Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
2055cea7
Commit
2055cea7
authored
Nov 27, 1991
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r76
parent
f12b3074
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1901 additions
and
0 deletions
+1901
-0
gcc/recog.c
+1901
-0
No files found.
gcc/recog.c
0 → 100644
View file @
2055cea7
/* Subroutines used by or related to instruction recognition.
Copyright (C) 1987-1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include <stdio.h>
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "recog.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
/* Import from final.c: */
extern
rtx
alter_subreg
();
int
strict_memory_address_p
();
int
memory_address_p
();
/* Nonzero means allow operands to be volatile.
This should be 0 if you are generating rtl, such as if you are calling
the functions in optabs.c and expmed.c (most of the time).
This should be 1 if all valid insns need to be recognized,
such as in regclass.c and final.c and reload.c.
init_recog and init_recog_no_volatile are responsible for setting this. */
int
volatile_ok
;
/* On return from `constrain_operands', indicate which alternative
was satisfied. */
int
which_alternative
;
/* Nonzero after end of reload pass.
Set to 1 or 0 by toplev.c.
Controls the significance of (SUBREG (MEM)). */
int
reload_completed
;
/* Initialize data used by the function `recog'.
This must be called once in the compilation of a function
before any insn recognition may be done in the function. */
void
init_recog_no_volatile
()
{
volatile_ok
=
0
;
}
init_recog
()
{
volatile_ok
=
1
;
}
/* Try recognizing the instruction INSN,
and return the code number that results.
Remeber the code so that repeated calls do not
need to spend the time for actual rerecognition.
This function is the normal interface to instruction recognition.
The automatically-generated function `recog' is normally called
through this one. (The only exception is in combine.c.) */
int
recog_memoized
(
insn
)
rtx
insn
;
{
if
(
INSN_CODE
(
insn
)
<
0
)
INSN_CODE
(
insn
)
=
recog
(
PATTERN
(
insn
),
insn
,
0
);
return
INSN_CODE
(
insn
);
}
/* Check that X is an insn-body for an `asm' with operands
and that the operands mentioned in it are legitimate. */
int
check_asm_operands
(
x
)
rtx
x
;
{
int
noperands
=
asm_noperands
(
x
);
rtx
*
operands
;
int
i
;
if
(
noperands
<
0
)
return
0
;
if
(
noperands
==
0
)
return
1
;
operands
=
(
rtx
*
)
alloca
(
noperands
*
sizeof
(
rtx
));
decode_asm_operands
(
x
,
operands
,
0
,
0
,
0
);
for
(
i
=
0
;
i
<
noperands
;
i
++
)
if
(
!
general_operand
(
operands
[
i
],
VOIDmode
))
return
0
;
return
1
;
}
/* Static data for the next two routines.
The maximum number of changes supported is defined as the maximum
number of operands times 5. This allows for repeated substitutions
inside complex indexed address, or, alternatively, changes in up
to 5 insns. */
#define MAX_CHANGE_LOCS (MAX_RECOG_OPERANDS * 5)
static
rtx
change_objects
[
MAX_CHANGE_LOCS
];
static
int
change_old_codes
[
MAX_CHANGE_LOCS
];
static
rtx
*
change_locs
[
MAX_CHANGE_LOCS
];
static
rtx
change_olds
[
MAX_CHANGE_LOCS
];
static
int
num_changes
=
0
;
/* Validate a proposed change to OBJECT. LOC is the location in the rtl for
at which NEW will be placed. If OBJECT is zero, no validation is done,
the change is simply made.
Two types of objects are supported: If OBJECT is a MEM, memory_address_p
will be called with the address and mode as parameters. If OBJECT is
an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
the change in place.
IN_GROUP is non-zero if this is part of a group of changes that must be
performed as a group. In that case, the changes will be stored. The
function `apply_change_group' will validate and apply the changes.
If IN_GROUP is zero, this is a single change. Try to recognize the insn
or validate the memory reference with the change applied. If the result
is not valid for the machine, suppress the change and return zero.
Otherwise, perform the change and return 1. */
int
validate_change
(
object
,
loc
,
new
,
in_group
)
rtx
object
;
rtx
*
loc
;
rtx
new
;
int
in_group
;
{
rtx
old
=
*
loc
;
if
(
old
==
new
||
rtx_equal_p
(
old
,
new
))
return
1
;
if
(
num_changes
>=
MAX_CHANGE_LOCS
||
(
in_group
==
0
&&
num_changes
!=
0
))
abort
();
*
loc
=
new
;
/* Save the information describing this change. */
change_objects
[
num_changes
]
=
object
;
change_locs
[
num_changes
]
=
loc
;
change_olds
[
num_changes
]
=
old
;
if
(
object
&&
GET_CODE
(
object
)
!=
MEM
)
{
/* Set INSN_CODE to force rerecognition of insn. Save old code in
case invalid. */
change_old_codes
[
num_changes
]
=
INSN_CODE
(
object
);
INSN_CODE
(
object
)
=
-
1
;
}
num_changes
++
;
/* If we are making a group of changes, return 1. Otherwise, validate the
change group we made. */
if
(
in_group
)
return
1
;
else
return
apply_change_group
();
}
/* Apply a group of changes previously issued with `validate_change'.
Return 1 if all changes are valid, zero otherwise. */
int
apply_change_group
()
{
int
i
;
/* The changes have been applied and all INSN_CODEs have been reset to force
rerecognition.
The changes are valid if we aren't given an object, or if we are
given a MEM and it still is a valid address, or if this is in insn
and it is recognized. In the latter case, if reload has completed,
we also require that the operands meet the constraints for
the insn. We do not allow modifying an ASM_OPERANDS after reload
has completed because verifying the constraints is too difficult. */
for
(
i
=
0
;
i
<
num_changes
;
i
++
)
{
rtx
object
=
change_objects
[
i
];
if
(
object
==
0
)
continue
;
if
(
GET_CODE
(
object
)
==
MEM
)
{
if
(
!
memory_address_p
(
GET_MODE
(
object
),
XEXP
(
object
,
0
)))
break
;
}
else
if
((
recog_memoized
(
object
)
<
0
&&
(
asm_noperands
(
PATTERN
(
object
))
<
0
||
!
check_asm_operands
(
PATTERN
(
object
))
||
reload_completed
))
||
(
reload_completed
&&
(
insn_extract
(
object
),
!
constrain_operands
(
INSN_CODE
(
object
),
1
))))
{
rtx
pat
=
PATTERN
(
object
);
/* Perhaps we couldn't recognize the insn because there were
extra CLOBBERs at the end. If so, try to re-recognize
without the last CLOBBER (later iterations will cause each of
them to be eliminated, in turn). But don't do this if we
have an ASM_OPERAND. */
if
(
GET_CODE
(
pat
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
pat
,
0
,
XVECLEN
(
pat
,
0
)
-
1
))
==
CLOBBER
&&
asm_noperands
(
PATTERN
(
object
))
<
0
)
{
rtx
newpat
;
if
(
XVECLEN
(
pat
,
0
)
==
2
)
newpat
=
XVECEXP
(
pat
,
0
,
0
);
else
{
int
j
;
newpat
=
gen_rtx
(
PARALLEL
,
VOIDmode
,
gen_rtvec
(
XVECLEN
(
pat
,
0
)
-
1
));
for
(
j
=
0
;
j
<
XVECLEN
(
newpat
,
0
);
j
++
)
XVECEXP
(
newpat
,
0
,
j
)
=
XVECEXP
(
pat
,
0
,
j
);
}
/* Add a new change to this group to replace the pattern
with this new pattern. Then consider this change
as having succeeded. The change we added will
cause the entire call to fail if things remain invalid.
Note that this can lose if a later change than the one
we are processing specified &XVECEXP (PATTERN (object), 0, X)
but this shouldn't occur. */
validate_change
(
object
,
&
PATTERN
(
object
),
newpat
,
1
);
}
else
if
(
GET_CODE
(
pat
)
==
USE
||
GET_CODE
(
pat
)
==
CLOBBER
)
/* If this insn is a CLOBBER or USE, it is always valid, but is
never recognized. */
continue
;
else
break
;
}
}
if
(
i
==
num_changes
)
{
num_changes
=
0
;
return
1
;
}
else
{
cancel_changes
(
0
);
return
0
;
}
}
/* Return the number of changes so far in the current group. */
int
num_validated_changes
()
{
return
num_changes
;
}
/* Retract the changes numbered NUM and up. */
void
cancel_changes
(
num
)
int
num
;
{
int
i
;
/* Back out all the changes. Do this in the opposite order in which
they were made. */
for
(
i
=
num_changes
-
1
;
i
>=
num
;
i
--
)
{
*
change_locs
[
i
]
=
change_olds
[
i
];
if
(
change_objects
[
i
]
&&
GET_CODE
(
change_objects
[
i
])
!=
MEM
)
INSN_CODE
(
change_objects
[
i
])
=
change_old_codes
[
i
];
}
num_changes
=
num
;
}
/* Replace every occurrence of FROM in X with TO. Mark each change with
validate_change passing OBJECT. */
static
void
validate_replace_rtx_1
(
loc
,
from
,
to
,
object
)
rtx
*
loc
;
rtx
from
,
to
,
object
;
{
register
int
i
,
j
;
register
char
*
fmt
;
register
rtx
x
=
*
loc
;
enum
rtx_code
code
=
GET_CODE
(
x
);
/* X matches FROM if it is the same rtx or they are both referring to the
same register in the same mode. Avoid calling rtx_equal_p unless the
operands look similar. */
if
(
x
==
from
||
(
GET_CODE
(
x
)
==
REG
&&
GET_CODE
(
from
)
==
REG
&&
GET_MODE
(
x
)
==
GET_MODE
(
from
)
&&
REGNO
(
x
)
==
REGNO
(
from
))
||
(
GET_CODE
(
x
)
==
GET_CODE
(
from
)
&&
GET_MODE
(
x
)
==
GET_MODE
(
from
)
&&
rtx_equal_p
(
x
,
from
)))
{
validate_change
(
object
,
loc
,
to
,
1
);
return
;
}
/* For commutative or comparison operations, try replacing each argument
separately and seeing if we made any changes. If so, put a constant
argument last.*/
if
(
GET_RTX_CLASS
(
code
)
==
'<'
||
GET_RTX_CLASS
(
code
)
==
'c'
)
{
int
prev_changes
=
num_changes
;
validate_replace_rtx_1
(
&
XEXP
(
x
,
0
),
from
,
to
,
object
);
validate_replace_rtx_1
(
&
XEXP
(
x
,
1
),
from
,
to
,
object
);
if
(
prev_changes
!=
num_changes
&&
CONSTANT_P
(
XEXP
(
x
,
0
)))
{
validate_change
(
object
,
loc
,
gen_rtx
(
GET_RTX_CLASS
(
code
)
==
'c'
?
code
:
swap_condition
(
code
),
GET_MODE
(
x
),
XEXP
(
x
,
1
),
XEXP
(
x
,
0
)),
1
);
x
=
*
loc
;
code
=
GET_CODE
(
x
);
}
}
switch
(
code
)
{
case
PLUS
:
/* If we have have a PLUS whose second operand is now a CONST_INT, use
plus_constant to try to simplify it. */
if
(
GET_CODE
(
XEXP
(
x
,
1
))
==
CONST_INT
&&
XEXP
(
x
,
1
)
==
to
)
validate_change
(
object
,
loc
,
plus_constant
(
XEXP
(
x
,
0
),
INTVAL
(
XEXP
(
x
,
1
))),
1
);
return
;
case
ZERO_EXTEND
:
case
SIGN_EXTEND
:
/* In these cases, the operation to be performed depends on the mode
of the operand. If we are replacing the operand with a VOIDmode
constant, we lose the information. So try to simplify the operation
in that case. If it fails, substitute in something that we know
won't be recogized. */
if
(
GET_MODE
(
to
)
==
VOIDmode
&&
(
XEXP
(
x
,
0
)
==
from
||
(
GET_CODE
(
XEXP
(
x
,
0
))
==
REG
&&
GET_CODE
(
from
)
==
REG
&&
GET_MODE
(
XEXP
(
x
,
0
))
==
GET_MODE
(
from
)
&&
REGNO
(
XEXP
(
x
,
0
))
==
REGNO
(
from
))))
{
rtx
new
=
simplify_unary_operation
(
code
,
GET_MODE
(
x
),
to
,
GET_MODE
(
from
));
if
(
new
==
0
)
new
=
gen_rtx
(
CLOBBER
,
GET_MODE
(
x
),
const0_rtx
);
validate_change
(
object
,
loc
,
new
,
1
);
return
;
}
break
;
case
SUBREG
:
/* If we have a SUBREG of a register that we are replacing and we are
replacing it with a MEM, make a new MEM and try replacing the
SUBREG with it. Don't do this if the MEM has a mode-dependent address
or if we would be widening it. */
if
(
SUBREG_REG
(
x
)
==
from
&&
GET_CODE
(
from
)
==
REG
&&
GET_CODE
(
to
)
==
MEM
&&
!
mode_dependent_address_p
(
XEXP
(
to
,
0
))
&&
!
MEM_VOLATILE_P
(
to
)
&&
GET_MODE_SIZE
(
GET_MODE
(
x
))
<=
GET_MODE_SIZE
(
GET_MODE
(
to
)))
{
int
offset
=
SUBREG_WORD
(
x
)
*
UNITS_PER_WORD
;
enum
machine_mode
mode
=
GET_MODE
(
x
);
rtx
new
;
#if BYTES_BIG_ENDIAN
offset
+=
(
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
x
))))
-
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
mode
)));
#endif
new
=
gen_rtx
(
MEM
,
mode
,
plus_constant
(
XEXP
(
to
,
0
),
offset
));
MEM_VOLATILE_P
(
new
)
=
MEM_VOLATILE_P
(
to
);
RTX_UNCHANGING_P
(
new
)
=
RTX_UNCHANGING_P
(
to
);
MEM_IN_STRUCT_P
(
new
)
=
MEM_IN_STRUCT_P
(
to
);
validate_change
(
object
,
loc
,
new
,
1
);
return
;
}
break
;
case
ZERO_EXTRACT
:
case
SIGN_EXTRACT
:
/* If we are replacing a register with memory, try to change the memory
to be the mode required for memory in extract operations (this isn't
likely to be an insertion operation; if it was, nothing bad will
happen, we might just fail in some cases). */
if
(
XEXP
(
x
,
0
)
==
from
&&
GET_CODE
(
from
)
==
REG
&&
GET_CODE
(
to
)
==
MEM
&&
GET_CODE
(
XEXP
(
x
,
1
))
==
CONST_INT
&&
GET_CODE
(
XEXP
(
x
,
2
))
==
CONST_INT
&&
!
mode_dependent_address_p
(
XEXP
(
to
,
0
))
&&
!
MEM_VOLATILE_P
(
to
))
{
enum
machine_mode
wanted_mode
=
VOIDmode
;
enum
machine_mode
is_mode
=
GET_MODE
(
to
);
int
width
=
INTVAL
(
XEXP
(
x
,
1
));
int
pos
=
INTVAL
(
XEXP
(
x
,
2
));
#ifdef HAVE_extzv
if
(
code
==
ZERO_EXTRACT
)
wanted_mode
=
insn_operand_mode
[(
int
)
CODE_FOR_extzv
][
1
];
#endif
#ifdef HAVE_extv
if
(
code
==
SIGN_EXTRACT
)
wanted_mode
=
insn_operand_mode
[(
int
)
CODE_FOR_extv
][
1
];
#endif
/* If we have a narrower mode, we can do someting. */
if
(
wanted_mode
!=
VOIDmode
&&
GET_MODE_SIZE
(
wanted_mode
)
<
GET_MODE_SIZE
(
is_mode
))
{
int
offset
=
pos
/
BITS_PER_UNIT
;
rtx
newmem
;
/* If the bytes and bits are counted differently, we
must adjust the offset. */
#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
offset
=
(
GET_MODE_SIZE
(
is_mode
)
-
GET_MODE_SIZE
(
wanted_mode
)
-
offset
);
#endif
pos
%=
GET_MODE_BITSIZE
(
wanted_mode
);
newmem
=
gen_rtx
(
MEM
,
wanted_mode
,
plus_constant
(
XEXP
(
to
,
0
),
offset
));
RTX_UNCHANGING_P
(
newmem
)
=
RTX_UNCHANGING_P
(
to
);
MEM_VOLATILE_P
(
newmem
)
=
MEM_VOLATILE_P
(
to
);
MEM_IN_STRUCT_P
(
newmem
)
=
MEM_IN_STRUCT_P
(
to
);
validate_change
(
object
,
&
XEXP
(
x
,
2
),
gen_rtx
(
CONST_INT
,
VOIDmode
,
pos
),
1
);
validate_change
(
object
,
&
XEXP
(
x
,
0
),
newmem
,
1
);
}
}
break
;
}
fmt
=
GET_RTX_FORMAT
(
code
);
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
{
if
(
fmt
[
i
]
==
'e'
)
validate_replace_rtx_1
(
&
XEXP
(
x
,
i
),
from
,
to
,
object
);
else
if
(
fmt
[
i
]
==
'E'
)
for
(
j
=
XVECLEN
(
x
,
i
)
-
1
;
j
>=
0
;
j
--
)
validate_replace_rtx_1
(
&
XVECEXP
(
x
,
i
,
j
),
from
,
to
,
object
);
}
}
/* Try replacing every occurrence of FROM in INSN with TO. After all
changes have been made, validate by seeing if INSN is still valid. */
int
validate_replace_rtx
(
from
,
to
,
insn
)
rtx
from
,
to
,
insn
;
{
validate_replace_rtx_1
(
&
PATTERN
(
insn
),
from
,
to
,
insn
);
return
apply_change_group
();
}
#ifdef HAVE_cc0
/* Return 1 if the insn using CC0 set by INSN does not contain
any ordered tests applied to the condition codes.
EQ and NE tests do not count. */
int
next_insn_tests_no_inequality
(
insn
)
rtx
insn
;
{
register
rtx
next
=
next_cc0_user
(
insn
);
/* If there is no next insn, we have to take the conservative choice. */
if
(
next
==
0
)
return
0
;
return
((
GET_CODE
(
next
)
==
JUMP_INSN
||
GET_CODE
(
next
)
==
INSN
||
GET_CODE
(
next
)
==
CALL_INSN
)
&&
!
inequality_comparisons_p
(
PATTERN
(
next
)));
}
#if 0 /* This is useless since the insn that sets the cc's
must be followed immediately by the use of them. */
/* Return 1 if the CC value set up by INSN is not used. */
int
next_insns_test_no_inequality (insn)
rtx insn;
{
register rtx next = NEXT_INSN (insn);
for (; next != 0; next = NEXT_INSN (next))
{
if (GET_CODE (next) == CODE_LABEL
|| GET_CODE (next) == BARRIER)
return 1;
if (GET_CODE (next) == NOTE)
continue;
if (inequality_comparisons_p (PATTERN (next)))
return 0;
if (sets_cc0_p (PATTERN (next)) == 1)
return 1;
if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
return 1;
}
return 1;
}
#endif
#endif
/* This is used by find_single_use to locate an rtx that contains exactly one
use of DEST, which is typically either a REG or CC0. It returns a
pointer to the innermost rtx expression containing DEST. Appearances of
DEST that are being used to totally replace it are not counted. */
static
rtx
*
find_single_use_1
(
dest
,
loc
)
rtx
dest
;
rtx
*
loc
;
{
rtx
x
=
*
loc
;
enum
rtx_code
code
=
GET_CODE
(
x
);
rtx
*
result
=
0
;
rtx
*
this_result
;
int
i
;
char
*
fmt
;
switch
(
code
)
{
case
CONST_INT
:
case
CONST
:
case
LABEL_REF
:
case
SYMBOL_REF
:
case
CONST_DOUBLE
:
case
CLOBBER
:
return
0
;
case
SET
:
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
of a REG that occupies all of the REG, the insn uses DEST if
it is mentioned in the destination or the source. Otherwise, we
need just check the source. */
if
(
GET_CODE
(
SET_DEST
(
x
))
!=
CC0
&&
GET_CODE
(
SET_DEST
(
x
))
!=
PC
&&
GET_CODE
(
SET_DEST
(
x
))
!=
REG
&&
!
(
GET_CODE
(
SET_DEST
(
x
))
==
SUBREG
&&
GET_CODE
(
SUBREG_REG
(
SET_DEST
(
x
)))
==
REG
&&
(((
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
SET_DEST
(
x
))))
+
(
UNITS_PER_WORD
-
1
))
/
UNITS_PER_WORD
)
==
((
GET_MODE_SIZE
(
GET_MODE
(
SET_DEST
(
x
)))
+
(
UNITS_PER_WORD
-
1
))
/
UNITS_PER_WORD
))))
break
;
return
find_single_use_1
(
dest
,
&
SET_SRC
(
x
));
case
MEM
:
case
SUBREG
:
return
find_single_use_1
(
dest
,
&
XEXP
(
x
,
0
));
}
/* If it wasn't one of the common cases above, check each expression and
vector of this code. Look for a unique usage of DEST. */
fmt
=
GET_RTX_FORMAT
(
code
);
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
{
if
(
fmt
[
i
]
==
'e'
)
{
if
(
dest
==
XEXP
(
x
,
i
)
||
(
GET_CODE
(
dest
)
==
REG
&&
GET_CODE
(
XEXP
(
x
,
i
))
==
REG
&&
REGNO
(
dest
)
==
REGNO
(
XEXP
(
x
,
i
))))
this_result
=
loc
;
else
this_result
=
find_single_use_1
(
dest
,
&
XEXP
(
x
,
i
));
if
(
result
==
0
)
result
=
this_result
;
else
if
(
this_result
)
/* Duplicate usage. */
return
0
;
}
else
if
(
fmt
[
i
]
==
'E'
)
{
int
j
;
for
(
j
=
XVECLEN
(
x
,
i
)
-
1
;
j
>=
0
;
j
--
)
{
if
(
XVECEXP
(
x
,
i
,
j
)
==
dest
||
(
GET_CODE
(
dest
)
==
REG
&&
GET_CODE
(
XVECEXP
(
x
,
i
,
j
))
==
REG
&&
REGNO
(
XVECEXP
(
x
,
i
,
j
))
==
REGNO
(
dest
)))
this_result
=
loc
;
else
this_result
=
find_single_use_1
(
dest
,
&
XVECEXP
(
x
,
i
,
j
));
if
(
result
==
0
)
result
=
this_result
;
else
if
(
this_result
)
return
0
;
}
}
}
return
result
;
}
/* See if DEST, produced in INSN, is used only a single time in the
sequel. If so, return a pointer to the innermost rtx expression in which
it is used.
If PLOC is non-zero, *PLOC is set to the insn containing the single use.
This routine will return usually zero either before flow is called (because
there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
note can't be trusted).
If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
care about REG_DEAD notes or LOG_LINKS.
Otherwise, we find the single use by finding an insn that has a
LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
only referenced once in that insn, we know that it must be the first
and last insn referencing DEST. */
rtx
*
find_single_use
(
dest
,
insn
,
ploc
)
rtx
dest
;
rtx
insn
;
rtx
*
ploc
;
{
rtx
next
;
rtx
*
result
;
rtx
link
;
#ifdef HAVE_cc0
if
(
dest
==
cc0_rtx
)
{
next
=
NEXT_INSN
(
insn
);
if
(
next
==
0
||
(
GET_CODE
(
next
)
!=
INSN
&&
GET_CODE
(
next
)
!=
JUMP_INSN
))
return
0
;
result
=
find_single_use_1
(
dest
,
&
PATTERN
(
next
));
if
(
result
&&
ploc
)
*
ploc
=
next
;
return
result
;
}
#endif
if
(
reload_completed
||
reload_in_progress
||
GET_CODE
(
dest
)
!=
REG
)
return
0
;
for
(
next
=
next_nonnote_insn
(
insn
);
next
!=
0
&&
GET_CODE
(
next
)
!=
CODE_LABEL
;
next
=
next_nonnote_insn
(
next
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
next
))
==
'i'
&&
dead_or_set_p
(
next
,
dest
))
{
for
(
link
=
LOG_LINKS
(
next
);
link
;
link
=
XEXP
(
link
,
1
))
if
(
XEXP
(
link
,
0
)
==
insn
)
break
;
if
(
link
)
{
result
=
find_single_use_1
(
dest
,
&
PATTERN
(
next
));
if
(
ploc
)
*
ploc
=
next
;
return
result
;
}
}
return
0
;
}
/* Return 1 if OP is a valid general operand for machine mode MODE.
This is either a register reference, a memory reference,
or a constant. In the case of a memory reference, the address
is checked for general validity for the target machine.
Register and memory references must have mode MODE in order to be valid,
but some constants have no machine mode and are valid for any mode.
If MODE is VOIDmode, OP is checked for validity for whatever mode
it has.
The main use of this function is as a predicate in match_operand
expressions in the machine description.
For an explaination of this function's behavior for registers of
class NO_REGS, see the comment for `register_operand'. */
int
general_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
register
enum
rtx_code
code
=
GET_CODE
(
op
);
int
mode_altering_drug
=
0
;
if
(
mode
==
VOIDmode
)
mode
=
GET_MODE
(
op
);
/* Don't accept CONST_INT or anything similar
if the caller wants something floating. */
if
(
GET_MODE
(
op
)
==
VOIDmode
&&
mode
!=
VOIDmode
&&
GET_MODE_CLASS
(
mode
)
!=
MODE_INT
)
return
0
;
if
(
CONSTANT_P
(
op
))
return
((
GET_MODE
(
op
)
==
VOIDmode
||
GET_MODE
(
op
)
==
mode
)
#ifdef LEGITIMATE_PIC_OPERAND_P
&&
(
!
flag_pic
||
LEGITIMATE_PIC_OPERAND_P
(
op
))
#endif
&&
LEGITIMATE_CONSTANT_P
(
op
));
/* Except for certain constants with VOIDmode, already checked for,
OP's mode must match MODE if MODE specifies a mode. */
if
(
GET_MODE
(
op
)
!=
mode
)
return
0
;
if
(
code
==
SUBREG
)
{
#ifdef INSN_SCHEDULING
/* On machines that have insn scheduling, we want all memory
reference to be explicit, so outlaw paradoxical SUBREGs. */
if
(
GET_CODE
(
SUBREG_REG
(
op
))
==
MEM
&&
GET_MODE_SIZE
(
mode
)
>
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
op
))))
return
0
;
#endif
op
=
SUBREG_REG
(
op
);
code
=
GET_CODE
(
op
);
#if 0
/* No longer needed, since (SUBREG (MEM...))
will load the MEM into a reload reg in the MEM's own mode. */
mode_altering_drug = 1;
#endif
}
if
(
code
==
REG
)
/* A register whose class is NO_REGS is not a general operand. */
return
(
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
||
REGNO_REG_CLASS
(
REGNO
(
op
))
!=
NO_REGS
);
if
(
code
==
MEM
)
{
register
rtx
y
=
XEXP
(
op
,
0
);
if
(
!
volatile_ok
&&
MEM_VOLATILE_P
(
op
))
return
0
;
/* Use the mem's mode, since it will be reloaded thus. */
mode
=
GET_MODE
(
op
);
GO_IF_LEGITIMATE_ADDRESS
(
mode
,
y
,
win
);
}
return
0
;
win
:
if
(
mode_altering_drug
)
return
!
mode_dependent_address_p
(
XEXP
(
op
,
0
));
return
1
;
}
/* Return 1 if OP is a valid memory address for a memory reference
of mode MODE.
The main use of this function is as a predicate in match_operand
expressions in the machine description. */
int
address_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
memory_address_p
(
mode
,
op
);
}
/* Return 1 if OP is a register reference of mode MODE.
If MODE is VOIDmode, accept a register in any mode.
The main use of this function is as a predicate in match_operand
expressions in the machine description.
As a special exception, registers whose class is NO_REGS are
not accepted by `register_operand'. The reason for this change
is to allow the representation of special architecture artifacts
(such as a condition code register) without extending the rtl
definitions. Since registers of class NO_REGS cannot be used
as registers in any case where register classes are examined,
it is most consistent to keep this function from accepting them. */
int
register_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_MODE
(
op
)
!=
mode
&&
mode
!=
VOIDmode
)
return
0
;
if
(
GET_CODE
(
op
)
==
SUBREG
)
{
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
because it is guaranteed to be reloaded into one.
Just make sure the MEM is valid in itself.
(Ideally, (SUBREG (MEM)...) should not exist after reload,
but currently it does result from (SUBREG (REG)...) where the
reg went on the stack.) */
if
(
!
reload_completed
&&
GET_CODE
(
SUBREG_REG
(
op
))
==
MEM
)
return
general_operand
(
op
,
mode
);
op
=
SUBREG_REG
(
op
);
}
/* We don't consider registers whose class is NO_REGS
to be a register operand. */
return
(
GET_CODE
(
op
)
==
REG
&&
(
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
||
REGNO_REG_CLASS
(
REGNO
(
op
))
!=
NO_REGS
));
}
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
or a hard register. */
int
scratch_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
GET_MODE
(
op
)
==
mode
&&
(
GET_CODE
(
op
)
==
SCRATCH
||
(
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
<
FIRST_PSEUDO_REGISTER
)));
}
/* Return 1 if OP is a valid immediate operand for mode MODE.
The main use of this function is as a predicate in match_operand
expressions in the machine description. */
int
immediate_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
/* Don't accept CONST_INT or anything similar
if the caller wants something floating. */
if
(
GET_MODE
(
op
)
==
VOIDmode
&&
mode
!=
VOIDmode
&&
GET_MODE_CLASS
(
mode
)
!=
MODE_INT
)
return
0
;
return
(
CONSTANT_P
(
op
)
&&
(
GET_MODE
(
op
)
==
mode
||
mode
==
VOIDmode
||
GET_MODE
(
op
)
==
VOIDmode
)
#ifdef LEGITIMATE_PIC_OPERAND_P
&&
(
!
flag_pic
||
LEGITIMATE_PIC_OPERAND_P
(
op
))
#endif
&&
LEGITIMATE_CONSTANT_P
(
op
));
}
/* Returns 1 if OP is an operand that is a CONST_INT. */
int
const_int_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
GET_CODE
(
op
)
==
CONST_INT
;
}
/* Returns 1 if OP is an operand that is a constant integer or constant
floating-point number. */
int
const_double_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
/* Don't accept CONST_INT or anything similar
if the caller wants something floating. */
if
(
GET_MODE
(
op
)
==
VOIDmode
&&
mode
!=
VOIDmode
&&
GET_MODE_CLASS
(
mode
)
!=
MODE_INT
)
return
0
;
return
((
GET_CODE
(
op
)
==
CONST_DOUBLE
||
GET_CODE
(
op
)
==
CONST_INT
)
&&
(
mode
==
VOIDmode
||
GET_MODE
(
op
)
==
mode
||
GET_MODE
(
op
)
==
VOIDmode
));
}
/* Return 1 if OP is a general operand that is not an immediate operand. */
int
nonimmediate_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
general_operand
(
op
,
mode
)
&&
!
CONSTANT_P
(
op
));
}
/* Return 1 if OP is a register reference or immediate value of mode MODE. */
int
nonmemory_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
CONSTANT_P
(
op
))
{
/* Don't accept CONST_INT or anything similar
if the caller wants something floating. */
if
(
GET_MODE
(
op
)
==
VOIDmode
&&
mode
!=
VOIDmode
&&
GET_MODE_CLASS
(
mode
)
!=
MODE_INT
)
return
0
;
return
((
GET_MODE
(
op
)
==
VOIDmode
||
GET_MODE
(
op
)
==
mode
)
#ifdef LEGITIMATE_PIC_OPERAND_P
&&
(
!
flag_pic
||
LEGITIMATE_PIC_OPERAND_P
(
op
))
#endif
&&
LEGITIMATE_CONSTANT_P
(
op
));
}
if
(
GET_MODE
(
op
)
!=
mode
&&
mode
!=
VOIDmode
)
return
0
;
if
(
GET_CODE
(
op
)
==
SUBREG
)
{
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
because it is guaranteed to be reloaded into one.
Just make sure the MEM is valid in itself.
(Ideally, (SUBREG (MEM)...) should not exist after reload,
but currently it does result from (SUBREG (REG)...) where the
reg went on the stack.) */
if
(
!
reload_completed
&&
GET_CODE
(
SUBREG_REG
(
op
))
==
MEM
)
return
general_operand
(
op
,
mode
);
op
=
SUBREG_REG
(
op
);
}
/* We don't consider registers whose class is NO_REGS
to be a register operand. */
return
(
GET_CODE
(
op
)
==
REG
&&
(
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
||
REGNO_REG_CLASS
(
REGNO
(
op
))
!=
NO_REGS
));
}
/* Return 1 if OP is a valid operand that stands for pushing a
value of mode MODE onto the stack.
The main use of this function is as a predicate in match_operand
expressions in the machine description. */
int
push_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
!=
MEM
)
return
0
;
if
(
GET_MODE
(
op
)
!=
mode
)
return
0
;
op
=
XEXP
(
op
,
0
);
if
(
GET_CODE
(
op
)
!=
STACK_PUSH_CODE
)
return
0
;
return
XEXP
(
op
,
0
)
==
stack_pointer_rtx
;
}
/* Return 1 if ADDR is a valid memory address for mode MODE. */
int
memory_address_p
(
mode
,
addr
)
enum
machine_mode
mode
;
register
rtx
addr
;
{
GO_IF_LEGITIMATE_ADDRESS
(
mode
,
addr
,
win
);
return
0
;
win
:
return
1
;
}
/* Return 1 if OP is a valid memory reference with mode MODE,
including a valid address.
The main use of this function is as a predicate in match_operand
expressions in the machine description. */
int
memory_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
rtx
inner
;
if
(
!
reload_completed
)
/* Note that no SUBREG is a memory operand before end of reload pass,
because (SUBREG (MEM...)) forces reloading into a register. */
return
GET_CODE
(
op
)
==
MEM
&&
general_operand
(
op
,
mode
);
if
(
mode
!=
VOIDmode
&&
GET_MODE
(
op
)
!=
mode
)
return
0
;
inner
=
op
;
if
(
GET_CODE
(
inner
)
==
SUBREG
)
inner
=
SUBREG_REG
(
inner
);
return
(
GET_CODE
(
inner
)
==
MEM
&&
general_operand
(
op
,
mode
));
}
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
that is, a memory reference whose address is a general_operand. */
int
indirect_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
/* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
if
(
!
reload_completed
&&
GET_CODE
(
op
)
==
SUBREG
&&
GET_CODE
(
SUBREG_REG
(
op
))
==
MEM
)
{
register
int
offset
=
SUBREG_WORD
(
op
)
*
UNITS_PER_WORD
;
rtx
inner
=
SUBREG_REG
(
op
);
#if BYTES_BIG_ENDIAN
offset
-=
(
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
op
)))
-
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
inner
))));
#endif
/* The only way that we can have a general_operand as the resulting
address is if OFFSET is zero and the address already is an operand
or if the address is (plus Y (const_int -OFFSET)) and Y is an
operand. */
return
((
offset
==
0
&&
general_operand
(
XEXP
(
inner
,
0
),
Pmode
))
||
(
GET_CODE
(
XEXP
(
inner
,
0
))
==
PLUS
&&
GET_CODE
(
XEXP
(
XEXP
(
inner
,
0
),
1
))
==
CONST_INT
&&
INTVAL
(
XEXP
(
XEXP
(
inner
,
0
),
1
))
==
-
offset
&&
general_operand
(
XEXP
(
XEXP
(
inner
,
0
),
0
),
Pmode
)));
}
return
(
GET_CODE
(
op
)
==
MEM
&&
memory_operand
(
op
,
mode
)
&&
general_operand
(
XEXP
(
op
,
0
),
Pmode
));
}
/* Return 1 if this is a comparison operator. This allows the use of
MATCH_OPERATOR to recognize all the branch insns. */
int
comparison_operator
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
((
mode
==
VOIDmode
||
GET_MODE
(
op
)
==
mode
)
&&
GET_RTX_CLASS
(
GET_CODE
(
op
))
==
'<'
);
}
/* If BODY is an insn body that uses ASM_OPERANDS,
return the number of operands (both input and output) in the insn.
Otherwise return -1. */
int
asm_noperands
(
body
)
rtx
body
;
{
if
(
GET_CODE
(
body
)
==
ASM_OPERANDS
)
/* No output operands: return number of input operands. */
return
ASM_OPERANDS_INPUT_LENGTH
(
body
);
if
(
GET_CODE
(
body
)
==
SET
&&
GET_CODE
(
SET_SRC
(
body
))
==
ASM_OPERANDS
)
/* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
return
ASM_OPERANDS_INPUT_LENGTH
(
SET_SRC
(
body
))
+
1
;
else
if
(
GET_CODE
(
body
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
SET
&&
GET_CODE
(
SET_SRC
(
XVECEXP
(
body
,
0
,
0
)))
==
ASM_OPERANDS
)
{
/* Multiple output operands, or 1 output plus some clobbers:
body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
int
i
;
int
n_sets
;
/* Count backwards through CLOBBERs to determine number of SETs. */
for
(
i
=
XVECLEN
(
body
,
0
);
i
>
0
;
i
--
)
{
if
(
GET_CODE
(
XVECEXP
(
body
,
0
,
i
-
1
))
==
SET
)
break
;
if
(
GET_CODE
(
XVECEXP
(
body
,
0
,
i
-
1
))
!=
CLOBBER
)
return
-
1
;
}
/* N_SETS is now number of output operands. */
n_sets
=
i
;
/* Verify that all the SETs we have
came from a single original asm_operands insn
(so that invalid combinations are blocked). */
for
(
i
=
0
;
i
<
n_sets
;
i
++
)
{
rtx
elt
=
XVECEXP
(
body
,
0
,
i
);
if
(
GET_CODE
(
elt
)
!=
SET
)
return
-
1
;
if
(
GET_CODE
(
SET_SRC
(
elt
))
!=
ASM_OPERANDS
)
return
-
1
;
/* If these ASM_OPERANDS rtx's came from different original insns
then they aren't allowed together. */
if
(
ASM_OPERANDS_INPUT_VEC
(
SET_SRC
(
elt
))
!=
ASM_OPERANDS_INPUT_VEC
(
SET_SRC
(
XVECEXP
(
body
,
0
,
0
))))
return
-
1
;
}
return
(
ASM_OPERANDS_INPUT_LENGTH
(
SET_SRC
(
XVECEXP
(
body
,
0
,
0
)))
+
n_sets
);
}
else
if
(
GET_CODE
(
body
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
ASM_OPERANDS
)
{
/* 0 outputs, but some clobbers:
body is [(asm_operands ...) (clobber (reg ...))...]. */
int
i
;
/* Make sure all the other parallel things really are clobbers. */
for
(
i
=
XVECLEN
(
body
,
0
)
-
1
;
i
>
0
;
i
--
)
if
(
GET_CODE
(
XVECEXP
(
body
,
0
,
i
))
!=
CLOBBER
)
return
-
1
;
return
ASM_OPERANDS_INPUT_LENGTH
(
XVECEXP
(
body
,
0
,
0
));
}
else
return
-
1
;
}
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
copy its operands (both input and output) into the vector OPERANDS,
the locations of the operands within the insn into the vector OPERAND_LOCS,
and the constraints for the operands into CONSTRAINTS.
Write the modes of the operands into MODES.
Return the assembler-template.
If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
we don't store that info. */
char
*
decode_asm_operands
(
body
,
operands
,
operand_locs
,
constraints
,
modes
)
rtx
body
;
rtx
*
operands
;
rtx
**
operand_locs
;
char
**
constraints
;
enum
machine_mode
*
modes
;
{
register
int
i
;
int
noperands
;
char
*
template
=
0
;
if
(
GET_CODE
(
body
)
==
SET
&&
GET_CODE
(
SET_SRC
(
body
))
==
ASM_OPERANDS
)
{
rtx
asmop
=
SET_SRC
(
body
);
/* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
noperands
=
ASM_OPERANDS_INPUT_LENGTH
(
asmop
)
+
1
;
for
(
i
=
1
;
i
<
noperands
;
i
++
)
{
if
(
operand_locs
)
operand_locs
[
i
]
=
&
ASM_OPERANDS_INPUT
(
asmop
,
i
-
1
);
if
(
operands
)
operands
[
i
]
=
ASM_OPERANDS_INPUT
(
asmop
,
i
-
1
);
if
(
constraints
)
constraints
[
i
]
=
ASM_OPERANDS_INPUT_CONSTRAINT
(
asmop
,
i
-
1
);
if
(
modes
)
modes
[
i
]
=
ASM_OPERANDS_INPUT_MODE
(
asmop
,
i
-
1
);
}
/* The output is in the SET.
Its constraint is in the ASM_OPERANDS itself. */
if
(
operands
)
operands
[
0
]
=
SET_DEST
(
body
);
if
(
operand_locs
)
operand_locs
[
0
]
=
&
SET_DEST
(
body
);
if
(
constraints
)
constraints
[
0
]
=
ASM_OPERANDS_OUTPUT_CONSTRAINT
(
asmop
);
if
(
modes
)
modes
[
0
]
=
GET_MODE
(
SET_DEST
(
body
));
template
=
ASM_OPERANDS_TEMPLATE
(
asmop
);
}
else
if
(
GET_CODE
(
body
)
==
ASM_OPERANDS
)
{
rtx
asmop
=
body
;
/* No output operands: BODY is (asm_operands ....). */
noperands
=
ASM_OPERANDS_INPUT_LENGTH
(
asmop
);
/* The input operands are found in the 1st element vector. */
/* Constraints for inputs are in the 2nd element vector. */
for
(
i
=
0
;
i
<
noperands
;
i
++
)
{
if
(
operand_locs
)
operand_locs
[
i
]
=
&
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
operands
)
operands
[
i
]
=
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
constraints
)
constraints
[
i
]
=
ASM_OPERANDS_INPUT_CONSTRAINT
(
asmop
,
i
);
if
(
modes
)
modes
[
i
]
=
ASM_OPERANDS_INPUT_MODE
(
asmop
,
i
);
}
template
=
ASM_OPERANDS_TEMPLATE
(
asmop
);
}
else
if
(
GET_CODE
(
body
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
SET
)
{
rtx
asmop
=
SET_SRC
(
XVECEXP
(
body
,
0
,
0
));
int
nparallel
=
XVECLEN
(
body
,
0
);
/* Includes CLOBBERs. */
int
nin
=
ASM_OPERANDS_INPUT_LENGTH
(
asmop
);
int
nout
=
0
;
/* Does not include CLOBBERs. */
/* At least one output, plus some CLOBBERs. */
/* The outputs are in the SETs.
Their constraints are in the ASM_OPERANDS itself. */
for
(
i
=
0
;
i
<
nparallel
;
i
++
)
{
if
(
GET_CODE
(
XVECEXP
(
body
,
0
,
i
))
==
CLOBBER
)
break
;
/* Past last SET */
if
(
operands
)
operands
[
i
]
=
SET_DEST
(
XVECEXP
(
body
,
0
,
i
));
if
(
operand_locs
)
operand_locs
[
i
]
=
&
SET_DEST
(
XVECEXP
(
body
,
0
,
i
));
if
(
constraints
)
constraints
[
i
]
=
XSTR
(
SET_SRC
(
XVECEXP
(
body
,
0
,
i
)),
1
);
if
(
modes
)
modes
[
i
]
=
GET_MODE
(
SET_DEST
(
XVECEXP
(
body
,
0
,
i
)));
nout
++
;
}
for
(
i
=
0
;
i
<
nin
;
i
++
)
{
if
(
operand_locs
)
operand_locs
[
i
+
nout
]
=
&
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
operands
)
operands
[
i
+
nout
]
=
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
constraints
)
constraints
[
i
+
nout
]
=
ASM_OPERANDS_INPUT_CONSTRAINT
(
asmop
,
i
);
if
(
modes
)
modes
[
i
+
nout
]
=
ASM_OPERANDS_INPUT_MODE
(
asmop
,
i
);
}
template
=
ASM_OPERANDS_TEMPLATE
(
asmop
);
}
else
if
(
GET_CODE
(
body
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
ASM_OPERANDS
)
{
/* No outputs, but some CLOBBERs. */
rtx
asmop
=
XVECEXP
(
body
,
0
,
0
);
int
nin
=
ASM_OPERANDS_INPUT_LENGTH
(
asmop
);
for
(
i
=
0
;
i
<
nin
;
i
++
)
{
if
(
operand_locs
)
operand_locs
[
i
]
=
&
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
operands
)
operands
[
i
]
=
ASM_OPERANDS_INPUT
(
asmop
,
i
);
if
(
constraints
)
constraints
[
i
]
=
ASM_OPERANDS_INPUT_CONSTRAINT
(
asmop
,
i
);
if
(
modes
)
modes
[
i
]
=
ASM_OPERANDS_INPUT_MODE
(
asmop
,
i
);
}
template
=
ASM_OPERANDS_TEMPLATE
(
asmop
);
}
return
template
;
}
extern
rtx
plus_constant_for_output
();
extern
rtx
copy_rtx
();
/* Given an rtx *P, if it is a sum containing an integer constant term,
return the location (type rtx *) of the pointer to that constant term.
Otherwise, return a null pointer. */
static
rtx
*
find_constant_term_loc
(
p
)
rtx
*
p
;
{
register
rtx
*
tem
;
register
enum
rtx_code
code
=
GET_CODE
(
*
p
);
/* If *P IS such a constant term, P is its location. */
if
(
code
==
CONST_INT
||
code
==
SYMBOL_REF
||
code
==
LABEL_REF
||
code
==
CONST
)
return
p
;
/* Otherwise, if not a sum, it has no constant term. */
if
(
GET_CODE
(
*
p
)
!=
PLUS
)
return
0
;
/* If one of the summands is constant, return its location. */
if
(
XEXP
(
*
p
,
0
)
&&
CONSTANT_P
(
XEXP
(
*
p
,
0
))
&&
XEXP
(
*
p
,
1
)
&&
CONSTANT_P
(
XEXP
(
*
p
,
1
)))
return
p
;
/* Otherwise, check each summand for containing a constant term. */
if
(
XEXP
(
*
p
,
0
)
!=
0
)
{
tem
=
find_constant_term_loc
(
&
XEXP
(
*
p
,
0
));
if
(
tem
!=
0
)
return
tem
;
}
if
(
XEXP
(
*
p
,
1
)
!=
0
)
{
tem
=
find_constant_term_loc
(
&
XEXP
(
*
p
,
1
));
if
(
tem
!=
0
)
return
tem
;
}
return
0
;
}
/* Return 1 if OP is a memory reference
whose address contains no side effects
and remains valid after the addition
of a positive integer less than the
size of the object being referenced.
We assume that the original address is valid and do not check it.
This uses strict_memory_address_p as a subroutine, so
don't use it before reload. */
int
offsettable_memref_p
(
op
)
rtx
op
;
{
return
((
GET_CODE
(
op
)
==
MEM
)
&&
offsettable_address_p
(
1
,
GET_MODE
(
op
),
XEXP
(
op
,
0
)));
}
/* Similar, but don't require a strictly valid mem ref:
consider pseudo-regs valid as index or base regs. */
int
offsettable_nonstrict_memref_p
(
op
)
rtx
op
;
{
return
((
GET_CODE
(
op
)
==
MEM
)
&&
offsettable_address_p
(
0
,
GET_MODE
(
op
),
XEXP
(
op
,
0
)));
}
/* Return 1 if Y is a memory address which contains no side effects
and would remain valid after the addition of a positive integer
less than the size of that mode.
We assume that the original address is valid and do not check it.
We do check that it is valid for narrower modes.
If STRICTP is nonzero, we require a strictly valid address,
for the sake of use in reload.c. */
int
offsettable_address_p
(
strictp
,
mode
,
y
)
int
strictp
;
enum
machine_mode
mode
;
register
rtx
y
;
{
register
enum
rtx_code
ycode
=
GET_CODE
(
y
);
register
rtx
z
;
rtx
y1
=
y
;
rtx
*
y2
;
int
(
*
addressp
)
()
=
(
strictp
?
strict_memory_address_p
:
memory_address_p
);
if
(
CONSTANT_ADDRESS_P
(
y
))
return
1
;
/* Adjusting an offsettable address involves changing to a narrower mode.
Make sure that's OK. */
if
(
mode_dependent_address_p
(
y
))
return
0
;
/* If the expression contains a constant term,
see if it remains valid when max possible offset is added. */
if
((
ycode
==
PLUS
)
&&
(
y2
=
find_constant_term_loc
(
&
y1
)))
{
int
good
;
y1
=
*
y2
;
*
y2
=
plus_constant
(
*
y2
,
GET_MODE_SIZE
(
mode
)
-
1
);
/* Use QImode because an odd displacement may be automatically invalid
for any wider mode. But it should be valid for a single byte. */
good
=
(
*
addressp
)
(
QImode
,
y
);
/* In any case, restore old contents of memory. */
*
y2
=
y1
;
return
good
;
}
if
(
ycode
==
PRE_DEC
||
ycode
==
PRE_INC
||
ycode
==
POST_DEC
||
ycode
==
POST_INC
)
return
0
;
/* The offset added here is chosen as the maximum offset that
any instruction could need to add when operating on something
of the specified mode. We assume that if Y and Y+c are
valid addresses then so is Y+d for all 0<d<c. */
z
=
plus_constant_for_output
(
y
,
GET_MODE_SIZE
(
mode
)
-
1
);
/* Use QImode because an odd displacement may be automatically invalid
for any wider mode. But it should be valid for a single byte. */
return
(
*
addressp
)
(
QImode
,
z
);
}
/* Return 1 if ADDR is an address-expression whose effect depends
on the mode of the memory reference it is used in.
Autoincrement addressing is a typical example of mode-dependence
because the amount of the increment depends on the mode. */
int
mode_dependent_address_p
(
addr
)
rtx
addr
;
{
GO_IF_MODE_DEPENDENT_ADDRESS
(
addr
,
win
);
return
0
;
win
:
return
1
;
}
/* Return 1 if OP is a general operand
other than a memory ref with a mode dependent address. */
int
mode_independent_operand
(
op
,
mode
)
enum
machine_mode
mode
;
rtx
op
;
{
rtx
addr
;
if
(
!
general_operand
(
op
,
mode
))
return
0
;
if
(
GET_CODE
(
op
)
!=
MEM
)
return
1
;
addr
=
XEXP
(
op
,
0
);
GO_IF_MODE_DEPENDENT_ADDRESS
(
addr
,
lose
);
return
1
;
lose
:
return
0
;
}
/* Given an operand OP that is a valid memory reference
which satisfies offsettable_memref_p,
return a new memory reference whose address has been adjusted by OFFSET.
OFFSET should be positive and less than the size of the object referenced.
*/
rtx
adj_offsettable_operand
(
op
,
offset
)
rtx
op
;
int
offset
;
{
register
enum
rtx_code
code
=
GET_CODE
(
op
);
if
(
code
==
MEM
)
{
register
rtx
y
=
XEXP
(
op
,
0
);
register
rtx
new
;
if
(
CONSTANT_ADDRESS_P
(
y
))
{
new
=
gen_rtx
(
MEM
,
GET_MODE
(
op
),
plus_constant_for_output
(
y
,
offset
));
RTX_UNCHANGING_P
(
new
)
=
RTX_UNCHANGING_P
(
op
);
return
new
;
}
if
(
GET_CODE
(
y
)
==
PLUS
)
{
rtx
z
=
y
;
register
rtx
*
const_loc
;
op
=
copy_rtx
(
op
);
z
=
XEXP
(
op
,
0
);
const_loc
=
find_constant_term_loc
(
&
z
);
if
(
const_loc
)
{
*
const_loc
=
plus_constant_for_output
(
*
const_loc
,
offset
);
return
op
;
}
}
new
=
gen_rtx
(
MEM
,
GET_MODE
(
op
),
plus_constant_for_output
(
y
,
offset
));
RTX_UNCHANGING_P
(
new
)
=
RTX_UNCHANGING_P
(
op
);
return
new
;
}
abort
();
}
#ifdef REGISTER_CONSTRAINTS
/* Check the operands of an insn (found in recog_operands)
against the insn's operand constraints (found via INSN_CODE_NUM)
and return 1 if they are valid.
WHICH_ALTERNATIVE is set to a number which indicates which
alternative of constraints was matched: 0 for the first alternative,
1 for the next, etc.
In addition, when two operands are match
and it happens that the output operand is (reg) while the
input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
make the output operand look like the input.
This is because the output operand is the one the template will print.
This is used in final, just before printing the assembler code and by
the routines that determine an insn's attribute.
If STRICT is a positive non-zero value, it means that we have been
called after reload has been completed. In that case, we must
do all checks strictly. If it is zero, it means that we have been called
before reload has completed. In that case, we first try to see if we can
find an alternative that matches strictly. If not, we try again, this
time assuming that reload will fix up the insn. This provides a "best
guess" for the alternative and is used to compute attributes of insns prior
to reload. A negative value of STRICT is used for this internal call. */
struct
funny_match
{
int
this
,
other
;
};
int
constrain_operands
(
insn_code_num
,
strict
)
int
insn_code_num
;
int
strict
;
{
char
*
constraints
[
MAX_RECOG_OPERANDS
];
register
int
c
;
int
noperands
=
insn_n_operands
[
insn_code_num
];
struct
funny_match
funny_match
[
MAX_RECOG_OPERANDS
];
int
funny_match_index
;
int
nalternatives
=
insn_n_alternatives
[
insn_code_num
];
if
(
noperands
==
0
||
nalternatives
==
0
)
return
1
;
for
(
c
=
0
;
c
<
noperands
;
c
++
)
constraints
[
c
]
=
insn_operand_constraint
[
insn_code_num
][
c
];
which_alternative
=
0
;
while
(
which_alternative
<
nalternatives
)
{
register
int
opno
;
int
lose
=
0
;
funny_match_index
=
0
;
for
(
opno
=
0
;
opno
<
noperands
;
opno
++
)
{
register
rtx
op
=
recog_operand
[
opno
];
enum
machine_mode
mode
=
GET_MODE
(
op
);
register
char
*
p
=
constraints
[
opno
];
int
offset
=
0
;
int
win
=
0
;
int
val
;
if
(
GET_CODE
(
op
)
==
SUBREG
)
{
if
(
GET_CODE
(
SUBREG_REG
(
op
))
==
REG
&&
REGNO
(
SUBREG_REG
(
op
))
<
FIRST_PSEUDO_REGISTER
)
offset
=
SUBREG_WORD
(
op
);
op
=
SUBREG_REG
(
op
);
}
/* An empty constraint or empty alternative
allows anything which matched the pattern. */
if
(
*
p
==
0
||
*
p
==
','
)
win
=
1
;
while
(
*
p
&&
(
c
=
*
p
++
)
!=
','
)
switch
(
c
)
{
case
'='
:
case
'+'
:
case
'?'
:
case
'#'
:
case
'&'
:
case
'!'
:
case
'*'
:
case
'%'
:
break
;
case
'0'
:
case
'1'
:
case
'2'
:
case
'3'
:
case
'4'
:
/* This operand must be the same as a previous one.
This kind of constraint is used for instructions such
as add when they take only two operands.
Note that the lower-numbered operand is passed first.
If we are not testing strictly, assume that this constraint
will be satisfied. */
if
(
strict
<
0
)
val
=
1
;
else
val
=
operands_match_p
(
recog_operand
[
c
-
'0'
],
recog_operand
[
opno
]);
if
(
val
!=
0
)
win
=
1
;
/* If output is *x and input is *--x,
arrange later to change the output to *--x as well,
since the output op is the one that will be printed. */
if
(
val
==
2
&&
strict
>
0
)
{
funny_match
[
funny_match_index
].
this
=
opno
;
funny_match
[
funny_match_index
++
].
other
=
c
-
'0'
;
}
break
;
case
'p'
:
/* p is used for address_operands. When we are called by
gen_input_reload, no one will have checked that the
address is strictly valid, i.e., that all pseudos
requiring hard regs have gotten them. */
if
(
strict
<=
0
||
(
strict_memory_address_p
(
insn_operand_mode
[
insn_code_num
][
opno
],
op
)))
win
=
1
;
break
;
/* No need to check general_operand again;
it was done in insn-recog.c. */
case
'g'
:
/* Anything goes unless it is a REG and really has a hard reg
but the hard reg is not in the class GENERAL_REGS. */
if
(
strict
<
0
||
GENERAL_REGS
==
ALL_REGS
||
GET_CODE
(
op
)
!=
REG
||
reg_fits_class_p
(
op
,
GENERAL_REGS
,
offset
,
mode
))
win
=
1
;
break
;
case
'r'
:
if
(
strict
<
0
||
(
strict
==
0
&&
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
)
||
(
strict
==
0
&&
GET_CODE
(
op
)
==
SCRATCH
)
||
(
GET_CODE
(
op
)
==
REG
&&
(
GENERAL_REGS
==
ALL_REGS
||
reg_fits_class_p
(
op
,
GENERAL_REGS
,
offset
,
mode
))))
win
=
1
;
break
;
case
'X'
:
/* This is used for a MATCH_SCRATCH in the cases when we
don't actually need anything. So anything goes any time. */
win
=
1
;
break
;
case
'm'
:
if
(
GET_CODE
(
op
)
==
MEM
/* Before reload, accept what reload can turn into mem. */
||
(
strict
<
0
&&
CONSTANT_P
(
op
)))
win
=
1
;
break
;
case
'<'
:
if
(
GET_CODE
(
op
)
==
MEM
&&
(
GET_CODE
(
XEXP
(
op
,
0
))
==
PRE_DEC
||
GET_CODE
(
XEXP
(
op
,
0
))
==
POST_DEC
))
win
=
1
;
break
;
case
'>'
:
if
(
GET_CODE
(
op
)
==
MEM
&&
(
GET_CODE
(
XEXP
(
op
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
op
,
0
))
==
POST_INC
))
win
=
1
;
break
;
case
'E'
:
/* Match any CONST_DOUBLE, but only if
we can examine the bits of it reliably. */
if
((
HOST_FLOAT_FORMAT
!=
TARGET_FLOAT_FORMAT
||
HOST_BITS_PER_INT
!=
BITS_PER_WORD
)
&&
GET_CODE
(
op
)
!=
VOIDmode
&&
!
flag_pretend_float
)
break
;
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
)
win
=
1
;
break
;
case
'F'
:
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
)
win
=
1
;
break
;
case
'G'
:
case
'H'
:
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
CONST_DOUBLE_OK_FOR_LETTER_P
(
op
,
c
))
win
=
1
;
break
;
case
's'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
||
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
GET_MODE
(
op
)
==
VOIDmode
))
break
;
case
'i'
:
if
(
CONSTANT_P
(
op
))
win
=
1
;
break
;
case
'n'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
||
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
GET_MODE
(
op
)
==
VOIDmode
))
win
=
1
;
break
;
case
'I'
:
case
'J'
:
case
'K'
:
case
'L'
:
case
'M'
:
case
'N'
:
case
'O'
:
case
'P'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
&&
CONST_OK_FOR_LETTER_P
(
INTVAL
(
op
),
c
))
win
=
1
;
break
;
#ifdef EXTRA_CONSTRAINT
case
'Q'
:
case
'R'
:
case
'S'
:
case
'T'
:
case
'U'
:
if
(
EXTRA_CONSTRAINT
(
op
,
c
))
win
=
1
;
break
;
#endif
case
'V'
:
if
(
GET_CODE
(
op
)
==
MEM
&&
!
offsettable_memref_p
(
op
))
win
=
1
;
break
;
case
'o'
:
if
((
strict
>
0
&&
offsettable_memref_p
(
op
))
||
(
strict
==
0
&&
offsettable_nonstrict_memref_p
(
op
))
/* Before reload, accept what reload can handle. */
||
(
strict
<
0
&&
(
CONSTANT_P
(
op
)
||
GET_CODE
(
op
)
==
MEM
)))
win
=
1
;
break
;
default
:
if
(
strict
<
0
||
(
strict
==
0
&&
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
)
||
(
strict
==
0
&&
GET_CODE
(
op
)
==
SCRATCH
)
||
(
GET_CODE
(
op
)
==
REG
&&
reg_fits_class_p
(
op
,
REG_CLASS_FROM_LETTER
(
c
),
offset
,
mode
)))
win
=
1
;
}
constraints
[
opno
]
=
p
;
/* If this operand did not win somehow,
this alternative loses. */
if
(
!
win
)
lose
=
1
;
}
/* This alternative won; the operands are ok.
Change whichever operands this alternative says to change. */
if
(
!
lose
)
{
while
(
--
funny_match_index
>=
0
)
{
recog_operand
[
funny_match
[
funny_match_index
].
other
]
=
recog_operand
[
funny_match
[
funny_match_index
].
this
];
}
return
1
;
}
which_alternative
++
;
}
/* If we are about to reject this, but we are not to test strictly,
try a very loose test. Only return failure if it fails also. */
if
(
strict
==
0
)
return
constrain_operands
(
insn_code_num
,
-
1
);
else
return
0
;
}
/* Return 1 iff OPERAND (assumed to be a REG rtx)
is a hard reg in class CLASS when its regno is offsetted by OFFSET
and changed to mode MODE.
If REG occupies multiple hard regs, all of them must be in CLASS. */
int
reg_fits_class_p
(
operand
,
class
,
offset
,
mode
)
rtx
operand
;
register
enum
reg_class
class
;
int
offset
;
enum
machine_mode
mode
;
{
register
int
regno
=
REGNO
(
operand
);
if
(
regno
<
FIRST_PSEUDO_REGISTER
&&
TEST_HARD_REG_BIT
(
reg_class_contents
[(
int
)
class
],
regno
+
offset
))
{
register
int
sr
;
regno
+=
offset
;
for
(
sr
=
HARD_REGNO_NREGS
(
regno
,
mode
)
-
1
;
sr
>
0
;
sr
--
)
if
(
!
TEST_HARD_REG_BIT
(
reg_class_contents
[(
int
)
class
],
regno
+
sr
))
break
;
return
sr
==
0
;
}
return
0
;
}
#endif
/* REGISTER_CONSTRAINTS */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment