = get_rhs (stmt);
if (TREE_CODE (rhs) == ADDR_EXPR) if (TREE_CODE (rhs) == ADDR_EXPR)
recompute_tree_invarant_for_addr_expr (rhs); recompute_tree_invarant_for_addr_expr (rhs);
}
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
{ {
fprintf (dump_file, " with "); fprintf (dump_file, "Folded statement: ");
print_generic_stmt (dump_file, stmt, TDF_SLIM); print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
fprintf (dump_file, "\n"); fprintf (dump_file, " into: ");
print_generic_stmt (dump_file, stmt, TDF_SLIM);
fprintf (dump_file, "\n");
}
} }
} }
} }
...@@ -1085,6 +1164,9 @@ substitute_and_fold (prop_value_t *prop_value) ...@@ -1085,6 +1164,9 @@ substitute_and_fold (prop_value_t *prop_value)
prop_stats.num_const_prop); prop_stats.num_const_prop);
fprintf (dump_file, "Copies propagated: %6ld\n", fprintf (dump_file, "Copies propagated: %6ld\n",
prop_stats.num_copy_prop); prop_stats.num_copy_prop);
fprintf (dump_file, "Predicates folded: %6ld\n",
prop_stats.num_pred_folded);
} }
} }
#include "gt-tree-ssa-propagate.h" #include "gt-tree-ssa-propagate.h"
...@@ -73,6 +73,39 @@ struct prop_value_d { ...@@ -73,6 +73,39 @@ struct prop_value_d {
typedef struct prop_value_d prop_value_t; typedef struct prop_value_d prop_value_t;
/* Type of value ranges. See value_range_d for a description of these
types. */
enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
/* Range of values that can be associated with an SSA_NAME after VRP
has executed. */
struct value_range_d
{
/* Lattice value represented by this range. */
enum value_range_type type;
/* Minimum and maximum values represented by this range. These
values should be interpreted as follows:
- If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
be NULL.
- If TYPE == VR_RANGE then MIN holds the minimum value and
MAX holds the maximum value of the range [MIN, MAX].
- If TYPE == ANTI_RANGE the variable is known to NOT
take any values in the range [MIN, MAX]. */
tree min;
tree max;
/* Set of SSA names whose value ranges are equivalent to this one.
This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
bitmap equiv;
};
typedef struct value_range_d value_range_t;
/* Call-back functions used by the value propagation engine. */ /* Call-back functions used by the value propagation engine. */
typedef enum ssa_prop_result (*ssa_prop_visit_stmt_fn) (tree, edge *, tree *); typedef enum ssa_prop_result (*ssa_prop_visit_stmt_fn) (tree, edge *, tree *);
typedef enum ssa_prop_result (*ssa_prop_visit_phi_fn) (tree); typedef enum ssa_prop_result (*ssa_prop_visit_phi_fn) (tree);
...@@ -87,6 +120,6 @@ bool stmt_makes_single_load (tree); ...@@ -87,6 +120,6 @@ bool stmt_makes_single_load (tree);
bool stmt_makes_single_store (tree); bool stmt_makes_single_store (tree);
prop_value_t *get_value_loaded_by (tree, prop_value_t *); prop_value_t *get_value_loaded_by (tree, prop_value_t *);
bool replace_uses_in (tree, bool *, prop_value_t *); bool replace_uses_in (tree, bool *, prop_value_t *);
void substitute_and_fold (prop_value_t *); void substitute_and_fold (prop_value_t *, bool);
#endif /* _TREE_SSA_PROPAGATE_H */ #endif /* _TREE_SSA_PROPAGATE_H */
...@@ -38,8 +38,8 @@ Boston, MA 02111-1307, USA. */ ...@@ -38,8 +38,8 @@ Boston, MA 02111-1307, USA. */
#include "tree-chrec.h" #include "tree-chrec.h"
/* Set of SSA names found during the dominator traversal of a /* Set of SSA names found during the dominator traversal of a
sub-graph in maybe_add_assert_expr. */ sub-graph in find_assert_locations. */
static sbitmap found; static sbitmap found_in_subgraph;
/* Loop structure of the program. Used to analyze scalar evolutions /* Loop structure of the program. Used to analyze scalar evolutions
inside adjust_range_with_scev. */ inside adjust_range_with_scev. */
...@@ -48,20 +48,51 @@ static struct loops *cfg_loops; ...@@ -48,20 +48,51 @@ static struct loops *cfg_loops;
/* Local functions. */ /* Local functions. */
static int compare_values (tree val1, tree val2); static int compare_values (tree val1, tree val2);
/* Given a conditional predicate COND that has WHICH as one of its /* Location information for ASSERT_EXPRs. Each instance of this
operands, return the other operand. No error checking is done. structure describes an ASSERT_EXPR for an SSA name. Since a single
This helper assumes that COND is a comparison and WHICH is one of SSA name may have more than one assertion associated with it, these
its operands. */ locations are kept in a linked list attached to the corresponding
SSA name. */
static inline tree struct assert_locus_d
get_opposite_operand (tree cond, tree which)
{ {
if (TREE_OPERAND (cond, 0) == which) /* Basic block where the assertion would be inserted. */
return TREE_OPERAND (cond, 1); basic_block bb;
else
return TREE_OPERAND (cond, 0); /* Some assertions need to be inserted on an edge (e.g., assertions
} generated by COND_EXPRs). In those cases, BB will be NULL. */
edge e;
/* Pointer to the statement that generated this assertion. */
block_stmt_iterator si;
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
enum tree_code comp_code;
/* Value being compared against. */
tree val;
/* Next node in the linked list. */
struct assert_locus_d *next;
};
typedef struct assert_locus_d *assert_locus_t;
/* If bit I is present, it means that SSA name N_i has a list of
assertions that should be inserted in the IL. */
static bitmap need_assert_for;
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
holds a list of ASSERT_LOCUS_T nodes that describe where
ASSERT_EXPRs for SSA name N_I should be inserted. */
static assert_locus_t *asserts_for;
/* Set of blocks visited in find_assert_locations. Used to avoid
visiting the same block more than once. */
static sbitmap blocks_visited;
/* Value range array. After propagation, VR_VALUE[I] holds the range
of values that SSA name N_I may take. */
static value_range_t **vr_value;
/* Given a comparison code, return its opposite. Note that this is *not* /* Given a comparison code, return its opposite. Note that this is *not*
the same as inverting its truth value (invert_tree_comparison). Here we the same as inverting its truth value (invert_tree_comparison). Here we
...@@ -104,12 +135,44 @@ opposite_comparison (enum tree_code code) ...@@ -104,12 +135,44 @@ opposite_comparison (enum tree_code code)
} }
/* Set value range VR to {T, MIN, MAX}. */ /* Return true if EXPR computes a non-zero value. */
static inline void bool
set_value_range (value_range *vr, enum value_range_type t, tree min, tree max) expr_computes_nonzero (tree expr)
{
/* Type casts won't change anything, so just strip them. */
STRIP_NOPS (expr);
/* Calling alloca, guarantees that the value is non-NULL. */
if (alloca_call_p (expr))
return true;
/* The address of a non-weak symbol is never NULL, unless the user
has requested not to remove NULL pointer checks. */
if (flag_delete_null_pointer_checks
&& TREE_CODE (expr) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (expr, 0))
&& !DECL_WEAK (TREE_OPERAND (expr, 0)))
return true;
/* IOR of any value with a nonzero value will result in a nonzero
value. */
if (TREE_CODE (expr) == BIT_IOR_EXPR
&& integer_nonzerop (TREE_OPERAND (expr, 1)))
return true;
return false;
}
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
static void
set_value_range (value_range_t *vr, enum value_range_type t, tree min,
tree max, bitmap equiv)
{ {
#if defined ENABLE_CHECKING #if defined ENABLE_CHECKING
/* Check the validity of the range. */
if (t == VR_RANGE || t == VR_ANTI_RANGE) if (t == VR_RANGE || t == VR_ANTI_RANGE)
{ {
int cmp; int cmp;
...@@ -123,114 +186,171 @@ set_value_range (value_range *vr, enum value_range_type t, tree min, tree max) ...@@ -123,114 +186,171 @@ set_value_range (value_range *vr, enum value_range_type t, tree min, tree max)
cmp = compare_values (min, max); cmp = compare_values (min, max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2); gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
} }
#endif
if (t == VR_RANGE if (t == VR_UNDEFINED || t == VR_VARYING)
&& INTEGRAL_TYPE_P (TREE_TYPE (min)) gcc_assert (min == NULL_TREE && max == NULL_TREE);
&& min == TYPE_MIN_VALUE (TREE_TYPE (min))
&& max == TYPE_MAX_VALUE (TREE_TYPE (max))) if (t == VR_UNDEFINED || t == VR_VARYING)
{ gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
/* Ranges that cover all the possible values for the type decay #endif
to VARYING. */
vr->type = VR_VARYING;
vr->min = NULL_TREE;
vr->max = NULL_TREE;
return;
}
vr->type = t; vr->type = t;
vr->min = min; vr->min = min;
vr->max = max; vr->max = max;
/* Since updating the equivalence set involves deep copying the
bitmaps, only do it if absolutely necessary. */
if (vr->equiv == NULL)
vr->equiv = BITMAP_ALLOC (NULL);
if (equiv != vr->equiv)
{
if (equiv && !bitmap_empty_p (equiv))
bitmap_copy (vr->equiv, equiv);
else
bitmap_clear (vr->equiv);
}
} }
/* Similar to set_value_range but return true if any field of VR /* Copy value range FROM into value range TO. */
changed from its previous value. */
static inline bool static inline void
update_value_range (value_range *vr, enum value_range_type t, tree min, copy_value_range (value_range_t *to, value_range_t *from)
tree max)
{ {
bool is_new = vr->type != t || vr->min != min || vr->max != max; set_value_range (to, from->type, from->min, from->max, from->equiv);
if (is_new) }
set_value_range (vr, t, min, max);
return is_new;
/* Set value range VR to a non-NULL range of type TYPE. */
static inline void
set_value_range_to_nonnull (value_range_t *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
}
/* Set value range VR to a NULL range of type TYPE. */
static inline void
set_value_range_to_null (value_range_t *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
}
/* Set value range VR to VR_VARYING. */
static inline void
set_value_range_to_varying (value_range_t *vr)
{
vr->type = VR_VARYING;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
}
/* Set value range VR to VR_UNDEFINED. */
static inline void
set_value_range_to_undefined (value_range_t *vr)
{
vr->type = VR_UNDEFINED;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
} }
/* Return value range information for VAR. Create an empty range if /* Return value range information for VAR. Create an empty range
none existed. */ if none existed. */
value_range * static value_range_t *
get_value_range (tree var) get_value_range (tree var)
{ {
value_range *vr; value_range_t *vr;
tree sym; tree sym;
unsigned ver = SSA_NAME_VERSION (var);
vr = SSA_NAME_VALUE_RANGE (var); vr = vr_value[ver];
if (vr) if (vr)
return vr; return vr;
/* Create a default value range. */ /* Create a default value range. */
vr = ggc_alloc (sizeof (*vr)); vr_value[ver] = vr = xmalloc (sizeof (*vr));
memset ((void *) vr, 0, sizeof (*vr)); memset (vr, 0, sizeof (*vr));
SSA_NAME_VALUE_RANGE (var) = vr;
/* If VAR is a default definition for a PARM_DECL, then we have to /* Allocate an equivalence set. */
assume a VARYING range for it. */ vr->equiv = BITMAP_ALLOC (NULL);
/* If VAR is a default definition, the variable can take any value
in VAR's type. */
sym = SSA_NAME_VAR (var); sym = SSA_NAME_VAR (var);
if (TREE_CODE (sym) == PARM_DECL && var == var_ann (sym)->default_def) if (var == var_ann (sym)->default_def)
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE); set_value_range_to_varying (vr);
return vr; return vr;
} }
/* Return true if value range VR involves at least one symbol. */ /* Update the value range and equivalence set for variable VAR to
NEW_VR. Return true if NEW_VR is different from VAR's previous
value.
NOTE: This function assumes that NEW_VR is a temporary value range
object created for the sole purpose of updating VAR's range. The
storage used by the equivalence set from NEW_VR will be freed by
this function. Do not call update_value_range when NEW_VR
is the range object associated with another SSA name. */
static inline bool static inline bool
symbolic_range_p (value_range *vr) update_value_range (tree var, value_range_t *new_vr)
{ {
return (!is_gimple_min_invariant (vr->min) value_range_t *old_vr;
|| !is_gimple_min_invariant (vr->max)); bool is_new;
}
/* Update the value range, if necessary. */
old_vr = get_value_range (var);
is_new = old_vr->type != new_vr->type
|| old_vr->min != new_vr->min
|| old_vr->max != new_vr->max
|| (old_vr->equiv == NULL && new_vr->equiv)
|| (old_vr->equiv && new_vr->equiv == NULL)
|| (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
if (is_new)
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
new_vr->equiv);
/* Return true if EXPR computes a non-zero value. */ BITMAP_FREE (new_vr->equiv);
new_vr->equiv = NULL;
bool return is_new;
expr_computes_nonzero (tree expr) }
{
/* Type casts won't change anything, so just strip it. */
STRIP_NOPS (expr);
/* Calling alloca, guarantees that the value is non-NULL. */
if (alloca_call_p (expr))
return true;
/* The address of a non-weak symbol is never NULL, unless the user /* Add VAR and VAR's equivalence set to EQUIV. */
has requested not to remove NULL pointer checks. */
if (flag_delete_null_pointer_checks
&& TREE_CODE (expr) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (expr, 0))
&& !DECL_WEAK (TREE_OPERAND (expr, 0)))
return true;
/* IOR of any value with a nonzero value will result in a nonzero static void
value. */ add_equivalence (bitmap equiv, tree var)
if (TREE_CODE (expr) == BIT_IOR_EXPR {
&& integer_nonzerop (TREE_OPERAND (expr, 1))) unsigned ver = SSA_NAME_VERSION (var);
return true; value_range_t *vr = vr_value[ver];
return false; bitmap_set_bit (equiv, ver);
if (vr && vr->equiv)
bitmap_ior_into (equiv, vr->equiv);
} }
/* Return true if VR is ~[0, 0]. */ /* Return true if VR is ~[0, 0]. */
static inline bool static inline bool
range_is_nonnull (value_range *vr) range_is_nonnull (value_range_t *vr)
{ {
return vr->type == VR_ANTI_RANGE return vr->type == VR_ANTI_RANGE
&& integer_zerop (vr->min) && integer_zerop (vr->min)
...@@ -241,7 +361,7 @@ range_is_nonnull (value_range *vr) ...@@ -241,7 +361,7 @@ range_is_nonnull (value_range *vr)
/* Return true if VR is [0, 0]. */ /* Return true if VR is [0, 0]. */
static inline bool static inline bool
range_is_null (value_range *vr) range_is_null (value_range_t *vr)
{ {
return vr->type == VR_RANGE return vr->type == VR_RANGE
&& integer_zerop (vr->min) && integer_zerop (vr->min)
...@@ -249,32 +369,42 @@ range_is_null (value_range *vr) ...@@ -249,32 +369,42 @@ range_is_null (value_range *vr)
} }
/* Set value range VR to a non-NULL range of type TYPE. */ /* Return true if value range VR involves at least one symbol. */
static inline void static inline bool
set_value_range_to_nonnull (value_range *vr, tree type) symbolic_range_p (value_range_t *vr)
{ {
tree zero = build_int_cst (type, 0); return (!is_gimple_min_invariant (vr->min)
set_value_range (vr, VR_ANTI_RANGE, zero, zero); || !is_gimple_min_invariant (vr->max));
} }
/* Set value range VR to a NULL range of type TYPE. */ /* Like expr_computes_nonzero, but this function uses value ranges
obtained so far. */
static inline void static bool
set_value_range_to_null (value_range *vr, tree type) vrp_expr_computes_nonzero (tree expr)
{ {
tree zero = build_int_cst (type, 0); if (expr_computes_nonzero (expr))
set_value_range (vr, VR_RANGE, zero, zero); return true;
}
/* If we have an expression of the form &X->a, then the expression
is nonnull if X is nonnull. */
if (TREE_CODE (expr) == ADDR_EXPR)
{
tree base = get_base_address (TREE_OPERAND (expr, 0));
/* Set value range VR to VR_VARYING. */ if (base != NULL_TREE
&& TREE_CODE (base) == INDIRECT_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
{
value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
if (range_is_nonnull (vr))
return true;
}
}
static inline void return false;
set_value_range_to_varying (value_range *vr)
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
} }
...@@ -414,6 +544,10 @@ compare_values (tree val1, tree val2) ...@@ -414,6 +544,10 @@ compare_values (tree val1, tree val2)
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)) if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
return -2; return -2;
/* We cannot compare overflowed values. */
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
return -2;
if (!POINTER_TYPE_P (TREE_TYPE (val1))) if (!POINTER_TYPE_P (TREE_TYPE (val1)))
return tree_int_cst_compare (val1, val2); return tree_int_cst_compare (val1, val2);
else else
...@@ -449,7 +583,7 @@ compare_values (tree val1, tree val2) ...@@ -449,7 +583,7 @@ compare_values (tree val1, tree val2)
-2 if we cannot tell either way. */ -2 if we cannot tell either way. */
static inline int static inline int
value_inside_range (tree val, value_range *vr) value_inside_range (tree val, value_range_t *vr)
{ {
int cmp1, cmp2; int cmp1, cmp2;
...@@ -469,7 +603,7 @@ value_inside_range (tree val, value_range *vr) ...@@ -469,7 +603,7 @@ value_inside_range (tree val, value_range *vr)
intersection. */ intersection. */
static inline bool static inline bool
value_ranges_intersect_p (value_range *vr0, value_range *vr1) value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
{ {
return (value_inside_range (vr1->min, vr0) == 1 return (value_inside_range (vr1->min, vr0) == 1
|| value_inside_range (vr1->max, vr0) == 1 || value_inside_range (vr1->max, vr0) == 1
...@@ -478,38 +612,77 @@ value_ranges_intersect_p (value_range *vr0, value_range *vr1) ...@@ -478,38 +612,77 @@ value_ranges_intersect_p (value_range *vr0, value_range *vr1)
} }
/* Return true if VR includes the value zero, false otheriwse. */
static inline bool
range_includes_zero_p (value_range_t *vr)
{
tree zero;
gcc_assert (vr->type != VR_UNDEFINED
&& vr->type != VR_VARYING
&& !symbolic_range_p (vr));
zero = build_int_cst (TREE_TYPE (vr->min), 0);
return (value_inside_range (zero, vr) == 1);
}
/* Extract value range information from an ASSERT_EXPR EXPR and store /* Extract value range information from an ASSERT_EXPR EXPR and store
it in *VR_P. */ it in *VR_P. */
static void static void
extract_range_from_assert (value_range *vr_p, tree expr) extract_range_from_assert (value_range_t *vr_p, tree expr)
{ {
tree var, cond, limit, type; tree var, cond, limit, min, max, type;
value_range *var_vr; value_range_t *var_vr, *limit_vr;
enum tree_code cond_code; enum tree_code cond_code;
var = ASSERT_EXPR_VAR (expr); var = ASSERT_EXPR_VAR (expr);
cond = ASSERT_EXPR_COND (expr); cond = ASSERT_EXPR_COND (expr);
cond_code = TREE_CODE (cond);
gcc_assert (COMPARISON_CLASS_P (cond)); gcc_assert (COMPARISON_CLASS_P (cond));
/* Find VAR in the ASSERT_EXPR conditional. */ /* Find VAR in the ASSERT_EXPR conditional. */
limit = get_opposite_operand (cond, var); if (var == TREE_OPERAND (cond, 0))
type = TREE_TYPE (limit); {
/* If the predicate is of the form VAR COMP LIMIT, then we just
take LIMIT from the RHS and use the same comparison code. */
limit = TREE_OPERAND (cond, 1);
cond_code = TREE_CODE (cond);
}
else
{
/* If the predicate is of the form LIMIT COMP VAR, then we need
to flip around the comparison code to create the proper range
for VAR. */
limit = TREE_OPERAND (cond, 0);
cond_code = opposite_comparison (TREE_CODE (cond));
}
type = TREE_TYPE (limit);
gcc_assert (limit != var); gcc_assert (limit != var);
/* For pointer arithmetic, we only keep track of anti-ranges /* For pointer arithmetic, we only keep track of pointer equality
(NE_EXPR). Notice that we don't need to handle EQ_EXPR in these and inequality. */
cases because assertions with equalities are never generated. if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
The assert pass generates straight assignments in those cases. */
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR)
{ {
set_value_range_to_varying (vr_p); set_value_range_to_varying (vr_p);
return; return;
} }
/* If LIMIT is another SSA name and LIMIT has a range of its own,
try to use LIMIT's range to avoid creating symbolic ranges
unnecessarily. */
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
/* LIMIT's range is only interesting if it has any useful information. */
if (limit_vr
&& (limit_vr->type == VR_UNDEFINED
|| limit_vr->type == VR_VARYING
|| symbolic_range_p (limit_vr)))
limit_vr = NULL;
/* Special handling for integral types with super-types. Some FEs /* Special handling for integral types with super-types. Some FEs
construct integral types derived from other types and restrict construct integral types derived from other types and restrict
the range of values these new types may take. the range of values these new types may take.
...@@ -538,7 +711,9 @@ extract_range_from_assert (value_range *vr_p, tree expr) ...@@ -538,7 +711,9 @@ extract_range_from_assert (value_range *vr_p, tree expr)
So, the only sensible thing we can do for now is set the So, the only sensible thing we can do for now is set the
resulting range to VR_VARYING. TODO, would having symbolic -INF resulting range to VR_VARYING. TODO, would having symbolic -INF
and +INF values be worth the trouble? */ and +INF values be worth the trouble? */
if (TREE_TYPE (type)) if (TREE_CODE (limit) != SSA_NAME
&& INTEGRAL_TYPE_P (type)
&& TREE_TYPE (type))
{ {
if (cond_code == LE_EXPR || cond_code == LT_EXPR) if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{ {
...@@ -568,29 +743,125 @@ extract_range_from_assert (value_range *vr_p, tree expr) ...@@ -568,29 +743,125 @@ extract_range_from_assert (value_range *vr_p, tree expr)
} }
} }
if (TREE_CODE (cond) == NE_EXPR) /* The new range has the same set of equivalences of VAR's range. */
set_value_range (vr_p, VR_ANTI_RANGE, limit, limit); gcc_assert (vr_p->equiv == NULL);
else if (TREE_CODE (cond) == LE_EXPR) vr_p->equiv = BITMAP_ALLOC (NULL);
set_value_range (vr_p, VR_RANGE, TYPE_MIN_VALUE (type), limit); add_equivalence (vr_p->equiv, var);
else if (TREE_CODE (cond) == LT_EXPR)
/* Extract a new range based on the asserted comparison for VAR and
LIMIT's value range. Notice that if LIMIT has an anti-range, we
will only use it for equality comparisons (EQ_EXPR). For any
other kind of assertion, we cannot derive a range from LIMIT's
anti-range that can be used to describe the new range. For
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
no single range for x_2 that could describe LE_EXPR, so we might
as well build the range [b_4, +INF] for it. */
if (cond_code == EQ_EXPR)
{
enum value_range_type range_type;
if (limit_vr)
{
range_type = limit_vr->type;
min = limit_vr->min;
max = limit_vr->max;
}
else
{
range_type = VR_RANGE;
min = limit;
max = limit;
}
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
/* When asserting the equality VAR == LIMIT and LIMIT is another
SSA name, the new range will also inherit the equivalence set
from LIMIT. */
if (TREE_CODE (limit) == SSA_NAME)
add_equivalence (vr_p->equiv, limit);
}
else if (cond_code == NE_EXPR)
{
/* As described above, when LIMIT's range is an anti-range and
this assertion is an inequality (NE_EXPR), then we cannot
derive anything from the anti-range. For instance, if
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
not imply that VAR's range is [0, 0]. So, in the case of
anti-ranges, we just assert the inequality using LIMIT and
not its anti-range. */
if (limit_vr == NULL
|| limit_vr->type == VR_ANTI_RANGE)
{
min = limit;
max = limit;
}
else
{
min = limit_vr->min;
max = limit_vr->max;
}
/* If MIN and MAX cover the whole range for their type, then
just use the original LIMIT. */
if (INTEGRAL_TYPE_P (type)
&& min == TYPE_MIN_VALUE (type)
&& max == TYPE_MAX_VALUE (type))
min = max = limit;
set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
}
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{ {
tree one = build_int_cst (type, 1); min = TYPE_MIN_VALUE (type);
set_value_range (vr_p, VR_RANGE, TYPE_MIN_VALUE (type),
fold (build (MINUS_EXPR, type, limit, one))); if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
max = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
LT_EXPR. */
max = limit_vr->max;
}
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
if (cond_code == LT_EXPR)
{
tree one = build_int_cst (type, 1);
max = fold (build (MINUS_EXPR, type, max, one));
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
} }
else if (TREE_CODE (cond) == GE_EXPR) else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
set_value_range (vr_p, VR_RANGE, limit, TYPE_MAX_VALUE (type));
else if (TREE_CODE (cond) == GT_EXPR)
{ {
tree one = build_int_cst (type, 1); max = TYPE_MAX_VALUE (type);
set_value_range (vr_p, VR_RANGE,
fold (build (PLUS_EXPR, type, limit, one)), if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
TYPE_MAX_VALUE (type)); min = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
GT_EXPR. */
min = limit_vr->min;
}
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
if (cond_code == GT_EXPR)
{
tree one = build_int_cst (type, 1);
min = fold (build (PLUS_EXPR, type, min, one));
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
} }
else else
gcc_unreachable (); gcc_unreachable ();
/* If VAR already has a known range and the two ranges have a /* If VAR already had a known range and the two ranges have a
non-empty intersection, we can refine the resulting range. non-empty intersection, we can refine the resulting range.
Since the assert expression creates an equivalency and at the Since the assert expression creates an equivalency and at the
same time it asserts a predicate, we can take the intersection of same time it asserts a predicate, we can take the intersection of
...@@ -600,8 +871,6 @@ extract_range_from_assert (value_range *vr_p, tree expr) ...@@ -600,8 +871,6 @@ extract_range_from_assert (value_range *vr_p, tree expr)
&& vr_p->type == VR_RANGE && vr_p->type == VR_RANGE
&& value_ranges_intersect_p (var_vr, vr_p)) && value_ranges_intersect_p (var_vr, vr_p))
{ {
tree min, max;
/* Use the larger of the two minimums. */ /* Use the larger of the two minimums. */
if (compare_values (vr_p->min, var_vr->min) == -1) if (compare_values (vr_p->min, var_vr->min) == -1)
min = var_vr->min; min = var_vr->min;
...@@ -614,7 +883,7 @@ extract_range_from_assert (value_range *vr_p, tree expr) ...@@ -614,7 +883,7 @@ extract_range_from_assert (value_range *vr_p, tree expr)
else else
max = vr_p->max; max = vr_p->max;
set_value_range (vr_p, vr_p->type, min, max); set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
} }
} }
...@@ -633,14 +902,16 @@ extract_range_from_assert (value_range *vr_p, tree expr) ...@@ -633,14 +902,16 @@ extract_range_from_assert (value_range *vr_p, tree expr)
always false. */ always false. */
static void static void
extract_range_from_ssa_name (value_range *vr, tree var) extract_range_from_ssa_name (value_range_t *vr, tree var)
{ {
value_range *var_vr = get_value_range (var); value_range_t *var_vr = get_value_range (var);
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING) if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
*vr = *var_vr; copy_value_range (vr, var_vr);
else else
set_value_range (vr, VR_RANGE, var, var); set_value_range (vr, VR_RANGE, var, var, NULL);
add_equivalence (vr->equiv, var);
} }
...@@ -648,12 +919,13 @@ extract_range_from_ssa_name (value_range *vr, tree var) ...@@ -648,12 +919,13 @@ extract_range_from_ssa_name (value_range *vr, tree var)
the ranges of each of its operands and the expression code. */ the ranges of each of its operands and the expression code. */
static void static void
extract_range_from_binary_expr (value_range *vr, tree expr) extract_range_from_binary_expr (value_range_t *vr, tree expr)
{ {
enum tree_code code = TREE_CODE (expr); enum tree_code code = TREE_CODE (expr);
tree op0, op1, min, max; tree op0, op1, min, max;
value_range vr0, vr1;
int cmp; int cmp;
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
/* Not all binary expressions can be applied to ranges in a /* Not all binary expressions can be applied to ranges in a
meaningful way. Handle only arithmetic operations. */ meaningful way. Handle only arithmetic operations. */
...@@ -666,7 +938,12 @@ extract_range_from_binary_expr (value_range *vr, tree expr) ...@@ -666,7 +938,12 @@ extract_range_from_binary_expr (value_range *vr, tree expr)
&& code != EXACT_DIV_EXPR && code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR && code != ROUND_DIV_EXPR
&& code != MIN_EXPR && code != MIN_EXPR
&& code != MAX_EXPR) && code != MAX_EXPR
&& code != TRUTH_ANDIF_EXPR
&& code != TRUTH_ORIF_EXPR
&& code != TRUTH_AND_EXPR
&& code != TRUTH_OR_EXPR
&& code != TRUTH_XOR_EXPR)
{ {
set_value_range_to_varying (vr); set_value_range_to_varying (vr);
return; return;
...@@ -677,48 +954,34 @@ extract_range_from_binary_expr (value_range *vr, tree expr) ...@@ -677,48 +954,34 @@ extract_range_from_binary_expr (value_range *vr, tree expr)
op0 = TREE_OPERAND (expr, 0); op0 = TREE_OPERAND (expr, 0);
if (TREE_CODE (op0) == SSA_NAME) if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0)); vr0 = *(get_value_range (op0));
else if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
else else
{ set_value_range_to_varying (&vr0);
if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0);
else
set_value_range_to_varying (&vr0);
}
op1 = TREE_OPERAND (expr, 1); op1 = TREE_OPERAND (expr, 1);
if (TREE_CODE (op1) == SSA_NAME) if (TREE_CODE (op1) == SSA_NAME)
vr1 = *(get_value_range (op1)); vr1 = *(get_value_range (op1));
else if (is_gimple_min_invariant (op1))
set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
else else
{ set_value_range_to_varying (&vr1);
if (is_gimple_min_invariant (op1))
set_value_range (&vr1, VR_RANGE, op1, op1);
else
set_value_range_to_varying (&vr1);
}
/* If either range is UNDEFINED, so is the result. */ /* If either range is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED) if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
{ {
set_value_range (vr, VR_UNDEFINED, NULL_TREE, NULL_TREE); set_value_range_to_undefined (vr);
return;
}
/* If either range is VARYING, so is the result. */
if (vr0.type == VR_VARYING || vr1.type == VR_VARYING)
{
set_value_range_to_varying (vr);
return;
}
/* If the ranges are of different types, the result is VARYING. */
if (vr0.type != vr1.type)
{
set_value_range_to_varying (vr);
return; return;
} }
/* TODO. Refuse to do any symbolic range operations for now. */ /* Refuse to operate on VARYING ranges, ranges of different kinds
if (symbolic_range_p (&vr0) || symbolic_range_p (&vr1)) and symbolic ranges. TODO, we may be able to derive anti-ranges
in some cases. */
if (vr0.type == VR_VARYING
|| vr1.type == VR_VARYING
|| vr0.type != vr1.type
|| symbolic_range_p (&vr0)
|| symbolic_range_p (&vr1))
{ {
set_value_range_to_varying (vr); set_value_range_to_varying (vr);
return; return;
...@@ -730,17 +993,12 @@ extract_range_from_binary_expr (value_range *vr, tree expr) ...@@ -730,17 +993,12 @@ extract_range_from_binary_expr (value_range *vr, tree expr)
|| POINTER_TYPE_P (TREE_TYPE (op1))) || POINTER_TYPE_P (TREE_TYPE (op1)))
{ {
/* For pointer types, we are really only interested in asserting /* For pointer types, we are really only interested in asserting
whether the expression evaluates to non-NULL. FIXME. We whether the expression evaluates to non-NULL. FIXME, we used
used to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
but ivopts is generating expressions with pointer ivopts is generating expressions with pointer multiplication
multiplication in them. */ in them. */
if (code == PLUS_EXPR) if (code == PLUS_EXPR)
{ set_value_range_to_nonnull (vr, TREE_TYPE (expr));
/* Assume that pointers can never wrap around. FIXME, Is
this always safe? */
tree zero = build_int_cst (TREE_TYPE (expr), 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero);
}
else else
{ {
/* Subtracting from a pointer, may yield 0, so just drop the /* Subtracting from a pointer, may yield 0, so just drop the
...@@ -753,10 +1011,20 @@ extract_range_from_binary_expr (value_range *vr, tree expr) ...@@ -753,10 +1011,20 @@ extract_range_from_binary_expr (value_range *vr, tree expr)
/* For integer ranges, apply the operation to each end of the /* For integer ranges, apply the operation to each end of the
range and see what we end up with. */ range and see what we end up with. */
if (code == PLUS_EXPR if (code == TRUTH_ANDIF_EXPR
|| code == MULT_EXPR || code == TRUTH_ORIF_EXPR
|| code == MIN_EXPR || code == TRUTH_AND_EXPR
|| code == MAX_EXPR) || code == TRUTH_OR_EXPR
|| code == TRUTH_XOR_EXPR)
{
/* Boolean expressions cannot be folded with int_const_binop. */
min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
}
else if (code == PLUS_EXPR
|| code == MULT_EXPR
|| code == MIN_EXPR
|| code == MAX_EXPR)
{ {
/* For operations that make the resulting range directly /* For operations that make the resulting range directly
proportional to the original ranges, apply the operation to proportional to the original ranges, apply the operation to
...@@ -764,54 +1032,141 @@ extract_range_from_binary_expr (value_range *vr, tree expr) ...@@ -764,54 +1032,141 @@ extract_range_from_binary_expr (value_range *vr, tree expr)
min = int_const_binop (code, vr0.min, vr1.min, 0); min = int_const_binop (code, vr0.min, vr1.min, 0);
max = int_const_binop (code, vr0.max, vr1.max, 0); max = int_const_binop (code, vr0.max, vr1.max, 0);
} }
else else if (code == TRUNC_DIV_EXPR
{ || code == FLOOR_DIV_EXPR
/* For operations that make the resulting range inversely || code == CEIL_DIV_EXPR
proportional to the original ranges (-, /), apply the || code == EXACT_DIV_EXPR
operation to the opposite ends of each range. */ || code == ROUND_DIV_EXPR)
min = int_const_binop (code, vr0.min, vr1.max, 0);
max = int_const_binop (code, vr0.max, vr1.min, 0);
}
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{ {
/* If the new range has its limits swapped around (MIN > MAX), tree zero;
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range_to_varying (vr);
}
else
set_value_range (vr, vr0.type, min, max);
}
/* Like expr_computes_nonzero, but this function uses value ranges /* Divisions are a bit tricky to handle, depending on the mix of
obtained so far. */ signs we have in the two range, we will need to divide
different values to get the minimum and maximum values for
the new range. If VR1 includes zero, the result is VARYING. */
if (range_includes_zero_p (&vr1))
{
set_value_range_to_varying (vr);
return;
}
static bool /* We have three main variations to handle for VR0: all negative
vrp_expr_computes_nonzero (tree expr) values, all positive values and a mix of negative and
{ positive. For each of these, we need to consider if VR1 is
if (expr_computes_nonzero (expr)) all negative or all positive. In total, there are 6
return true; combinations to handle. */
zero = build_int_cst (TREE_TYPE (expr), 0);
if (compare_values (vr0.max, zero) == -1)
{
/* VR0 is all negative. */
if (compare_values (vr1.min, zero) == 1)
{
/* If VR1 is all positive, the new range is obtained
with [VR0.MIN / VR1.MIN, VR0.MAX / VR1.MAX]. */
min = int_const_binop (code, vr0.min, vr1.min, 0);
max = int_const_binop (code, vr0.max, vr1.max, 0);
}
else
{
/* If VR1 is all negative, the new range is obtained
with [VR0.MAX / VR1.MIN, VR0.MIN / VR1.MAX]. */
gcc_assert (compare_values (vr1.max, zero) == -1);
min = int_const_binop (code, vr0.max, vr1.min, 0);
max = int_const_binop (code, vr0.min, vr1.max, 0);
}
}
else if (range_includes_zero_p (&vr0))
{
/* VR0 is a mix of negative and positive values. */
if (compare_values (vr1.min, zero) == 1)
{
/* If VR1 is all positive, the new range is obtained
with [VR0.MIN / VR1.MIN, VR0.MAX / VR1.MIN]. */
min = int_const_binop (code, vr0.min, vr1.min, 0);
max = int_const_binop (code, vr0.max, vr1.min, 0);
}
else
{
/* If VR1 is all negative, the new range is obtained
with [VR0.MAX / VR1.MAX, VR0.MIN / VR1.MAX]. */
gcc_assert (compare_values (vr1.max, zero) == -1);
min = int_const_binop (code, vr0.max, vr1.max, 0);
max = int_const_binop (code, vr0.min, vr1.max, 0);
}
}
else
{
/* VR0 is all positive. */
gcc_assert (compare_values (vr0.min, zero) == 1);
if (compare_values (vr1.min, zero) == 1)
{
/* If VR1 is all positive, the new range is obtained
with [VR0.MIN / VR1.MAX, VR0.MAX / VR1.MIN]. */
min = int_const_binop (code, vr0.min, vr1.max, 0);
max = int_const_binop (code, vr0.max, vr1.min, 0);
}
else
{
/* If VR1 is all negative, the new range is obtained
with [VR0.MAX / VR1.MAX, VR0.MIN / VR1.MIN]. */
gcc_assert (compare_values (vr1.max, zero) == -1);
min = int_const_binop (code, vr0.max, vr1.max, 0);
max = int_const_binop (code, vr0.min, vr1.min, 0);
}
}
}
else if (code == MINUS_EXPR)
{
/* For MINUS_EXPR, apply the operation to the opposite ends of
each range. */
min = int_const_binop (code, vr0.min, vr1.max, 0);
max = int_const_binop (code, vr0.max, vr1.min, 0);
}
else
gcc_unreachable ();
/* If we have an expression of the form &X->a, then the expression /* If MAX overflowed, then the result depends on whether we are
is nonnull if X is nonnull. */ using wrapping arithmetic or not. */
if (TREE_CODE (expr) == ADDR_EXPR) if (TREE_OVERFLOW (max))
{ {
tree base = get_base_address (TREE_OPERAND (expr, 0)); /* If we are using wrapping arithmetic, set the result to
VARYING. */
if (flag_wrapv)
{
set_value_range_to_varying (vr);
return;
}
if (base != NULL_TREE /* Otherwise, set MAX to +INF. */
&& TREE_CODE (base) == INDIRECT_REF max = TYPE_MAX_VALUE (TREE_TYPE (expr));
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) }
/* If MIN overflowed, then the result depends on whether we are
using wrapping arithmetic or not. */
if (TREE_OVERFLOW (min))
{
/* If we are using wrapping arithmetic, set the result to
VARYING. */
if (flag_wrapv)
{ {
value_range *vr = get_value_range (TREE_OPERAND (base, 0)); set_value_range_to_varying (vr);
if (range_is_nonnull (vr)) return;
return true;
} }
/* Otherwise, set MIN to -INF. */
min = TYPE_MIN_VALUE (TREE_TYPE (expr));
} }
return false; cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range_to_varying (vr);
}
else
set_value_range (vr, vr0.type, min, max, NULL);
} }
...@@ -819,51 +1174,53 @@ vrp_expr_computes_nonzero (tree expr) ...@@ -819,51 +1174,53 @@ vrp_expr_computes_nonzero (tree expr)
the range of its operand and the expression code. */ the range of its operand and the expression code. */
static void static void
extract_range_from_unary_expr (value_range *vr, tree expr) extract_range_from_unary_expr (value_range_t *vr, tree expr)
{ {
enum tree_code code = TREE_CODE (expr); enum tree_code code = TREE_CODE (expr);
tree min, max, op0; tree min, max, op0;
value_range vr0;
int cmp; int cmp;
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
/* Refuse to operate on certain unary expressions for which we
cannot easily determine a resulting range. */
if (code == FIX_TRUNC_EXPR
|| code == FIX_CEIL_EXPR
|| code == FIX_FLOOR_EXPR
|| code == FIX_ROUND_EXPR
|| code == FLOAT_EXPR
|| code == BIT_NOT_EXPR
|| code == NON_LVALUE_EXPR
|| code == CONJ_EXPR)
{
set_value_range_to_varying (vr);
return;
}
/* Get value ranges for the operand. For constant operands, create /* Get value ranges for the operand. For constant operands, create
a new value range with the operand to simplify processing. */ a new value range with the operand to simplify processing. */
op0 = TREE_OPERAND (expr, 0); op0 = TREE_OPERAND (expr, 0);
if (TREE_CODE (op0) == SSA_NAME) if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0)); vr0 = *(get_value_range (op0));
else if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
else else
{ set_value_range_to_varying (&vr0);
if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0);
else
set_value_range_to_varying (&vr0);
}
/* If VR0 is UNDEFINED, so is the result. */ /* If VR0 is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED) if (vr0.type == VR_UNDEFINED)
{ {
set_value_range (vr, VR_UNDEFINED, NULL_TREE, NULL_TREE); set_value_range_to_undefined (vr);
return; return;
} }
/* If VR0 is VARYING, so is the result. */ /* Refuse to operate on varying and symbolic ranges. Also, if the
if (vr0.type == VR_VARYING) operand is neither a pointer nor an integral type, set the
{ resulting range to VARYING. TODO, in some cases we may be able
set_value_range_to_varying (vr); to derive anti-ranges (like non-zero values). */
return; if (vr0.type == VR_VARYING
} || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
/* TODO. Refuse to do any symbolic range operations for now. */ || symbolic_range_p (&vr0))
if (symbolic_range_p (&vr0))
{
set_value_range_to_varying (vr);
return;
}
/* If the operand is neither a pointer nor an integral type, set the
range to VARYING. TODO, we may set the range to non-zero. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
{ {
set_value_range_to_varying (vr); set_value_range_to_varying (vr);
return; return;
...@@ -899,8 +1256,52 @@ extract_range_from_unary_expr (value_range *vr, tree expr) ...@@ -899,8 +1256,52 @@ extract_range_from_unary_expr (value_range *vr, tree expr)
/* Apply the operation to each end of the range and see what we end /* Apply the operation to each end of the range and see what we end
up with. */ up with. */
min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min); if (code == NEGATE_EXPR
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max); && !TYPE_UNSIGNED (TREE_TYPE (expr)))
{
/* Negating an anti-range doesn't really do anything to it. The
new range will also not take on the same range of values
excluded by the original anti-range. */
if (vr0.type == VR_ANTI_RANGE)
{
copy_value_range (vr, &vr0);
return;
}
/* NEGATE_EXPR flips the range around. */
min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)))
? TYPE_MIN_VALUE (TREE_TYPE (expr))
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
? TYPE_MAX_VALUE (TREE_TYPE (expr))
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
}
else if (code == ABS_EXPR
&& !TYPE_UNSIGNED (TREE_TYPE (expr)))
{
/* ABS_EXPR may flip the range around, if the original range
included negative values. */
min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
? TYPE_MAX_VALUE (TREE_TYPE (expr))
: fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
/* If the range was reversed, swap MIN and MAX. */
if (compare_values (min, max) == 1)
{
tree t = min;
min = max;
max = t;
}
}
else
{
/* Otherwise, operate on each end of the range. */
min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
}
cmp = compare_values (min, max); cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1) if (cmp == -2 || cmp == 1)
...@@ -911,15 +1312,35 @@ extract_range_from_unary_expr (value_range *vr, tree expr) ...@@ -911,15 +1312,35 @@ extract_range_from_unary_expr (value_range *vr, tree expr)
set_value_range_to_varying (vr); set_value_range_to_varying (vr);
} }
else else
set_value_range (vr, vr0.type, min, max); set_value_range (vr, vr0.type, min, max, NULL);
}
/* Extract range information from a comparison expression EXPR based
on the range of its operand and the expression code. */
static void
extract_range_from_comparison (value_range_t *vr, tree expr)
{
tree val = vrp_evaluate_conditional (expr, false);
if (val)
{
/* Since this expression was found on the RHS of an assignment,
its type may be different from _Bool. Convert VAL to EXPR's
type. */
val = fold_convert (TREE_TYPE (expr), val);
set_value_range (vr, VR_RANGE, val, val, vr->equiv);
}
else
set_value_range_to_varying (vr);
} }
/* Try to compute a useful range out of expression EXPR and store it /* Try to compute a useful range out of expression EXPR and store it
in *VR_P. */ in *VR. */
static void static void
extract_range_from_expr (value_range *vr, tree expr) extract_range_from_expr (value_range_t *vr, tree expr)
{ {
enum tree_code code = TREE_CODE (expr); enum tree_code code = TREE_CODE (expr);
...@@ -927,14 +1348,21 @@ extract_range_from_expr (value_range *vr, tree expr) ...@@ -927,14 +1348,21 @@ extract_range_from_expr (value_range *vr, tree expr)
extract_range_from_assert (vr, expr); extract_range_from_assert (vr, expr);
else if (code == SSA_NAME) else if (code == SSA_NAME)
extract_range_from_ssa_name (vr, expr); extract_range_from_ssa_name (vr, expr);
else if (TREE_CODE_CLASS (code) == tcc_binary) else if (TREE_CODE_CLASS (code) == tcc_binary
|| code == TRUTH_ANDIF_EXPR
|| code == TRUTH_ORIF_EXPR
|| code == TRUTH_AND_EXPR
|| code == TRUTH_OR_EXPR
|| code == TRUTH_XOR_EXPR)
extract_range_from_binary_expr (vr, expr); extract_range_from_binary_expr (vr, expr);
else if (TREE_CODE_CLASS (code) == tcc_unary) else if (TREE_CODE_CLASS (code) == tcc_unary)
extract_range_from_unary_expr (vr, expr); extract_range_from_unary_expr (vr, expr);
else if (TREE_CODE_CLASS (code) == tcc_comparison)
extract_range_from_comparison (vr, expr);
else if (vrp_expr_computes_nonzero (expr)) else if (vrp_expr_computes_nonzero (expr))
set_value_range_to_nonnull (vr, TREE_TYPE (expr)); set_value_range_to_nonnull (vr, TREE_TYPE (expr));
else if (TREE_CODE (expr) == INTEGER_CST) else if (is_gimple_min_invariant (expr))
set_value_range (vr, VR_RANGE, expr, expr); set_value_range (vr, VR_RANGE, expr, expr, NULL);
else else
set_value_range_to_varying (vr); set_value_range_to_varying (vr);
} }
...@@ -945,7 +1373,7 @@ extract_range_from_expr (value_range *vr, tree expr) ...@@ -945,7 +1373,7 @@ extract_range_from_expr (value_range *vr, tree expr)
for VAR. If so, update VR with the new limits. */ for VAR. If so, update VR with the new limits. */
static void static void
adjust_range_with_scev (value_range *vr, struct loop *l, tree var) adjust_range_with_scev (value_range_t *vr, struct loop *l, tree var)
{ {
tree init, step, chrec; tree init, step, chrec;
bool init_is_max; bool init_is_max;
...@@ -975,6 +1403,10 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var) ...@@ -975,6 +1403,10 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var)
if (INTEGRAL_TYPE_P (TREE_TYPE (step)) && TYPE_UNSIGNED (TREE_TYPE (step))) if (INTEGRAL_TYPE_P (TREE_TYPE (step)) && TYPE_UNSIGNED (TREE_TYPE (step)))
return; return;
/* Do not adjust ranges when using wrapping arithmetic. */
if (flag_wrapv)
return;
/* If STEP is negative, then INIT is the maximum value the range /* If STEP is negative, then INIT is the maximum value the range
will take. Otherwise, INIT is the minimum value. */ will take. Otherwise, INIT is the minimum value. */
init_is_max = (tree_int_cst_sgn (step) < 0); init_is_max = (tree_int_cst_sgn (step) < 0);
...@@ -985,9 +1417,11 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var) ...@@ -985,9 +1417,11 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var)
/* For VARYING or UNDEFINED ranges, just about anything we get /* For VARYING or UNDEFINED ranges, just about anything we get
from scalar evolutions should be better. */ from scalar evolutions should be better. */
if (init_is_max) if (init_is_max)
set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)), init); set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
init, vr->equiv);
else else
set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init))); set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
vr->equiv);
} }
else if (vr->type == VR_RANGE) else if (vr->type == VR_RANGE)
{ {
...@@ -1024,23 +1458,24 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var) ...@@ -1024,23 +1458,24 @@ adjust_range_with_scev (value_range *vr, struct loop *l, tree var)
} }
} }
set_value_range (vr, VR_RANGE, min, max); set_value_range (vr, VR_RANGE, min, max, vr->equiv);
} }
} }
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP: /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for all the - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
values in the ranges. all the values in the ranges.
- Return BOOLEAN_FALSE_NODE if the comparison always returns false. - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
- Return NULL_TREE if it is not always possible to determine the value of - Return NULL_TREE if it is not always possible to determine the
the comparison. */ value of the comparison. */
static tree static tree
compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1) compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
{ {
/* VARYING or UNDEFINED ranges cannot be compared. */ /* VARYING or UNDEFINED ranges cannot be compared. */
if (vr0->type == VR_VARYING if (vr0->type == VR_VARYING
...@@ -1069,7 +1504,7 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1) ...@@ -1069,7 +1504,7 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1)
if (vr0->type == VR_RANGE) if (vr0->type == VR_RANGE)
{ {
/* To simplify processing, make VR0 the anti-range. */ /* To simplify processing, make VR0 the anti-range. */
value_range *tmp = vr0; value_range_t *tmp = vr0;
vr0 = vr1; vr0 = vr1;
vr1 = tmp; vr1 = tmp;
} }
...@@ -1087,7 +1522,7 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1) ...@@ -1087,7 +1522,7 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1)
operands around and change the comparison code. */ operands around and change the comparison code. */
if (comp == GT_EXPR || comp == GE_EXPR) if (comp == GT_EXPR || comp == GE_EXPR)
{ {
value_range *tmp; value_range_t *tmp;
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR; comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
tmp = vr0; tmp = vr0;
vr0 = vr1; vr0 = vr1;
...@@ -1162,13 +1597,13 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1) ...@@ -1162,13 +1597,13 @@ compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1)
/* Given a value range VR, a value VAL and a comparison code COMP, return /* Given a value range VR, a value VAL and a comparison code COMP, return
BOOLEAN_TRUE_NODE if VR COMP VR1 always returns true for all the BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
values in VR. Return BOOLEAN_FALSE_NODE if the comparison values in VR. Return BOOLEAN_FALSE_NODE if the comparison
always returns false. Return NULL_TREE if it is not always always returns false. Return NULL_TREE if it is not always
possible to determine the value of the comparison. */ possible to determine the value of the comparison. */
static tree static tree
compare_range_with_value (enum tree_code comp, value_range *vr, tree val) compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
{ {
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED) if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
return NULL_TREE; return NULL_TREE;
...@@ -1271,8 +1706,18 @@ compare_range_with_value (enum tree_code comp, value_range *vr, tree val) ...@@ -1271,8 +1706,18 @@ compare_range_with_value (enum tree_code comp, value_range *vr, tree val)
/* Debugging dumps. */ /* Debugging dumps. */
void dump_value_range (FILE *, value_range_t *);
void debug_value_range (value_range_t *);
void dump_all_value_ranges (FILE *);
void debug_all_value_ranges (void);
void dump_vr_equiv (FILE *, bitmap);
void debug_vr_equiv (bitmap);
/* Dump value range VR to FILE. */
void void
dump_value_range (FILE *file, value_range *vr) dump_value_range (FILE *file, value_range_t *vr)
{ {
if (vr == NULL) if (vr == NULL)
fprintf (file, "[]"); fprintf (file, "[]");
...@@ -1280,11 +1725,43 @@ dump_value_range (FILE *file, value_range *vr) ...@@ -1280,11 +1725,43 @@ dump_value_range (FILE *file, value_range *vr)
fprintf (file, "UNDEFINED"); fprintf (file, "UNDEFINED");
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE) else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
{ {
tree type = TREE_TYPE (vr->min);
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : ""); fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
print_generic_expr (file, vr->min, 0);
if (INTEGRAL_TYPE_P (type)
&& !TYPE_UNSIGNED (type)
&& vr->min == TYPE_MIN_VALUE (type))
fprintf (file, "-INF");
else
print_generic_expr (file, vr->min, 0);
fprintf (file, ", "); fprintf (file, ", ");
print_generic_expr (file, vr->max, 0);
if (INTEGRAL_TYPE_P (type)
&& vr->max == TYPE_MAX_VALUE (type))
fprintf (file, "+INF");
else
print_generic_expr (file, vr->max, 0);
fprintf (file, "]"); fprintf (file, "]");
if (vr->equiv)
{
bitmap_iterator bi;
unsigned i, c = 0;
fprintf (file, " EQUIVALENCES: { ");
EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
{
print_generic_expr (file, ssa_name (i), 0);
fprintf (file, " ");
c++;
}
fprintf (file, "} (%u elements)", c);
}
} }
else if (vr->type == VR_VARYING) else if (vr->type == VR_VARYING)
fprintf (file, "VARYING"); fprintf (file, "VARYING");
...@@ -1296,7 +1773,7 @@ dump_value_range (FILE *file, value_range *vr) ...@@ -1296,7 +1773,7 @@ dump_value_range (FILE *file, value_range *vr)
/* Dump value range VR to stderr. */ /* Dump value range VR to stderr. */
void void
debug_value_range (value_range *vr) debug_value_range (value_range_t *vr)
{ {
dump_value_range (stderr, vr); dump_value_range (stderr, vr);
} }
...@@ -1311,12 +1788,11 @@ dump_all_value_ranges (FILE *file) ...@@ -1311,12 +1788,11 @@ dump_all_value_ranges (FILE *file)
for (i = 0; i < num_ssa_names; i++) for (i = 0; i < num_ssa_names; i++)
{ {
tree var = ssa_name (i); if (vr_value[i])
if (var && SSA_NAME_VALUE_RANGE (var))
{ {
print_generic_expr (file, var, 0); print_generic_expr (file, ssa_name (i), 0);
fprintf (file, ": "); fprintf (file, ": ");
dump_value_range (file, SSA_NAME_VALUE_RANGE (var)); dump_value_range (file, vr_value[i]);
fprintf (file, "\n"); fprintf (file, "\n");
} }
} }
...@@ -1334,10 +1810,6 @@ debug_all_value_ranges (void) ...@@ -1334,10 +1810,6 @@ debug_all_value_ranges (void)
} }
/*---------------------------------------------------------------------------
Value Range Propagation
---------------------------------------------------------------------------*/
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V, /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
create a new SSA name N and return the assertion assignment create a new SSA name N and return the assertion assignment
'V = ASSERT_EXPR <V, V OP W>'. */ 'V = ASSERT_EXPR <V, V OP W>'. */
...@@ -1352,17 +1824,8 @@ build_assert_expr_for (tree cond, tree v) ...@@ -1352,17 +1824,8 @@ build_assert_expr_for (tree cond, tree v)
if (COMPARISON_CLASS_P (cond)) if (COMPARISON_CLASS_P (cond))
{ {
/* Build N = ASSERT_EXPR <V, COND>. As a special case, if the tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
conditional is an EQ_EXPR (V == Z), just build the assignment assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
N = Z. */
if (TREE_CODE (cond) == EQ_EXPR)
{
tree other = get_opposite_operand (cond, v);
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, other);
}
else
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n,
build (ASSERT_EXPR, TREE_TYPE (v), v, cond));
} }
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR) else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
{ {
...@@ -1403,16 +1866,26 @@ fp_predicate (tree expr) ...@@ -1403,16 +1866,26 @@ fp_predicate (tree expr)
} }
/* Return an expression predicate that represents the range of values /* If the range of values taken by OP can be inferred after STMT executes,
that can be taken by operand OP after STMT executes. */ return the comparison code (COMP_CODE_P) and value (VAL_P) that
describes the inferred range. Return true if a range could be
inferred. */
static tree static bool
infer_value_range (tree stmt, tree op) infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
{ {
*val_p = NULL_TREE;
*comp_code_p = ERROR_MARK;
/* Do not attempt to infer anything in names that flow through /* Do not attempt to infer anything in names that flow through
abnormal edges. */ abnormal edges. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op)) if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
return NULL_TREE; return false;
/* Similarly, don't infer anything from statements that may throw
exceptions. */
if (tree_could_throw_p (stmt))
return false;
if (POINTER_TYPE_P (TREE_TYPE (op))) if (POINTER_TYPE_P (TREE_TYPE (op)))
{ {
...@@ -1424,16 +1897,17 @@ infer_value_range (tree stmt, tree op) ...@@ -1424,16 +1897,17 @@ infer_value_range (tree stmt, tree op)
{ {
/* We can only assume that a pointer dereference will yield /* We can only assume that a pointer dereference will yield
non-NULL if -fdelete-null-pointer-checks is enabled. */ non-NULL if -fdelete-null-pointer-checks is enabled. */
tree null = build_int_cst (TREE_TYPE (op), 0); *val_p = build_int_cst (TREE_TYPE (op), 0);
tree t = build (NE_EXPR, boolean_type_node, op, null); *comp_code_p = NE_EXPR;
return t; return true;
} }
} }
return NULL_TREE; return false;
} }
#if 0
/* Return true if OP is the result of an ASSERT_EXPR that tests the /* Return true if OP is the result of an ASSERT_EXPR that tests the
same condition as COND. */ same condition as COND. */
...@@ -1606,14 +2080,594 @@ maybe_add_assert_expr (basic_block bb) ...@@ -1606,14 +2080,594 @@ maybe_add_assert_expr (basic_block bb)
edge_iterator ei; edge_iterator ei;
edge e; edge e;
FOR_EACH_EDGE (e, ei, bb->succs) FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & EDGE_ABNORMAL)) if (!(e->flags & EDGE_ABNORMAL))
{ {
tree t = build_assert_expr_for (cond, op); tree t = build_assert_expr_for (cond, op);
bsi_insert_on_edge (e, t); bsi_insert_on_edge (e, t);
added = true; added = true;
break; break;
} }
}
}
/* Remember the last statement of the block. */
last = stmt;
}
/* Step 3. If BB's last statement is a conditional expression
involving integer operands, recurse into each of the sub-graphs
rooted at BB to determine if we need to add ASSERT_EXPRs.
Notice that we only care about the first operand of the
conditional. Adding assertions for both operands may actually
hinder VRP. FIXME, add example. */
if (last
&& TREE_CODE (last) == COND_EXPR
&& !fp_predicate (COND_EXPR_COND (last))
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
{
edge e;
edge_iterator ei;
tree op, cond;
basic_block son;
ssa_op_iter iter;
cond = COND_EXPR_COND (last);
/* Get just the first use operand. */
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
break;
gcc_assert (op != NULL);
/* Do not attempt to infer anything in names that flow through
abnormal edges. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
return false;
/* Remove the COND_EXPR operand from the FOUND bitmap.
Otherwise, when we finish traversing each of the sub-graphs,
we won't know whether the variables were found in the
sub-graphs or if they had been found in a block upstream from
BB. */
RESET_BIT (found, SSA_NAME_VERSION (op));
/* Look for uses of the operands in each of the sub-graphs
rooted at BB. We need to check each of the outgoing edges
separately, so that we know what kind of ASSERT_EXPR to
insert. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* If BB strictly dominates the sub-graph at E->DEST,
recurse into it. */
if (e->dest != bb
&& dominated_by_p (CDI_DOMINATORS, e->dest, bb))
added |= maybe_add_assert_expr (e->dest);
/* Once we traversed the sub-graph, check if any block inside
used either of the predicate's operands. If so, add the
appropriate ASSERT_EXPR. */
if (TEST_BIT (found, SSA_NAME_VERSION (op)))
{
/* We found a use of OP in the sub-graph rooted at
E->DEST. Add an ASSERT_EXPR according to whether
E goes to THEN_CLAUSE or ELSE_CLAUSE. */
tree c, t;
if (e->flags & EDGE_TRUE_VALUE)
c = unshare_expr (cond);
else if (e->flags & EDGE_FALSE_VALUE)
c = invert_truthvalue (cond);
else
gcc_unreachable ();
t = build_assert_expr_for (c, op);
bsi_insert_on_edge (e, t);
added = true;
}
}
/* Finally, mark all the COND_EXPR operands as found. */
SET_BIT (found, SSA_NAME_VERSION (op));
/* Recurse into the dominator children of BB that are not BB's
immediate successors. Note that we have already visited BB's
other dominator children above. */
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
{
if (find_edge (bb, son) == NULL)
added |= maybe_add_assert_expr (son);
}
}
else
{
/* Step 4. Recurse into the dominator children of BB. */
basic_block son;
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
added |= maybe_add_assert_expr (son);
}
return added;
}
#endif
void dump_asserts_for (FILE *, tree);
void debug_asserts_for (tree);
void dump_all_asserts (FILE *);
void debug_all_asserts (void);
/* Dump all the registered assertions for NAME to FILE. */
void
dump_asserts_for (FILE *file, tree name)
{
assert_locus_t loc;
fprintf (file, "Assertions to be inserted for ");
print_generic_expr (file, name, 0);
fprintf (file, "\n");
loc = asserts_for[SSA_NAME_VERSION (name)];
while (loc)
{
fprintf (file, "\t");
print_generic_expr (file, bsi_stmt (loc->si), 0);
fprintf (file, "\n\tBB #%d", loc->bb->index);
if (loc->e)
{
fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
loc->e->dest->index);
dump_edge_info (file, loc->e, 0);
}
fprintf (file, "\n\tPREDICATE: ");
print_generic_expr (file, name, 0);
fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
print_generic_expr (file, loc->val, 0);
fprintf (file, "\n\n");
loc = loc->next;
}
fprintf (file, "\n");
}
/* Dump all the registered assertions for NAME to stderr. */
void
debug_asserts_for (tree name)
{
dump_asserts_for (stderr, name);
}
/* Dump all the registered assertions for all the names to FILE. */
void
dump_all_asserts (FILE *file)
{
unsigned i;
bitmap_iterator bi;
fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
dump_asserts_for (file, ssa_name (i));
fprintf (file, "\n");
}
/* Dump all the registered assertions for all the names to stderr. */
void
debug_all_asserts (void)
{
dump_all_asserts (stderr);
}
/* If NAME doesn't have an ASSERT_EXPR registered for asserting
'NAME COMP_CODE VAL' at a location that dominates block BB or
E->DEST, then register this location as a possible insertion point
for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
BB, E and SI provide the exact insertion point for the new
ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
must not be NULL. */
static void
register_new_assert_for (tree name,
enum tree_code comp_code,
tree val,
basic_block bb,
edge e,
block_stmt_iterator si)
{
assert_locus_t n, loc, last_loc;
bool found;
basic_block dest_bb;
#if defined ENABLE_CHECKING
gcc_assert (bb == NULL || e == NULL);
if (e == NULL)
gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
&& TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
#endif
/* The new assertion A will be inserted at BB or E. We need to
determine if the new location is dominated by a previously
registered location for A. If we are doing an edge insertion,
assume that A will be inserted at E->DEST. Note that this is not
necessarily true.
If E is a critical edge, it will be split. But even if E is
split, the new block will dominate the same set of blocks that
E->DEST dominates.
The reverse, however, is not true, blocks dominated by E->DEST
will not be dominated by the new block created to split E. So,
if the insertion location is on a critical edge, we will not use
the new location to move another assertion previously registered
at a block dominated by E->DEST. */
dest_bb = (bb) ? bb : e->dest;
/* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
VAL at a block dominating DEST_BB, then we don't need to insert a new
one. Similarly, if the same assertion already exists at a block
dominated by DEST_BB and the new location is not on a critical
edge, then update the existing location for the assertion (i.e.,
move the assertion up in the dominance tree).
Note, this is implemented as a simple linked list because there
should not be more than a handful of assertions registered per
name. If this becomes a performance problem, a table hashed by
COMP_CODE and VAL could be implemented. */
loc = asserts_for[SSA_NAME_VERSION (name)];
last_loc = loc;
found = false;
while (loc)
{
if (loc->comp_code == comp_code
&& (loc->val == val
|| operand_equal_p (loc->val, val, 0)))
{
/* If the assertion NAME COMP_CODE VAL has already been
registered at a basic block that dominates DEST_BB, then
we don't need to insert the same assertion again. Note
that we don't check strict dominance here to avoid
replicating the same assertion inside the same basic
block more than once (e.g., when a pointer is
dereferenced several times inside a block).
An exception to this rule are edge insertions. If the
new assertion is to be inserted on edge E, then it will
dominate all the other insertions that we may want to
insert in DEST_BB. So, if we are doing an edge
insertion, don't do this dominance check. */
if (e == NULL
&& dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
return;
/* Otherwise, if E is not a critical edge and DEST_BB
dominates the existing location for the assertion, move
the assertion up in the dominance tree by updating its
location information. */
if ((e == NULL || !EDGE_CRITICAL_P (e))
&& dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
{
loc->bb = dest_bb;
loc->e = e;
loc->si = si;
return;
}
}
/* Update the last node of the list and move to the next one. */
last_loc = loc;
loc = loc->next;
}
/* If we didn't find an assertion already registered for
NAME COMP_CODE VAL, add a new one at the end of the list of
assertions associated with NAME. */
n = xmalloc (sizeof (*n));
n->bb = dest_bb;
n->e = e;
n->si = si;
n->comp_code = comp_code;
n->val = val;
n->next = NULL;
if (last_loc)
last_loc->next = n;
else
asserts_for[SSA_NAME_VERSION (name)] = n;
bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
}
/* Try to register an edge assertion for SSA name NAME on edge E for
the conditional jump pointed by SI. Return true if an assertion
for NAME could be registered. */
static bool
register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
{
tree val, stmt;
enum tree_code comp_code;
stmt = bsi_stmt (si);
/* Do not attempt to infer anything in names that flow through
abnormal edges. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return false;
/* If NAME was not found in the sub-graph reachable from E, then
there's nothing to do. */
if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
return false;
/* We found a use of NAME in the sub-graph rooted at E->DEST.
Register an assertion for NAME according to the value that NAME
takes on edge E. */
if (TREE_CODE (stmt) == COND_EXPR)
{
/* If BB ends in a COND_EXPR then NAME then we should insert
the original predicate on EDGE_TRUE_VALUE and the
opposite predicate on EDGE_FALSE_VALUE. */
tree cond = COND_EXPR_COND (stmt);
bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
/* Predicates may be a single SSA name or NAME OP VAL. */
if (cond == name)
{
/* If the predicate is a name, it must be NAME, in which
case we create the predicate NAME == true or
NAME == false accordingly. */
comp_code = EQ_EXPR;
val = (is_else_edge) ? boolean_false_node : boolean_true_node;
}
else
{
/* Otherwise, we have a comparison of the form NAME COMP VAL
or VAL COMP NAME. */
if (name == TREE_OPERAND (cond, 1))
{
/* If the predicate is of the form VAL COMP NAME, flip
COMP around because we need to register NAME as the
first operand in the predicate. */
comp_code = opposite_comparison (TREE_CODE (cond));
val = TREE_OPERAND (cond, 0);
}
else
{
/* The comparison is of the form NAME COMP VAL, so the
comparison code remains unchanged. */
comp_code = TREE_CODE (cond);
val = TREE_OPERAND (cond, 1);
}
/* If we are inserting the assertion on the ELSE edge, we
need to invert the sign comparison. */
if (is_else_edge)
comp_code = invert_tree_comparison (comp_code, 0);
}
}
else
{
/* FIXME. Handle SWITCH_EXPR. */
gcc_unreachable ();
}
register_new_assert_for (name, comp_code, val, NULL, e, si);
return true;
}
static bool find_assert_locations (basic_block bb);
/* Determine whether the outgoing edges of BB should receive an
ASSERT_EXPR for each of the operands of BB's last statement. The
last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
If any of the sub-graphs rooted at BB have an interesting use of
the predicate operands, an assert location node is added to the
list of assertions for the corresponding operands. */
static bool
find_conditional_asserts (basic_block bb)
{
bool need_assert;
block_stmt_iterator last_si;
tree op, last;
edge_iterator ei;
edge e;
ssa_op_iter iter;
need_assert = false;
last_si = bsi_last (bb);
last = bsi_stmt (last_si);
/* Look for uses of the operands in each of the sub-graphs
rooted at BB. We need to check each of the outgoing edges
separately, so that we know what kind of ASSERT_EXPR to
insert. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == bb)
continue;
/* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
Otherwise, when we finish traversing each of the sub-graphs, we
won't know whether the variables were found in the sub-graphs or
if they had been found in a block upstream from BB. */
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
/* Traverse the strictly dominated sub-graph rooted at E->DEST
to determine if any of the operands in the conditional
predicate are used. */
if (e->dest != bb)
need_assert |= find_assert_locations (e->dest);
/* Register the necessary assertions for each operand in the
conditional predicate. */
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
need_assert |= register_edge_assert_for (op, e, last_si);
}
/* Finally, indicate that we have found the operands in the
conditional. */
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
return need_assert;
}
/* Traverse all the statements in block BB looking for statements that
may generate useful assertions for the SSA names in their operand.
If a statement produces a useful assertion A for name N_i, then the
list of assertions already generated for N_i is scanned to
determine if A is actually needed.
If N_i already had the assertion A at a location dominating the
current location, then nothing needs to be done. Otherwise, the
new location for A is recorded instead.
1- For every statement S in BB, all the variables used by S are
added to bitmap FOUND_IN_SUBGRAPH.
2- If statement S uses an operand N in a way that exposes a known
value range for N, then if N was not already generated by an
ASSERT_EXPR, create a new assert location for N. For instance,
if N is a pointer and the statement dereferences it, we can
assume that N is not NULL.
3- COND_EXPRs are a special case of #2. We can derive range
information from the predicate but need to insert different
ASSERT_EXPRs for each of the sub-graphs rooted at the
conditional block. If the last statement of BB is a conditional
expression of the form 'X op Y', then
a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
b) If the conditional is the only entry point to the sub-graph
corresponding to the THEN_CLAUSE, recurse into it. On
return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
an ASSERT_EXPR is added for the corresponding variable.
c) Repeat step (b) on the ELSE_CLAUSE.
d) Mark X and Y in FOUND_IN_SUBGRAPH.
For instance,
if (a == 9)
b = a;
else
b = c + 1;
In this case, an assertion on the THEN clause is useful to
determine that 'a' is always 9 on that edge. However, an assertion
on the ELSE clause would be unnecessary.
4- If BB does not end in a conditional expression, then we recurse
into BB's dominator children.
At the end of the recursive traversal, every SSA name will have a
list of locations where ASSERT_EXPRs should be added. When a new
location for name N is found, it is registered by calling
register_new_assert_for. That function keeps track of all the
registered assertions to prevent adding unnecessary assertions.
For instance, if a pointer P_4 is dereferenced more than once in a
dominator tree, only the location dominating all the dereference of
P_4 will receive an ASSERT_EXPR.
If this function returns true, then it means that there are names
for which we need to generate ASSERT_EXPRs. Those assertions are
inserted by process_assert_insertions.
TODO. Handle SWITCH_EXPR. */
static bool
find_assert_locations (basic_block bb)
{
block_stmt_iterator si;
tree last, phi;
bool need_assert;
basic_block son;
if (TEST_BIT (blocks_visited, bb->index))
return false;
SET_BIT (blocks_visited, bb->index);
need_assert = false;
/* Traverse all PHI nodes in BB marking used operands. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
use_operand_p arg_p;
ssa_op_iter i;
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
{
tree arg = USE_FROM_PTR (arg_p);
if (TREE_CODE (arg) == SSA_NAME)
{
gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
}
}
}
/* Traverse all the statements in BB marking used names and looking
for statements that may infer assertions for their used operands. */
last = NULL_TREE;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt, op;
ssa_op_iter i;
stmt = bsi_stmt (si);
/* See if we can derive an assertion for any of STMT's operands. */
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
{
tree value;
enum tree_code comp_code;
/* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
the sub-graph of a conditional block, when we return from
this recursive walk, our parent will use the
FOUND_IN_SUBGRAPH bitset to determine if one of the
operands it was looking for was present in the sub-graph. */
SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
/* If OP is used only once, namely in this STMT, don't
bother creating an ASSERT_EXPR for it. Such an
ASSERT_EXPR would do nothing but increase compile time.
Experiments show that with this simple check, we can save
more than 20% of ASSERT_EXPRs. */
if (has_single_use (op))
continue;
/* If OP is used in such a way that we can infer a value
range for it, and we don't find a previous assertion for
it, create a new assertion location node for OP. */
if (infer_value_range (stmt, op, &comp_code, &value))
{
register_new_assert_for (op, comp_code, value, bb, NULL, si);
need_assert = true;
} }
} }
...@@ -1621,103 +2675,112 @@ maybe_add_assert_expr (basic_block bb) ...@@ -1621,103 +2675,112 @@ maybe_add_assert_expr (basic_block bb)
last = stmt; last = stmt;
} }
/* Step 3. If BB's last statement is a conditional expression /* If BB's last statement is a conditional expression
involving integer operands, recurse into each of the sub-graphs involving integer operands, recurse into each of the sub-graphs
rooted at BB to determine if we need to add ASSERT_EXPRs. rooted at BB to determine if we need to add ASSERT_EXPRs. */
Notice that we only care about the first operand of the
conditional. Adding assertions for both operands may actually
hinder VRP. FIXME, add example. */
if (last if (last
&& TREE_CODE (last) == COND_EXPR && TREE_CODE (last) == COND_EXPR
&& !fp_predicate (COND_EXPR_COND (last)) && !fp_predicate (COND_EXPR_COND (last))
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE)) && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
need_assert |= find_conditional_asserts (bb);
/* Recurse into the dominator children of BB. */
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
need_assert |= find_assert_locations (son);
return need_assert;
}
/* Create an ASSERT_EXPR for NAME and insert it in the location
indicated by LOC. Return true if we made any edge insertions. */
static bool
process_assert_insertions_for (tree name, assert_locus_t loc)
{
/* Build the comparison expression NAME_i COMP_CODE VAL. */
tree stmt, cond, assert_expr;
edge_iterator ei;
edge e;
cond = build (loc->comp_code, boolean_type_node, name, loc->val);
assert_expr = build_assert_expr_for (cond, name);
if (loc->e)
{ {
edge e; /* We have been asked to insert the assertion on an edge. This
edge_iterator ei; is used only by COND_EXPR and SWITCH_EXPR assertions. */
tree op, cond; #if defined ENABLE_CHECKING
basic_block son; gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
ssa_op_iter iter; || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
#endif
cond = COND_EXPR_COND (last);
/* Get just the first use operand. */ bsi_insert_on_edge (loc->e, assert_expr);
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE) return true;
break; }
gcc_assert (op != NULL);
/* Do not attempt to infer anything in names that flow through /* Otherwise, we can insert right after LOC->SI iff the
abnormal edges. */ statement must not be the last statement in the block. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op)) stmt = bsi_stmt (loc->si);
return false; if (!stmt_ends_bb_p (stmt))
{
bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
return false;
}
/* Remove the COND_EXPR operand from the FOUND bitmap. /* If STMT must be the last statement in BB, we can only insert new
Otherwise, when we finish traversing each of the sub-graphs, assertions on the non-abnormal edge out of BB. Note that since
we won't know whether the variables were found in the STMT is not control flow, there may only be one non-abnormal edge
sub-graphs or if they had been found in a block upstream from out of BB. */
BB. */ FOR_EACH_EDGE (e, ei, loc->bb->succs)
RESET_BIT (found, SSA_NAME_VERSION (op)); if (!(e->flags & EDGE_ABNORMAL))
{
bsi_insert_on_edge (e, assert_expr);
return true;
}
/* Look for uses of the operands in each of the sub-graphs gcc_unreachable ();
rooted at BB. We need to check each of the outgoing edges }
separately, so that we know what kind of ASSERT_EXPR to
insert. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* If BB strictly dominates the sub-graph at E->DEST,
recurse into it. */
if (e->dest != bb
&& dominated_by_p (CDI_DOMINATORS, e->dest, bb))
added |= maybe_add_assert_expr (e->dest);
/* Once we traversed the sub-graph, check if any block inside
used either of the predicate's operands. If so, add the
appropriate ASSERT_EXPR. */
if (TEST_BIT (found, SSA_NAME_VERSION (op)))
{
/* We found a use of OP in the sub-graph rooted at
E->DEST. Add an ASSERT_EXPR according to whether
E goes to THEN_CLAUSE or ELSE_CLAUSE. */
tree c, t;
if (e->flags & EDGE_TRUE_VALUE) /* Process all the insertions registered for every name N_i registered
c = unshare_expr (cond); in NEED_ASSERT_FOR. The list of assertions to be inserted are
else if (e->flags & EDGE_FALSE_VALUE) found in ASSERTS_FOR[i]. */
c = invert_truthvalue (cond);
else
gcc_unreachable ();
t = build_assert_expr_for (c, op); static void
bsi_insert_on_edge (e, t); process_assert_insertions (void)
added = true; {
} unsigned i;
} bitmap_iterator bi;
bool update_edges_p = false;
int num_asserts = 0;
/* Finally, mark all the COND_EXPR operands as found. */ if (dump_file && (dump_flags & TDF_DETAILS))
SET_BIT (found, SSA_NAME_VERSION (op)); dump_all_asserts (dump_file);
/* Recurse into the dominator children of BB that are not BB's EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
immediate successors. Note that we have already visited BB's {
other dominator children above. */ assert_locus_t loc = asserts_for[i];
for (son = first_dom_son (CDI_DOMINATORS, bb); gcc_assert (loc);
son;
son = next_dom_son (CDI_DOMINATORS, son)) while (loc)
{ {
if (find_edge (bb, son) == NULL) assert_locus_t next = loc->next;
added |= maybe_add_assert_expr (son); update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
free (loc);
loc = next;
num_asserts++;
} }
} }
else
{
/* Step 4. Recurse into the dominator children of BB. */
basic_block son;
for (son = first_dom_son (CDI_DOMINATORS, bb); if (update_edges_p)
son; bsi_commit_edge_inserts ();
son = next_dom_son (CDI_DOMINATORS, son))
added |= maybe_add_assert_expr (son);
}
return added; if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
num_asserts);
} }
...@@ -1760,19 +2823,26 @@ insert_range_assertions (void) ...@@ -1760,19 +2823,26 @@ insert_range_assertions (void)
edge_iterator ei; edge_iterator ei;
bool update_ssa_p; bool update_ssa_p;
found = sbitmap_alloc (num_ssa_names); found_in_subgraph = sbitmap_alloc (num_ssa_names);
sbitmap_zero (found); sbitmap_zero (found_in_subgraph);
blocks_visited = sbitmap_alloc (last_basic_block);
sbitmap_zero (blocks_visited);
need_assert_for = BITMAP_ALLOC (NULL);
asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
calculate_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_DOMINATORS);
update_ssa_p = false; update_ssa_p = false;
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
if (maybe_add_assert_expr (e->dest)) if (find_assert_locations (e->dest))
update_ssa_p = true; update_ssa_p = true;
if (update_ssa_p) if (update_ssa_p)
{ {
bsi_commit_edge_inserts (); process_assert_insertions ();
update_ssa (TODO_update_ssa_no_phi); update_ssa (TODO_update_ssa_no_phi);
} }
...@@ -1782,11 +2852,27 @@ insert_range_assertions (void) ...@@ -1782,11 +2852,27 @@ insert_range_assertions (void)
dump_function_to_file (current_function_decl, dump_file, dump_flags); dump_function_to_file (current_function_decl, dump_file, dump_flags);
} }
sbitmap_free (found); sbitmap_free (found_in_subgraph);
free (asserts_for);
BITMAP_FREE (need_assert_for);
} }
/* Convert range assertion expressions into copies. FIXME, explain why. */ /* Convert range assertion expressions into the implied copies.
FIXME, this will eventually lead to copy propagation removing the
names that had useful range information attached to them. For
instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
then N_i will have the range [3, +INF].
However, by converting the assertion into the implied copy
operation N_i = N_j, we will then copy-propagate N_j into the uses
of N_i and lose the range information. We may want to hold on to
ASSERT_EXPRs a little while longer as the ranges could be used in
things like jump threading.
The problem with keeping ASSERT_EXPRs around is that passes after
VRP need to handle them appropriately. */
static void static void
remove_range_assertions (void) remove_range_assertions (void)
...@@ -1843,15 +2929,13 @@ stmt_interesting_for_vrp (tree stmt) ...@@ -1843,15 +2929,13 @@ stmt_interesting_for_vrp (tree stmt)
is worth running (i.e. if we found any statements that could is worth running (i.e. if we found any statements that could
benefit from range information). */ benefit from range information). */
static bool static void
vrp_initialize (void) vrp_initialize (void)
{ {
basic_block bb; basic_block bb;
bool do_vrp;
/* If we don't find any ASSERT_EXPRs in the code, there's no point vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
running VRP. */ memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
do_vrp = false;
FOR_EACH_BB (bb) FOR_EACH_BB (bb)
{ {
...@@ -1884,16 +2968,10 @@ vrp_initialize (void) ...@@ -1884,16 +2968,10 @@ vrp_initialize (void)
} }
else else
{ {
if (TREE_CODE (stmt) == MODIFY_EXPR
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
do_vrp = true;
DONT_SIMULATE_AGAIN (stmt) = false; DONT_SIMULATE_AGAIN (stmt) = false;
} }
} }
} }
return do_vrp;
} }
...@@ -1914,10 +2992,9 @@ vrp_visit_assignment (tree stmt, tree *output_p) ...@@ -1914,10 +2992,9 @@ vrp_visit_assignment (tree stmt, tree *output_p)
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))) || POINTER_TYPE_P (TREE_TYPE (lhs))))
{ {
value_range *vr, new_vr;
struct loop *l; struct loop *l;
value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
vr = get_value_range (lhs);
extract_range_from_expr (&new_vr, rhs); extract_range_from_expr (&new_vr, rhs);
/* If STMT is inside a loop, we may be able to know something /* If STMT is inside a loop, we may be able to know something
...@@ -1926,16 +3003,16 @@ vrp_visit_assignment (tree stmt, tree *output_p) ...@@ -1926,16 +3003,16 @@ vrp_visit_assignment (tree stmt, tree *output_p)
if (cfg_loops && (l = loop_containing_stmt (stmt))) if (cfg_loops && (l = loop_containing_stmt (stmt)))
adjust_range_with_scev (&new_vr, l, lhs); adjust_range_with_scev (&new_vr, l, lhs);
if (update_value_range (vr, new_vr.type, new_vr.min, new_vr.max)) if (update_value_range (lhs, &new_vr))
{ {
*output_p = lhs; *output_p = lhs;
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
{ {
fprintf (dump_file, "Found new range "); fprintf (dump_file, "Found new range for ");
dump_value_range (dump_file, &new_vr);
fprintf (dump_file, " for ");
print_generic_expr (dump_file, lhs, 0); print_generic_expr (dump_file, lhs, 0);
fprintf (dump_file, ": ");
dump_value_range (dump_file, &new_vr);
fprintf (dump_file, "\n\n"); fprintf (dump_file, "\n\n");
} }
...@@ -1948,7 +3025,7 @@ vrp_visit_assignment (tree stmt, tree *output_p) ...@@ -1948,7 +3025,7 @@ vrp_visit_assignment (tree stmt, tree *output_p)
return SSA_PROP_NOT_INTERESTING; return SSA_PROP_NOT_INTERESTING;
} }
/* Every other statements produces no useful ranges. */ /* Every other statement produces no useful ranges. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF) FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
set_value_range_to_varying (get_value_range (def)); set_value_range_to_varying (get_value_range (def));
...@@ -1956,43 +3033,226 @@ vrp_visit_assignment (tree stmt, tree *output_p) ...@@ -1956,43 +3033,226 @@ vrp_visit_assignment (tree stmt, tree *output_p)
} }
/* Given a conditional predicate COND, try to determine if COND yields /* Compare all the value ranges for names equivalent to VAR with VAL
true or false based on the value ranges of its operands. */ using comparison code COMP. Return the same value returned by
compare_range_with_value. */
static tree
compare_name_with_value (enum tree_code comp, tree var, tree val)
{
bitmap_iterator bi;
unsigned i;
bitmap e;
tree retval, t;
t = retval = NULL_TREE;
/* Get the set of equivalences for VAR. */
e = get_value_range (var)->equiv;
/* Add VAR to its own set of equivalences so that VAR's value range
is processed by this loop (otherwise, we would have to replicate
the body of the loop just to check VAR's value range). */
bitmap_set_bit (e, SSA_NAME_VERSION (var));
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
{
value_range_t equiv_vr = *(vr_value[i]);
/* If name N_i does not have a valid range, use N_i as its own
range. This allows us to compare against names that may
have N_i in their ranges. */
if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
{
equiv_vr.type = VR_RANGE;
equiv_vr.min = ssa_name (i);
equiv_vr.max = ssa_name (i);
}
t = compare_range_with_value (comp, &equiv_vr, val);
if (t)
{
/* All the ranges should compare the same against VAL. */
gcc_assert (retval == NULL || t == retval);
retval = t;
}
}
/* Remove VAR from its own equivalence set. */
bitmap_clear_bit (e, SSA_NAME_VERSION (var));
if (retval)
return retval;
/* We couldn't find a non-NULL value for the predicate. */
return NULL_TREE;
}
/* Given a comparison code COMP and names N1 and N2, compare all the
ranges equivalent to N1 against all the ranges equivalente to N2
to determine the value of N1 COMP N2. Return the same value
returned by compare_ranges. */
static tree static tree
vrp_evaluate_conditional (tree cond) compare_names (enum tree_code comp, tree n1, tree n2)
{
tree t, retval;
bitmap e1, e2;
bitmap_iterator bi1, bi2;
unsigned i1, i2;
/* Compare the ranges of every name equivalent to N1 against the
ranges of every name equivalent to N2. */
e1 = get_value_range (n1)->equiv;
e2 = get_value_range (n2)->equiv;
/* Add N1 and N2 to their own set of equivalences to avoid
duplicating the body of the loop just to check N1 and N2
ranges. */
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
/* If the equivalence sets have a common intersection, then the two
names can be compared without checking their ranges. */
if (bitmap_intersect_p (e1, e2))
{
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
? boolean_true_node
: boolean_false_node;
}
/* Otherwise, compare all the equivalent ranges. First, add N1 and
N2 to their own set of equivalences to avoid duplicating the body
of the loop just to check N1 and N2 ranges. */
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
{
value_range_t vr1 = *(vr_value[i1]);
/* If the range is VARYING or UNDEFINED, use the name itself. */
if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
{
vr1.type = VR_RANGE;
vr1.min = ssa_name (i1);
vr1.max = ssa_name (i1);
}
t = retval = NULL_TREE;
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
{
value_range_t vr2 = *(vr_value[i2]);
if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
{
vr2.type = VR_RANGE;
vr2.min = ssa_name (i2);
vr2.max = ssa_name (i2);
}
t = compare_ranges (comp, &vr1, &vr2);
if (t)
{
/* All the ranges in the equivalent sets should compare
the same. */
gcc_assert (retval == NULL || t == retval);
retval = t;
}
}
if (retval)
{
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return retval;
}
}
/* None of the equivalent ranges are useful in computing this
comparison. */
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return NULL_TREE;
}
/* Given a conditional predicate COND, try to determine if COND yields
true or false based on the value ranges of its operands. Return
BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
NULL if the conditional cannot be evaluated at compile time.
If USE_EQUIV_P is true, the ranges of all the names equivalent with
the operands in COND are used when trying to compute its value.
This is only used during final substitution. During propagation,
we only check the range of each variable and not its equivalents. */
tree
vrp_evaluate_conditional (tree cond, bool use_equiv_p)
{ {
gcc_assert (TREE_CODE (cond) == SSA_NAME gcc_assert (TREE_CODE (cond) == SSA_NAME
|| TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison); || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
if (TREE_CODE (cond) == SSA_NAME) if (TREE_CODE (cond) == SSA_NAME)
{ {
/* For SSA names, only return a truth value if the range is value_range_t *vr;
known and contains exactly one value. */ tree retval;
value_range *vr = SSA_NAME_VALUE_RANGE (cond);
if (vr && vr->type == VR_RANGE && vr->min == vr->max) if (use_equiv_p)
retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
else
{
value_range_t *vr = get_value_range (cond);
retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
}
/* If COND has a known boolean range, return it. */
if (retval)
return retval;
/* Otherwise, if COND has a symbolic range of exactly one value,
return it. */
vr = get_value_range (cond);
if (vr->type == VR_RANGE && vr->min == vr->max)
return vr->min; return vr->min;
} }
else else
{ {
/* For comparisons, evaluate each operand and compare their tree op0 = TREE_OPERAND (cond, 0);
ranges. */ tree op1 = TREE_OPERAND (cond, 1);
tree op0, op1;
value_range *vr0, *vr1;
op0 = TREE_OPERAND (cond, 0);
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
op1 = TREE_OPERAND (cond, 1); /* We only deal with integral and pointer types. */
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL; if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
return NULL_TREE;
if (vr0 && vr1) if (use_equiv_p)
return compare_ranges (TREE_CODE (cond), vr0, vr1); {
else if (vr0 && vr1 == NULL) if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
return compare_range_with_value (TREE_CODE (cond), vr0, op1); return compare_names (TREE_CODE (cond), op0, op1);
else if (vr0 == NULL && vr1) else if (TREE_CODE (op0) == SSA_NAME)
return compare_range_with_value (opposite_comparison (TREE_CODE (cond)), return compare_name_with_value (TREE_CODE (cond), op0, op1);
vr1, op0); else if (TREE_CODE (op1) == SSA_NAME)
return compare_name_with_value (
opposite_comparison (TREE_CODE (cond)), op1, op0);
}
else
{
value_range_t *vr0, *vr1;
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
if (vr0 && vr1)
return compare_ranges (TREE_CODE (cond), vr0, vr1);
else if (vr0 && vr1 == NULL)
return compare_range_with_value (TREE_CODE (cond), vr0, op1);
else if (vr0 == NULL && vr1)
return compare_range_with_value (
opposite_comparison (TREE_CODE (cond)), vr1, op0);
}
} }
/* Anything else cannot be computed statically. */ /* Anything else cannot be computed statically. */
...@@ -2033,15 +3293,55 @@ vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p) ...@@ -2033,15 +3293,55 @@ vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
fprintf (dump_file, "\t"); fprintf (dump_file, "\t");
print_generic_expr (dump_file, use, 0); print_generic_expr (dump_file, use, 0);
fprintf (dump_file, ": "); fprintf (dump_file, ": ");
dump_value_range (dump_file, SSA_NAME_VALUE_RANGE (use)); dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
} }
fprintf (dump_file, "\n"); fprintf (dump_file, "\n");
} }
/* Compute the value of the predicate COND by checking the known /* Compute the value of the predicate COND by checking the known
ranges of each of its operands. */ ranges of each of its operands.
val = vrp_evaluate_conditional (cond);
Note that we cannot evaluate all the equivalent ranges here
because those ranges may not yet be final and with the current
propagation strategy, we cannot determine when the value ranges
of the names in the equivalence set have changed.
For instance, given the following code fragment
i_5 = PHI <8, i_13>
...
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
if (i_14 == 1)
...
Assume that on the first visit to i_14, i_5 has the temporary
range [8, 8] because the second argument to the PHI function is
not yet executable. We derive the range ~[0, 0] for i_14 and the
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
the first time, since i_14 is equivalent to the range [8, 8], we
determine that the predicate is always false.
On the next round of propagation, i_13 is determined to be
VARYING, which causes i_5 to drop down to VARYING. So, another
visit to i_14 is scheduled. In this second visit, we compute the
exact same range and equivalence set for i_14, namely ~[0, 0] and
{ i_5 }. But we did not have the previous range for i_5
registered, so vrp_visit_assignment thinks that the range for
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
is not visited again, which stops propagation from visiting
statements in the THEN clause of that if().
To properly fix this we would need to keep the previous range
value for the names in the equivalence set. This way we would've
discovered that from one visit to the other i_5 changed from
range [8, 8] to VR_VARYING.
However, fixing this apparent limitation may not be worth the
additional checking. Testing on several code bases (GCC, DLV,
MICO, TRAMP3D and SPEC2000) showed that doing this results in
4 more predicates folded in SPEC. */
val = vrp_evaluate_conditional (cond, false);
if (val) if (val)
*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val); *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
...@@ -2108,11 +3408,11 @@ vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p) ...@@ -2108,11 +3408,11 @@ vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
union of VR0 and VR1. */ union of VR0 and VR1. */
static void static void
vrp_meet (value_range *vr0, value_range *vr1) vrp_meet (value_range_t *vr0, value_range_t *vr1)
{ {
if (vr0->type == VR_UNDEFINED) if (vr0->type == VR_UNDEFINED)
{ {
*vr0 = *vr1; copy_value_range (vr0, vr1);
return; return;
} }
...@@ -2130,13 +3430,6 @@ vrp_meet (value_range *vr0, value_range *vr1) ...@@ -2130,13 +3430,6 @@ vrp_meet (value_range *vr0, value_range *vr1)
if (vr1->type == VR_VARYING) if (vr1->type == VR_VARYING)
{ {
*vr0 = *vr1;
return;
}
/* If either is a symbolic range, drop to VARYING. */
if (symbolic_range_p (vr0) || symbolic_range_p (vr1))
{
set_value_range_to_varying (vr0); set_value_range_to_varying (vr0);
return; return;
} }
...@@ -2147,28 +3440,46 @@ vrp_meet (value_range *vr0, value_range *vr1) ...@@ -2147,28 +3440,46 @@ vrp_meet (value_range *vr0, value_range *vr1)
union of both ranges. */ union of both ranges. */
if (value_ranges_intersect_p (vr0, vr1)) if (value_ranges_intersect_p (vr0, vr1))
{ {
int cmp;
tree min, max; tree min, max;
min = vr0->min;
max = vr0->max;
/* The lower limit of the new range is the minimum of the /* The lower limit of the new range is the minimum of the
two ranges. */ two ranges. If they cannot be compared, the result is
if (compare_values (vr0->min, vr1->min) == 1) VARYING. */
cmp = compare_values (vr0->min, vr1->min);
if (cmp == 0 || cmp == 1)
min = vr1->min; min = vr1->min;
else if (cmp == -1)
min = vr0->min;
else
{
set_value_range_to_varying (vr0);
return;
}
/* The upper limit of the new range is the maximum of the /* Similarly, the upper limit of the new range is the
two ranges. */ maximum of the two ranges. If they cannot be compared,
if (compare_values (vr0->max, vr1->max) == -1) the result is VARYING. */
cmp = compare_values (vr0->max, vr1->max);
if (cmp == 0 || cmp == -1)
max = vr1->max; max = vr1->max;
else if (cmp == 1)
max = vr0->max;
else
{
set_value_range_to_varying (vr0);
return;
}
set_value_range (vr0, vr0->type, min, max); /* The resulting set of equivalencies is the intersection of
the two sets. */
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
bitmap_and_into (vr0->equiv, vr1->equiv);
set_value_range (vr0, vr0->type, min, max, vr0->equiv);
} }
else else
{ goto no_meet;
/* The two ranges don't intersect, set the result to VR_VARYING. */
set_value_range_to_varying (vr0);
}
} }
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE) else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
{ {
...@@ -2176,28 +3487,49 @@ vrp_meet (value_range *vr0, value_range *vr1) ...@@ -2176,28 +3487,49 @@ vrp_meet (value_range *vr0, value_range *vr1)
if (compare_values (vr0->min, vr1->min) == 0 if (compare_values (vr0->min, vr1->min) == 0
&& compare_values (vr0->max, vr1->max) == 0 && compare_values (vr0->max, vr1->max) == 0
&& compare_values (vr0->min, vr0->max) == 0) && compare_values (vr0->min, vr0->max) == 0)
/* Nothing to do. */ ; {
/* The resulting set of equivalencies is the intersection of
the two sets. */
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
bitmap_and_into (vr0->equiv, vr1->equiv);
}
else else
set_value_range_to_varying (vr0); goto no_meet;
} }
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE) else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
{ {
/* A range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4] meet /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
only if the ranges have an empty intersection. The result of meet only if the ranges have an empty intersection. The
the meet operation is the anti-range. */ result of the meet operation is the anti-range. */
if (!value_ranges_intersect_p (vr0, vr1)) if (!symbolic_range_p (vr0)
&& !symbolic_range_p (vr1)
&& !value_ranges_intersect_p (vr0, vr1))
{ {
if (vr1->type == VR_ANTI_RANGE) if (vr1->type == VR_ANTI_RANGE)
*vr0 = *vr1; copy_value_range (vr0, vr1);
} }
else else
set_value_range_to_varying (vr0); goto no_meet;
} }
else else
gcc_unreachable (); gcc_unreachable ();
return;
no_meet:
/* The two range VR0 and VR1 do not meet. Before giving up and
setting the result to VARYING, see if we can at least derive a
useful anti-range. */
if (!symbolic_range_p (vr0)
&& !range_includes_zero_p (vr0)
&& !symbolic_range_p (vr1)
&& !range_includes_zero_p (vr1))
set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
else
set_value_range_to_varying (vr0);
} }
/* Visit all arguments for PHI node PHI that flow through executable /* Visit all arguments for PHI node PHI that flow through executable
edges. If a valid value range can be derived from all the incoming edges. If a valid value range can be derived from all the incoming
value ranges, set a new range for the LHS of PHI. */ value ranges, set a new range for the LHS of PHI. */
...@@ -2207,8 +3539,10 @@ vrp_visit_phi_node (tree phi) ...@@ -2207,8 +3539,10 @@ vrp_visit_phi_node (tree phi)
{ {
int i; int i;
tree lhs = PHI_RESULT (phi); tree lhs = PHI_RESULT (phi);
value_range *lhs_vr = get_value_range (lhs); value_range_t *lhs_vr = get_value_range (lhs);
value_range vr_result = *lhs_vr; value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
copy_value_range (&vr_result, lhs_vr);
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
{ {
...@@ -2231,7 +3565,7 @@ vrp_visit_phi_node (tree phi) ...@@ -2231,7 +3565,7 @@ vrp_visit_phi_node (tree phi)
if (e->flags & EDGE_EXECUTABLE) if (e->flags & EDGE_EXECUTABLE)
{ {
tree arg = PHI_ARG_DEF (phi, i); tree arg = PHI_ARG_DEF (phi, i);
value_range vr_arg; value_range_t vr_arg;
if (TREE_CODE (arg) == SSA_NAME) if (TREE_CODE (arg) == SSA_NAME)
vr_arg = *(get_value_range (arg)); vr_arg = *(get_value_range (arg));
...@@ -2240,6 +3574,7 @@ vrp_visit_phi_node (tree phi) ...@@ -2240,6 +3574,7 @@ vrp_visit_phi_node (tree phi)
vr_arg.type = VR_RANGE; vr_arg.type = VR_RANGE;
vr_arg.min = arg; vr_arg.min = arg;
vr_arg.max = arg; vr_arg.max = arg;
vr_arg.equiv = NULL;
} }
if (dump_file && (dump_flags & TDF_DETAILS)) if (dump_file && (dump_flags & TDF_DETAILS))
...@@ -2259,10 +3594,7 @@ vrp_visit_phi_node (tree phi) ...@@ -2259,10 +3594,7 @@ vrp_visit_phi_node (tree phi)
} }
if (vr_result.type == VR_VARYING) if (vr_result.type == VR_VARYING)
{ goto varying;
set_value_range_to_varying (lhs_vr);
return SSA_PROP_VARYING;
}
/* To prevent infinite iterations in the algorithm, derive ranges /* To prevent infinite iterations in the algorithm, derive ranges
when the new value is slightly bigger or smaller than the when the new value is slightly bigger or smaller than the
...@@ -2291,20 +3623,22 @@ vrp_visit_phi_node (tree phi) ...@@ -2291,20 +3623,22 @@ vrp_visit_phi_node (tree phi)
VARYING. */ VARYING. */
if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)) if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
&& vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))) && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
{ goto varying;
set_value_range_to_varying (lhs_vr);
return SSA_PROP_VARYING;
}
} }
} }
/* If the new range is different than the previous value, keep /* If the new range is different than the previous value, keep
iterating. */ iterating. */
if (update_value_range (lhs_vr, vr_result.type, vr_result.min, vr_result.max)) if (update_value_range (lhs, &vr_result))
return SSA_PROP_INTERESTING; return SSA_PROP_INTERESTING;
/* Nothing changed, don't add outgoing edges. */ /* Nothing changed, don't add outgoing edges. */
return SSA_PROP_NOT_INTERESTING; return SSA_PROP_NOT_INTERESTING;
/* No match found. Set the LHS to VARYING. */
varying:
set_value_range_to_varying (lhs_vr);
return SSA_PROP_VARYING;
} }
...@@ -2313,8 +3647,9 @@ vrp_visit_phi_node (tree phi) ...@@ -2313,8 +3647,9 @@ vrp_visit_phi_node (tree phi)
static void static void
vrp_finalize (void) vrp_finalize (void)
{ {
basic_block bb; size_t i;
int num_pred_folded = 0; prop_value_t *single_val_range;
bool do_value_subst_p;
if (dump_file) if (dump_file)
{ {
...@@ -2323,33 +3658,42 @@ vrp_finalize (void) ...@@ -2323,33 +3658,42 @@ vrp_finalize (void)
fprintf (dump_file, "\n"); fprintf (dump_file, "\n");
} }
FOR_EACH_BB (bb) /* We may have ended with ranges that have exactly one value. Those
values can be substituted as any other copy/const propagated
value using substitute_and_fold. */
single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
do_value_subst_p = false;
for (i = 0; i < num_ssa_names; i++)
if (vr_value[i]
&& vr_value[i]->type == VR_RANGE
&& vr_value[i]->min == vr_value[i]->max)
{
single_val_range[i].value = vr_value[i]->min;
do_value_subst_p = true;
}
if (!do_value_subst_p)
{ {
tree last = last_stmt (bb); /* We found no single-valued ranges, don't waste time trying to
if (last && TREE_CODE (last) == COND_EXPR) do single value substitution in substitute_and_fold. */
{ free (single_val_range);
tree val = vrp_evaluate_conditional (COND_EXPR_COND (last)); single_val_range = NULL;
if (val)
{
if (dump_file)
{
fprintf (dump_file, "Folding predicate ");
print_generic_expr (dump_file, COND_EXPR_COND (last), 0);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, val, 0);
fprintf (dump_file, "\n");
}
num_pred_folded++;
COND_EXPR_COND (last) = val;
update_stmt (last);
}
}
} }
if (dump_file && (dump_flags & TDF_STATS)) substitute_and_fold (single_val_range, true);
fprintf (dump_file, "\nNumber of predicates folded: %d\n\n",
num_pred_folded); /* Free allocated memory. */
for (i = 0; i < num_ssa_names; i++)
if (vr_value[i])
{
BITMAP_FREE (vr_value[i]->equiv);
free (vr_value[i]);
}
free (single_val_range);
free (vr_value);
} }
...@@ -2362,6 +3706,34 @@ vrp_finalize (void) ...@@ -2362,6 +3706,34 @@ vrp_finalize (void)
This is essentially an SSA-CCP pass modified to deal with ranges This is essentially an SSA-CCP pass modified to deal with ranges
instead of constants. instead of constants.
While propagating ranges, we may find that two or more SSA name
have equivalent, though distinct ranges. For instance,
1 x_9 = p_3->a;
2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
3 if (p_4 == q_2)
4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5 endif
6 if (q_2)
In the code above, pointer p_5 has range [q_2, q_2], but from the
code we can also determine that p_5 cannot be NULL and, if q_2 had
a non-varying range, p_5's range should also be compatible with it.
These equivalencies are created by two expressions: ASSERT_EXPR and
copy operations. Since p_5 is an assertion on p_4, and p_4 was the
result of another assertion, then we can use the fact that p_5 and
p_4 are equivalent when evaluating p_5's range.
Together with value ranges, we also propagate these equivalencies
between names so that we can take advantage of information from
multiple ranges when doing final replacement. Note that this
equivalency relation is transitive but not symmetric.
In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
cannot assert that q_2 is equivalent to p_5 because q_2 may be used
in contexts where that assertion does not hold (e.g., in line 6).
TODO, the main difference between this pass and Patterson's is that TODO, the main difference between this pass and Patterson's is that
we do not propagate edge probabilities. We only compute whether we do not propagate edge probabilities. We only compute whether
edges can be taken or not. That is, instead of having a spectrum edges can be taken or not. That is, instead of having a spectrum
...@@ -2378,11 +3750,9 @@ execute_vrp (void) ...@@ -2378,11 +3750,9 @@ execute_vrp (void)
if (cfg_loops) if (cfg_loops)
scev_initialize (cfg_loops); scev_initialize (cfg_loops);
if (vrp_initialize ()) vrp_initialize ();
{ ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node); vrp_finalize ();
vrp_finalize ();
}
if (cfg_loops) if (cfg_loops)
{ {
......
...@@ -1338,17 +1338,12 @@ struct tree_exp GTY(()) ...@@ -1338,17 +1338,12 @@ struct tree_exp GTY(())
#define SSA_NAME_VALUE(N) \ #define SSA_NAME_VALUE(N) \
SSA_NAME_CHECK (N)->ssa_name.value_handle SSA_NAME_CHECK (N)->ssa_name.value_handle
/* Range information for SSA_NAMEs. */
#define SSA_NAME_VALUE_RANGE(N) \
SSA_NAME_CHECK (N)->ssa_name.value_range
/* Auxiliary pass-specific data. */ /* Auxiliary pass-specific data. */
#define SSA_NAME_AUX(N) \ #define SSA_NAME_AUX(N) \
SSA_NAME_CHECK (N)->ssa_name.aux SSA_NAME_CHECK (N)->ssa_name.aux
#ifndef _TREE_FLOW_H #ifndef _TREE_FLOW_H
struct ptr_info_def; struct ptr_info_def;
struct value_range_def;
#endif #endif
...@@ -1386,9 +1381,6 @@ struct tree_ssa_name GTY(()) ...@@ -1386,9 +1381,6 @@ struct tree_ssa_name GTY(())
as well. */ as well. */
tree value_handle; tree value_handle;
/* Value range information. */
struct value_range_def *value_range;
/* Auxiliary information stored with the ssa name. */ /* Auxiliary information stored with the ssa name. */
PTR GTY((skip)) aux; PTR GTY((skip)) aux;
...@@ -3601,6 +3593,7 @@ extern bool tree_swap_operands_p (tree, tree, bool); ...@@ -3601,6 +3593,7 @@ extern bool tree_swap_operands_p (tree, tree, bool);
extern enum tree_code swap_tree_comparison (enum tree_code); extern enum tree_code swap_tree_comparison (enum tree_code);
extern bool ptr_difference_const (tree, tree, HOST_WIDE_INT *); extern bool ptr_difference_const (tree, tree, HOST_WIDE_INT *);
extern enum tree_code invert_tree_comparison (enum tree_code, bool);
/* In builtins.c */ /* In builtins.c */
extern tree fold_builtin (tree, tree, bool); extern tree fold_builtin (tree, tree, bool);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment