Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
175160e7
Commit
175160e7
authored
Dec 05, 1991
by
Michael Tiemann
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r100
parent
9c7e2978
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2509 additions
and
0 deletions
+2509
-0
gcc/integrate.c
+2509
-0
No files found.
gcc/integrate.c
0 → 100644
View file @
175160e7
/* Procedure integration for GNU CC.
Copyright (C) 1988-1991 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "expr.h"
#include "output.h"
#include "integrate.h"
#include "real.h"
#include "function.h"
#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
extern
int
xmalloc
();
extern
void
free
();
extern
struct
obstack
*
function_maybepermanent_obstack
;
extern
tree
pushdecl
();
extern
tree
poplevel
();
/* Similar, but round to the next highest integer that meets the
alignment. */
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
/* Default max number of insns a function can have and still be inline.
This is overridden on RISC machines. */
#ifndef INTEGRATE_THRESHOLD
#define INTEGRATE_THRESHOLD(DECL) \
(8 * (8 + list_length (DECL_ARGUMENTS (DECL))))
#endif
/* Save any constant pool constants in an insn. */
static
void
save_constants
();
/* Note when parameter registers are the destination of a SET. */
static
void
note_modified_parmregs
();
/* Copy an rtx for save_for_inline_copying. */
static
rtx
copy_for_inline
();
/* Make copies of MEMs in DECL_RTLs. */
static
void
copy_decl_rtls
();
static
tree
copy_decl_tree
();
/* Return the constant equivalent of a given rtx, or 0 if none. */
static
rtx
const_equiv
();
static
void
integrate_parm_decls
();
static
void
integrate_decl_tree
();
static
void
subst_constants
();
static
rtx
fold_out_const_cc0
();
/* Zero if the current function (whose FUNCTION_DECL is FNDECL)
is safe and reasonable to integrate into other functions.
Nonzero means value is a warning message with a single %s
for the function's name. */
char
*
function_cannot_inline_p
(
fndecl
)
register
tree
fndecl
;
{
register
rtx
insn
;
tree
last
=
tree_last
(
TYPE_ARG_TYPES
(
TREE_TYPE
(
fndecl
)));
int
max_insns
=
INTEGRATE_THRESHOLD
(
fndecl
);
register
int
ninsns
=
0
;
register
tree
parms
;
/* No inlines with varargs. `grokdeclarator' gives a warning
message about that if `inline' is specified. This code
it put in to catch the volunteers. */
if
((
last
&&
TREE_VALUE
(
last
)
!=
void_type_node
)
||
(
DECL_ARGUMENTS
(
fndecl
)
&&
DECL_NAME
(
DECL_ARGUMENTS
(
fndecl
))
&&
!
strcmp
(
IDENTIFIER_POINTER
(
DECL_NAME
(
DECL_ARGUMENTS
(
fndecl
))),
"__builtin_va_alist"
)))
return
"varargs function cannot be inline"
;
if
(
current_function_calls_alloca
)
return
"function using alloca cannot be inline"
;
if
(
current_function_contains_functions
)
return
"function with nested functions cannot be inline"
;
/* This restriction may be eliminated sometime soon. But for now, don't
worry about remapping the static chain. */
if
(
current_function_needs_context
)
return
"nested function cannot be inline"
;
/* If its not even close, don't even look. */
if
(
!
TREE_INLINE
(
fndecl
)
&&
get_max_uid
()
>
3
*
max_insns
)
return
"function too large to be inline"
;
#if 0
/* Large stacks are OK now that inlined functions can share them. */
/* Don't inline functions with large stack usage,
since they can make other recursive functions burn up stack. */
if (!TREE_INLINE (fndecl) && get_frame_size () > 100)
return "function stack frame for inlining";
#endif
#if 0
/* Don't inline functions which do not specify a function prototype and
have BLKmode argument or take the address of a parameter. */
for (parms = DECL_ARGUMENTS (fndecl); parms; parms = TREE_CHAIN (parms))
{
if (TYPE_MODE (TREE_TYPE (parms)) == BLKmode)
TREE_ADDRESSABLE (parms) = 1;
if (last == NULL_TREE && TREE_ADDRESSABLE (parms))
return "no prototype, and parameter address used; cannot be inline";
}
#endif
/* We can't inline functions that return structures
the old-fashioned PCC way, copying into a static block. */
if
(
current_function_returns_pcc_struct
)
return
"inline functions not supported for this return value type"
;
/* We can't inline functions that return structures of varying size. */
if
(
int_size_in_bytes
(
TREE_TYPE
(
TREE_TYPE
(
fndecl
)))
<
0
)
return
"function with varying-size return value cannot be inline"
;
/* Cannot inline a function with a varying size argument. */
for
(
parms
=
DECL_ARGUMENTS
(
fndecl
);
parms
;
parms
=
TREE_CHAIN
(
parms
))
if
(
int_size_in_bytes
(
TREE_TYPE
(
parms
))
<
0
)
return
"function with varying-size parameter cannot be inline"
;
if
(
!
TREE_INLINE
(
fndecl
)
&&
get_max_uid
()
>
max_insns
)
{
for
(
ninsns
=
0
,
insn
=
get_first_nonparm_insn
();
insn
&&
ninsns
<
max_insns
;
insn
=
NEXT_INSN
(
insn
))
{
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
)
ninsns
++
;
}
if
(
ninsns
>=
max_insns
)
return
"function too large to be inline"
;
}
return
0
;
}
/* Variables used within save_for_inline. */
/* Mapping from old pseudo-register to new pseudo-registers.
The first element of this map is reg_map[FIRST_PSEUDO_REGISTER].
It is allocated in `save_for_inline' and `expand_inline_function',
and deallocated on exit from each of those routines. */
static
rtx
*
reg_map
;
/* Mapping from old code-labels to new code-labels.
The first element of this map is label_map[min_labelno].
It is allocated in `save_for_inline' and `expand_inline_function',
and deallocated on exit from each of those routines. */
static
rtx
*
label_map
;
/* Mapping from old insn uid's to copied insns.
It is allocated in `save_for_inline' and `expand_inline_function',
and deallocated on exit from each of those routines. */
static
rtx
*
insn_map
;
/* Map pseudo reg number into the PARM_DECL for the parm living in the reg.
Zero for a reg that isn't a parm's home.
Only reg numbers less than max_parm_reg are mapped here. */
static
tree
*
parmdecl_map
;
/* Keep track of first pseudo-register beyond those that are parms. */
static
int
max_parm_reg
;
/* When an insn is being copied by copy_for_inline,
this is nonzero if we have copied an ASM_OPERANDS.
In that case, it is the original input-operand vector. */
static
rtvec
orig_asm_operands_vector
;
/* When an insn is being copied by copy_for_inline,
this is nonzero if we have copied an ASM_OPERANDS.
In that case, it is the copied input-operand vector. */
static
rtvec
copy_asm_operands_vector
;
/* Likewise, this is the copied constraints vector. */
static
rtvec
copy_asm_constraints_vector
;
/* In save_for_inline, nonzero if past the parm-initialization insns. */
static
int
in_nonparm_insns
;
/* Subroutine for `save_for_inline{copying,nocopy}'. Performs initialization
needed to save FNDECL's insns and info for future inline expansion. */
static
rtx
initialize_for_inline
(
fndecl
,
min_labelno
,
max_labelno
,
max_reg
,
copy
)
tree
fndecl
;
int
min_labelno
;
int
max_labelno
;
int
max_reg
;
int
copy
;
{
int
function_flags
,
i
;
rtvec
arg_vector
;
tree
parms
;
/* Compute the values of any flags we must restore when inlining this. */
function_flags
=
(
current_function_calls_alloca
*
FUNCTION_FLAGS_CALLS_ALLOCA
+
current_function_calls_setjmp
*
FUNCTION_FLAGS_CALLS_SETJMP
+
current_function_calls_longjmp
*
FUNCTION_FLAGS_CALLS_LONGJMP
+
current_function_returns_struct
*
FUNCTION_FLAGS_RETURNS_STRUCT
+
current_function_returns_pcc_struct
*
FUNCTION_FLAGS_RETURNS_PCC_STRUCT
+
current_function_needs_context
*
FUNCTION_FLAGS_NEEDS_CONTEXT
+
current_function_has_nonlocal_label
*
FUNCTION_FLAGS_HAS_NONLOCAL_LABEL
+
current_function_returns_pointer
*
FUNCTION_FLAGS_RETURNS_POINTER
+
current_function_uses_const_pool
*
FUNCTION_FLAGS_USES_CONST_POOL
+
current_function_uses_pic_offset_table
*
FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE
);
/* Clear out PARMDECL_MAP. It was allocated in the caller's frame. */
bzero
(
parmdecl_map
,
max_parm_reg
*
sizeof
(
tree
));
arg_vector
=
rtvec_alloc
(
list_length
(
DECL_ARGUMENTS
(
fndecl
)));
for
(
parms
=
DECL_ARGUMENTS
(
fndecl
),
i
=
0
;
parms
;
parms
=
TREE_CHAIN
(
parms
),
i
++
)
{
rtx
p
=
DECL_RTL
(
parms
);
if
(
GET_CODE
(
p
)
==
MEM
&&
copy
)
/* Copy the rtl so that modifications of the address
later in compilation won't affect this arg_vector.
Virtual register instantiation can screw the address
of the rtl. */
DECL_RTL
(
parms
)
=
copy_rtx
(
p
);
RTVEC_ELT
(
arg_vector
,
i
)
=
p
;
if
(
GET_CODE
(
p
)
==
REG
)
parmdecl_map
[
REGNO
(
p
)]
=
parms
;
TREE_READONLY
(
parms
)
=
1
;
}
/* Assume we start out in the insns that set up the parameters. */
in_nonparm_insns
=
0
;
/* The list of DECL_SAVED_INSNS, starts off with a header which
contains the following information:
the first insn of the function (not including the insns that copy
parameters into registers).
the first parameter insn of the function,
the first label used by that function,
the last label used by that function,
the highest register number used for parameters,
the total number of registers used,
the size of the incoming stack area for parameters,
the number of bytes popped on return,
the stack slot list,
some flags that are used to restore compiler globals,
the value of current_function_outgoing_args_size,
the original argument vector,
and the original DECL_INITIAL. */
return
gen_inline_header_rtx
(
NULL
,
NULL
,
min_labelno
,
max_labelno
,
max_parm_reg
,
max_reg
,
current_function_args_size
,
current_function_pops_args
,
stack_slot_list
,
function_flags
,
current_function_outgoing_args_size
,
arg_vector
,
(
rtx
)
DECL_INITIAL
(
fndecl
));
}
/* Subroutine for `save_for_inline{copying,nocopy}'. Finishes up the
things that must be done to make FNDECL expandable as an inline function.
HEAD contains the chain of insns to which FNDECL will expand. */
static
void
finish_inline
(
fndecl
,
head
)
tree
fndecl
;
rtx
head
;
{
NEXT_INSN
(
head
)
=
get_first_nonparm_insn
();
FIRST_PARM_INSN
(
head
)
=
get_insns
();
DECL_SAVED_INSNS
(
fndecl
)
=
head
;
DECL_FRAME_SIZE
(
fndecl
)
=
get_frame_size
();
TREE_INLINE
(
fndecl
)
=
1
;
}
/* Make the insns and PARM_DECLs of the current function permanent
and record other information in DECL_SAVED_INSNS to allow inlining
of this function in subsequent calls.
This function is called when we are going to immediately compile
the insns for FNDECL. The insns in maybepermanent_obstack cannot be
modified by the compilation process, so we copy all of them to
new storage and consider the new insns to be the insn chain to be
compiled. */
void
save_for_inline_copying
(
fndecl
)
tree
fndecl
;
{
rtx
first_insn
,
last_insn
,
insn
;
rtx
head
,
copy
;
int
max_labelno
,
min_labelno
,
i
,
len
;
int
max_reg
;
int
max_uid
;
rtx
first_nonparm_insn
;
/* Make and emit a return-label if we have not already done so.
Do this before recording the bounds on label numbers. */
if
(
return_label
==
0
)
{
return_label
=
gen_label_rtx
();
emit_label
(
return_label
);
}
/* Get some bounds on the labels and registers used. */
max_labelno
=
max_label_num
();
min_labelno
=
get_first_label_num
();
max_reg
=
max_reg_num
();
/* Set up PARMDECL_MAP which maps pseudo-reg number to its PARM_DECL.
Later we set TREE_READONLY to 0 if the parm is modified inside the fn.
Also set up ARG_VECTOR, which holds the unmodified DECL_RTX values
for the parms, prior to elimination of virtual registers.
These values are needed for substituting parms properly. */
max_parm_reg
=
max_parm_reg_num
();
parmdecl_map
=
(
tree
*
)
alloca
(
max_parm_reg
*
sizeof
(
tree
));
head
=
initialize_for_inline
(
fndecl
,
min_labelno
,
max_labelno
,
max_reg
,
1
);
if
(
current_function_uses_const_pool
)
{
/* Replace any constant pool references with the actual constant. We
will put the constants back in the copy made below. */
for
(
insn
=
get_insns
();
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
)
{
save_constants
(
&
PATTERN
(
insn
));
if
(
REG_NOTES
(
insn
))
save_constants
(
&
REG_NOTES
(
insn
));
}
/* Clear out the constant pool so that we can recreate it with the
copied constants below. */
init_const_rtx_hash_table
();
clear_const_double_mem
();
}
max_uid
=
INSN_UID
(
head
);
/* We have now allocated all that needs to be allocated permanently
on the rtx obstack. Set our high-water mark, so that we
can free the rest of this when the time comes. */
preserve_data
();
/* Copy the chain insns of this function.
Install the copied chain as the insns of this function,
for continued compilation;
the original chain is recorded as the DECL_SAVED_INSNS
for inlining future calls. */
/* If there are insns that copy parms from the stack into pseudo registers,
those insns are not copied. `expand_inline_function' must
emit the correct code to handle such things. */
insn
=
get_insns
();
if
(
GET_CODE
(
insn
)
!=
NOTE
)
abort
();
first_insn
=
rtx_alloc
(
NOTE
);
NOTE_SOURCE_FILE
(
first_insn
)
=
NOTE_SOURCE_FILE
(
insn
);
NOTE_LINE_NUMBER
(
first_insn
)
=
NOTE_LINE_NUMBER
(
insn
);
INSN_UID
(
first_insn
)
=
INSN_UID
(
insn
);
PREV_INSN
(
first_insn
)
=
NULL
;
NEXT_INSN
(
first_insn
)
=
NULL
;
last_insn
=
first_insn
;
/* Each pseudo-reg in the old insn chain must have a unique rtx in the copy.
Make these new rtx's now, and install them in regno_reg_rtx, so they
will be the official pseudo-reg rtx's for the rest of compilation. */
reg_map
=
(
rtx
*
)
alloca
((
max_reg
+
1
)
*
sizeof
(
rtx
));
len
=
sizeof
(
struct
rtx_def
)
+
(
GET_RTX_LENGTH
(
REG
)
-
1
)
*
sizeof
(
rtunion
);
for
(
i
=
max_reg
-
1
;
i
>
LAST_VIRTUAL_REGISTER
;
i
--
)
reg_map
[
i
]
=
(
rtx
)
obstack_copy
(
function_maybepermanent_obstack
,
regno_reg_rtx
[
i
],
len
);
bcopy
(
reg_map
+
LAST_VIRTUAL_REGISTER
+
1
,
regno_reg_rtx
+
LAST_VIRTUAL_REGISTER
+
1
,
(
max_reg
-
(
LAST_VIRTUAL_REGISTER
+
1
))
*
sizeof
(
rtx
));
/* Likewise each label rtx must have a unique rtx as its copy. */
label_map
=
(
rtx
*
)
alloca
((
max_labelno
-
min_labelno
)
*
sizeof
(
rtx
));
label_map
-=
min_labelno
;
for
(
i
=
min_labelno
;
i
<
max_labelno
;
i
++
)
label_map
[
i
]
=
gen_label_rtx
();
/* Record the mapping of old insns to copied insns. */
insn_map
=
(
rtx
*
)
alloca
(
max_uid
*
sizeof
(
rtx
));
bzero
(
insn_map
,
max_uid
*
sizeof
(
rtx
));
/* Get the insn which signals the end of parameter setup code. */
first_nonparm_insn
=
get_first_nonparm_insn
();
/* Copy any entries in regno_reg_rtx or DECL_RTLs that reference MEM
(the former occurs when a variable has its address taken)
since these may be shared and can be changed by virtual
register instantiation. DECL_RTL values for our arguments
have already been copied by initialize_for_inline. */
for
(
i
=
LAST_VIRTUAL_REGISTER
+
1
;
i
<
max_reg
;
i
++
)
if
(
GET_CODE
(
regno_reg_rtx
[
i
])
==
MEM
)
XEXP
(
regno_reg_rtx
[
i
],
0
)
=
copy_for_inline
(
XEXP
(
regno_reg_rtx
[
i
],
0
));
/* Copy the tree of subblocks of the function, and the decls in them.
We will use the copy for compiling this function, then restore the original
subblocks and decls for use when inlining this function.
Several parts of the compiler modify BLOCK trees. In particular,
instantiate_virtual_regs will instantiate any virtual regs
mentioned in the DECL_RTLs of the decls, and loop
unrolling will replicate any BLOCK trees inside an unrolled loop.
The modified subblocks or DECL_RTLs would be incorrect for the original rtl
which we will use for inlining. The rtl might even contain pseudoregs
whose space has been freed. */
DECL_INITIAL
(
fndecl
)
=
copy_decl_tree
(
DECL_INITIAL
(
fndecl
));
/* Now copy each DECL_RTL which is a MEM,
so it is safe to modify their addresses. */
copy_decl_rtls
(
DECL_INITIAL
(
fndecl
));
/* Now copy the chain of insns. Do this twice. The first copy the insn
itself and its body. The second time copy of REG_NOTES. This is because
a REG_NOTE may have a forward pointer to another insn. */
for
(
insn
=
NEXT_INSN
(
insn
);
insn
;
insn
=
NEXT_INSN
(
insn
))
{
orig_asm_operands_vector
=
0
;
if
(
insn
==
first_nonparm_insn
)
in_nonparm_insns
=
1
;
switch
(
GET_CODE
(
insn
))
{
case
NOTE
:
/* No need to keep these. */
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_DELETED
)
continue
;
copy
=
rtx_alloc
(
NOTE
);
NOTE_SOURCE_FILE
(
copy
)
=
NOTE_SOURCE_FILE
(
insn
);
NOTE_LINE_NUMBER
(
copy
)
=
NOTE_LINE_NUMBER
(
insn
);
break
;
case
INSN
:
case
CALL_INSN
:
case
JUMP_INSN
:
copy
=
rtx_alloc
(
GET_CODE
(
insn
));
PATTERN
(
copy
)
=
copy_for_inline
(
PATTERN
(
insn
));
INSN_CODE
(
copy
)
=
-
1
;
LOG_LINKS
(
copy
)
=
NULL
;
RTX_INTEGRATED_P
(
copy
)
=
RTX_INTEGRATED_P
(
insn
);
break
;
case
CODE_LABEL
:
copy
=
label_map
[
CODE_LABEL_NUMBER
(
insn
)];
break
;
case
BARRIER
:
copy
=
rtx_alloc
(
BARRIER
);
break
;
default
:
abort
();
}
INSN_UID
(
copy
)
=
INSN_UID
(
insn
);
insn_map
[
INSN_UID
(
insn
)]
=
copy
;
NEXT_INSN
(
last_insn
)
=
copy
;
PREV_INSN
(
copy
)
=
last_insn
;
last_insn
=
copy
;
}
/* Now copy the REG_NOTES. */
for
(
insn
=
NEXT_INSN
(
get_insns
());
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
&&
insn_map
[
INSN_UID
(
insn
)])
REG_NOTES
(
insn_map
[
INSN_UID
(
insn
)])
=
copy_for_inline
(
REG_NOTES
(
insn
));
NEXT_INSN
(
last_insn
)
=
NULL
;
finish_inline
(
fndecl
,
head
);
set_new_first_and_last_insn
(
first_insn
,
last_insn
);
}
/* Make a copy of the entire tree of blocks BLOCK, and return it. */
static
tree
copy_decl_tree
(
block
)
tree
block
;
{
tree
t
,
vars
,
subblocks
;
vars
=
copy_list
(
BLOCK_VARS
(
block
));
subblocks
=
0
;
/* Process all subblocks. */
for
(
t
=
BLOCK_SUBBLOCKS
(
block
);
t
;
t
=
TREE_CHAIN
(
t
))
{
tree
copy
=
copy_decl_tree
(
t
);
TREE_CHAIN
(
copy
)
=
subblocks
;
subblocks
=
copy
;
}
t
=
copy_node
(
block
);
BLOCK_VARS
(
t
)
=
vars
;
BLOCK_SUBBLOCKS
(
t
)
=
nreverse
(
subblocks
);
return
t
;
}
/* Copy DECL_RTLs in all decls in the given BLOCK node. */
static
void
copy_decl_rtls
(
block
)
tree
block
;
{
tree
t
;
for
(
t
=
BLOCK_VARS
(
block
);
t
;
t
=
TREE_CHAIN
(
t
))
if
(
DECL_RTL
(
t
)
&&
GET_CODE
(
DECL_RTL
(
t
))
==
MEM
)
DECL_RTL
(
t
)
=
copy_for_inline
(
DECL_RTL
(
t
));
/* Process all subblocks. */
for
(
t
=
BLOCK_SUBBLOCKS
(
block
);
t
;
t
=
TREE_CHAIN
(
t
))
copy_decl_rtls
(
t
);
}
/* Make the insns and PARM_DECLs of the current function permanent
and record other information in DECL_SAVED_INSNS to allow inlining
of this function in subsequent calls.
This routine need not copy any insns because we are not going
to immediately compile the insns in the insn chain. There
are two cases when we would compile the insns for FNDECL:
(1) when FNDECL is expanded inline, and (2) when FNDECL needs to
be output at the end of other compilation, because somebody took
its address. In the first case, the insns of FNDECL are copied
as it is expanded inline, so FNDECL's saved insns are not
modified. In the second case, FNDECL is used for the last time,
so modifying the rtl is not a problem.
??? Actually, we do not verify that FNDECL is not inline expanded
by other functions which must also be written down at the end
of compilation. We could set flag_no_inline to nonzero when
the time comes to write down such functions. */
void
save_for_inline_nocopy
(
fndecl
)
tree
fndecl
;
{
rtx
insn
;
rtx
head
,
copy
;
tree
parms
;
int
max_labelno
,
min_labelno
,
i
,
len
;
int
max_reg
;
int
max_uid
;
rtx
first_nonparm_insn
;
int
function_flags
;
/* Set up PARMDECL_MAP which maps pseudo-reg number to its PARM_DECL.
Later we set TREE_READONLY to 0 if the parm is modified inside the fn.
Also set up ARG_VECTOR, which holds the unmodified DECL_RTX values
for the parms, prior to elimination of virtual registers.
These values are needed for substituting parms properly. */
max_parm_reg
=
max_parm_reg_num
();
parmdecl_map
=
(
tree
*
)
alloca
(
max_parm_reg
*
sizeof
(
tree
));
/* Make and emit a return-label if we have not already done so. */
if
(
return_label
==
0
)
{
return_label
=
gen_label_rtx
();
emit_label
(
return_label
);
}
head
=
initialize_for_inline
(
fndecl
,
get_first_label_num
(),
max_label_num
(),
max_reg_num
(),
0
);
/* If there are insns that copy parms from the stack into pseudo registers,
those insns are not copied. `expand_inline_function' must
emit the correct code to handle such things. */
insn
=
get_insns
();
if
(
GET_CODE
(
insn
)
!=
NOTE
)
abort
();
/* Get the insn which signals the end of parameter setup code. */
first_nonparm_insn
=
get_first_nonparm_insn
();
/* Now just scan the chain of insns to see what happens to our
PARM_DECLs. If a PARM_DECL is used but never modified, we
can substitute its rtl directly when expanding inline (and
perform constant folding when its incoming value is constant).
Otherwise, we have to copy its value into a new register and track
the new register's life. */
for
(
insn
=
NEXT_INSN
(
insn
);
insn
;
insn
=
NEXT_INSN
(
insn
))
{
if
(
insn
==
first_nonparm_insn
)
in_nonparm_insns
=
1
;
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
)
{
if
(
current_function_uses_const_pool
)
{
/* Replace any constant pool references with the actual constant.
We will put the constant back if we need to write the
function out after all. */
save_constants
(
&
PATTERN
(
insn
));
if
(
REG_NOTES
(
insn
))
save_constants
(
&
REG_NOTES
(
insn
));
}
/* Record what interesting things happen to our parameters. */
note_stores
(
PATTERN
(
insn
),
note_modified_parmregs
);
}
}
/* We have now allocated all that needs to be allocated permanently
on the rtx obstack. Set our high-water mark, so that we
can free the rest of this when the time comes. */
preserve_data
();
finish_inline
(
fndecl
,
head
);
}
/* Given PX, a pointer into an insn, search for references to the constant
pool. Replace each with a CONST that has the mode of the original
constant, contains the constant, and has RTX_INTEGRATED_P set.
Similarly, constant pool addresses not enclosed in a MEM are replaced
with an ADDRESS rtx which also gives the constant, mode, and has
RTX_INTEGRATED_P set. */
static
void
save_constants
(
px
)
rtx
*
px
;
{
rtx
x
;
int
i
,
j
;
again
:
x
=
*
px
;
/* If this is a CONST_DOUBLE, don't try to fix things up in
CONST_DOUBLE_MEM, because this is an infinite recursion. */
if
(
GET_CODE
(
x
)
==
CONST_DOUBLE
)
return
;
else
if
(
GET_CODE
(
x
)
==
MEM
&&
GET_CODE
(
XEXP
(
x
,
0
))
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
XEXP
(
x
,
0
)))
{
enum
machine_mode
const_mode
=
get_pool_mode
(
XEXP
(
x
,
0
));
rtx
new
=
gen_rtx
(
CONST
,
const_mode
,
get_pool_constant
(
XEXP
(
x
,
0
)));
RTX_INTEGRATED_P
(
new
)
=
1
;
/* If the MEM was in a different mode than the constant (perhaps we
were only looking at the low-order part), surround it with a
SUBREG so we can save both modes. */
if
(
GET_MODE
(
x
)
!=
const_mode
)
{
new
=
gen_rtx
(
SUBREG
,
GET_MODE
(
x
),
new
,
0
);
RTX_INTEGRATED_P
(
new
)
=
1
;
}
*
px
=
new
;
save_constants
(
&
XEXP
(
*
px
,
0
));
}
else
if
(
GET_CODE
(
x
)
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
x
))
{
*
px
=
gen_rtx
(
ADDRESS
,
get_pool_mode
(
x
),
get_pool_constant
(
x
));
save_constants
(
&
XEXP
(
*
px
,
0
));
RTX_INTEGRATED_P
(
*
px
)
=
1
;
}
else
{
char
*
fmt
=
GET_RTX_FORMAT
(
GET_CODE
(
x
));
int
len
=
GET_RTX_LENGTH
(
GET_CODE
(
x
));
for
(
i
=
len
-
1
;
i
>=
0
;
i
--
)
{
switch
(
fmt
[
i
])
{
case
'E'
:
for
(
j
=
0
;
j
<
XVECLEN
(
x
,
i
);
j
++
)
save_constants
(
&
XVECEXP
(
x
,
i
,
j
));
break
;
case
'e'
:
if
(
XEXP
(
x
,
i
)
==
0
)
continue
;
if
(
i
==
0
)
{
/* Hack tail-recursion here. */
px
=
&
XEXP
(
x
,
0
);
goto
again
;
}
save_constants
(
&
XEXP
(
x
,
i
));
break
;
}
}
}
}
/* Note whether a parameter is modified or not. */
static
void
note_modified_parmregs
(
reg
,
x
)
rtx
reg
;
rtx
x
;
{
if
(
GET_CODE
(
reg
)
==
REG
&&
in_nonparm_insns
&&
REGNO
(
reg
)
<
max_parm_reg
&&
REGNO
(
reg
)
>=
FIRST_PSEUDO_REGISTER
&&
parmdecl_map
[
REGNO
(
reg
)]
!=
0
)
TREE_READONLY
(
parmdecl_map
[
REGNO
(
reg
)])
=
0
;
}
/* Copy the rtx ORIG recursively, replacing pseudo-regs and labels
according to `reg_map' and `label_map'. The original rtl insns
will be saved for inlining; this is used to make a copy
which is used to finish compiling the inline function itself.
If we find a "saved" constant pool entry, one which was replaced with
the value of the constant, convert it back to a constant pool entry.
Since the pool wasn't touched, this should simply restore the old
address.
All other kinds of rtx are copied except those that can never be
changed during compilation. */
static
rtx
copy_for_inline
(
orig
)
rtx
orig
;
{
register
rtx
x
=
orig
;
register
int
i
;
register
enum
rtx_code
code
;
register
char
*
format_ptr
;
if
(
x
==
0
)
return
x
;
code
=
GET_CODE
(
x
);
/* These types may be freely shared. */
switch
(
code
)
{
case
QUEUED
:
case
CONST_INT
:
case
SYMBOL_REF
:
case
PC
:
case
CC0
:
return
x
;
case
CONST_DOUBLE
:
/* We have to make a new CONST_DOUBLE to ensure that we account for
it correctly. Using the old CONST_DOUBLE_MEM data is wrong. */
if
(
GET_MODE_CLASS
(
GET_MODE
(
x
))
==
MODE_FLOAT
)
{
REAL_VALUE_TYPE
d
;
REAL_VALUE_FROM_CONST_DOUBLE
(
d
,
x
);
return
immed_real_const_1
(
d
,
GET_MODE
(
x
));
}
else
return
immed_double_const
(
CONST_DOUBLE_LOW
(
x
),
CONST_DOUBLE_HIGH
(
x
),
VOIDmode
);
case
CONST
:
/* Get constant pool entry for constant in the pool. */
if
(
RTX_INTEGRATED_P
(
x
))
return
validize_mem
(
force_const_mem
(
GET_MODE
(
x
),
copy_for_inline
(
XEXP
(
x
,
0
))));
break
;
case
SUBREG
:
/* Get constant pool entry, but access in different mode. */
if
(
RTX_INTEGRATED_P
(
x
))
{
rtx
new
=
force_const_mem
(
GET_MODE
(
SUBREG_REG
(
x
)),
copy_for_inline
(
XEXP
(
SUBREG_REG
(
x
),
0
)));
PUT_MODE
(
new
,
GET_MODE
(
x
));
return
validize_mem
(
new
);
}
break
;
case
ADDRESS
:
/* If not special for constant pool error. Else get constant pool
address. */
if
(
!
RTX_INTEGRATED_P
(
x
))
abort
();
return
XEXP
(
force_const_mem
(
GET_MODE
(
x
),
copy_for_inline
(
XEXP
(
x
,
0
))),
0
);
case
ASM_OPERANDS
:
/* If a single asm insn contains multiple output operands
then it contains multiple ASM_OPERANDS rtx's that share operand 3.
We must make sure that the copied insn continues to share it. */
if
(
orig_asm_operands_vector
==
XVEC
(
orig
,
3
))
{
x
=
rtx_alloc
(
ASM_OPERANDS
);
XSTR
(
x
,
0
)
=
XSTR
(
orig
,
0
);
XSTR
(
x
,
1
)
=
XSTR
(
orig
,
1
);
XINT
(
x
,
2
)
=
XINT
(
orig
,
2
);
XVEC
(
x
,
3
)
=
copy_asm_operands_vector
;
XVEC
(
x
,
4
)
=
copy_asm_constraints_vector
;
XSTR
(
x
,
5
)
=
XSTR
(
orig
,
5
);
XINT
(
x
,
6
)
=
XINT
(
orig
,
6
);
return
x
;
}
break
;
case
MEM
:
/* A MEM is usually allowed to be shared if its address is constant
or is a constant plus one of the special registers.
We do not allow sharing of addresses that are either a special
register or the sum of a constant and a special register because
it is possible for unshare_all_rtl to copy the address, into memory
that won't be saved. Although the MEM can safely be shared, and
won't be copied there, the address itself cannot be shared, and may
need to be copied.
There are also two exceptions with constants: The first is if the
constant is a LABEL_REF or the sum of the LABEL_REF
and an integer. This case can happen if we have an inline
function that supplies a constant operand to the call of another
inline function that uses it in a switch statement. In this case,
we will be replacing the LABEL_REF, so we have to replace this MEM
as well.
The second case is if we have a (const (plus (address ..) ...)).
In that case we need to put back the address of the constant pool
entry. */
if
(
CONSTANT_ADDRESS_P
(
XEXP
(
x
,
0
))
&&
GET_CODE
(
XEXP
(
x
,
0
))
!=
LABEL_REF
&&
!
(
GET_CODE
(
XEXP
(
x
,
0
))
==
CONST
&&
(
GET_CODE
(
XEXP
(
XEXP
(
x
,
0
),
0
))
==
PLUS
&&
((
GET_CODE
(
XEXP
(
XEXP
(
XEXP
(
x
,
0
),
0
),
0
))
==
LABEL_REF
)
||
(
GET_CODE
(
XEXP
(
XEXP
(
XEXP
(
x
,
0
),
0
),
0
))
==
ADDRESS
)))))
return
x
;
break
;
case
LABEL_REF
:
{
/* Must point to the new insn. */
return
gen_rtx
(
LABEL_REF
,
GET_MODE
(
orig
),
label_map
[
CODE_LABEL_NUMBER
(
XEXP
(
orig
,
0
))]);
}
case
REG
:
if
(
REGNO
(
x
)
>
LAST_VIRTUAL_REGISTER
)
return
reg_map
[
REGNO
(
x
)];
else
return
x
;
case
SET
:
/* If a parm that gets modified lives in a pseudo-reg,
clear its TREE_READONLY to prevent certain optimizations. */
{
rtx
dest
=
SET_DEST
(
x
);
while
(
GET_CODE
(
dest
)
==
STRICT_LOW_PART
||
GET_CODE
(
dest
)
==
ZERO_EXTRACT
||
GET_CODE
(
dest
)
==
SUBREG
)
dest
=
XEXP
(
dest
,
0
);
if
(
GET_CODE
(
dest
)
==
REG
&&
REGNO
(
dest
)
<
max_parm_reg
&&
REGNO
(
dest
)
>=
FIRST_PSEUDO_REGISTER
&&
parmdecl_map
[
REGNO
(
dest
)]
!=
0
/* The insn to load an arg pseudo from a stack slot
does not count as modifying it. */
&&
in_nonparm_insns
)
TREE_READONLY
(
parmdecl_map
[
REGNO
(
dest
)])
=
0
;
}
break
;
#if 0 /* This is a good idea, but here is the wrong place for it. */
/* Arrange that CONST_INTs always appear as the second operand
if they appear, and that `frame_pointer_rtx' or `arg_pointer_rtx'
always appear as the first. */
case PLUS:
if (GET_CODE (XEXP (x, 0)) == CONST_INT
|| (XEXP (x, 1) == frame_pointer_rtx
|| (ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& XEXP (x, 1) == arg_pointer_rtx)))
{
rtx t = XEXP (x, 0);
XEXP (x, 0) = XEXP (x, 1);
XEXP (x, 1) = t;
}
break;
#endif
}
/* Replace this rtx with a copy of itself. */
x
=
rtx_alloc
(
code
);
bcopy
(
orig
,
x
,
(
sizeof
(
*
x
)
-
sizeof
(
x
->
fld
)
+
sizeof
(
x
->
fld
[
0
])
*
GET_RTX_LENGTH
(
code
)));
/* Now scan the subexpressions recursively.
We can store any replaced subexpressions directly into X
since we know X is not shared! Any vectors in X
must be copied if X was copied. */
format_ptr
=
GET_RTX_FORMAT
(
code
);
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
code
);
i
++
)
{
switch
(
*
format_ptr
++
)
{
case
'e'
:
XEXP
(
x
,
i
)
=
copy_for_inline
(
XEXP
(
x
,
i
));
break
;
case
'u'
:
/* Change any references to old-insns to point to the
corresponding copied insns. */
XEXP
(
x
,
i
)
=
insn_map
[
INSN_UID
(
XEXP
(
x
,
i
))];
break
;
case
'E'
:
if
(
XVEC
(
x
,
i
)
!=
NULL
&&
XVECLEN
(
x
,
i
)
!=
0
)
{
register
int
j
;
XVEC
(
x
,
i
)
=
gen_rtvec_v
(
XVECLEN
(
x
,
i
),
&
XVECEXP
(
x
,
i
,
0
));
for
(
j
=
0
;
j
<
XVECLEN
(
x
,
i
);
j
++
)
XVECEXP
(
x
,
i
,
j
)
=
copy_for_inline
(
XVECEXP
(
x
,
i
,
j
));
}
break
;
}
}
if
(
code
==
ASM_OPERANDS
&&
orig_asm_operands_vector
==
0
)
{
orig_asm_operands_vector
=
XVEC
(
orig
,
3
);
copy_asm_operands_vector
=
XVEC
(
x
,
3
);
copy_asm_constraints_vector
=
XVEC
(
x
,
4
);
}
return
x
;
}
/* Unfortunately, we need a global copy of const_equiv map for communication
with a function called from note_stores. Be *very* careful that this
is used properly in the presence of recursion. */
rtx
*
global_const_equiv_map
;
#define FIXED_BASE_PLUS_P(X) \
(GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REGNO (XEXP (X, 0)) >= FIRST_VIRTUAL_REGISTER \
&& REGNO (XEXP (X, 0)) < LAST_VIRTUAL_REGISTER)
/* Integrate the procedure defined by FNDECL. Note that this function
may wind up calling itself. Since the static variables are not
reentrant, we do not assign them until after the possibility
or recursion is eliminated.
If IGNORE is nonzero, do not produce a value.
Otherwise store the value in TARGET if it is nonzero and that is convenient.
Value is:
(rtx)-1 if we could not substitute the function
0 if we substituted it and it does not produce a value
else an rtx for where the value is stored. */
rtx
expand_inline_function
(
fndecl
,
parms
,
target
,
ignore
,
type
,
structure_value_addr
)
tree
fndecl
,
parms
;
rtx
target
;
int
ignore
;
tree
type
;
rtx
structure_value_addr
;
{
tree
formal
,
actual
;
rtx
header
=
DECL_SAVED_INSNS
(
fndecl
);
rtx
insns
=
FIRST_FUNCTION_INSN
(
header
);
rtx
parm_insns
=
FIRST_PARM_INSN
(
header
);
tree
*
arg_trees
;
rtx
*
arg_vals
;
rtx
insn
;
int
max_regno
;
int
equiv_map_size
;
register
int
i
;
int
min_labelno
=
FIRST_LABELNO
(
header
);
int
max_labelno
=
LAST_LABELNO
(
header
);
int
nargs
;
rtx
local_return_label
=
0
;
rtx
loc
;
rtx
temp
;
struct
inline_remap
*
map
;
rtx
cc0_insn
=
0
;
rtvec
arg_vector
=
ORIGINAL_ARG_VECTOR
(
header
);
/* Allow for equivalences of the pseudos we make for virtual fp and ap. */
max_regno
=
MAX_REGNUM
(
header
)
+
3
;
if
(
max_regno
<
FIRST_PSEUDO_REGISTER
)
abort
();
nargs
=
list_length
(
DECL_ARGUMENTS
(
fndecl
));
/* We expect PARMS to have the right length; don't crash if not. */
if
(
list_length
(
parms
)
!=
nargs
)
return
(
rtx
)
-
1
;
/* Also check that the parms type match. Since the appropriate
conversions or default promotions have already been applied,
the machine modes should match exactly. */
for
(
formal
=
DECL_ARGUMENTS
(
fndecl
),
actual
=
parms
;
formal
;
formal
=
TREE_CHAIN
(
formal
),
actual
=
TREE_CHAIN
(
actual
))
{
tree
arg
=
TREE_VALUE
(
actual
);
enum
machine_mode
mode
=
TYPE_MODE
(
DECL_ARG_TYPE
(
formal
));
if
(
mode
!=
TYPE_MODE
(
TREE_TYPE
(
arg
)))
return
(
rtx
)
-
1
;
/* If they are block mode, the types should match exactly.
They don't match exactly if TREE_TYPE (FORMAL) == ERROR_MARK_NODE,
which could happen if the parameter has incomplete type. */
if
(
mode
==
BLKmode
&&
TREE_TYPE
(
arg
)
!=
TREE_TYPE
(
formal
))
return
(
rtx
)
-
1
;
}
/* Make a binding contour to keep inline cleanups called at
outer function-scope level from looking like they are shadowing
parameter declarations. */
pushlevel
(
0
);
/* Make a fresh binding contour that we can easily remove. */
pushlevel
(
0
);
expand_start_bindings
(
0
);
if
(
GET_CODE
(
parm_insns
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
parm_insns
)
>
0
)
emit_note
(
NOTE_SOURCE_FILE
(
parm_insns
),
NOTE_LINE_NUMBER
(
parm_insns
));
/* Expand the function arguments. Do this first so that any
new registers get created before we allocate the maps. */
arg_vals
=
(
rtx
*
)
alloca
(
nargs
*
sizeof
(
rtx
));
arg_trees
=
(
tree
*
)
alloca
(
nargs
*
sizeof
(
tree
));
for
(
formal
=
DECL_ARGUMENTS
(
fndecl
),
actual
=
parms
,
i
=
0
;
formal
;
formal
=
TREE_CHAIN
(
formal
),
actual
=
TREE_CHAIN
(
actual
),
i
++
)
{
/* Actual parameter, converted to the type of the argument within the
function. */
tree
arg
=
convert
(
TREE_TYPE
(
formal
),
TREE_VALUE
(
actual
));
/* Mode of the variable used within the function. */
enum
machine_mode
mode
=
TYPE_MODE
(
TREE_TYPE
(
formal
));
/* Where parameter is located in the function. */
rtx
copy
;
emit_note
(
DECL_SOURCE_FILE
(
formal
),
DECL_SOURCE_LINE
(
formal
));
arg_trees
[
i
]
=
arg
;
loc
=
RTVEC_ELT
(
arg_vector
,
i
);
/* If this is an object passed by invisible reference, we copy the
object into a stack slot and save its address. If this will go
into memory, we do nothing now. Otherwise, we just expand the
argument. */
if
(
GET_CODE
(
loc
)
==
MEM
&&
GET_CODE
(
XEXP
(
loc
,
0
))
==
REG
&&
REGNO
(
XEXP
(
loc
,
0
))
>
LAST_VIRTUAL_REGISTER
)
{
enum
machine_mode
mode
=
TYPE_MODE
(
TREE_TYPE
(
arg
));
rtx
stack_slot
=
assign_stack_temp
(
mode
,
int_size_in_bytes
(
TREE_TYPE
(
arg
)),
1
);
store_expr
(
arg
,
stack_slot
,
0
);
arg_vals
[
i
]
=
XEXP
(
stack_slot
,
0
);
}
else
if
(
GET_CODE
(
loc
)
!=
MEM
)
arg_vals
[
i
]
=
expand_expr
(
arg
,
0
,
mode
,
EXPAND_SUM
);
else
arg_vals
[
i
]
=
0
;
if
(
arg_vals
[
i
]
!=
0
&&
(
!
TREE_READONLY
(
formal
)
/* If the parameter is not read-only, copy our argument through
a register. Also, we cannot use ARG_VALS[I] if it overlaps
TARGET in any way. In the inline function, they will likely
be two different pseudos, and `safe_from_p' will make all
sorts of smart assumptions about their not conflicting.
But if ARG_VALS[I] overlaps TARGET, these assumptions are
wrong, so put ARG_VALS[I] into a fresh register. */
||
(
target
!=
0
&&
(
GET_CODE
(
arg_vals
[
i
])
==
REG
||
GET_CODE
(
arg_vals
[
i
])
==
SUBREG
||
GET_CODE
(
arg_vals
[
i
])
==
MEM
)
&&
reg_overlap_mentioned_p
(
arg_vals
[
i
],
target
))))
arg_vals
[
i
]
=
copy_to_mode_reg
(
mode
,
arg_vals
[
i
]);
}
/* Allocate the structures we use to remap things. */
map
=
(
struct
inline_remap
*
)
alloca
(
sizeof
(
struct
inline_remap
));
map
->
fndecl
=
fndecl
;
map
->
reg_map
=
(
rtx
*
)
alloca
(
max_regno
*
sizeof
(
rtx
));
bzero
(
map
->
reg_map
,
max_regno
*
sizeof
(
rtx
));
map
->
label_map
=
(
rtx
*
)
alloca
((
max_labelno
-
min_labelno
)
*
sizeof
(
rtx
));
map
->
label_map
-=
min_labelno
;
map
->
insn_map
=
(
rtx
*
)
alloca
(
INSN_UID
(
header
)
*
sizeof
(
rtx
));
bzero
(
map
->
insn_map
,
INSN_UID
(
header
)
*
sizeof
(
rtx
));
map
->
min_insnno
=
0
;
map
->
max_insnno
=
INSN_UID
(
header
);
/* const_equiv_map maps pseudos in our routine to constants, so it needs to
be large enough for all our pseudos. This is the number we are currently
using plus the number in the called routine, plus one for each arg and
one for the return value. */
equiv_map_size
=
max_reg_num
()
+
(
max_regno
-
FIRST_PSEUDO_REGISTER
)
+
nargs
+
1
;
map
->
const_equiv_map
=
(
rtx
*
)
alloca
(
equiv_map_size
*
sizeof
(
rtx
));
bzero
(
map
->
const_equiv_map
,
equiv_map_size
*
sizeof
(
rtx
));
map
->
const_age_map
=
(
unsigned
*
)
alloca
(
equiv_map_size
*
sizeof
(
unsigned
));
bzero
(
map
->
const_age_map
,
equiv_map_size
*
sizeof
(
unsigned
));
map
->
const_age
=
0
;
/* Record the current insn in case we have to set up pointers to frame
and argument memory blocks. */
map
->
insns_at_start
=
get_last_insn
();
/* Update the outgoing argument size to allow for those in the inlined
function. */
if
(
OUTGOING_ARGS_SIZE
(
header
)
>
current_function_outgoing_args_size
)
current_function_outgoing_args_size
=
OUTGOING_ARGS_SIZE
(
header
);
/* If the inline function needs to make PIC references, that means
that this function's PIC offset table must be used. */
if
(
FUNCTION_FLAGS
(
header
)
&
FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE
)
current_function_uses_pic_offset_table
=
1
;
/* Process each argument. For each, set up things so that the function's
reference to the argument will refer to the argument being passed.
We only replace REG with REG here. Any simplifications are done
via const_equiv_map.
We make two passes: In the first, we deal with parameters that will
be placed into registers, since we need to ensure that the allocated
register number fits in const_equiv_map. Then we store all non-register
parameters into their memory location. */
for
(
i
=
0
;
i
<
nargs
;
i
++
)
{
rtx
copy
=
arg_vals
[
i
];
loc
=
RTVEC_ELT
(
arg_vector
,
i
);
/* There are three cases, each handled separately. */
if
(
GET_CODE
(
loc
)
==
MEM
&&
GET_CODE
(
XEXP
(
loc
,
0
))
==
REG
&&
REGNO
(
XEXP
(
loc
,
0
))
>
LAST_VIRTUAL_REGISTER
)
{
/* This must be an object passed by invisible reference (it could
also be a variable-sized object, but we forbid inlining functions
with variable-sized arguments). COPY is the address of the
actual value (this computation will cause it to be copied). We
map that address for the register, noting the actual address as
an equivalent in case it can be substituted into the insns. */
if
(
GET_CODE
(
copy
)
!=
REG
)
{
temp
=
copy_addr_to_reg
(
copy
);
if
(
CONSTANT_P
(
copy
)
||
FIXED_BASE_PLUS_P
(
copy
))
{
map
->
const_equiv_map
[
REGNO
(
temp
)]
=
copy
;
map
->
const_age_map
[
REGNO
(
temp
)]
=
CONST_AGE_PARM
;
}
copy
=
temp
;
}
map
->
reg_map
[
REGNO
(
XEXP
(
loc
,
0
))]
=
copy
;
}
else
if
(
GET_CODE
(
loc
)
==
MEM
)
{
/* This is the case of a parameter that lives in memory.
It will live in the block we allocate in the called routine's
frame that simulates the incoming argument area. Do nothing
now; we will call store_expr later. */
;
}
else
if
(
GET_CODE
(
loc
)
==
REG
)
{
/* This is the good case where the parameter is in a register.
If it is read-only and our argument is a constant, set up the
constant equivalence. */
if
(
GET_CODE
(
copy
)
!=
REG
&&
GET_CODE
(
copy
)
!=
SUBREG
)
{
temp
=
copy_to_mode_reg
(
GET_MODE
(
loc
),
copy
);
if
(
CONSTANT_P
(
copy
)
||
FIXED_BASE_PLUS_P
(
copy
))
{
map
->
const_equiv_map
[
REGNO
(
temp
)]
=
copy
;
map
->
const_age_map
[
REGNO
(
temp
)]
=
CONST_AGE_PARM
;
}
copy
=
temp
;
}
map
->
reg_map
[
REGNO
(
loc
)]
=
copy
;
}
else
abort
();
/* Free any temporaries we made setting up this parameter. */
free_temp_slots
();
}
/* Now do the parameters that will be placed in memory. */
for
(
formal
=
DECL_ARGUMENTS
(
fndecl
),
i
=
0
;
formal
;
formal
=
TREE_CHAIN
(
formal
),
i
++
)
{
rtx
copy
=
arg_vals
[
i
];
loc
=
RTVEC_ELT
(
arg_vector
,
i
);
if
(
GET_CODE
(
loc
)
==
MEM
/* Exclude case handled above. */
&&
!
(
GET_CODE
(
XEXP
(
loc
,
0
))
==
REG
&&
REGNO
(
XEXP
(
loc
,
0
))
>
LAST_VIRTUAL_REGISTER
))
{
emit_note
(
DECL_SOURCE_FILE
(
formal
),
DECL_SOURCE_LINE
(
formal
));
/* Compute the address in the area we reserved and store the
value there. */
temp
=
copy_rtx_and_substitute
(
loc
,
map
);
subst_constants
(
&
temp
,
0
,
map
);
apply_change_group
();
if
(
!
memory_address_p
(
GET_MODE
(
temp
),
XEXP
(
temp
,
0
)))
temp
=
change_address
(
temp
,
VOIDmode
,
XEXP
(
temp
,
0
));
store_expr
(
arg_trees
[
i
],
temp
,
0
);
/* Free any temporaries we made setting up this parameter. */
free_temp_slots
();
}
}
/* Deal with the places that the function puts its result.
We are driven by what is placed into DECL_RESULT.
Initially, we assume that we don't have anything special handling for
REG_FUNCTION_RETURN_VALUE_P. */
map
->
inline_target
=
0
;
loc
=
DECL_RTL
(
DECL_RESULT
(
fndecl
));
if
(
TYPE_MODE
(
type
)
==
VOIDmode
)
/* There is no return value to worry about. */
;
else
if
(
GET_CODE
(
loc
)
==
MEM
)
{
if
(
!
structure_value_addr
||
!
aggregate_value_p
(
DECL_RESULT
(
fndecl
)))
abort
();
/* Pass the function the address in which to return a structure value.
Note that a constructor can cause someone to call us with
STRUCTURE_VALUE_ADDR, but the initialization takes place
via the first parameter, rather than the struct return address.
We have two cases: If the address is a simple register indirect,
use the mapping mechanism to point that register to our structure
return address. Otherwise, store the structure return value into
the place that it will be referenced from. */
if
(
GET_CODE
(
XEXP
(
loc
,
0
))
==
REG
)
{
temp
=
force_reg
(
Pmode
,
structure_value_addr
);
map
->
reg_map
[
REGNO
(
XEXP
(
loc
,
0
))]
=
temp
;
if
(
CONSTANT_P
(
structure_value_addr
)
||
(
GET_CODE
(
structure_value_addr
)
==
PLUS
&&
XEXP
(
structure_value_addr
,
0
)
==
virtual_stack_vars_rtx
&&
GET_CODE
(
XEXP
(
structure_value_addr
,
1
))
==
CONST_INT
))
{
map
->
const_equiv_map
[
REGNO
(
temp
)]
=
structure_value_addr
;
map
->
const_age_map
[
REGNO
(
temp
)]
=
CONST_AGE_PARM
;
}
}
else
{
temp
=
copy_rtx_and_substitute
(
loc
,
map
);
subst_constants
(
&
temp
,
0
,
map
);
apply_change_group
();
emit_move_insn
(
temp
,
structure_value_addr
);
}
}
else
if
(
ignore
)
/* We will ignore the result value, so don't look at its structure.
Note that preparations for an aggregate return value
do need to be made (above) even if it will be ignored. */
;
else
if
(
GET_CODE
(
loc
)
==
REG
)
{
/* The function returns an object in a register and we use the return
value. Set up our target for remapping. */
/* Machine mode function was declared to return. */
enum
machine_mode
departing_mode
=
TYPE_MODE
(
type
);
/* (Possibly wider) machine mode it actually computes
(for the sake of callers that fail to declare it right). */
enum
machine_mode
arriving_mode
=
TYPE_MODE
(
TREE_TYPE
(
DECL_RESULT
(
fndecl
)));
rtx
reg_to_map
;
/* Don't use MEMs as direct targets because on some machines
substituting a MEM for a REG makes invalid insns.
Let the combiner substitute the MEM if that is valid. */
if
(
target
==
0
||
GET_CODE
(
target
)
!=
REG
||
GET_MODE
(
target
)
!=
departing_mode
)
target
=
gen_reg_rtx
(
departing_mode
);
/* If function's value was promoted before return,
avoid machine mode mismatch when we substitute INLINE_TARGET.
But TARGET is what we will return to the caller. */
if
(
arriving_mode
!=
departing_mode
)
reg_to_map
=
gen_rtx
(
SUBREG
,
arriving_mode
,
target
,
0
);
else
reg_to_map
=
target
;
/* Usually, the result value is the machine's return register.
Sometimes it may be a pseudo. Handle both cases. */
if
(
REG_FUNCTION_VALUE_P
(
loc
))
map
->
inline_target
=
reg_to_map
;
else
map
->
reg_map
[
REGNO
(
loc
)]
=
reg_to_map
;
}
/* Make new label equivalences for the labels in the called function. */
for
(
i
=
min_labelno
;
i
<
max_labelno
;
i
++
)
map
->
label_map
[
i
]
=
gen_label_rtx
();
/* Perform postincrements before actually calling the function. */
emit_queue
();
/* Clean up stack so that variables might have smaller offsets. */
do_pending_stack_adjust
();
/* Save a copy of the location of const_equiv_map for mark_stores, called
via note_stores. */
global_const_equiv_map
=
map
->
const_equiv_map
;
/* Now copy the insns one by one. Do this in two passes, first the insns and
then their REG_NOTES, just like save_for_inline. */
/* This loop is very similar to the loop in copy_loop_body in unroll.c. */
for
(
insn
=
insns
;
insn
;
insn
=
NEXT_INSN
(
insn
))
{
rtx
copy
,
pattern
;
map
->
orig_asm_operands_vector
=
0
;
switch
(
GET_CODE
(
insn
))
{
case
INSN
:
pattern
=
PATTERN
(
insn
);
copy
=
0
;
if
(
GET_CODE
(
pattern
)
==
USE
&&
GET_CODE
(
XEXP
(
pattern
,
0
))
==
REG
&&
REG_FUNCTION_VALUE_P
(
XEXP
(
pattern
,
0
)))
/* The (USE (REG n)) at return from the function should
be ignored since we are changing (REG n) into
inline_target. */
break
;
/* Ignore setting a function value that we don't want to use. */
if
(
map
->
inline_target
==
0
&&
GET_CODE
(
pattern
)
==
SET
&&
GET_CODE
(
SET_DEST
(
pattern
))
==
REG
&&
REG_FUNCTION_VALUE_P
(
SET_DEST
(
pattern
)))
break
;
copy
=
emit_insn
(
copy_rtx_and_substitute
(
pattern
,
map
));
/* REG_NOTES will be copied later. */
#ifdef HAVE_cc0
/* If this insn is setting CC0, it may need to look at
the insn that uses CC0 to see what type of insn it is.
In that case, the call to recog via validate_change will
fail. So don't substitute constants here. Instead,
do it when we emit the following insn.
For example, see the pyr.md file. That machine has signed and
unsigned compares. The compare patterns must check the
following branch insn to see which what kind of compare to
emit.
If the previous insn set CC0, substitute constants on it as
well. */
if
(
sets_cc0_p
(
PATTERN
(
copy
))
!=
0
)
cc0_insn
=
copy
;
else
{
if
(
cc0_insn
)
try_constants
(
cc0_insn
,
map
);
cc0_insn
=
0
;
try_constants
(
copy
,
map
);
}
#else
try_constants
(
copy
,
map
);
#endif
break
;
case
JUMP_INSN
:
if
(
GET_CODE
(
PATTERN
(
insn
))
==
RETURN
)
{
if
(
local_return_label
==
0
)
local_return_label
=
gen_label_rtx
();
pattern
=
gen_jump
(
local_return_label
);
}
else
pattern
=
copy_rtx_and_substitute
(
PATTERN
(
insn
),
map
);
copy
=
emit_jump_insn
(
pattern
);
#ifdef HAVE_cc0
if
(
cc0_insn
)
try_constants
(
cc0_insn
,
map
);
cc0_insn
=
0
;
#endif
try_constants
(
copy
,
map
);
/* If this used to be a conditional jump insn but whose branch
direction is now know, we must do something special. */
if
(
condjump_p
(
insn
)
&&
!
simplejump_p
(
insn
)
&&
map
->
last_pc_value
)
{
#ifdef HAVE_cc0
/* The previous insn set cc0 for us. So delete it. */
delete_insn
(
PREV_INSN
(
copy
));
#endif
/* If this is now a no-op, delete it. */
if
(
map
->
last_pc_value
==
pc_rtx
)
{
delete_insn
(
copy
);
copy
=
0
;
}
else
/* Otherwise, this is unconditional jump so we must put a
BARRIER after it. We could do some dead code elimination
here, but jump.c will do it just as well. */
emit_barrier
();
}
break
;
case
CALL_INSN
:
pattern
=
copy_rtx_and_substitute
(
PATTERN
(
insn
),
map
);
copy
=
emit_call_insn
(
pattern
);
#ifdef HAVE_cc0
if
(
cc0_insn
)
try_constants
(
cc0_insn
,
map
);
cc0_insn
=
0
;
#endif
try_constants
(
copy
,
map
);
/* Be lazy and assume CALL_INSNs clobber all hard registers. */
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
map
->
const_equiv_map
[
i
]
=
0
;
break
;
case
CODE_LABEL
:
copy
=
emit_label
(
map
->
label_map
[
CODE_LABEL_NUMBER
(
insn
)]);
map
->
const_age
++
;
break
;
case
BARRIER
:
copy
=
emit_barrier
();
break
;
case
NOTE
:
/* It is important to discard function-end and function-beg notes,
so we have only one of each in the current function.
Also, NOTE_INSN_DELETED notes aren't useful (save_for_inline
deleted these in the copy used for continuing compilation,
not the copy used for inlining). */
if
(
NOTE_LINE_NUMBER
(
insn
)
!=
NOTE_INSN_FUNCTION_END
&&
NOTE_LINE_NUMBER
(
insn
)
!=
NOTE_INSN_FUNCTION_BEG
&&
NOTE_LINE_NUMBER
(
insn
)
!=
NOTE_INSN_DELETED
)
copy
=
emit_note
(
NOTE_SOURCE_FILE
(
insn
),
NOTE_LINE_NUMBER
(
insn
));
else
copy
=
0
;
break
;
default
:
abort
();
break
;
}
if
(
copy
)
RTX_INTEGRATED_P
(
copy
)
=
1
;
map
->
insn_map
[
INSN_UID
(
insn
)]
=
copy
;
}
/* Now copy the REG_NOTES. */
for
(
insn
=
insns
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
&&
map
->
insn_map
[
INSN_UID
(
insn
)])
REG_NOTES
(
map
->
insn_map
[
INSN_UID
(
insn
)])
=
copy_rtx_and_substitute
(
REG_NOTES
(
insn
),
map
);
if
(
local_return_label
)
emit_label
(
local_return_label
);
/* Make copies of the decls of the symbols in the inline function, so that
the copies of the variables get declared in the current function. Set
up things so that lookup_static_chain knows that to interpret registers
in SAVE_EXPRs for TYPE_SIZEs as local. */
inline_function_decl
=
fndecl
;
integrate_decl_tree
((
tree
)
ORIGINAL_DECL_INITIAL
(
header
),
0
,
map
,
0
);
integrate_parm_decls
(
DECL_ARGUMENTS
(
fndecl
),
map
,
arg_vector
);
inline_function_decl
=
0
;
/* End the scope containing the copied formal parameter variables. */
expand_end_bindings
(
getdecls
(),
1
,
1
);
poplevel
(
1
,
1
,
0
);
poplevel
(
0
,
0
,
0
);
emit_line_note
(
input_filename
,
lineno
);
if
(
structure_value_addr
)
return
gen_rtx
(
MEM
,
TYPE_MODE
(
type
),
memory_address
(
TYPE_MODE
(
type
),
structure_value_addr
));
return
target
;
}
/* Given a chain of PARM_DECLs, ARGS, copy each decl into a VAR_DECL,
push all of those decls and give each one the corresponding home. */
static
void
integrate_parm_decls
(
args
,
map
,
arg_vector
)
tree
args
;
struct
inline_remap
*
map
;
rtvec
arg_vector
;
{
register
tree
tail
;
register
int
i
;
for
(
tail
=
args
,
i
=
0
;
tail
;
tail
=
TREE_CHAIN
(
tail
),
i
++
)
{
register
tree
decl
=
build_decl
(
VAR_DECL
,
DECL_NAME
(
tail
),
TREE_TYPE
(
tail
));
rtx
new_decl_rtl
=
copy_rtx_and_substitute
(
RTVEC_ELT
(
arg_vector
,
i
),
map
);
/* These args would always appear unused, if not for this. */
TREE_USED
(
decl
)
=
1
;
/* Prevent warning for shadowing with these. */
DECL_FROM_INLINE
(
decl
)
=
1
;
pushdecl
(
decl
);
/* Fully instantiate the address with the equivalent form so that the
debugging information contains the actual register, instead of the
virtual register. Do this by not passing an insn to
subst_constants. */
subst_constants
(
&
new_decl_rtl
,
0
,
map
);
apply_change_group
();
DECL_RTL
(
decl
)
=
new_decl_rtl
;
}
}
/* Given a BLOCK node LET, push decls and levels so as to construct in the
current function a tree of contexts isomorphic to the one that is given.
LEVEL indicates how far down into the BLOCK tree is the node we are
currently traversing. It is always zero for the initial call.
MAP, if nonzero, is a pointer to a inline_remap map which indicates how
registers used in the DECL_RTL field should be remapped. If it is zero,
no mapping is necessary.
FUNCTIONBODY indicates whether the top level block tree corresponds to
a function body. This is identical in meaning to the functionbody
argument of poplevel. */
static
void
integrate_decl_tree
(
let
,
level
,
map
,
functionbody
)
tree
let
;
int
level
;
struct
inline_remap
*
map
;
int
functionbody
;
{
tree
t
,
node
;
pushlevel
(
0
);
for
(
t
=
BLOCK_VARS
(
let
);
t
;
t
=
TREE_CHAIN
(
t
))
{
tree
d
=
build_decl
(
TREE_CODE
(
t
),
DECL_NAME
(
t
),
TREE_TYPE
(
t
));
DECL_SOURCE_LINE
(
d
)
=
DECL_SOURCE_LINE
(
t
);
DECL_SOURCE_FILE
(
d
)
=
DECL_SOURCE_FILE
(
t
);
if
(
!
functionbody
&&
DECL_RTL
(
t
)
!=
0
)
{
DECL_RTL
(
d
)
=
copy_rtx_and_substitute
(
DECL_RTL
(
t
),
map
);
/* Fully instantiate the address with the equivalent form so that the
debugging information contains the actual register, instead of the
virtual register. Do this by not passing an insn to
subst_constants. */
subst_constants
(
&
DECL_RTL
(
d
),
0
,
map
);
apply_change_group
();
}
else
if
(
DECL_RTL
(
t
))
DECL_RTL
(
d
)
=
copy_rtx
(
DECL_RTL
(
t
));
TREE_EXTERNAL
(
d
)
=
TREE_EXTERNAL
(
t
);
TREE_STATIC
(
d
)
=
TREE_STATIC
(
t
);
TREE_PUBLIC
(
d
)
=
TREE_PUBLIC
(
t
);
TREE_CONSTANT
(
d
)
=
TREE_CONSTANT
(
t
);
TREE_ADDRESSABLE
(
d
)
=
TREE_ADDRESSABLE
(
t
);
TREE_READONLY
(
d
)
=
TREE_READONLY
(
t
);
TREE_SIDE_EFFECTS
(
d
)
=
TREE_SIDE_EFFECTS
(
t
);
/* These args would always appear unused, if not for this. */
TREE_USED
(
d
)
=
1
;
/* Prevent warning for shadowing with these. */
DECL_FROM_INLINE
(
d
)
=
1
;
pushdecl
(
d
);
}
for
(
t
=
BLOCK_SUBBLOCKS
(
let
);
t
;
t
=
TREE_CHAIN
(
t
))
integrate_decl_tree
(
t
,
level
+
1
,
map
,
functionbody
);
node
=
poplevel
(
level
>
0
,
0
,
level
==
0
&&
functionbody
);
if
(
node
)
TREE_USED
(
node
)
=
TREE_USED
(
let
);
}
/* Create a new copy of an rtx.
Recursively copies the operands of the rtx,
except for those few rtx codes that are sharable.
We always return an rtx that is similar to that incoming rtx, with the
exception of possibly changing a REG to a SUBREG or vice versa. No
rtl is ever emitted.
Handle constants that need to be placed in the constant pool by
calling `force_const_mem'. */
rtx
copy_rtx_and_substitute
(
orig
,
map
)
register
rtx
orig
;
struct
inline_remap
*
map
;
{
register
rtx
copy
,
temp
;
register
int
i
,
j
;
register
RTX_CODE
code
;
register
enum
machine_mode
mode
;
register
char
*
format_ptr
;
int
regno
;
if
(
orig
==
0
)
return
0
;
code
=
GET_CODE
(
orig
);
mode
=
GET_MODE
(
orig
);
switch
(
code
)
{
case
REG
:
/* If the stack pointer register shows up, it must be part of
stack-adjustments (*not* because we eliminated the frame pointer!).
Small hard registers are returned as-is. Pseudo-registers
go through their `reg_map'. */
regno
=
REGNO
(
orig
);
if
(
regno
<=
LAST_VIRTUAL_REGISTER
)
{
/* Some hard registers are also mapped,
but others are not translated. */
if
(
map
->
reg_map
[
regno
]
!=
0
)
return
map
->
reg_map
[
regno
];
/* If this is the virtual frame pointer, make space in current
function's stack frame for the stack frame of the inline function.
Copy the address of this area into a pseudo. Map
virtual_stack_vars_rtx to this pseudo and set up a constant
equivalence for it to be the address. This will substitute the
address into insns where it can be substituted and use the new
pseudo where it can't. */
if
(
regno
==
VIRTUAL_STACK_VARS_REGNUM
)
{
rtx
loc
,
seq
;
int
size
=
DECL_FRAME_SIZE
(
map
->
fndecl
);
int
rounded
;
start_sequence
();
loc
=
assign_stack_temp
(
BLKmode
,
size
,
1
);
loc
=
XEXP
(
loc
,
0
);
#ifdef FRAME_GROWS_DOWNWARD
/* In this case, virtual_stack_vars_rtx points to one byte
higher than the top of the frame area. So compute the offset
to one byte higher than our substitute frame.
Keep the fake frame pointer aligned like a real one. */
rounded
=
CEIL_ROUND
(
size
,
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
);
loc
=
plus_constant
(
loc
,
rounded
);
#endif
map
->
reg_map
[
regno
]
=
force_operand
(
loc
,
0
);
map
->
const_equiv_map
[
regno
]
=
loc
;
map
->
const_age_map
[
regno
]
=
CONST_AGE_PARM
;
seq
=
gen_sequence
();
end_sequence
();
emit_insn_after
(
seq
,
map
->
insns_at_start
);
return
map
->
reg_map
[
regno
];
}
else
if
(
regno
==
VIRTUAL_INCOMING_ARGS_REGNUM
)
{
/* Do the same for a block to contain any arguments referenced
in memory. */
rtx
loc
,
seq
;
int
size
=
FUNCTION_ARGS_SIZE
(
DECL_SAVED_INSNS
(
map
->
fndecl
));
start_sequence
();
loc
=
assign_stack_temp
(
BLKmode
,
size
,
1
);
loc
=
XEXP
(
loc
,
0
);
map
->
reg_map
[
regno
]
=
force_operand
(
loc
,
0
);
map
->
const_equiv_map
[
regno
]
=
loc
;
map
->
const_age_map
[
regno
]
=
CONST_AGE_PARM
;
seq
=
gen_sequence
();
end_sequence
();
emit_insn_after
(
seq
,
map
->
insns_at_start
);
return
map
->
reg_map
[
regno
];
}
else
if
(
REG_FUNCTION_VALUE_P
(
orig
))
{
/* This is a reference to the function return value. If
the function doesn't have a return value, error. If the
mode doesn't agree, make a SUBREG. */
if
(
map
->
inline_target
==
0
)
/* Must be unrolling loops or replicating code if we
reach here, so return the register unchanged. */
return
orig
;
else
if
(
mode
!=
GET_MODE
(
map
->
inline_target
))
return
gen_rtx
(
SUBREG
,
mode
,
map
->
inline_target
,
0
);
else
return
map
->
inline_target
;
}
return
orig
;
}
if
(
map
->
reg_map
[
regno
]
==
NULL
)
{
map
->
reg_map
[
regno
]
=
gen_reg_rtx
(
mode
);
REG_USERVAR_P
(
map
->
reg_map
[
regno
])
=
REG_USERVAR_P
(
orig
);
REG_LOOP_TEST_P
(
map
->
reg_map
[
regno
])
=
REG_LOOP_TEST_P
(
orig
);
RTX_UNCHANGING_P
(
map
->
reg_map
[
regno
])
=
RTX_UNCHANGING_P
(
orig
);
/* A reg with REG_FUNCTION_VALUE_P true will never reach here. */
}
return
map
->
reg_map
[
regno
];
case
SUBREG
:
copy
=
copy_rtx_and_substitute
(
SUBREG_REG
(
orig
),
map
);
/* SUBREG is ordinary, but don't make nested SUBREGs. */
if
(
GET_CODE
(
copy
)
==
SUBREG
)
return
gen_rtx
(
SUBREG
,
GET_MODE
(
orig
),
SUBREG_REG
(
copy
),
SUBREG_WORD
(
orig
)
+
SUBREG_WORD
(
copy
));
else
return
gen_rtx
(
SUBREG
,
GET_MODE
(
orig
),
copy
,
SUBREG_WORD
(
orig
));
case
USE
:
case
CLOBBER
:
/* USE and CLOBBER are ordinary, but we convert (use (subreg foo))
to (use foo). */
copy
=
copy_rtx_and_substitute
(
XEXP
(
orig
,
0
),
map
);
if
(
GET_CODE
(
copy
)
==
SUBREG
)
copy
=
SUBREG_REG
(
copy
);
return
gen_rtx
(
code
,
VOIDmode
,
copy
);
case
CODE_LABEL
:
LABEL_PRESERVE_P
(
map
->
label_map
[
CODE_LABEL_NUMBER
(
orig
)])
=
LABEL_PRESERVE_P
(
orig
);
return
map
->
label_map
[
CODE_LABEL_NUMBER
(
orig
)];
case
LABEL_REF
:
copy
=
rtx_alloc
(
LABEL_REF
);
PUT_MODE
(
copy
,
mode
);
XEXP
(
copy
,
0
)
=
map
->
label_map
[
CODE_LABEL_NUMBER
(
XEXP
(
orig
,
0
))];
LABEL_OUTSIDE_LOOP_P
(
copy
)
=
LABEL_OUTSIDE_LOOP_P
(
orig
);
return
copy
;
case
PC
:
case
CC0
:
case
CONST_INT
:
case
SYMBOL_REF
:
return
orig
;
case
CONST_DOUBLE
:
/* We have to make a new copy of this CONST_DOUBLE because don't want
to use the old value of CONST_DOUBLE_MEM. Also, this may be a
duplicate of a CONST_DOUBLE we have already seen. */
if
(
GET_MODE_CLASS
(
GET_MODE
(
orig
))
==
MODE_FLOAT
)
{
REAL_VALUE_TYPE
d
;
REAL_VALUE_FROM_CONST_DOUBLE
(
d
,
orig
);
return
immed_real_const_1
(
d
,
GET_MODE
(
orig
));
}
else
return
immed_double_const
(
CONST_DOUBLE_LOW
(
orig
),
CONST_DOUBLE_HIGH
(
orig
),
VOIDmode
);
case
CONST
:
/* Make new constant pool entry for a constant
that was in the pool of the inline function. */
if
(
RTX_INTEGRATED_P
(
orig
))
{
/* If this was an address of a constant pool entry that itself
had to be placed in the constant pool, it might not be a
valid address. So the recursive call below might turn it
into a register. In that case, it isn't a constant any
more, so return it. This has the potential of changing a
MEM into a REG, but we'll assume that it safe. */
temp
=
copy_rtx_and_substitute
(
XEXP
(
orig
,
0
),
map
);
if
(
!
CONSTANT_P
(
temp
))
return
temp
;
return
validize_mem
(
force_const_mem
(
GET_MODE
(
orig
),
temp
));
}
break
;
case
ADDRESS
:
/* If from constant pool address, make new constant pool entry and
return its address. */
if
(
!
RTX_INTEGRATED_P
(
orig
))
abort
();
temp
=
force_const_mem
(
GET_MODE
(
orig
),
copy_rtx_and_substitute
(
XEXP
(
orig
,
0
),
map
));
#if 0
/* Legitimizing the address here is incorrect.
The only ADDRESS rtx's that can reach here are ones created by
save_constants. Hence the operand of the ADDRESS is always legal
in this position of the instruction, since the original rtx without
the ADDRESS was legal.
The reason we don't legitimize the address here is that on the
Sparc, the caller may have a (high ...) surrounding this ADDRESS.
This code forces the operand of the address to a register, which
fails because we can not take the HIGH part of a register.
Also, change_address may create new registers. These registers
will not have valid reg_map entries. This can cause try_constants()
to fail because assumes that all registers in the rtx have valid
reg_map entries, and it may end up replacing one of these new
registers with junk. */
if (! memory_address_p (GET_MODE (temp), XEXP (temp, 0)))
temp = change_address (temp, GET_MODE (temp), XEXP (temp, 0));
#endif
return
XEXP
(
temp
,
0
);
case
ASM_OPERANDS
:
/* If a single asm insn contains multiple output operands
then it contains multiple ASM_OPERANDS rtx's that share operand 3.
We must make sure that the copied insn continues to share it. */
if
(
map
->
orig_asm_operands_vector
==
XVEC
(
orig
,
3
))
{
copy
=
rtx_alloc
(
ASM_OPERANDS
);
XSTR
(
copy
,
0
)
=
XSTR
(
orig
,
0
);
XSTR
(
copy
,
1
)
=
XSTR
(
orig
,
1
);
XINT
(
copy
,
2
)
=
XINT
(
orig
,
2
);
XVEC
(
copy
,
3
)
=
map
->
copy_asm_operands_vector
;
XVEC
(
copy
,
4
)
=
map
->
copy_asm_constraints_vector
;
XSTR
(
copy
,
5
)
=
XSTR
(
orig
,
5
);
XINT
(
copy
,
6
)
=
XINT
(
orig
,
6
);
return
copy
;
}
break
;
case
CALL
:
/* This is given special treatment because the first
operand of a CALL is a (MEM ...) which may get
forced into a register for cse. This is undesirable
if function-address cse isn't wanted or if we won't do cse. */
#ifndef NO_FUNCTION_CSE
if
(
!
(
optimize
&&
!
flag_no_function_cse
))
#endif
return
gen_rtx
(
CALL
,
GET_MODE
(
orig
),
gen_rtx
(
MEM
,
GET_MODE
(
XEXP
(
orig
,
0
)),
copy_rtx_and_substitute
(
XEXP
(
XEXP
(
orig
,
0
),
0
),
map
)),
copy_rtx_and_substitute
(
XEXP
(
orig
,
1
),
map
));
break
;
#if 0
/* Must be ifdefed out for loop unrolling to work. */
case RETURN:
abort ();
#endif
case
SET
:
/* If this is setting fp or ap, it means that we have a nonlocal goto.
Don't alter that.
If the nonlocal goto is into the current function,
this will result in unnecessarily bad code, but should work. */
if
(
SET_DEST
(
orig
)
==
virtual_stack_vars_rtx
||
SET_DEST
(
orig
)
==
virtual_incoming_args_rtx
)
return
gen_rtx
(
SET
,
VOIDmode
,
SET_DEST
(
orig
),
copy_rtx_and_substitute
(
SET_SRC
(
orig
),
map
));
break
;
case
MEM
:
copy
=
rtx_alloc
(
MEM
);
PUT_MODE
(
copy
,
mode
);
XEXP
(
copy
,
0
)
=
copy_rtx_and_substitute
(
XEXP
(
orig
,
0
),
map
);
MEM_IN_STRUCT_P
(
copy
)
=
MEM_IN_STRUCT_P
(
orig
);
MEM_VOLATILE_P
(
copy
)
=
MEM_VOLATILE_P
(
orig
);
RTX_UNCHANGING_P
(
copy
)
=
RTX_UNCHANGING_P
(
orig
);
return
copy
;
}
copy
=
rtx_alloc
(
code
);
PUT_MODE
(
copy
,
mode
);
copy
->
in_struct
=
orig
->
in_struct
;
copy
->
volatil
=
orig
->
volatil
;
copy
->
unchanging
=
orig
->
unchanging
;
format_ptr
=
GET_RTX_FORMAT
(
GET_CODE
(
copy
));
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
GET_CODE
(
copy
));
i
++
)
{
switch
(
*
format_ptr
++
)
{
case
'0'
:
break
;
case
'e'
:
XEXP
(
copy
,
i
)
=
copy_rtx_and_substitute
(
XEXP
(
orig
,
i
),
map
);
break
;
case
'u'
:
/* Change any references to old-insns to point to the
corresponding copied insns. */
XEXP
(
copy
,
i
)
=
map
->
insn_map
[
INSN_UID
(
XEXP
(
orig
,
i
))];
break
;
case
'E'
:
XVEC
(
copy
,
i
)
=
XVEC
(
orig
,
i
);
if
(
XVEC
(
orig
,
i
)
!=
NULL
&&
XVECLEN
(
orig
,
i
)
!=
0
)
{
XVEC
(
copy
,
i
)
=
rtvec_alloc
(
XVECLEN
(
orig
,
i
));
for
(
j
=
0
;
j
<
XVECLEN
(
copy
,
i
);
j
++
)
XVECEXP
(
copy
,
i
,
j
)
=
copy_rtx_and_substitute
(
XVECEXP
(
orig
,
i
,
j
),
map
);
}
break
;
case
'i'
:
XINT
(
copy
,
i
)
=
XINT
(
orig
,
i
);
break
;
case
's'
:
XSTR
(
copy
,
i
)
=
XSTR
(
orig
,
i
);
break
;
default
:
abort
();
}
}
if
(
code
==
ASM_OPERANDS
&&
map
->
orig_asm_operands_vector
==
0
)
{
map
->
orig_asm_operands_vector
=
XVEC
(
orig
,
3
);
map
->
copy_asm_operands_vector
=
XVEC
(
copy
,
3
);
map
->
copy_asm_constraints_vector
=
XVEC
(
copy
,
4
);
}
return
copy
;
}
/* Substitute known constant values into INSN, if that is valid. */
void
try_constants
(
insn
,
map
)
rtx
insn
;
struct
inline_remap
*
map
;
{
int
i
;
map
->
num_sets
=
0
;
subst_constants
(
&
PATTERN
(
insn
),
insn
,
map
);
/* Apply the changes if they are valid; otherwise discard them. */
apply_change_group
();
/* Show we don't know the value of anything stored or clobbered. */
note_stores
(
PATTERN
(
insn
),
mark_stores
);
map
->
last_pc_value
=
0
;
#ifdef HAVE_cc0
map
->
last_cc0_value
=
0
;
#endif
/* Set up any constant equivalences made in this insn. */
for
(
i
=
0
;
i
<
map
->
num_sets
;
i
++
)
{
if
(
GET_CODE
(
map
->
equiv_sets
[
i
].
dest
)
==
REG
)
{
int
regno
=
REGNO
(
map
->
equiv_sets
[
i
].
dest
);
if
(
map
->
const_equiv_map
[
regno
]
==
0
/* Following clause is a hack to make case work where GNU C++
reassigns a variable to make cse work right. */
||
!
rtx_equal_p
(
map
->
const_equiv_map
[
regno
],
map
->
equiv_sets
[
i
].
equiv
))
{
map
->
const_equiv_map
[
regno
]
=
map
->
equiv_sets
[
i
].
equiv
;
map
->
const_age_map
[
regno
]
=
map
->
const_age
;
}
}
else
if
(
map
->
equiv_sets
[
i
].
dest
==
pc_rtx
)
map
->
last_pc_value
=
map
->
equiv_sets
[
i
].
equiv
;
#ifdef HAVE_cc0
else
if
(
map
->
equiv_sets
[
i
].
dest
==
cc0_rtx
)
map
->
last_cc0_value
=
map
->
equiv_sets
[
i
].
equiv
;
#endif
}
}
/* Substitute known constants for pseudo regs in the contents of LOC,
which are part of INSN.
If INSN is zero, the substition should always be done (this is used to
update DECL_RTL).
These changes are taken out by try_constants if the result is not valid.
Note that we are more concerned with determining when the result of a SET
is a constant, for further propagation, than actually inserting constants
into insns; cse will do the latter task better.
This function is also used to adjust address of items previously addressed
via the virtual stack variable or virtual incoming arguments registers. */
static
void
subst_constants
(
loc
,
insn
,
map
)
rtx
*
loc
;
rtx
insn
;
struct
inline_remap
*
map
;
{
rtx
x
=
*
loc
;
register
int
i
;
register
enum
rtx_code
code
;
register
char
*
format_ptr
;
int
num_changes
=
num_validated_changes
();
rtx
new
=
0
;
enum
machine_mode
op0_mode
;
code
=
GET_CODE
(
x
);
switch
(
code
)
{
case
PC
:
case
CONST_INT
:
case
CONST_DOUBLE
:
case
SYMBOL_REF
:
case
CONST
:
case
LABEL_REF
:
case
ADDRESS
:
return
;
#ifdef HAVE_cc0
case
CC0
:
validate_change
(
insn
,
loc
,
map
->
last_cc0_value
,
1
);
return
;
#endif
case
USE
:
case
CLOBBER
:
/* The only thing we can do with a USE or CLOBBER is possibly do
some substitutions in a MEM within it. */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
MEM
)
subst_constants
(
&
XEXP
(
XEXP
(
x
,
0
),
0
),
insn
,
map
);
return
;
case
REG
:
/* Substitute for parms and known constants. Don't replace
hard regs used as user variables with constants. */
{
int
regno
=
REGNO
(
x
);
if
(
!
(
regno
<
FIRST_PSEUDO_REGISTER
&&
REG_USERVAR_P
(
x
))
&&
map
->
const_equiv_map
[
regno
]
!=
0
&&
map
->
const_age_map
[
regno
]
>=
map
->
const_age
)
validate_change
(
insn
,
loc
,
map
->
const_equiv_map
[
regno
],
1
);
return
;
}
case
SUBREG
:
/* SUBREG is ordinary, but don't make nested SUBREGs and try to simplify
constants. */
{
rtx
inner
=
SUBREG_REG
(
x
);
rtx
new
=
0
;
/* We can't call subst_constants on &SUBREG_REG (x) because any
constant or SUBREG wouldn't be valid inside our SUBEG. Instead,
see what is inside, try to form the new SUBREG and see if that is
valid. We handle two cases: extracting a full word in an
integral mode and extracting the low part. */
subst_constants
(
&
inner
,
0
,
map
);
if
(
GET_MODE_CLASS
(
GET_MODE
(
x
))
==
MODE_INT
&&
GET_MODE_SIZE
(
GET_MODE
(
x
))
==
UNITS_PER_WORD
&&
GET_MODE
(
SUBREG_REG
(
x
))
!=
VOIDmode
)
new
=
operand_subword
(
inner
,
SUBREG_WORD
(
x
),
0
,
GET_MODE
(
SUBREG_REG
(
x
)));
if
(
new
==
0
&&
subreg_lowpart_p
(
x
))
new
=
gen_lowpart_common
(
GET_MODE
(
x
),
inner
);
if
(
new
)
validate_change
(
insn
,
loc
,
new
,
1
);
return
;
}
case
MEM
:
subst_constants
(
&
XEXP
(
x
,
0
),
insn
,
map
);
/* If a memory address got spoiled, change it back. */
if
(
insn
!=
0
&&
num_validated_changes
()
!=
num_changes
&&
!
memory_address_p
(
GET_MODE
(
x
),
XEXP
(
x
,
0
)))
cancel_changes
(
num_changes
);
return
;
case
SET
:
{
/* Substitute constants in our source, and in any arguments to a
complex (e..g, ZERO_EXTRACT) destination, but not in the destination
itself. */
rtx
*
dest_loc
=
&
SET_DEST
(
x
);
rtx
dest
=
*
dest_loc
;
rtx
src
,
tem
;
subst_constants
(
&
SET_SRC
(
x
),
insn
,
map
);
src
=
SET_SRC
(
x
);
while
(
GET_CODE
(
*
dest_loc
)
==
ZERO_EXTRACT
||
GET_CODE
(
*
dest_loc
)
==
SIGN_EXTRACT
||
GET_CODE
(
*
dest_loc
)
==
SUBREG
||
GET_CODE
(
*
dest_loc
)
==
STRICT_LOW_PART
)
{
if
(
GET_CODE
(
*
dest_loc
)
==
ZERO_EXTRACT
)
{
subst_constants
(
&
XEXP
(
*
dest_loc
,
1
),
insn
,
map
);
subst_constants
(
&
XEXP
(
*
dest_loc
,
2
),
insn
,
map
);
}
dest_loc
=
&
XEXP
(
*
dest_loc
,
0
);
}
/* Check for the case of DEST a SUBREG, both it and the underlying
register are less than one word, and the SUBREG has the wider mode.
In the case, we are really setting the underlying register to the
source converted to the mode of DEST. So indicate that. */
if
(
GET_CODE
(
dest
)
==
SUBREG
&&
GET_MODE_SIZE
(
GET_MODE
(
dest
))
<=
UNITS_PER_WORD
&&
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
dest
)))
<=
UNITS_PER_WORD
&&
(
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
dest
)))
<=
GET_MODE_SIZE
(
GET_MODE
(
dest
)))
&&
(
tem
=
gen_lowpart_if_possible
(
GET_MODE
(
dest
),
src
)))
src
=
tem
,
dest
=
SUBREG_REG
(
dest
);
/* If storing a recognizable value save it for later recording. */
if
((
map
->
num_sets
<
MAX_RECOG_OPERANDS
)
&&
(
CONSTANT_P
(
src
)
||
(
GET_CODE
(
src
)
==
PLUS
&&
GET_CODE
(
XEXP
(
src
,
0
))
==
REG
&&
REGNO
(
XEXP
(
src
,
0
))
>=
FIRST_VIRTUAL_REGISTER
&&
REGNO
(
XEXP
(
src
,
0
))
<=
LAST_VIRTUAL_REGISTER
&&
CONSTANT_P
(
XEXP
(
src
,
1
)))
||
GET_CODE
(
src
)
==
COMPARE
#ifdef HAVE_cc0
||
dest
==
cc0_rtx
#endif
||
(
dest
==
pc_rtx
&&
(
src
==
pc_rtx
||
GET_CODE
(
src
)
==
RETURN
||
GET_CODE
(
src
)
==
LABEL_REF
))))
{
/* Normally, this copy won't do anything. But, if SRC is a COMPARE
it will cause us to save the COMPARE with any constants
substituted, which is what we want for later. */
map
->
equiv_sets
[
map
->
num_sets
].
equiv
=
copy_rtx
(
src
);
map
->
equiv_sets
[
map
->
num_sets
++
].
dest
=
dest
;
}
return
;
}
}
format_ptr
=
GET_RTX_FORMAT
(
code
);
/* If the first operand is an expression, save its mode for later. */
if
(
*
format_ptr
==
'e'
)
op0_mode
=
GET_MODE
(
XEXP
(
x
,
0
));
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
code
);
i
++
)
{
switch
(
*
format_ptr
++
)
{
case
'0'
:
break
;
case
'e'
:
if
(
XEXP
(
x
,
i
))
subst_constants
(
&
XEXP
(
x
,
i
),
insn
,
map
);
break
;
case
'u'
:
case
'i'
:
case
's'
:
break
;
case
'E'
:
if
(
XVEC
(
x
,
i
)
!=
NULL
&&
XVECLEN
(
x
,
i
)
!=
0
)
{
int
j
;
for
(
j
=
0
;
j
<
XVECLEN
(
x
,
i
);
j
++
)
subst_constants
(
&
XVECEXP
(
x
,
i
,
j
),
insn
,
map
);
}
break
;
default
:
abort
();
}
}
/* If this is a commutative operation, move a constant to the second
operand unless the second operand is already a CONST_INT. */
if
((
GET_RTX_CLASS
(
code
)
==
'c'
||
code
==
NE
||
code
==
EQ
)
&&
CONSTANT_P
(
XEXP
(
x
,
0
))
&&
GET_CODE
(
XEXP
(
x
,
1
))
!=
CONST_INT
)
{
rtx
tem
=
XEXP
(
x
,
0
);
validate_change
(
insn
,
&
XEXP
(
x
,
0
),
XEXP
(
x
,
1
),
1
);
validate_change
(
insn
,
&
XEXP
(
x
,
1
),
tem
,
1
);
}
/* Simplify the expression in case we put in some constants. */
switch
(
GET_RTX_CLASS
(
code
))
{
case
'1'
:
new
=
simplify_unary_operation
(
code
,
GET_MODE
(
x
),
XEXP
(
x
,
0
),
op0_mode
);
break
;
case
'<'
:
{
enum
machine_mode
op_mode
=
GET_MODE
(
XEXP
(
x
,
0
));
if
(
op_mode
==
VOIDmode
)
op_mode
=
GET_MODE
(
XEXP
(
x
,
1
));
new
=
simplify_relational_operation
(
code
,
op_mode
,
XEXP
(
x
,
0
),
XEXP
(
x
,
1
));
break
;
}
case
'2'
:
case
'c'
:
new
=
simplify_binary_operation
(
code
,
GET_MODE
(
x
),
XEXP
(
x
,
0
),
XEXP
(
x
,
1
));
break
;
case
'b'
:
case
'3'
:
new
=
simplify_ternary_operation
(
code
,
GET_MODE
(
x
),
op0_mode
,
XEXP
(
x
,
0
),
XEXP
(
x
,
1
),
XEXP
(
x
,
2
));
break
;
}
if
(
new
)
validate_change
(
insn
,
loc
,
new
,
1
);
}
/* Show that register modified no longer contain known constants. We are
called from note_stores with parts of the new insn. */
void
mark_stores
(
dest
,
x
)
rtx
dest
;
rtx
x
;
{
if
(
GET_CODE
(
dest
)
==
SUBREG
)
dest
=
SUBREG_REG
(
dest
);
if
(
GET_CODE
(
dest
)
==
REG
)
global_const_equiv_map
[
REGNO
(
dest
)]
=
0
;
}
/* If any CONST expressions with RTX_INTEGRATED_P are present in the rtx
pointed to by PX, they represent constants in the constant pool.
Replace these with a new memory reference obtained from force_const_mem.
Similarly, ADDRESS expressions with RTX_INTEGRATED_P represent the
address of a constant pool entry. Replace them with the address of
a new constant pool entry obtained from force_const_mem. */
static
void
restore_constants
(
px
)
rtx
*
px
;
{
rtx
x
=
*
px
;
int
i
,
j
;
char
*
fmt
;
if
(
x
==
0
)
return
;
if
(
GET_CODE
(
x
)
==
CONST_DOUBLE
)
{
/* We have to make a new CONST_DOUBLE to ensure that we account for
it correctly. Using the old CONST_DOUBLE_MEM data is wrong. */
if
(
GET_MODE_CLASS
(
GET_MODE
(
x
))
==
MODE_FLOAT
)
{
REAL_VALUE_TYPE
d
;
REAL_VALUE_FROM_CONST_DOUBLE
(
d
,
x
);
*
px
=
immed_real_const_1
(
d
,
GET_MODE
(
x
));
}
else
*
px
=
immed_double_const
(
CONST_DOUBLE_LOW
(
x
),
CONST_DOUBLE_HIGH
(
x
),
VOIDmode
);
}
else
if
(
RTX_INTEGRATED_P
(
x
)
&&
GET_CODE
(
x
)
==
CONST
)
{
restore_constants
(
&
XEXP
(
x
,
0
));
*
px
=
validize_mem
(
force_const_mem
(
GET_MODE
(
x
),
XEXP
(
x
,
0
)));
}
else
if
(
RTX_INTEGRATED_P
(
x
)
&&
GET_CODE
(
x
)
==
SUBREG
)
{
/* This must be (subreg/i:M1 (const/i:M2 ...) 0). */
rtx
new
=
XEXP
(
SUBREG_REG
(
x
),
0
);
restore_constants
(
&
new
);
new
=
force_const_mem
(
GET_MODE
(
SUBREG_REG
(
x
)),
new
);
PUT_MODE
(
new
,
GET_MODE
(
x
));
*
px
=
validize_mem
(
new
);
}
else
if
(
RTX_INTEGRATED_P
(
x
)
&&
GET_CODE
(
x
)
==
ADDRESS
)
{
restore_constants
(
&
XEXP
(
x
,
0
));
*
px
=
XEXP
(
force_const_mem
(
GET_MODE
(
x
),
XEXP
(
x
,
0
)),
0
);
}
else
{
fmt
=
GET_RTX_FORMAT
(
GET_CODE
(
x
));
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
GET_CODE
(
x
));
i
++
)
{
switch
(
*
fmt
++
)
{
case
'E'
:
for
(
j
=
0
;
j
<
XVECLEN
(
x
,
i
);
j
++
)
restore_constants
(
&
XVECEXP
(
x
,
i
,
j
));
break
;
case
'e'
:
restore_constants
(
&
XEXP
(
x
,
i
));
break
;
}
}
}
}
/* Output the assembly language code for the function FNDECL
from its DECL_SAVED_INSNS. Used for inline functions that are output
at end of compilation instead of where they came in the source. */
void
output_inline_function
(
fndecl
)
tree
fndecl
;
{
rtx
head
=
DECL_SAVED_INSNS
(
fndecl
);
rtx
last
;
temporary_allocation
();
current_function_decl
=
fndecl
;
/* This call is only used to initialize global variables. */
init_function_start
(
fndecl
,
"lossage"
,
1
);
/* Redo parameter determinations in case the FUNCTION_...
macros took machine-specific actions that need to be redone. */
assign_parms
(
fndecl
,
1
);
/* Set stack frame size. */
assign_stack_local
(
BLKmode
,
DECL_FRAME_SIZE
(
fndecl
),
0
);
restore_reg_data
(
FIRST_PARM_INSN
(
head
));
stack_slot_list
=
STACK_SLOT_LIST
(
head
);
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_CALLS_ALLOCA
)
current_function_calls_alloca
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_CALLS_SETJMP
)
current_function_calls_setjmp
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_CALLS_LONGJMP
)
current_function_calls_longjmp
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_RETURNS_STRUCT
)
current_function_returns_struct
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_RETURNS_PCC_STRUCT
)
current_function_returns_pcc_struct
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_NEEDS_CONTEXT
)
current_function_needs_context
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_HAS_NONLOCAL_LABEL
)
current_function_has_nonlocal_label
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_RETURNS_POINTER
)
current_function_returns_pointer
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_USES_CONST_POOL
)
current_function_uses_const_pool
=
1
;
if
(
FUNCTION_FLAGS
(
head
)
&
FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE
)
current_function_uses_pic_offset_table
=
1
;
current_function_outgoing_args_size
=
OUTGOING_ARGS_SIZE
(
head
);
current_function_pops_args
=
POPS_ARGS
(
head
);
/* There is no need to output a return label again. */
return_label
=
0
;
expand_function_end
(
DECL_SOURCE_FILE
(
fndecl
),
DECL_SOURCE_LINE
(
fndecl
));
/* Find last insn and rebuild the constant pool. */
for
(
last
=
FIRST_PARM_INSN
(
head
);
NEXT_INSN
(
last
);
last
=
NEXT_INSN
(
last
))
{
if
(
GET_RTX_CLASS
(
GET_CODE
(
last
))
==
'i'
)
{
restore_constants
(
&
PATTERN
(
last
));
restore_constants
(
&
REG_NOTES
(
last
));
}
}
set_new_first_and_last_insn
(
FIRST_PARM_INSN
(
head
),
last
);
set_new_first_and_last_label_num
(
FIRST_LABELNO
(
head
),
LAST_LABELNO
(
head
));
/* Compile this function all the way down to assembly code. */
rest_of_compilation
(
fndecl
);
current_function_decl
=
0
;
permanent_allocation
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment