Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
18ca7dab
Commit
18ca7dab
authored
Mar 11, 1992
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r445
parent
c27db215
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
843 additions
and
0 deletions
+843
-0
gcc/explow.c
+843
-0
No files found.
gcc/explow.c
0 → 100644
View file @
18ca7dab
/* Subroutines for manipulating rtx's in semantically interesting ways.
Copyright (C) 1987, 1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "insn-flags.h"
#include "insn-codes.h"
/* Return an rtx for the sum of X and the integer C. */
rtx
plus_constant
(
x
,
c
)
register
rtx
x
;
register
int
c
;
{
register
RTX_CODE
code
;
register
enum
machine_mode
mode
;
register
rtx
tem
;
int
all_constant
=
0
;
if
(
c
==
0
)
return
x
;
restart
:
code
=
GET_CODE
(
x
);
mode
=
GET_MODE
(
x
);
switch
(
code
)
{
case
CONST_INT
:
return
gen_rtx
(
CONST_INT
,
VOIDmode
,
(
INTVAL
(
x
)
+
c
));
case
CONST_DOUBLE
:
{
int
l1
=
CONST_DOUBLE_LOW
(
x
);
int
h1
=
CONST_DOUBLE_HIGH
(
x
);
int
l2
=
c
;
int
h2
=
c
<
0
?
~
0
:
0
;
int
lv
,
hv
;
add_double
(
l1
,
h1
,
l2
,
h2
,
&
lv
,
&
hv
);
return
immed_double_const
(
lv
,
hv
,
VOIDmode
);
}
case
MEM
:
/* If this is a reference to the constant pool, try replacing it with
a reference to a new constant. If the resulting address isn't
valid, don't return it because we have no way to validize it. */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
XEXP
(
x
,
0
)))
{
tem
=
force_const_mem
(
GET_MODE
(
x
),
plus_constant
(
get_pool_constant
(
XEXP
(
x
,
0
)),
c
));
if
(
memory_address_p
(
GET_MODE
(
tem
),
XEXP
(
tem
,
0
)))
return
tem
;
}
break
;
case
CONST
:
/* If adding to something entirely constant, set a flag
so that we can add a CONST around the result. */
x
=
XEXP
(
x
,
0
);
all_constant
=
1
;
goto
restart
;
case
SYMBOL_REF
:
case
LABEL_REF
:
all_constant
=
1
;
break
;
case
PLUS
:
/* The interesting case is adding the integer to a sum.
Look for constant term in the sum and combine
with C. For an integer constant term, we make a combined
integer. For a constant term that is not an explicit integer,
we cannot really combine, but group them together anyway. */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
CONST_INT
)
{
c
+=
INTVAL
(
XEXP
(
x
,
0
));
x
=
XEXP
(
x
,
1
);
}
else
if
(
GET_CODE
(
XEXP
(
x
,
1
))
==
CONST_INT
)
{
c
+=
INTVAL
(
XEXP
(
x
,
1
));
x
=
XEXP
(
x
,
0
);
}
else
if
(
CONSTANT_P
(
XEXP
(
x
,
0
)))
return
gen_rtx
(
PLUS
,
mode
,
plus_constant
(
XEXP
(
x
,
0
),
c
),
XEXP
(
x
,
1
));
else
if
(
CONSTANT_P
(
XEXP
(
x
,
1
)))
return
gen_rtx
(
PLUS
,
mode
,
XEXP
(
x
,
0
),
plus_constant
(
XEXP
(
x
,
1
),
c
));
}
if
(
c
!=
0
)
x
=
gen_rtx
(
PLUS
,
mode
,
x
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
c
));
if
(
GET_CODE
(
x
)
==
SYMBOL_REF
||
GET_CODE
(
x
)
==
LABEL_REF
)
return
x
;
else
if
(
all_constant
)
return
gen_rtx
(
CONST
,
mode
,
x
);
else
return
x
;
}
/* This is the same a `plus_constant', except that it handles LO_SUM. */
rtx
plus_constant_for_output
(
x
,
c
)
register
rtx
x
;
register
int
c
;
{
register
RTX_CODE
code
=
GET_CODE
(
x
);
register
enum
machine_mode
mode
=
GET_MODE
(
x
);
int
all_constant
=
0
;
if
(
GET_CODE
(
x
)
==
LO_SUM
)
return
gen_rtx
(
LO_SUM
,
mode
,
XEXP
(
x
,
0
),
plus_constant_for_output
(
XEXP
(
x
,
1
),
c
));
else
return
plus_constant
(
x
,
c
);
}
/* If X is a sum, return a new sum like X but lacking any constant terms.
Add all the removed constant terms into *CONSTPTR.
X itself is not altered. The result != X if and only if
it is not isomorphic to X. */
rtx
eliminate_constant_term
(
x
,
constptr
)
rtx
x
;
rtx
*
constptr
;
{
register
rtx
x0
,
x1
;
rtx
tem
;
if
(
GET_CODE
(
x
)
!=
PLUS
)
return
x
;
/* First handle constants appearing at this level explicitly. */
if
(
GET_CODE
(
XEXP
(
x
,
1
))
==
CONST_INT
&&
0
!=
(
tem
=
simplify_binary_operation
(
PLUS
,
GET_MODE
(
x
),
*
constptr
,
XEXP
(
x
,
1
)))
&&
GET_CODE
(
tem
)
==
CONST_INT
)
{
*
constptr
=
tem
;
return
eliminate_constant_term
(
XEXP
(
x
,
0
),
constptr
);
}
tem
=
const0_rtx
;
x0
=
eliminate_constant_term
(
XEXP
(
x
,
0
),
&
tem
);
x1
=
eliminate_constant_term
(
XEXP
(
x
,
1
),
&
tem
);
if
((
x1
!=
XEXP
(
x
,
1
)
||
x0
!=
XEXP
(
x
,
0
))
&&
0
!=
(
tem
=
simplify_binary_operation
(
PLUS
,
GET_MODE
(
x
),
*
constptr
,
tem
))
&&
GET_CODE
(
tem
)
==
CONST_INT
)
{
*
constptr
=
tem
;
return
gen_rtx
(
PLUS
,
GET_MODE
(
x
),
x0
,
x1
);
}
return
x
;
}
/* Returns the insn that next references REG after INSN, or 0
if REG is clobbered before next referenced or we cannot find
an insn that references REG in a straight-line piece of code. */
rtx
find_next_ref
(
reg
,
insn
)
rtx
reg
;
rtx
insn
;
{
rtx
next
;
for
(
insn
=
NEXT_INSN
(
insn
);
insn
;
insn
=
next
)
{
next
=
NEXT_INSN
(
insn
);
if
(
GET_CODE
(
insn
)
==
NOTE
)
continue
;
if
(
GET_CODE
(
insn
)
==
CODE_LABEL
||
GET_CODE
(
insn
)
==
BARRIER
)
return
0
;
if
(
GET_CODE
(
insn
)
==
INSN
||
GET_CODE
(
insn
)
==
JUMP_INSN
||
GET_CODE
(
insn
)
==
CALL_INSN
)
{
if
(
reg_set_p
(
reg
,
insn
))
return
0
;
if
(
reg_mentioned_p
(
reg
,
PATTERN
(
insn
)))
return
insn
;
if
(
GET_CODE
(
insn
)
==
JUMP_INSN
)
{
if
(
simplejump_p
(
insn
))
next
=
JUMP_LABEL
(
insn
);
else
return
0
;
}
if
(
GET_CODE
(
insn
)
==
CALL_INSN
&&
REGNO
(
reg
)
<
FIRST_PSEUDO_REGISTER
&&
call_used_regs
[
REGNO
(
reg
)])
return
0
;
}
else
abort
();
}
return
0
;
}
/* Return an rtx for the size in bytes of the value of EXP. */
rtx
expr_size
(
exp
)
tree
exp
;
{
return
expand_expr
(
size_in_bytes
(
TREE_TYPE
(
exp
)),
0
,
TYPE_MODE
(
sizetype
),
0
);
}
/* Return a copy of X in which all memory references
and all constants that involve symbol refs
have been replaced with new temporary registers.
Also emit code to load the memory locations and constants
into those registers.
If X contains no such constants or memory references,
X itself (not a copy) is returned.
If a constant is found in the address that is not a legitimate constant
in an insn, it is left alone in the hope that it might be valid in the
address.
X may contain no arithmetic except addition, subtraction and multiplication.
Values returned by expand_expr with 1 for sum_ok fit this constraint. */
static
rtx
break_out_memory_refs
(
x
)
register
rtx
x
;
{
if
(
GET_CODE
(
x
)
==
MEM
||
(
CONSTANT_P
(
x
)
&&
LEGITIMATE_CONSTANT_P
(
x
)
&&
GET_MODE
(
x
)
!=
VOIDmode
))
{
register
rtx
temp
=
force_reg
(
GET_MODE
(
x
),
x
);
mark_reg_pointer
(
temp
);
x
=
temp
;
}
else
if
(
GET_CODE
(
x
)
==
PLUS
||
GET_CODE
(
x
)
==
MINUS
||
GET_CODE
(
x
)
==
MULT
)
{
register
rtx
op0
=
break_out_memory_refs
(
XEXP
(
x
,
0
));
register
rtx
op1
=
break_out_memory_refs
(
XEXP
(
x
,
1
));
if
(
op0
!=
XEXP
(
x
,
0
)
||
op1
!=
XEXP
(
x
,
1
))
x
=
gen_rtx
(
GET_CODE
(
x
),
Pmode
,
op0
,
op1
);
}
return
x
;
}
/* Given a memory address or facsimile X, construct a new address,
currently equivalent, that is stable: future stores won't change it.
X must be composed of constants, register and memory references
combined with addition, subtraction and multiplication:
in other words, just what you can get from expand_expr if sum_ok is 1.
Works by making copies of all regs and memory locations used
by X and combining them the same way X does.
You could also stabilize the reference to this address
by copying the address to a register with copy_to_reg;
but then you wouldn't get indexed addressing in the reference. */
rtx
copy_all_regs
(
x
)
register
rtx
x
;
{
if
(
GET_CODE
(
x
)
==
REG
)
{
if
(
REGNO
(
x
)
!=
FRAME_POINTER_REGNUM
)
x
=
copy_to_reg
(
x
);
}
else
if
(
GET_CODE
(
x
)
==
MEM
)
x
=
copy_to_reg
(
x
);
else
if
(
GET_CODE
(
x
)
==
PLUS
||
GET_CODE
(
x
)
==
MINUS
||
GET_CODE
(
x
)
==
MULT
)
{
register
rtx
op0
=
copy_all_regs
(
XEXP
(
x
,
0
));
register
rtx
op1
=
copy_all_regs
(
XEXP
(
x
,
1
));
if
(
op0
!=
XEXP
(
x
,
0
)
||
op1
!=
XEXP
(
x
,
1
))
x
=
gen_rtx
(
GET_CODE
(
x
),
Pmode
,
op0
,
op1
);
}
return
x
;
}
/* Return something equivalent to X but valid as a memory address
for something of mode MODE. When X is not itself valid, this
works by copying X or subexpressions of it into registers. */
rtx
memory_address
(
mode
,
x
)
enum
machine_mode
mode
;
register
rtx
x
;
{
register
rtx
oldx
;
/* By passing constant addresses thru registers
we get a chance to cse them. */
if
(
!
cse_not_expected
&&
CONSTANT_P
(
x
)
&&
LEGITIMATE_CONSTANT_P
(
x
))
return
force_reg
(
Pmode
,
x
);
/* Accept a QUEUED that refers to a REG
even though that isn't a valid address.
On attempting to put this in an insn we will call protect_from_queue
which will turn it into a REG, which is valid. */
if
(
GET_CODE
(
x
)
==
QUEUED
&&
GET_CODE
(
QUEUED_VAR
(
x
))
==
REG
)
return
x
;
/* We get better cse by rejecting indirect addressing at this stage.
Let the combiner create indirect addresses where appropriate.
For now, generate the code so that the subexpressions useful to share
are visible. But not if cse won't be done! */
oldx
=
x
;
if
(
!
cse_not_expected
&&
GET_CODE
(
x
)
!=
REG
)
x
=
break_out_memory_refs
(
x
);
/* At this point, any valid address is accepted. */
GO_IF_LEGITIMATE_ADDRESS
(
mode
,
x
,
win
);
/* If it was valid before but breaking out memory refs invalidated it,
use it the old way. */
if
(
memory_address_p
(
mode
,
oldx
))
goto
win2
;
/* Perform machine-dependent transformations on X
in certain cases. This is not necessary since the code
below can handle all possible cases, but machine-dependent
transformations can make better code. */
LEGITIMIZE_ADDRESS
(
x
,
oldx
,
mode
,
win
);
/* PLUS and MULT can appear in special ways
as the result of attempts to make an address usable for indexing.
Usually they are dealt with by calling force_operand, below.
But a sum containing constant terms is special
if removing them makes the sum a valid address:
then we generate that address in a register
and index off of it. We do this because it often makes
shorter code, and because the addresses thus generated
in registers often become common subexpressions. */
if
(
GET_CODE
(
x
)
==
PLUS
)
{
rtx
constant_term
=
const0_rtx
;
rtx
y
=
eliminate_constant_term
(
x
,
&
constant_term
);
if
(
constant_term
==
const0_rtx
||
!
memory_address_p
(
mode
,
y
))
return
force_operand
(
x
,
0
);
y
=
gen_rtx
(
PLUS
,
GET_MODE
(
x
),
copy_to_reg
(
y
),
constant_term
);
if
(
!
memory_address_p
(
mode
,
y
))
return
force_operand
(
x
,
0
);
return
y
;
}
if
(
GET_CODE
(
x
)
==
MULT
||
GET_CODE
(
x
)
==
MINUS
)
return
force_operand
(
x
,
0
);
/* If we have a register that's an invalid address,
it must be a hard reg of the wrong class. Copy it to a pseudo. */
if
(
GET_CODE
(
x
)
==
REG
)
return
copy_to_reg
(
x
);
/* Last resort: copy the value to a register, since
the register is a valid address. */
return
force_reg
(
Pmode
,
x
);
win2
:
x
=
oldx
;
win
:
if
(
flag_force_addr
&&
!
cse_not_expected
&&
GET_CODE
(
x
)
!=
REG
/* Don't copy an addr via a reg if it is one of our stack slots. */
&&
!
(
GET_CODE
(
x
)
==
PLUS
&&
(
XEXP
(
x
,
0
)
==
virtual_stack_vars_rtx
||
XEXP
(
x
,
0
)
==
virtual_incoming_args_rtx
)))
{
if
(
general_operand
(
x
,
Pmode
))
return
force_reg
(
Pmode
,
x
);
else
return
force_operand
(
x
,
0
);
}
return
x
;
}
/* Like `memory_address' but pretend `flag_force_addr' is 0. */
rtx
memory_address_noforce
(
mode
,
x
)
enum
machine_mode
mode
;
rtx
x
;
{
int
ambient_force_addr
=
flag_force_addr
;
rtx
val
;
flag_force_addr
=
0
;
val
=
memory_address
(
mode
,
x
);
flag_force_addr
=
ambient_force_addr
;
return
val
;
}
/* Convert a mem ref into one with a valid memory address.
Pass through anything else unchanged. */
rtx
validize_mem
(
ref
)
rtx
ref
;
{
if
(
GET_CODE
(
ref
)
!=
MEM
)
return
ref
;
if
(
memory_address_p
(
GET_MODE
(
ref
),
XEXP
(
ref
,
0
)))
return
ref
;
/* Don't alter REF itself, since that is probably a stack slot. */
return
change_address
(
ref
,
GET_MODE
(
ref
),
XEXP
(
ref
,
0
));
}
/* Return a modified copy of X with its memory address copied
into a temporary register to protect it from side effects.
If X is not a MEM, it is returned unchanged (and not copied).
Perhaps even if it is a MEM, if there is no need to change it. */
rtx
stabilize
(
x
)
rtx
x
;
{
register
rtx
addr
;
if
(
GET_CODE
(
x
)
!=
MEM
)
return
x
;
addr
=
XEXP
(
x
,
0
);
if
(
rtx_unstable_p
(
addr
))
{
rtx
temp
=
copy_all_regs
(
addr
);
rtx
mem
;
if
(
GET_CODE
(
temp
)
!=
REG
)
temp
=
copy_to_reg
(
temp
);
mem
=
gen_rtx
(
MEM
,
GET_MODE
(
x
),
temp
);
/* Mark returned memref with in_struct if it's in an array or
structure. Copy const and volatile from original memref. */
MEM_IN_STRUCT_P
(
mem
)
=
MEM_IN_STRUCT_P
(
x
)
||
GET_CODE
(
addr
)
==
PLUS
;
RTX_UNCHANGING_P
(
mem
)
=
RTX_UNCHANGING_P
(
x
);
MEM_VOLATILE_P
(
mem
)
=
MEM_VOLATILE_P
(
x
);
return
mem
;
}
return
x
;
}
/* Copy the value or contents of X to a new temp reg and return that reg. */
rtx
copy_to_reg
(
x
)
rtx
x
;
{
register
rtx
temp
=
gen_reg_rtx
(
GET_MODE
(
x
));
/* If not an operand, must be an address with PLUS and MULT so
do the computation. */
if
(
!
general_operand
(
x
,
VOIDmode
))
x
=
force_operand
(
x
,
temp
);
if
(
x
!=
temp
)
emit_move_insn
(
temp
,
x
);
return
temp
;
}
/* Like copy_to_reg but always give the new register mode Pmode
in case X is a constant. */
rtx
copy_addr_to_reg
(
x
)
rtx
x
;
{
return
copy_to_mode_reg
(
Pmode
,
x
);
}
/* Like copy_to_reg but always give the new register mode MODE
in case X is a constant. */
rtx
copy_to_mode_reg
(
mode
,
x
)
enum
machine_mode
mode
;
rtx
x
;
{
register
rtx
temp
=
gen_reg_rtx
(
mode
);
/* If not an operand, must be an address with PLUS and MULT so
do the computation. */
if
(
!
general_operand
(
x
,
VOIDmode
))
x
=
force_operand
(
x
,
temp
);
if
(
GET_MODE
(
x
)
!=
mode
&&
GET_MODE
(
x
)
!=
VOIDmode
)
abort
();
if
(
x
!=
temp
)
emit_move_insn
(
temp
,
x
);
return
temp
;
}
/* Load X into a register if it is not already one.
Use mode MODE for the register.
X should be valid for mode MODE, but it may be a constant which
is valid for all integer modes; that's why caller must specify MODE.
The caller must not alter the value in the register we return,
since we mark it as a "constant" register. */
rtx
force_reg
(
mode
,
x
)
enum
machine_mode
mode
;
rtx
x
;
{
register
rtx
temp
,
insn
;
if
(
GET_CODE
(
x
)
==
REG
)
return
x
;
temp
=
gen_reg_rtx
(
mode
);
insn
=
emit_move_insn
(
temp
,
x
);
/* Let optimizers know that TEMP's value never changes
and that X can be substituted for it. */
if
(
CONSTANT_P
(
x
))
{
rtx
note
=
find_reg_note
(
insn
,
REG_EQUAL
,
0
);
if
(
note
)
XEXP
(
note
,
0
)
=
x
;
else
REG_NOTES
(
insn
)
=
gen_rtx
(
EXPR_LIST
,
REG_EQUAL
,
x
,
REG_NOTES
(
insn
));
}
return
temp
;
}
/* If X is a memory ref, copy its contents to a new temp reg and return
that reg. Otherwise, return X. */
rtx
force_not_mem
(
x
)
rtx
x
;
{
register
rtx
temp
;
if
(
GET_CODE
(
x
)
!=
MEM
||
GET_MODE
(
x
)
==
BLKmode
)
return
x
;
temp
=
gen_reg_rtx
(
GET_MODE
(
x
));
emit_move_insn
(
temp
,
x
);
return
temp
;
}
/* Copy X to TARGET (if it's nonzero and a reg)
or to a new temp reg and return that reg.
MODE is the mode to use for X in case it is a constant. */
rtx
copy_to_suggested_reg
(
x
,
target
,
mode
)
rtx
x
,
target
;
enum
machine_mode
mode
;
{
register
rtx
temp
;
if
(
target
&&
GET_CODE
(
target
)
==
REG
)
temp
=
target
;
else
temp
=
gen_reg_rtx
(
mode
);
emit_move_insn
(
temp
,
x
);
return
temp
;
}
/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
This pops when ADJUST is positive. ADJUST need not be constant. */
void
adjust_stack
(
adjust
)
rtx
adjust
;
{
rtx
temp
;
adjust
=
protect_from_queue
(
adjust
,
0
);
if
(
adjust
==
const0_rtx
)
return
;
temp
=
expand_binop
(
Pmode
,
#ifdef STACK_GROWS_DOWNWARD
add_optab
,
#else
sub_optab
,
#endif
stack_pointer_rtx
,
adjust
,
stack_pointer_rtx
,
0
,
OPTAB_LIB_WIDEN
);
if
(
temp
!=
stack_pointer_rtx
)
emit_move_insn
(
stack_pointer_rtx
,
temp
);
}
/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
This pushes when ADJUST is positive. ADJUST need not be constant. */
void
anti_adjust_stack
(
adjust
)
rtx
adjust
;
{
rtx
temp
;
adjust
=
protect_from_queue
(
adjust
,
0
);
if
(
adjust
==
const0_rtx
)
return
;
temp
=
expand_binop
(
Pmode
,
#ifdef STACK_GROWS_DOWNWARD
sub_optab
,
#else
add_optab
,
#endif
stack_pointer_rtx
,
adjust
,
stack_pointer_rtx
,
0
,
OPTAB_LIB_WIDEN
);
if
(
temp
!=
stack_pointer_rtx
)
emit_move_insn
(
stack_pointer_rtx
,
temp
);
}
/* Round the size of a block to be pushed up to the boundary required
by this machine. SIZE is the desired size, which need not be constant. */
rtx
round_push
(
size
)
rtx
size
;
{
#ifdef STACK_BOUNDARY
int
align
=
STACK_BOUNDARY
/
BITS_PER_UNIT
;
if
(
align
==
1
)
return
size
;
if
(
GET_CODE
(
size
)
==
CONST_INT
)
{
int
new
=
(
INTVAL
(
size
)
+
align
-
1
)
/
align
*
align
;
if
(
INTVAL
(
size
)
!=
new
)
size
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
new
);
}
else
{
size
=
expand_divmod
(
0
,
CEIL_DIV_EXPR
,
Pmode
,
size
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
align
),
0
,
1
);
size
=
expand_mult
(
Pmode
,
size
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
align
),
0
,
1
);
}
#endif
/* STACK_BOUNDARY */
return
size
;
}
/* Return an rtx representing the address of an area of memory dynamically
pushed on the stack. This region of memory is always aligned to
a multiple of BIGGEST_ALIGNMENT.
Any required stack pointer alignment is preserved.
SIZE is an rtx representing the size of the area.
TARGET is a place in which the address can be placed. */
rtx
allocate_dynamic_stack_space
(
size
,
target
)
rtx
size
;
rtx
target
;
{
/* Ensure the size is in the proper mode. */
if
(
GET_MODE
(
size
)
!=
VOIDmode
&&
GET_MODE
(
size
)
!=
Pmode
)
size
=
convert_to_mode
(
Pmode
,
size
,
1
);
/* We will need to ensure that the address we return is aligned to
BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
always know its final value at this point in the compilation (it
might depend on the size of the outgoing parameter lists, for
example), so we must align the value to be returned in that case.
(Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
We must also do an alignment operation on the returned value if
the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
If we have to align, we must leave space in SIZE for the hole
that might result from the alignment operation. */
#if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
#define MUST_ALIGN
#endif
#if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
#define MUST_ALIGN
#endif
#ifdef MUST_ALIGN
if
(
GET_CODE
(
size
)
==
CONST_INT
)
size
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
INTVAL
(
size
)
+
(
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
-
1
));
else
size
=
expand_binop
(
Pmode
,
add_optab
,
size
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
-
1
),
0
,
1
,
OPTAB_LIB_WIDEN
);
#endif
#ifdef SETJMP_VIA_SAVE_AREA
/* If setjmp restores regs from a save area in the stack frame,
avoid clobbering the reg save area. Note that the offset of
virtual_incoming_args_rtx includes the preallocated stack args space.
It would be no problem to clobber that, but it's on the wrong side
of the old save area. */
{
rtx
dynamic_offset
=
expand_binop
(
Pmode
,
sub_optab
,
virtual_stack_dynamic_rtx
,
stack_pointer_rtx
,
0
,
1
,
OPTAB_LIB_WIDEN
);
size
=
expand_binop
(
Pmode
,
add_optab
,
size
,
dynamic_offset
,
0
,
1
,
OPTAB_LIB_WIDEN
);
}
#endif
/* SETJMP_VIA_SAVE_AREA */
/* Round the size to a multiple of the required stack alignment.
Since the stack if presumed to be rounded before this allocation,
this will maintain the required alignment.
If the stack grows downward, we could save an insn by subtracting
SIZE from the stack pointer and then aligning the stack pointer.
The problem with this is that the stack pointer may be unaligned
between the execution of the subtraction and alignment insns and
some machines do not allow this. Even on those that do, some
signal handlers malfunction if a signal should occur between those
insns. Since this is an extremely rare event, we have no reliable
way of knowing which systems have this problem. So we avoid even
momentarily mis-aligning the stack. */
size
=
round_push
(
size
);
do_pending_stack_adjust
();
if
(
target
==
0
)
target
=
gen_reg_rtx
(
Pmode
);
#ifndef STACK_GROWS_DOWNWARD
emit_move_insn
(
target
,
virtual_stack_dynamic_rtx
);
#endif
/* Perform the required allocation from the stack. Some systems do
this differently than simply incrementing/decrementing from the
stack pointer. */
#ifdef HAVE_allocate_stack
if
(
HAVE_allocate_stack
)
{
enum
machine_mode
mode
=
insn_operand_mode
[(
int
)
CODE_FOR_allocate_stack
][
0
];
if
(
insn_operand_predicate
[(
int
)
CODE_FOR_allocate_stack
][
0
]
&&
!
((
*
insn_operand_predicate
[(
int
)
CODE_FOR_allocate_stack
][
0
])
(
size
,
mode
)))
size
=
copy_to_mode_reg
(
mode
,
size
);
emit_insn
(
gen_allocate_stack
(
size
));
}
else
#endif
anti_adjust_stack
(
size
);
#ifdef STACK_GROWS_DOWNWARD
emit_move_insn
(
target
,
virtual_stack_dynamic_rtx
);
#endif
#ifdef MUST_ALIGN
target
=
expand_divmod
(
0
,
CEIL_DIV_EXPR
,
Pmode
,
target
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
),
0
,
1
);
target
=
expand_mult
(
Pmode
,
target
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
),
0
,
1
);
#endif
/* Some systems require a particular insn to refer to the stack
to make the pages exist. */
#ifdef HAVE_probe
if
(
HAVE_probe
)
emit_insn
(
gen_probe
());
#endif
return
target
;
}
/* Return an rtx representing the register or memory location
in which a scalar value of data type VALTYPE
was returned by a function call to function FUNC.
FUNC is a FUNCTION_DECL node if the precise function is known,
otherwise 0. */
rtx
hard_function_value
(
valtype
,
func
)
tree
valtype
;
tree
func
;
{
return
FUNCTION_VALUE
(
valtype
,
func
);
}
/* Return an rtx representing the register or memory location
in which a scalar value of mode MODE was returned by a library call. */
rtx
hard_libcall_value
(
mode
)
enum
machine_mode
mode
;
{
return
LIBCALL_VALUE
(
mode
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment