Commit 11bb1f11 by Jeff Law

Initial revision

From-SVN: r13280
parent 7d41c411
/* Subroutines for insn-output.c for Matsushita MN10300 series
Copyright (C) 1996 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "tree.h"
#include "obstack.h"
void
asm_file_start (file)
FILE *file;
{
fprintf (file, "#\tGCC For the Matsushita MN10300\n");
if (optimize)
fprintf (file, "# -O%d\n", optimize);
else
fprintf (file, "\n\n");
output_file_directive (file, main_input_filename);
}
int
const_costs (r, c)
rtx r;
enum rtx_code c;
{
switch (c)
{
case CONST_INT:
if (INT_8_BITS (INTVAL (r)))
return 0;
else if (INT_16_BITS (INTVAL (r)))
return 1;
else
return 2;
case CONST_DOUBLE:
return 8;
default:
return 4;
}
}
/* Print operand X using operand code CODE to assembly language output file
FILE. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
switch (code)
{
case 'b':
case 'B':
/* These are normal and reversed branches. */
switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
{
case NE:
fprintf (file, "ne");
break;
case EQ:
fprintf (file, "eq");
break;
case GE:
fprintf (file, "ge");
break;
case GT:
fprintf (file, "gt");
break;
case LE:
fprintf (file, "le");
break;
case LT:
fprintf (file, "lt");
break;
case GEU:
fprintf (file, "cc");
break;
case GTU:
fprintf (file, "hi");
break;
case LEU:
fprintf (file, "ls");
break;
case LTU:
fprintf (file, "cs");
break;
default:
abort ();
}
break;
case 'C':
/* This is used for the operand to a call instruction;
if it's a REG, enclose it in parens, else output
the operand normally. */
if (GET_CODE (x) == REG)
{
fputc ('(', file);
print_operand (file, x, 0);
fputc (')', file);
}
else
print_operand (file, x, 0);
break;
default:
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case SUBREG:
fprintf (file, "%s",
reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)]);
break;
case CONST_INT:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
case CODE_LABEL:
print_operand_address (file, x);
break;
default:
abort ();
}
break;
}
}
/* Output assembly language output for the address ADDR to FILE. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
switch (GET_CODE (addr))
{
case REG:
if (addr == stack_pointer_rtx)
print_operand_address (file, gen_rtx (PLUS, SImode,
stack_pointer_rtx,
GEN_INT (0)));
else
print_operand (file, addr, 0);
break;
case PLUS:
{
rtx base, index;
if (REG_P (XEXP (addr, 0))
&& REG_OK_FOR_BASE_P (XEXP (addr, 0)))
base = XEXP (addr, 0), index = XEXP (addr, 1);
else if (REG_P (XEXP (addr, 1))
&& REG_OK_FOR_BASE_P (XEXP (addr, 1)))
base = XEXP (addr, 1), index = XEXP (addr, 0);
else
abort ();
print_operand (file, index, 0);
fputc (',', file);
print_operand (file, base, 0);;
break;
}
case SYMBOL_REF:
output_addr_const (file, addr);
break;
default:
output_addr_const (file, addr);
break;
}
}
void
expand_prologue ()
{
unsigned int size = get_frame_size ();
/* For simplicity, we just movm all the callee saved registers to
the stack with one instruction, then set up the frame pointer
(if needed), and finally allocate the new stack. */
emit_insn (gen_store_movm ());
if (frame_pointer_needed)
{
emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
emit_insn (gen_addsi3 (frame_pointer_rtx,
frame_pointer_rtx,
GEN_INT (20)));
}
if (size)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size)));
}
void
expand_epilogue ()
{
unsigned int size = get_frame_size ();
/* Cut back the stack. */
if (frame_pointer_needed)
{
emit_insn (gen_addsi3 (frame_pointer_rtx,
frame_pointer_rtx,
GEN_INT (-20)));
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
}
else if (size)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (size)));
/* And restore the registers. */
emit_insn (gen_load_movm ());
/* And return. */
emit_jump_insn (gen_return_internal ());
}
/* Update the condition code from the insn. */
void
notice_update_cc (body, insn)
rtx body;
rtx insn;
{
#if 0
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Insn does not affect CC at all. */
break;
case CC_NONE_0HIT:
/* Insn does not change CC, but the 0'th operand has been changed. */
if (cc_status.value1 != 0
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
cc_status.value1 = 0;
break;
case CC_SET_ZN_C0:
/* Insn sets the Z,N flags of CC to recog_operand[0].
V is always set to 0. C may or may not be set to 0 but that's ok
because alter_cond will change tests to use EQ/NE. */
CC_STATUS_INIT;
cc_status.flags |= CC_NO_OVERFLOW;
cc_status.value1 = recog_operand[0];
break;
case CC_SET:
case CC_COMPARE:
/* The insn is a compare instruction. */
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (body);
break;
case CC_CLOBBER:
/* Insn doesn't leave CC in a usable state. */
CC_STATUS_INIT;
break;
}
#endif
CC_STATUS_INIT;
}
/* Return true if OP is a valid call operand. */
int
call_address_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
}
/* What (if any) secondary registers are needed to move IN with mode
MODE into a register from in register class CLASS.
We might be able to simplify this. */
enum reg_class
secondary_reload_class (class, mode, in)
enum reg_class class;
enum machine_mode mode;
rtx in;
{
int regno;
/* Memory loads less than a full word wide can't have an
address or stack pointer destination. They must use
a data register as an intermediate register. */
if (GET_CODE (in) == MEM
&& (mode == QImode || mode == HImode)
&& (class == ADDRESS_REGS || class == SP_REGS))
return DATA_REGS;
/* We can't directly load sp + const_int into a data register;
we must use an address register as an intermediate. */
if (class == DATA_REGS
&& (in == stack_pointer_rtx
|| (GET_CODE (in) == PLUS
&& XEXP (in, 0) == stack_pointer_rtx)))
return ADDRESS_REGS;
/* Get the true register. */
if (GET_CODE (in) == REG)
{
regno = REGNO (in);
if (regno >= FIRST_PSEUDO_REGISTER)
regno = true_regnum (in);
}
/* We can't copy directly from a data register into the stack
pointer. */
if (class == SP_REGS
&& GET_CODE (in) == REG
&& regno < 4)
return ADDRESS_REGS;
/* Otherwise assume no secondary reloads are needed. */
return NO_REGS;
}
/* Definitions of target machine for GNU compiler.
Matsushita MN10300 series
Copyright (C) 1996 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "svr4.h"
#undef ASM_SPEC
#undef ASM_FINAL_SPEC
#undef LIB_SPEC
#undef ENDFILE_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{ "", TARGET_DEFAULT}}
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (MN10300)");
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the Matsushita MN1003. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* This is not true on the Matsushita MN10300. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered.
This is not true on the Matsushita MN10300. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* The stack goes in 32 bit lumps. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function.
8 is the minimum boundary; it's unclear if bigger alignments
would improve performance. */
#define FUNCTION_BOUNDARY 8
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 9
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 0, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you
like. */
#define CALL_USED_REGISTERS \
{ 1, 1, 0, 0, 1, 1, 0, 0, 1}
#define REG_ALLOC_ORDER \
{ 0, 1, 4, 5, 2, 3, 6, 7, 8}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(REGNO_REG_CLASS (REGNO) == DATA_REGS \
? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
: ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class {
NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, DATA_OR_ADDRESS_REGS, DATA_OR_SP_REGS, SP_OR_ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
"SP_REGS", "DATA_OR_ADDRESS_REGS", "DATA_OR_SP_REGS", \
"SP_OR_ADDRESS_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ 0, /* No regs */ \
0x00f, /* DATA_REGS */ \
0x0f0, /* ADDRESS_REGS */ \
0x100, /* SP_REGS */ \
0x0ff, /* DATA_OR_ADDRESS_REGS */\
0x00f, /* DATA_OR_SP_REGS */ \
0x0f0, /* SP_OR_ADDRESS_REGS */\
0x0ff, /* GENERAL_REGS */ \
0x0ff, /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) < 4 ? DATA_REGS : \
(REGNO) < 8 ? ADDRESS_REGS : \
(REGNO) == 8 ? SP_REGS: 0)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS DATA_REGS
#define BASE_REG_CLASS SP_OR_ADDRESS_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'd' ? DATA_REGS : \
(C) == 'a' ? ADDRESS_REGS : \
(C) == 'x' ? SP_REGS : NO_REGS)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(regno) \
(((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
|| (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_INDEX_P(regno) \
(((regno) >= 0 && regno < 4) \
|| (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class(CLASS,MODE,IN)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
#define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
#define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
#define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
(C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
`G' is a floating-point zero. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET -20
/* Offset of first parameter from the argument pointer register value. */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
saved since the value is used before we know. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 8
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 7
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 7
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 5
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c.
Currently we always need a frame pointer. In the future we'd like
to be able to eliminate it. */
#define FRAME_POINTER_REQUIRED 1
/* Store in the variable DEPTH the initial difference between the
frame pointer reg contents and the stack pointer reg contents,
as of the start of the function body. This depends on the layout
of the fixed parts of the stack frame and on how registers are saved. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
/* A guess for the MN10300. */
#define PROMOTE_PROTOTYPES 1
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* 1 if N is a possible register number for function argument passing.
On the MN10300, no registers are used in this way. */
#define FUNCTION_ARG_REGNO_P(N) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the MN10300, this is a single integer, which is a number of bytes
of arguments scanned so far. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the MN10300, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM) = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the MN10300 all args are pushed. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
/* Return values > 8 bytes in length in memory. */
#define DEFAULT_PCC_STRUCT_RETURN 0
#define RETURN_IN_MEMORY(TYPE) \
(int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
/* Register in which address to store a structure value
is passed to a function. On the MN10300 it's passed as
the first parameter. */
#define STRUCT_VALUE 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) ;
#define TRAMPOLINE_TEMPLATE(FILE) \
do { \
fprintf (FILE, "\tadd -4,sp\n"); \
fprintf (FILE, "\t.long 0x0004fffa\n"); \
fprintf (FILE, "\tadd 4,sp\n"); \
fprintf (FILE, "\tmov mdr,d0\n"); \
fprintf (FILE, "\tmov d0,a0\n"); \
fprintf (FILE, "\tmov (15,a0),a1\n"); \
fprintf (FILE, "\tmov (19,a0),a0\n"); \
fprintf (FILE, "\tjmp (a0)\n"); \
fprintf (FILE, "\t.long 0\n"); \
fprintf (FILE, "\t.long 0\n"); \
} while (0)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 0x1d
#define TRAMPOLINE_ALIGNMENT 32
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x16)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x1a)), \
(FNADDR)); \
}
/* Addressing modes, and classification of registers for them. */
/* 1 if X is an rtx for a constant that is a valid address. */
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
/* Extra constraints. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
((REGNO (X) >= 4 && REGNO(X) <= 8) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually
machine-independent. */
/* Accept either REG or SUBREG where a register is valid. */
#define RTX_OK_FOR_BASE_P(X) \
((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (CONSTANT_ADDRESS_P (X)) \
goto ADDR; \
if (RTX_OK_FOR_BASE_P (X)) \
goto ADDR; \
if (GET_CODE (X) == PLUS) \
{ \
rtx base = 0, index = 0; \
if (REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
base = XEXP (X, 0), index = XEXP (X, 1); \
if (REG_P (XEXP (X, 1)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
base = XEXP (X, 1), index = XEXP (X, 0); \
if (base != 0 && index != 0) \
{ \
if (GET_CODE (index) == CONST_INT) \
goto ADDR; \
if (GET_CODE (index) == REG \
&& REG_OK_FOR_INDEX_P (index)) \
goto ADDR; \
} \
} \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT) \
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the vax. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
default: { int _zxy= const_costs(RTX, CODE); \
if(_zxy) return _zxy; break;}
#define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
/* A crude cut at RTX_COSTS for the MN10300. */
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE.
There aren't DImode MOD, DIV or MULT operations, so call them
very expensive. Everything else is pretty much a costant cost. */
#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
case MOD: \
case DIV: \
return 60; \
case MULT: \
return 20;
/* Nonzero if access to memory by bytes or half words is no faster
than accessing full words. */
#define SLOW_BYTE_ACCESS 1
/* According expr.c, a value of around 6 should minimize code size, and
for the MN10300 series, that's our primary concern. */
#define MOVE_RATIO 6
#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#define BSS_SECTION_ASM_OP "\t.section .bss"
/* Output at beginning/end of assembler file. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) asm_file_start(FILE)
#define ASM_COMMENT_START "#"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
/* This is how to output an assembler line defining a `double' constant.
It is .dfloat or .gfloat, depending. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.double %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.float %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE, VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
( fprintf (FILE, "\t.hword "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* This says how to output the assembler to define a global
uninitialized but not common symbol.
Try to use asm_output_bss to implement this macro. */
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
do { \
char* real_name; \
STRIP_NAME_ENCODING (real_name, (NAME)); \
fprintf (FILE, "_%s", real_name); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
/* This is how we tell the assembler that two symbols have the same value. */
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
do { assemble_name(FILE, NAME1); \
fputs(" = ", FILE); \
assemble_name(FILE, NAME2); \
fputc('\n', FILE); } while (0)
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "sp" }
/* Print an instruction operand X on file FILE.
look in mn10300.c for details */
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* We don't have to worry about dbx compatability for the mn10300. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Use stabs debugging info by default. */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
#define DBX_REGISTER_NUMBER(REGNO) REGNO
/* Define to use software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define this if the case instruction drops through after the table
when the index is out of range. Don't define it if the case insn
jumps to the default label instead. */
#define CASE_DROPS_THROUGH
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define STORE_FLAG_VALUE 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* The assembler op to get a word. */
#define FILE_ASM_OP "\t.file\n"
extern void asm_file_start ();
extern int const_costs ();
extern void print_operand ();
extern void print_operand_address ();
extern void expand_prologue ();
extern void expand_epilogue ();
extern void notice_update_cc ();
extern int call_address_operand ();
extern enum reg_class secondary_reload_class ();
;; GCC machine description for Matsushita MN10300
;; Copyright (C) 1996 Free Software Foundation, Inc.
;; Contributed by Jeff Law (law@cygnus.com).
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Condition code settings.
;; none - insn does not affect cc
;; none_0hit - insn does not affect cc but it does modify operand 0
;; This attribute is used to keep track of when operand 0 changes.
;; See the description of NOTICE_UPDATE_CC for more info.
;; set - insn sets flags z,n. v,c are set to 0.
;; (c may not really be set to 0 but that's ok, we don't need it anyway).
;; set_zn_c0 - insn sets z,n to usable values. v is unknown. c may or may not
;; be known (if it isn't that's ok, we don't need it anyway).
;; compare - compare instruction
;; clobber - value of cc is unknown
(define_attr "cc" "none,none_0hit,set,set_zn_c0,compare,clobber"
(const_string "clobber"))
;; ----------------------------------------------------------------------
;; MOVE INSTRUCTIONS
;; ----------------------------------------------------------------------
;; movqi
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand0, QImode)
&& !register_operand (operand1, QImode))
operands[1] = copy_to_mode_reg (QImode, operand1);
}")
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=d,a,d,d,a,d,a,d,m")
(match_operand:QI 1 "general_operand" "0,0,I,a,d,di,ia,m,d"))]
"register_operand (operands[0], QImode)
|| register_operand (operands[1], QImode)"
"@
nop
nop
clr %0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
movbu %1,%0
movbu %1,%0"
[(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
;; movhi
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, HImode)
&& !register_operand (operand0, HImode))
operands[1] = copy_to_mode_reg (HImode, operand1);
}")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d,a,d,d,a,d,a,d,m")
(match_operand:HI 1 "general_operand" "0,0,I,a,d,di,ia,m,d"))]
"register_operand (operands[0], HImode)
|| register_operand (operands[1], HImode)"
"@
nop
nop
clr %0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
movhu %1,%0
movhu %1,%0"
[(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
;; movsi and helpers
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, SImode)
&& !register_operand (operand0, SImode))
operands[1] = copy_to_mode_reg (SImode, operand1);
}")
;; We could improve loading of some constants with a little work.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d,a,d,dm,dm,am,am,d,d,a,a,a,x")
(match_operand:SI 1 "general_operand" "0,0,I,d,a,d,a,dim,aim,dim,aim,x,a"))]
"register_operand (operands[0], SImode)
|| register_operand (operands[1], SImode)"
"@
nop
nop
clr %0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0"
[(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, SFmode)
&& !register_operand (operand0, SFmode))
operands[1] = copy_to_mode_reg (SFmode, operand1);
}")
;; We could improve loading of some constants with a little work.
(define_insn ""
[(set (match_operand:SF 0 "general_operand" "=d,a,d,dam,da")
(match_operand:SF 1 "general_operand" "0,0,G,da,daim"))]
"register_operand (operands[0], SFmode)
|| register_operand (operands[1], SFmode)"
"@
nop
nop
clr %0
mov %1,%0
mov %1,%0"
[(set_attr "cc" "none,none,clobber,none_0hit,none_0hit")])
;; ----------------------------------------------------------------------
;; TEST INSTRUCTIONS
;; ----------------------------------------------------------------------
;; Go ahead and define tstsi so we can eliminate redundant tst insns
;; when we start trying to optimize this port.
(define_insn "tstsi"
[(set (cc0) (match_operand:SI 0 "register_operand" "da"))]
""
"cmp 0,%0"
[(set_attr "cc" "set")])
(define_insn "cmpsi"
[(set (cc0)
(compare:SI (match_operand:SI 0 "register_operand" "da")
(match_operand:SI 1 "nonmemory_operand" "dai")))]
""
"cmp %1,%0"
[(set_attr "cc" "compare")])
;; ----------------------------------------------------------------------
;; ADD INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_expand "addsi3"
[(set (match_operand:SI 0 "register_operand" "=da,a,da,x")
(plus:SI (match_operand:SI 1 "register_operand" "%0,0,0,0")
(match_operand:SI 2 "nonmemory_operand" "J,L,dai,i")))]
""
"
{
/* We can't add a variable amount directly to the stack pointer;
so do so via a temporary register. */
if (operands[0] == stack_pointer_rtx
&& GET_CODE (operands[1]) != CONST_INT
&& GET_CODE (operands[2]) != CONST_INT)
{
rtx temp = gen_reg_rtx (SImode);
emit_move_insn (temp, gen_rtx (PLUS, SImode, operands[1], operands[2]));
emit_move_insn (operands[0], temp);
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=da,a,da,x")
(plus:SI (match_operand:SI 1 "register_operand" "%0,0,0,0")
(match_operand:SI 2 "nonmemory_operand" "J,L,dai,i")))]
""
"@
inc %0
inc4 %0
add %2,%0
add %2,%0"
[(set_attr "cc" "none_0hit,none_0hit,set,none_0hit")])
;; ----------------------------------------------------------------------
;; SUBTRACT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=da")
(minus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "dai")))]
""
"sub %2,%0"
[(set_attr "cc" "set")])
(define_expand "negsi2"
[(set (match_operand:SI 0 "register_operand" "")
(neg:SI (match_operand:SI 1 "register_operand" "")))]
""
"
{
rtx target = gen_reg_rtx (SImode);
emit_move_insn (target, GEN_INT (0));
emit_insn (gen_subsi3 (target, target, operands[1]));
emit_move_insn (operands[0], target);
DONE;
}")
;; ----------------------------------------------------------------------
;; MULTIPLY INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(mult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "d")))]
""
"mul %2,%0"
[(set_attr "cc" "set")])
(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(div:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "d")))]
""
"ext %0\;div %2,%0"
[(set_attr "cc" "set")])
(define_expand "udivsi3"
[(set (match_operand:SI 0 "register_operand" "")
(udiv:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))]
""
"
{
rtx reg = gen_reg_rtx (SImode);
emit_move_insn (reg, GEN_INT (0));
emit_insn (gen_clear_mdr (reg));
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=d")
(udiv:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "d")))]
""
"divu %2,%0"
[(set_attr "cc" "set")])
(define_insn "clear_mdr"
[(unspec_volatile [(const_int 2)] 0)
(use (match_operand:SI 0 "register_operand" "d"))]
""
"mov %0,mdr"
[(set_attr "cc" "clobber")])
;; ----------------------------------------------------------------------
;; AND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(and:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "nonmemory_operand" "di")))]
""
"and %2,%0"
[(set_attr "cc" "set_zn_c0")])
;; ----------------------------------------------------------------------
;; OR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(ior:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "nonmemory_operand" "di")))]
""
"or %2,%0"
[(set_attr "cc" "set_zn_c0")])
;; ----------------------------------------------------------------------
;; XOR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(xor:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "nonmemory_operand" "di")))]
""
"xor %2,%0"
[(set_attr "cc" "set_zn_c0")])
;; ----------------------------------------------------------------------
;; NOT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(not:SI (match_operand:SI 1 "register_operand" "0")))]
""
"not %0"
[(set_attr "cc" "set_zn_c0")])
;; -----------------------------------------------------------------
;; BIT FIELDS
;; -----------------------------------------------------------------
;; Is it worth defining insv and extv for the MN10300 series?!?
;; probably so.
;; -----------------------------------------------------------------
;; Scc INSTRUCTIONS
;; -----------------------------------------------------------------
;; It's probably worth the time to define setcc type insns too
;; ----------------------------------------------------------------------
;; JUMP INSTRUCTIONS
;; ----------------------------------------------------------------------
;; Conditional jump instructions
(define_expand "ble"
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bge"
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "blt"
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "beq"
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bne"
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"b%B1 0f\\n\\tjmp %0\\n0:"
[(set_attr "cc" "none")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"b%b1 0f\\n\\tjmp %0\\n0:"
[(set_attr "cc" "none")])
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %l0"
[(set_attr "cc" "none")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "a"))]
""
"jmp (%0)"
[(set_attr "cc" "none")])
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "register_operand" "a"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp (%0)"
[(set_attr "cc" "none")])
;; Call subroutine with no return value.
(define_expand "call"
[(call (match_operand:QI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-4)));
if (! call_address_operand (XEXP (operands[0], 0)))
XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
emit_call_insn (gen_call_internal (XEXP (operands[0], 0), operands[1]));
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (4)));
DONE;
}")
(define_insn "call_internal"
[(call (mem:QI (match_operand:SI 0 "call_address_operand" "aS"))
(match_operand:SI 1 "general_operand" "g"))]
""
"calls %C0"
[(set_attr "cc" "clobber")])
;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_expand "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
"
{
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-4)));
if (! call_address_operand (XEXP (operands[1], 0)))
XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
emit_call_insn (gen_call_value_internal (operands[0],
XEXP (operands[1], 0),
operands[2]));
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (4)));
DONE;
}")
(define_insn "call_value_internal"
[(set (match_operand 0 "" "=d")
(call (mem:QI (match_operand:SI 1 "call_address_operand" "aS"))
(match_operand:SI 2 "general_operand" "g")))]
""
"calls %C1"
[(set_attr "cc" "clobber")])
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "cc" "none")])
;; ----------------------------------------------------------------------
;; EXTEND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(zero_extend:SI
(match_operand:HI 1 "register_operand" "0")))]
""
"exthu %0"
[(set_attr "cc" "set_zn_c0")])
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(zero_extend:SI
(match_operand:QI 1 "register_operand" "0")))]
""
"extbu %0"
[(set_attr "cc" "set_zn_c0")])
;;- sign extension instructions
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(sign_extend:SI
(match_operand:HI 1 "register_operand" "0")))]
""
"exth %0"
[(set_attr "cc" "set_zn_c0")])
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=d")
(sign_extend:SI
(match_operand:QI 1 "register_operand" "0")))]
""
"extb %0"
[(set_attr "cc" "set_zn_c0")])
;; ----------------------------------------------------------------------
;; SHIFTS
;; ----------------------------------------------------------------------
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=d,d")
(ashift:SI
(match_operand:SI 1 "register_operand" "0,0")
(match_operand:QI 2 "nonmemory_operand" "K,di")))]
""
"@
asl2 %0
asl %2,%0"
[(set_attr "cc" "set_zn_c0")])
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(lshiftrt:SI
(match_operand:SI 1 "register_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "di")))]
""
"lsr %2,%0"
[(set_attr "cc" "set_zn_c0")])
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(ashiftrt:SI
(match_operand:SI 1 "register_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "di")))]
""
"asr %2,%0"
[(set_attr "cc" "set_zn_c0")])
;; ----------------------------------------------------------------------
;; PROLOGUE/EPILOGUE
;; ----------------------------------------------------------------------
(define_expand "prologue"
[(const_int 0)]
""
"expand_prologue (); DONE;")
(define_expand "epilogue"
[(return)]
""
"
{
expand_epilogue ();
DONE;
}")
(define_insn "return"
[(return)]
"0"
"rets"
[(set_attr "cc" "clobber")])
(define_insn "return_internal"
[(const_int 0)
(return)]
""
"rets"
[(set_attr "cc" "clobber")])
(define_insn "store_movm"
[(const_int 1)]
""
"movm [d2,d3,a2,a3],(sp)"
[(set_attr "cc" "none")])
(define_insn "load_movm"
[(const_int 2)]
""
"movm (sp),[d2,d3,a2,a3]"
[(set_attr "cc" "none")])
LIBGCC1=libgcc1.null
CROSS_LIBGCC1=libgcc1.null
# These are really part of libgcc1, but this will cause them to be
# built correctly, so...
LIB2FUNCS_EXTRA = fp-bit.c dp-bit.c
dp-bit.c: $(srcdir)/config/fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' > dp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>dp-bit.c
echo '#endif' >> dp-bit.c
cat $(srcdir)/config/fp-bit.c >> dp-bit.c
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' >> fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>fp-bit.c
echo '#endif' >> fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
/* Configuration for Matsushita MN10300.
Copyright (C) 1996 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* #defines that need visibility everywhere. */
#define FALSE 0
#define TRUE 1
/* This describes the machine the compiler is hosted on. */
#define HOST_BITS_PER_CHAR 8
#define HOST_BITS_PER_SHORT 16
#define HOST_BITS_PER_INT 32
#define HOST_BITS_PER_LONG 32
#define HOST_BITS_PER_LONGLONG 64
/* Arguments to use with `exit'. */
#define SUCCESS_EXIT_CODE 0
#define FATAL_EXIT_CODE 33
/* target machine dependencies.
tm.h is a symbolic link to the actual target specific file. */
#include "tm.h"
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment