Commit 0b85d816 by Hans-Peter Nilsson Committed by Hans-Peter Nilsson

config.gcc: Add cris-*-aout, cris-*-elf, cris-*-none, cris-*-linux* cases.

	* config.gcc: Add cris-*-aout, cris-*-elf, cris-*-none,
	cris-*-linux* cases.
	* config/cris/cris-protos.h: New file.
	* config/cris/cris.c: New file.
	* config/cris/cris.h: New file.
	* config/cris/cris.md: New file.
	* config/cris/linux.h: New file.
	* config/cris/aout.h: New file.
	* config/cris/arit.c: New file.
	* config/cris/cris_abi_symbol.c: New file.
	* config/cris/mulsi3.asm: New file.
	* config/cris/t-aout: New file.
	* config/cris/t-cris: New file.
	* config/cris/t-elfmulti: New file.
	* config/cris/t-linux: New file.
	* doc/invoke.texi: Add CRIS options.
	* doc/install.texi (Specific): Add blurb for CRIS.

From-SVN: r46191
parent 1567080c
2001-10-11 Hans-Peter Nilsson <hp@axis.com>
* config.gcc: Add cris-*-aout, cris-*-elf, cris-*-none,
cris-*-linux* cases.
* config/cris/cris-protos.h: New file.
* config/cris/cris.c: New file.
* config/cris/cris.h: New file.
* config/cris/cris.md: New file.
* config/cris/linux.h: New file.
* config/cris/aout.h: New file.
* config/cris/arit.c: New file.
* config/cris/cris_abi_symbol.c: New file.
* config/cris/mulsi3.asm: New file.
* config/cris/t-aout: New file.
* config/cris/t-cris: New file.
* config/cris/t-elfmulti: New file.
* config/cris/t-linux: New file.
* doc/invoke.texi: Add CRIS options.
* doc/install.texi (Specific): Add blurb for CRIS.
2001-10-10 Hartmut Schirmer <SchirmerH@Innovative-Systems.de>
* config/float-i128.h: Make sure __STDC__VERSION__ is defined
......
......@@ -657,6 +657,27 @@ clipper-intergraph-clix*)
extra_parts="crtbegin.o crtend.o"
install_headers_dir=install-headers-cpio
;;
cris-*-aout)
tm_file="dbxelf.h cris/cris.h cris/aout.h"
gas=yes
tmake_file="cris/t-cris cris/t-aout"
;;
cris-*-elf | cris-*-none)
tm_file="elfos.h cris/cris.h"
tmake_file="cris/t-cris cris/t-elfmulti"
gas=yes
;;
cris-*-linux*)
tm_file="linux.h cris/cris.h cris/linux.h"
tmake_file="cris/t-cris t-slibgcc-elf-ver cris/t-linux"
extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
case x${enable_threads} in
x | xyes | xpthreads | xposix)
thread_file=posix
;;
esac
gas=yes
;;
d30v-*)
float_format=i64
;;
......
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 2001 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
/* This file defines the macros for a.out that are not covered by cris.h.
Many macros are copied from elfos.h and should be in some generic
config/gas-aout.h. */
/* Node: Driver */
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{melinux:crt0.o%s}\
%{!melinux:\
%{sim2:s2crt0.o%s}\
%{!sim2:\
%{sim:scrt0.o%s}\
%{!sim:%{pg:gcrt0.o%s}\
%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}}}"
/* Which library to get. The only difference from the default is to get
libsc.a if -sim is given to the driver. Repeat -lc -lsysX
{X=sim,linux}, because libsysX needs (at least) errno from libc, and
then we want to resolve new unknowns in libc against libsysX, not
libnosys. Assume everything is in libc for -mlinux. */
#undef LIB_SPEC
#define LIB_SPEC \
"%{melinux:-lc -lsyslinux -lc -lsyslinux -lic}\
%{!melinux:\
%{sim*:-lc -lsyssim -lc -lsyssim}\
%{!sim*:%{g*:-lg}\
%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} -lbsp}\
-lnosys}"
#undef CRIS_CPP_SUBTARGET_SPEC
#define CRIS_CPP_SUBTARGET_SPEC \
"-D__AOUT__\
%{melinux:-D__linux__ -D__unix__ -D__elinux__ -D__uclinux__\
%{!nostdinc:\
%{!mbest-lib-options:%{isystem*}}\
-isystem elinux/include%s\
%{mbest-lib-options:%{isystem*}}}\
%{!ansi:%{!std=*:%{!undef:-Dlinux -Dunix -Delinux -Duclinux}}}}\
%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!metrax*:%{!mcpu=*:-D__tune_v8 -D__CRIS_arch_tune=8}}}}}"
#undef CRIS_CC1_SUBTARGET_SPEC
#define CRIS_CC1_SUBTARGET_SPEC \
"%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!mcpu=*:-mtune=v8}}}}"
#undef CRIS_ASM_SUBTARGET_SPEC
#define CRIS_ASM_SUBTARGET_SPEC "--em=crisaout"
#undef CRIS_LINK_SUBTARGET_SPEC
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcrisaout\
%{sim2:%{!T*:-Tdata 0x4000000 -Tbss 0x8000000}}\
%{melinux:-Ur -d\
%{!shlib:%{!symbolic:-Bstatic}}\
%{shlib:-Bdynamic}\
%{symbolic:-Bdynamic}\
%{static:-Bstatic}}\
%{melinux-stacksize=*:-defsym __Stacksize=%*}"
#undef CRIS_SUBTARGET_SWITCHES
#define CRIS_SUBTARGET_SWITCHES \
{"elinux", (TARGET_MASK_SVINTO \
+ TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN \
+ TARGET_MASK_ETRAX4_ADD \
+ TARGET_MASK_ALIGN_BY_32), \
N_("Compile for the MMU-less Etrax 100-based elinux system")}, \
/* Legacy option. */ \
{"aout", 0, ""},
#undef CRIS_SUBTARGET_LONG_OPTIONS
#define CRIS_SUBTARGET_LONG_OPTIONS \
{"elinux-stacksize=", &cris_elinux_stacksize_str, \
N_("For elinux, request a specified stack-size for this program")}, \
#undef CRIS_SUBTARGET_VERSION
#define CRIS_SUBTARGET_VERSION " - a.out"
#undef CRIS_SUBTARGET_DEFAULT
#define CRIS_SUBTARGET_DEFAULT 0
/* Node: Storage Layout */
/* We can align to 16 bits (only) with CRIS a.out. */
#define MAX_OFILE_ALIGNMENT 16
/* Node: Library Calls */
#define TARGET_MEM_FUNCTIONS
/* Node: Data Output */
#define ESCAPES \
"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
/* Some svr4 assemblers have a limit on the number of characters which
can appear in the operand of a .string directive. If your assembler
has such a limitation, you should define STRING_LIMIT to reflect that
limit. Note that at least some svr4 assemblers have a limit on the
actual number of bytes in the double-quoted string, and that they
count each character in an escape sequence as one byte. Thus, an
escape sequence like \377 would count as four bytes.
If your target assembler doesn't support the .string directive, you
should define this to zero. */
#define STRING_LIMIT ((unsigned) 256)
#define STRING_ASM_OP "\t.string\t"
#define ASCII_DATA_ASM_OP "\t.ascii\t"
#define TYPE_ASM_OP "\t.type\t"
#define SIZE_ASM_OP "\t.size\t"
#define TYPE_OPERAND_FMT "@%s"
/* The routine used to output NUL terminated strings. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable, especially for targets like the i386
(where the only alternative is to output character sequences as
comma separated lists of numbers). */
#define ASM_OUTPUT_LIMITED_STRING(FILE, STR) \
do \
{ \
register const unsigned char *_limited_str = \
(const unsigned char *) (STR); \
register unsigned ch; \
\
fprintf ((FILE), "%s\"", STRING_ASM_OP); \
\
for (; (ch = *_limited_str); _limited_str++) \
{ \
register int escape; \
\
switch (escape = ESCAPES[ch]) \
{ \
case 0: \
putc (ch, (FILE)); \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
break; \
} \
} \
\
fprintf ((FILE), "\"\n"); \
} \
while (0)
/* The routine used to output sequences of byte values. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable. Note that if we find subparts of the
character sequence which end with NUL (and which are shorter than
STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \
do \
{ \
register const unsigned char *_ascii_bytes = \
(const unsigned char *) (STR); \
register const unsigned char *limit = _ascii_bytes + (LENGTH); \
register unsigned bytes_in_chunk = 0; \
\
for (; _ascii_bytes < limit; _ascii_bytes++) \
{ \
register const unsigned char *p; \
\
if (bytes_in_chunk >= 60) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
\
for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \
continue; \
\
if (p < limit && (p - _ascii_bytes) <= (long)STRING_LIMIT) \
{ \
if (bytes_in_chunk > 0) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
\
ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \
_ascii_bytes = p; \
} \
else \
{ \
register int escape; \
register unsigned ch; \
\
if (bytes_in_chunk == 0) \
fprintf ((FILE), "%s\"", ASCII_DATA_ASM_OP); \
\
switch (escape = ESCAPES[ch = *_ascii_bytes]) \
{ \
case 0: \
putc (ch, (FILE)); \
bytes_in_chunk++; \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
bytes_in_chunk += 4; \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
bytes_in_chunk += 2; \
break; \
} \
} \
} \
\
if (bytes_in_chunk > 0) \
fprintf ((FILE), "\"\n"); \
} \
while (0)
/* Node: Label Output */
#define SET_ASM_OP "\t.set\t"
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
ASM_GLOBALIZE_LABEL (FILE, XSTR (FUN, 0))
#define ASM_WEAKEN_LABEL(FILE, NAME) \
do \
{ \
fputs ("\t.weak\t", (FILE)); \
assemble_name ((FILE), (NAME)); \
fputc ('\n', (FILE)); \
} \
while (0)
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do \
{ \
fprintf (FILE, "%s", TYPE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
putc ('\n', FILE); \
\
ASM_OUTPUT_LABEL(FILE, NAME); \
} \
while (0)
#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
do \
{ \
fprintf (FILE, "%s", TYPE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, TYPE_OPERAND_FMT, "object"); \
putc ('\n', FILE); \
\
size_directive_output = 0; \
\
if (!flag_inhibit_size_directive \
&& (DECL) && DECL_SIZE (DECL)) \
{ \
size_directive_output = 1; \
fprintf (FILE, "%s", SIZE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, \
int_size_in_bytes (TREE_TYPE (DECL))); \
fputc ('\n', FILE); \
} \
\
ASM_OUTPUT_LABEL (FILE, NAME); \
} \
while (0)
#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END)\
do \
{ \
const char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
\
if (!flag_inhibit_size_directive \
&& DECL_SIZE (DECL) \
&& ! AT_END && TOP_LEVEL \
&& DECL_INITIAL (DECL) == error_mark_node \
&& !size_directive_output) \
{ \
size_directive_output = 1; \
fprintf (FILE, "%s", SIZE_ASM_OP); \
assemble_name (FILE, name); \
putc (',', FILE); \
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, \
int_size_in_bytes (TREE_TYPE (DECL))); \
fputc ('\n', FILE); \
} \
} \
while (0)
#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
do \
{ \
if (!flag_inhibit_size_directive) \
{ \
char label[256]; \
static int labelno; \
\
labelno++; \
\
ASM_GENERATE_INTERNAL_LABEL (label, "Lfe", labelno); \
ASM_OUTPUT_INTERNAL_LABEL (FILE, "Lfe", labelno); \
\
fprintf (FILE, "%s", SIZE_ASM_OP); \
assemble_name (FILE, (FNAME)); \
fprintf (FILE, ","); \
assemble_name (FILE, label); \
fprintf (FILE, "-"); \
assemble_name (FILE, (FNAME)); \
putc ('\n', FILE); \
} \
} \
while (0)
/* Node: Alignment Output */
#define SKIP_ASM_OP "\t.zero\t"
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
fprintf (FILE, "%s%u\n", SKIP_ASM_OP, (SIZE))
/* Node: All Debuggers */
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
/* Node: Misc */
#define HANDLE_SYSV_PRAGMA
/* In theory, this one isn't necessary, but over time, external tools have
been primed on names with "." rather than "$". */
#define NO_DOLLAR_IN_LABEL
/* These are undocumented, but to keep a single
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON, we set this to an asm that will
emit an error if ever output. It will not be emitted for a.out modulo
careless hacking. */
#define COMMON_ASM_OP "\t.err\t"
#define LOCAL_ASM_OP "\t.err\t"
#if defined(__CRIS__) && defined (__AOUT__) && defined (IN_GCC)
#define CRIS_ABI_VERSION_SYMBOL_STRING ".$CRIS_ABI_V2"
/* Make all a.out library functions have undefined references to the
.$CRIS_ABI_V2 symbol, so it will be picked up. Used by GDB. GDB has
a bug with reading a.out symbols; it does not see the GNU weak
extensions, so we can't have .$CRIS_ABI_V2 weak. Weak. */
__asm__ (".set .$abi_referer," CRIS_ABI_VERSION_SYMBOL_STRING);
#endif
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/* Signed and unsigned multiplication and division and modulus for CRIS.
Contributed by Axis Communications.
Written by Hans-Peter Nilsson <hp@axis.se>, c:a 1992.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
As a special exception, if you link this library with files, some of
which are compiled with GCC, this library does not by itself cause
the resulting object or executable to be covered by the GNU General
Public License.
This exception does not however invalidate any other reasons why
the executable file or object might be covered by the GNU General
Public License. */
/* Note that we provide prototypes for all "const" functions, to attach
the const attribute. This is necessary in 2.7.2 - adding the
attribute to the function *definition* is a syntax error.
This did not work with e.g. 2.1; back then, the return type had to
be "const". */
#include "config.h"
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 3
#define LZ(v) __extension__ \
({ int tmp_; __asm__ ("lz %1,%0" : "=r" (tmp_) : "r" (v)); tmp_; })
#endif
#if defined (L_udivsi3) || defined (L_divsi3) || defined (L_umodsi3) \
|| defined (L_modsi3)
/* Result type of divmod worker function. */
struct quot_rem
{
long quot;
long rem;
};
/* This is the worker function for div and mod. It is inlined into the
respective library function. */
static __inline__ struct quot_rem
do_31div (unsigned long a, unsigned long b) __attribute__ ((__const__));
static __inline__ struct quot_rem
do_31div (unsigned long a, unsigned long b)
{
/* Adjust operands and result if a is 31 bits. */
long extra = 0;
int quot_digits = 0;
if (b == 0)
{
struct quot_rem ret;
ret.quot = 0xffffffff;
ret.rem = 0xffffffff;
return ret;
}
if (a < b)
return (struct quot_rem) { 0, a };
#ifdef LZ
if (b <= a)
{
quot_digits = LZ (b) - LZ (a);
quot_digits += (a >= (b << quot_digits));
b <<= quot_digits;
}
#else
while (b <= a)
{
b <<= 1;
quot_digits++;
}
#endif
/* Is a 31 bits? Note that bit 31 is handled by the caller. */
if (a & 0x40000000)
{
/* Then make b:s highest bit max 0x40000000, because it must have
been 0x80000000 to be 1 bit higher than a. */
b >>= 1;
/* Adjust a to be maximum 0x3fffffff, i.e. two upper bits zero. */
if (a >= b)
{
a -= b;
extra = 1 << (quot_digits - 1);
}
else
{
a -= b >> 1;
/* Remember that we adjusted a by subtracting b * 2 ** Something. */
extra = 1 << quot_digits;
}
/* The number of quotient digits will be one less, because
we just adjusted b. */
quot_digits--;
}
/* Now do the division part. */
/* Subtract b and add ones to the right when a >= b
i.e. "a - (b - 1) == (a - b) + 1". */
b--;
#define DS __asm__ ("dstep %2,%0" : "=r" (a) : "0" (a), "r" (b))
switch (quot_digits)
{
case 32: DS; case 31: DS; case 30: DS; case 29: DS;
case 28: DS; case 27: DS; case 26: DS; case 25: DS;
case 24: DS; case 23: DS; case 22: DS; case 21: DS;
case 20: DS; case 19: DS; case 18: DS; case 17: DS;
case 16: DS; case 15: DS; case 14: DS; case 13: DS;
case 12: DS; case 11: DS; case 10: DS; case 9: DS;
case 8: DS; case 7: DS; case 6: DS; case 5: DS;
case 4: DS; case 3: DS; case 2: DS; case 1: DS;
case 0:;
}
{
struct quot_rem ret;
ret.quot = (a & ((1 << quot_digits) - 1)) + extra;
ret.rem = a >> quot_digits;
return ret;
}
}
/* Note that unsigned and signed division both build when L_divsi3, but
the unsigned variant is then inlined, as with do_31div above. */
#if defined (L_udivsi3) || defined (L_divsi3)
#ifndef L_udivsi3
static __inline__
#endif
unsigned long
__Udiv (unsigned long a, unsigned long b) __attribute__ ((__const__));
#ifndef L_udivsi3
static __inline__
#endif
unsigned long
__Udiv (unsigned long a, unsigned long b)
{
long extra = 0;
/* Adjust operands and result, if a and/or b is 32 bits. */
/* Effectively: b & 0x80000000. */
if ((long) b < 0)
return a >= b;
/* Effectively: a & 0x80000000. */
if ((long) a < 0)
{
int tmp = 0;
if (b == 0)
return 0xffffffff;
#ifdef LZ
tmp = LZ (b);
#else
for (tmp = 31; (((long) b & (1 << tmp)) == 0); tmp--)
;
tmp = 31 - tmp;
#endif
if ((b << tmp) > a)
{
extra = 1 << (tmp-1);
a -= b << (tmp - 1);
}
else
{
extra = 1 << tmp;
a -= b << tmp;
}
}
return do_31div (a, b).quot+extra;
}
#ifdef L_divsi3
long
__Div (long a, long b) __attribute__ ((__const__));
long
__Div (long a, long b)
{
long sign;
long result;
/* Do *not* call do_31div since abs (-2147483648) == 2147483648
<=> abs (-0x80000000) == 0x80000000
which is still 32 bits. */
sign = a ^ b;
result = __Udiv (abs (a), abs (b));
return (sign < 0) ? -result : result;
}
#endif /* L_divsi3 */
#endif /* L_udivsi3 || L_divsi3 */
/* Note that unsigned and signed modulus both build when L_modsi3, but
then the unsigned variant is inlined, as with do_31div above. */
#if defined (L_umodsi3) || defined (L_modsi3)
#ifndef L_umodsi3
static __inline__
#endif
unsigned long
__Umod (unsigned long a, unsigned long b) __attribute__ ((__const__));
#ifndef L_umodsi3
static __inline__
#endif
unsigned long
__Umod (unsigned long a, unsigned long b)
{
/* Adjust operands and result if a and/or b is 32 bits. */
if ((long) b < 0)
return a >= b ? a - b : a;
if ((long) a < 0)
{
int tmp = 0;
if (b == 0)
return a;
#ifdef LZ
tmp = LZ (b);
#else
for (tmp = 31; (((long) b & (1 << tmp)) == 0); tmp--)
;
tmp = 31 - tmp;
#endif
if ((b << tmp) > a)
{
a -= b << (tmp - 1);
}
else
{
a -= b << tmp;
}
}
return do_31div (a, b).rem;
}
#ifdef L_modsi3
long
__Mod (long a, long b) __attribute__ ((__const__));
long
__Mod (long a, long b)
{
long result;
result = __Umod (abs (a), abs (b));
return (a < 0) ? -result : result;
}
#endif /* L_modsi3 */
#endif /* L_umodsi3 || L_modsi3 */
#endif /* L_udivsi3 || L_divsi3 || L_umodsi3 || L_modsi3 */
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Axis Communications.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Prototypes for the CRIS port. */
#if defined(FILE) || defined(stdin) || defined(stdout) || defined(getc) || defined(putc)
#define STDIO_INCLUDED
#endif
extern void cris_conditional_register_usage PARAMS ((void));
extern int cris_simple_epilogue PARAMS ((void));
#ifdef RTX_CODE
extern const char *cris_op_str PARAMS ((rtx));
extern int cris_eligible_for_epilogue_delay PARAMS ((rtx));
extern void cris_notice_update_cc PARAMS ((rtx, rtx));
extern int cris_address_cost PARAMS ((rtx));
extern void cris_print_operand PARAMS ((FILE *, rtx, int));
extern void cris_print_operand_address PARAMS ((FILE *, rtx));
extern int cris_side_effect_mode_ok PARAMS ((enum rtx_code, rtx *, int, int,
int, int, int));
extern rtx cris_return_addr_rtx PARAMS ((int, rtx));
extern rtx cris_split_movdx PARAMS ((rtx *));
extern int cris_legitimate_pic_operand PARAMS ((rtx));
extern int cris_gotless_symbol PARAMS ((rtx));
extern int cris_got_symbol PARAMS ((rtx));
extern int cris_symbol PARAMS ((rtx));
extern void cris_output_addr_const PARAMS ((FILE *, rtx));
extern int cris_cfun_uses_pic_table PARAMS ((void));
extern void cris_target_asm_named_section
PARAMS ((const char *, unsigned int));
# ifdef TREE_CODE
extern rtx cris_expand_builtin_va_arg PARAMS ((tree, tree));
extern void cris_encode_section_info PARAMS ((tree));
# endif
#endif /* RTX_CODE */
#ifdef STDIO_INCLUDED
# ifdef TREE_CODE
extern void cris_asm_output_mi_thunk PARAMS ((FILE *, tree, int, tree));
# endif
#endif
#ifdef GCC_C_PRAGMA_H
extern void cris_pragma_expand_mul PARAMS ((cpp_reader *));
#endif
/* Need one that returns an int; usable in expressions. */
extern int cris_fatal PARAMS ((char *));
extern void cris_override_options PARAMS ((void));
extern int cris_initial_elimination_offset PARAMS ((int, int));
extern void cris_init_expanders PARAMS ((void));
extern int cris_delay_slots_for_epilogue PARAMS ((void));
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "tree.h"
#include "expr.h"
#include "except.h"
#include "function.h"
#include "toplev.h"
#include "recog.h"
#include "tm_p.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
/* Usable when we have an amount to add or subtract, and want the
optimal size of the insn. */
#define ADDITIVE_SIZE_MODIFIER(size) \
((size) <= 63 ? "q" : (size) <= 255 ? "u.b" : (size) <= 65535 ? "u.w" : ".d")
#define ASSERT_PLT_UNSPEC(x) \
do \
{ \
if (XEXP (x, 1) != NULL_RTX \
|| (GET_CODE (XVECEXP (x, 0, 0)) != SYMBOL_REF \
&& GET_CODE (XVECEXP (x, 0, 0)) != LABEL_REF)) \
abort (); \
} while (0)
/* Per-function machine data. */
struct machine_function
{
int needs_return_address_on_stack;
};
/* Fix for reg_overlap_mentioned_p. */
static int cris_reg_overlap_mentioned_p PARAMS ((rtx, rtx));
/* This little fix suppresses the 'u' or 's' when '%e' in assembly
pattern. */
static char cris_output_insn_is_bound = 0;
/* This one suppresses printing out the "rPIC+" in
"rPIC+sym:GOTOFF+offset" when doing PIC. For a PLT symbol, it
suppresses outputting it as [rPIC+sym:GOTPLT] and outputs similarly
just the "sym:GOTOFF" part. */
static int cris_pic_sympart_only = 0;
static void
cris_print_base PARAMS ((rtx, FILE *));
static void
cris_print_index PARAMS ((rtx, FILE *));
static void
cris_init_machine_status PARAMS ((struct function *));
static int
cris_initial_frame_pointer_offset PARAMS ((void));
static int
saved_regs_mentioned PARAMS ((rtx));
static void cris_target_asm_function_prologue
PARAMS ((FILE *, HOST_WIDE_INT));
static void cris_target_asm_function_epilogue
PARAMS ((FILE *, HOST_WIDE_INT));
/* The function cris_target_asm_function_epilogue puts the last insn to
output here. Used in delay_slots_for_epilogue and function_epilogue. */
static char save_last[80];
/* This is the argument from the "-max-stack-stackframe=" option. */
const char *cris_max_stackframe_str;
/* This is the argument from the "-march=" option. */
const char *cris_cpu_str;
/* This is the argument from the "-mtune=" option. */
const char *cris_tune_str;
/* This is the argument from the "-melinux-stacksize=" option. */
const char *cris_elinux_stacksize_str;
/* This is the parsed result of the "-max-stack-stackframe=" option. If
it (still) is zero, then there was no such option given. */
int cris_max_stackframe = 0;
/* This is the parsed result of the "-march=" option, if given. */
int cris_cpu_version = CRIS_DEFAULT_CPU_VERSION;
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE cris_target_asm_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE cris_target_asm_function_epilogue
struct gcc_target targetm = TARGET_INITIALIZER;
/* Predicate functions. */
/* This checks a part of an address, the one that is not a plain register
for an addressing mode using BDAP.
Allowed operands is either:
a) a register
b) a CONST operand (but not a symbol when generating PIC)
c) a [r] or [r+] in SImode, or sign-extend from HI or QI. */
int
cris_bdap_operand (op, mode)
rtx op;
enum machine_mode mode;
{
register enum rtx_code code = GET_CODE (op);
if (mode != SImode && (mode != VOIDmode || GET_MODE (op) != VOIDmode))
return 0;
/* Just return whether this is a simple register or constant. */
if (register_operand (op, mode)
|| (CONSTANT_P (op) && !(flag_pic && cris_symbol (op))))
return 1;
/* Is it a [r] or possibly a [r+]? */
if (code == MEM)
{
rtx tem = XEXP (op, 0);
if (mode == SImode
&& (register_operand (tem, SImode)
|| (GET_CODE (tem) == POST_INC
&& register_operand (XEXP (tem, 0), SImode))))
return 1;
else
return 0;
}
/* Perhaps a sign-extended mem: [r].(b|w) or [r+].(b|w)? */
if (code == SIGN_EXTEND)
{
rtx tem = XEXP (op, 0);
if (GET_CODE (tem) != MEM)
return 0;
tem = XEXP (tem, 0);
if (mode == SImode
&& (register_operand (tem, SImode)
|| (GET_CODE (tem) == POST_INC
&& register_operand (XEXP (tem, 0), SImode))))
return 1;
else
return 0;
}
return 0;
}
/* This is similar to cris_bdap_operand:
It checks a part of an address, the one that is not a plain register
for an addressing mode using BDAP *or* BIAP.
Allowed operands is either:
a) a register
b) a CONST operand (but not a symbol when generating PIC)
c) a mult of (1, 2 or 4) and a register
d) a [r] or [r+] in SImode, or sign-extend from HI or QI. */
int
cris_bdap_biap_operand (op, mode)
rtx op;
enum machine_mode mode;
{
register enum rtx_code code = GET_CODE (op);
rtx reg;
rtx val;
/* Check for bdap operand. */
if (cris_bdap_operand (op, mode))
return 1;
if (mode != SImode && (mode != VOIDmode || GET_MODE (op) != VOIDmode))
return 0;
/* Check that we're looking at a BIAP operand. */
if (code != MULT)
return 0;
/* Canonicalize register and multiplicand. */
if (GET_CODE (XEXP (op, 0)) == CONST_INT)
{
val = XEXP (op, 0);
reg = XEXP (op, 1);
}
else
{
val = XEXP (op, 1);
reg = XEXP (op, 0);
}
/* Check that the operands are correct after canonicalization. */
if (! register_operand (reg, SImode) || GET_CODE (val) != CONST_INT)
return 0;
/* Check that the multiplicand has a valid value. */
if ((code == MULT
&& (INTVAL (val) == 1 || INTVAL (val) == 2 || INTVAL (val) == 4)))
return 1;
return 0;
}
/* Check if MODE is same as mode for X, and X is PLUS, MINUS, IOR or
AND or UMIN. */
int
cris_orthogonal_operator (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (mode == VOIDmode)
mode = GET_MODE (x);
return (GET_MODE (x) == mode
&& (code == PLUS || code == MINUS
|| code == IOR || code == AND || code == UMIN));
}
/* Check if MODE is same as mode for X, and X is PLUS, IOR or AND or
UMIN. */
int
cris_commutative_orth_op (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (mode == VOIDmode)
mode = GET_MODE (x);
return (GET_MODE (x) == mode &&
(code == PLUS
|| code == IOR || code == AND || code == UMIN));
}
/* Check if MODE is same as mode for X, and X is PLUS or MINUS or UMIN. */
int
cris_operand_extend_operator (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (mode == VOIDmode)
mode = GET_MODE (x);
return (GET_MODE (x) == mode
&& (code == PLUS || code == MINUS || code == UMIN));
}
/* Check to see if MODE is same as mode for X, and X is SIGN_EXTEND or
ZERO_EXTEND. */
int
cris_extend_operator (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (mode == VOIDmode)
mode = GET_MODE (x);
return
(GET_MODE (x) == mode && (code == SIGN_EXTEND || code == ZERO_EXTEND));
}
/* Check to see if MODE is same as mode for X, and X is PLUS or BOUND. */
int
cris_plus_or_bound_operator (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
if (mode == VOIDmode)
mode = GET_MODE (x);
return
(GET_MODE (x) == mode && (code == UMIN || code == PLUS));
}
/* Since with -fPIC, not all symbols are valid PIC symbols or indeed
general_operands, we have to have a predicate that matches it for the
"movsi" expander. */
int
cris_general_operand_or_symbol (op, mode)
rtx op;
enum machine_mode mode;
{
return general_operand (op, mode)
|| (CONSTANT_P (op) && cris_symbol (op));
}
/* Since a PIC symbol without a GOT entry is not a general_operand, we
have to have a predicate that matches it. We use this in the expanded
"movsi" anonymous pattern for PIC symbols. */
int
cris_general_operand_or_gotless_symbol (op, mode)
rtx op;
enum machine_mode mode;
{
return general_operand (op, mode)
|| (CONSTANT_P (op) && cris_gotless_symbol (op));
}
/* Since a PLT symbol is not a general_operand, we have to have a
predicate that matches it when we need it. We use this in the expanded
"call" and "call_value" anonymous patterns. */
int
cris_general_operand_or_plt_symbol (op, mode)
rtx op;
enum machine_mode mode;
{
return general_operand (op, mode)
|| (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == UNSPEC
&& !TARGET_AVOID_GOTPLT);
}
/* This matches a (MEM (general_operand)) or
(MEM (cris_general_operand_or_symbol)). The second one isn't a valid
memory_operand, so we need this predicate to recognize call
destinations before we change them to a PLT operand (by wrapping in
UNSPEC 0). */
int
cris_mem_call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx xmem;
if (GET_CODE (op) != MEM)
return 0;
if (memory_operand (op, mode))
return 1;
xmem = XEXP (op, 0);
return cris_general_operand_or_symbol (xmem, GET_MODE (op));
}
/* The CONDITIONAL_REGISTER_USAGE worker. */
void
cris_conditional_register_usage ()
{
/* FIXME: This isn't nice. We should be able to use that register for
something else if the PIC table isn't needed. */
if (flag_pic)
fixed_regs[PIC_OFFSET_TABLE_REGNUM]
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
}
/* Return current_function_uses_pic_offset_table. For use in cris.md,
since some generated files do not include function.h. */
int
cris_cfun_uses_pic_table ()
{
return current_function_uses_pic_offset_table;
}
/* Given an rtx, return the text string corresponding to the CODE of X.
Intended for use in the assembly language output section of a
define_insn. */
const char *
cris_op_str (x)
rtx x;
{
cris_output_insn_is_bound = 0;
switch (GET_CODE (x))
{
case PLUS:
return "add";
break;
case MINUS:
return "sub";
break;
case MULT:
return "mul";
break;
case DIV:
return "div";
break;
case AND:
return "and";
break;
case IOR:
return "or";
break;
case XOR:
return "xor";
break;
case NOT:
return "not";
break;
case ASHIFT:
return "lsl";
break;
case LSHIFTRT:
return "lsr";
break;
case ASHIFTRT:
return "asr";
break;
case UMIN:
/* Used to control the sign/zero-extend character for the 'e' modifier.
BOUND has none. */
cris_output_insn_is_bound = 1;
return "bound";
break;
default:
return "Unknown operator";
break;
}
}
/* Print an index part of an address to file. */
static void
cris_print_index (index, file)
rtx index;
FILE * file;
{
rtx inner = XEXP (index, 0);
/* Make the index "additive" unless we'll output a negative number, in
which case the sign character is free (as in free beer). */
if (GET_CODE (index) != CONST_INT || INTVAL (index) >= 0)
putc ('+', file);
if (REG_P (index))
fprintf (file, "$%s.b", reg_names[REGNO (index)]);
else if (CONSTANT_P (index))
cris_output_addr_const (file, index);
else if (GET_CODE (index) == MULT)
{
fprintf (file, "$%s.",
reg_names[REGNO (XEXP (index, 0))]);
putc (INTVAL (XEXP (index, 1)) == 2 ? 'w' : 'd', file);
}
else if (GET_CODE (index) == SIGN_EXTEND &&
GET_CODE (inner) == MEM)
{
rtx inner_inner = XEXP (inner, 0);
if (GET_CODE (inner_inner) == POST_INC)
{
fprintf (file, "[$%s+].",
reg_names[REGNO (XEXP (inner_inner, 0))]);
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
else
{
fprintf (file, "[$%s].", reg_names[REGNO (inner_inner)]);
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
}
else if (GET_CODE (index) == MEM)
{
if (GET_CODE (inner) == POST_INC)
fprintf (file, "[$%s+].d", reg_names[REGNO (XEXP (inner, 0))]);
else
fprintf (file, "[$%s].d", reg_names[REGNO (inner)]);
}
else
fatal_insn ("Unexpected index-type in cris_print_index", index);
}
/* Print a base rtx of an address to file. */
static void
cris_print_base (base, file)
rtx base;
FILE *file;
{
if (REG_P (base))
fprintf (file, "$%s", reg_names[REGNO (base)]);
else if (GET_CODE (base) == POST_INC)
fprintf (file, "$%s+", reg_names[REGNO (XEXP (base, 0))]);
else
fatal_insn ("Unexpected base-type in cris_print_base", base);
}
/* Usable as a guard in expressions. */
int
cris_fatal (arg)
char *arg;
{
internal_error (arg);
/* We'll never get here; this is just to appease compilers. */
return 0;
}
/* Textual function prologue. */
static void
cris_target_asm_function_prologue (file, size)
FILE *file;
HOST_WIDE_INT size;
{
int regno;
/* Shorten the used name for readability. */
int cfoa_size = current_function_outgoing_args_size;
int last_movem_reg = -1;
int doing_dwarf = dwarf2out_do_frame ();
int framesize;
int faked_args_size = 0;
int cfa_write_offset = 0;
char *cfa_label = NULL;
int return_address_on_stack
= regs_ever_live[CRIS_SRP_REGNUM]
|| cfun->machine->needs_return_address_on_stack != 0;
/* Don't do anything if no prologues or epilogues are wanted. */
if (!TARGET_PROLOGUE_EPILOGUE)
return;
if (size < 0)
abort ();
/* Align the size to what's best for the CPU model. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
if (current_function_pretend_args_size)
{
int pretend = current_function_pretend_args_size;
for (regno = CRIS_FIRST_ARG_REG + CRIS_MAX_ARGS_IN_REGS - 1;
pretend > 0;
regno--, pretend -= 4)
{
fprintf (file, "\tpush $%s\n", reg_names[regno]);
faked_args_size += 4;
}
}
framesize = faked_args_size;
if (doing_dwarf)
{
/* FIXME: Slightly redundant calculation, as we do the same in
pieces below. This offset must be the total adjustment of the
stack-pointer. We can then def_cfa call at the end of this
function with the current implementation of execute_cfa_insn, but
that wouldn't really be clean. */
int cfa_offset
= faked_args_size
+ (return_address_on_stack ? 4 : 0)
+ (frame_pointer_needed ? 4 : 0);
int cfa_reg;
if (frame_pointer_needed)
cfa_reg = FRAME_POINTER_REGNUM;
else
{
cfa_reg = STACK_POINTER_REGNUM;
cfa_offset += cris_initial_frame_pointer_offset ();
}
cfa_label = dwarf2out_cfi_label ();
dwarf2out_def_cfa (cfa_label, cfa_reg, cfa_offset);
cfa_write_offset = - faked_args_size - 4;
}
/* Save SRP if not a leaf function. */
if (return_address_on_stack)
{
fprintf (file, "\tPush $srp\n");
framesize += 4;
if (doing_dwarf)
{
dwarf2out_return_save (cfa_label, cfa_write_offset);
cfa_write_offset -= 4;
}
}
/* Set up frame pointer if needed. */
if (frame_pointer_needed)
{
fprintf (file, "\tpush $%s\n\tmove.d $sp,$%s\n",
reg_names[FRAME_POINTER_REGNUM],
reg_names[FRAME_POINTER_REGNUM]);
framesize += 4;
if (doing_dwarf)
{
dwarf2out_reg_save (cfa_label, FRAME_POINTER_REGNUM,
cfa_write_offset);
cfa_write_offset -= 4;
}
}
/* Local vars are located above saved regs. */
cfa_write_offset -= size;
/* Get a contiguous sequence of registers, starting with r0, that need
to be saved. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if ((((regs_ever_live[regno]
&& !call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
&& (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (current_function_calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3))))
{
/* Check if movem may be used for registers so far. */
if (regno == last_movem_reg + 1)
/* Yes, update next expected register. */
last_movem_reg++;
else
{
/* We cannot use movem for all registers. We have to flush
any movem:ed registers we got so far. */
if (last_movem_reg != -1)
{
/* It is a win to use a side-effect assignment for
64 <= size <= 128. But side-effect on movem was
not usable for CRIS v0..3. Also only do it if
side-effects insns are allowed. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& cris_cpu_version >= CRIS_CPU_SVINTO
&& TARGET_SIDE_EFFECT_PREFIXES)
fprintf (file, "\tmovem $%s,[$sp=$sp-%d]\n",
reg_names[last_movem_reg],
(last_movem_reg + 1) * 4 + size);
else
{
/* Avoid printing multiple subsequent sub:s for sp. */
fprintf (file, "\tsub%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER ((last_movem_reg + 1)
* 4 + size),
(last_movem_reg + 1) * 4 + size);
fprintf (file, "\tmovem $%s,[$sp]\n",
reg_names[last_movem_reg]);
}
framesize += (last_movem_reg + 1) * 4 + size;
if (TARGET_PDEBUG)
fprintf (file, "; frame %d, #regs %d, bytes %d args %d\n",
size,
last_movem_reg + 1,
(last_movem_reg + 1) * 4,
current_function_args_size);
last_movem_reg = -1;
size = 0;
}
else if (size > 0)
{
/* Local vars on stack, but there are no movem:s.
Just allocate space. */
fprintf (file, "\tSub%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (size),
size);
framesize += size;
size = 0;
}
fprintf (file, "\tPush $%s\n", reg_names[regno]);
framesize += 4;
}
if (doing_dwarf)
{
/* Registers are stored lowest numbered at highest address,
which matches the loop order; we just need to update the
write-offset. */
dwarf2out_reg_save (cfa_label, regno, cfa_write_offset);
cfa_write_offset -= 4;
}
}
}
/* Check after, if we can movem all registers. This is the normal
case. */
if (last_movem_reg != -1)
{
/* Side-effect assignment on movem was not supported for CRIS v0..3,
and don't do it if we're asked not to.
The movem is already accounted for, for unwind. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& cris_cpu_version >= CRIS_CPU_SVINTO
&& TARGET_SIDE_EFFECT_PREFIXES)
fprintf (file, "\tmovem $%s,[$sp=$sp-%d]\n",
reg_names[last_movem_reg],
(last_movem_reg+1) * 4 + size);
else
{
/* Avoid printing multiple subsequent sub:s for sp. FIXME:
Clean up the conditional expression. */
fprintf (file, "\tsub%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER ((last_movem_reg + 1) * 4 + size),
(last_movem_reg + 1) * 4 + size);
/* To be compatible with v0..v3 means we do not use an assignment
addressing mode with movem. We normally don't need that
anyway. It would only be slightly more efficient for 64..128
bytes frame size. */
fprintf (file, "\tmovem $%s,[$sp]\n", reg_names[last_movem_reg]);
}
framesize += (last_movem_reg + 1) * 4 + size;
if (TARGET_PDEBUG)
fprintf (file, "; frame %d, #regs %d, bytes %d args %d\n",
size,
last_movem_reg + 1,
(last_movem_reg + 1) * 4,
current_function_args_size);
/* We have to put outgoing argument space after regs. */
if (cfoa_size)
{
/* This does not need to be accounted for, for unwind. */
fprintf (file, "\tSub%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (cfoa_size),
cfoa_size);
framesize += cfoa_size;
}
}
else if ((size + cfoa_size) > 0)
{
/* This does not need to be accounted for, for unwind. */
/* Local vars on stack, and we could not use movem. Add a sub here. */
fprintf (file, "\tSub%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (size + cfoa_size),
cfoa_size + size);
framesize += size + cfoa_size;
}
/* Set up the PIC register. */
if (current_function_uses_pic_offset_table)
asm_fprintf (file, "\tmove.d $pc,$%s\n\tsub.d .:GOTOFF,$%s\n",
reg_names[PIC_OFFSET_TABLE_REGNUM],
reg_names[PIC_OFFSET_TABLE_REGNUM]);
if (TARGET_PDEBUG)
fprintf (file,
"; parm #%d @ %d; frame %d, FP-SP is %d; leaf: %s%s; fp %s, outg: %d arg %d\n",
CRIS_MAX_ARGS_IN_REGS + 1, FIRST_PARM_OFFSET (0),
get_frame_size (),
cris_initial_frame_pointer_offset (),
leaf_function_p () ? "yes" : "no",
return_address_on_stack ? "no" :"yes",
frame_pointer_needed ? "yes" : "no",
cfoa_size, current_function_args_size);
if (cris_max_stackframe && framesize > cris_max_stackframe)
warning ("Stackframe too big: %d bytes", framesize);
}
/* Return nonzero if there are regs mentioned in the insn that are not all
in the call_used regs. This is part of the decision whether an insn
can be put in the epilogue. */
static int
saved_regs_mentioned (x)
rtx x;
{
int i;
const char *fmt;
RTX_CODE code;
/* Mainly stolen from refers_to_regno_p in rtlanal.c. */
code = GET_CODE (x);
switch (code)
{
case REG:
i = REGNO (x);
return !call_used_regs[i];
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
i = REGNO (SUBREG_REG (x));
return !call_used_regs[i];
default:
;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (saved_regs_mentioned (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >=0; j--)
if (saved_regs_mentioned (XEXP (x, i)))
return 1;
}
}
return 0;
}
/* Figure out if the insn may be put in the epilogue. */
int
cris_eligible_for_epilogue_delay (insn)
rtx insn;
{
/* First of all, it must be as slottable as for a delayed branch insn. */
if (get_attr_slottable (insn) != SLOTTABLE_YES)
return 0;
/* It must not refer to the stack pointer (may be valid for some cases
that I can't think of). */
if (reg_mentioned_p (stack_pointer_rtx, PATTERN (insn)))
return 0;
/* The frame pointer will be restored in the epilogue, before the
"ret", so it can't be referred to. */
if (frame_pointer_needed
&& reg_mentioned_p (frame_pointer_rtx, PATTERN (insn)))
return 0;
/* All saved regs are restored before the delayed insn.
This means that we cannot have any instructions that mention the
registers that are restored by the epilogue. */
if (saved_regs_mentioned (PATTERN (insn)))
return 0;
/* It seems to be ok. */
return 1;
}
/* Return the number of delay-slots in the epilogue: return 1 if it
contains "ret", else 0. */
int
cris_delay_slots_for_epilogue ()
{
/* Check if we use a return insn, which we only do for leaf functions.
Else there is no slot to fill. */
if (regs_ever_live[CRIS_SRP_REGNUM]
|| cfun->machine->needs_return_address_on_stack != 0)
return 0;
/* By calling function_epilogue with the same parameters as from gcc
we can get info about if the epilogue can fill the delay-slot by itself.
If it is filled from the epilogue, then the corresponding string
is in save_last.
This depends on that the "size" argument to function_epilogue
always is get_frame_size.
FIXME: Kludgy. At least make it a separate function that is not
misnamed or abuses the stream parameter. */
cris_target_asm_function_epilogue (NULL, get_frame_size ());
if (*save_last)
return 1;
return 0;
}
/* Textual function epilogue. When file is NULL, it serves doubly as
a test for whether the epilogue can fill any "ret" delay-slots by
itself by storing the delay insn in save_last. */
static void
cris_target_asm_function_epilogue (file, size)
FILE *file;
HOST_WIDE_INT size;
{
int regno;
int last_movem_reg = -1;
rtx insn = get_last_insn ();
int argspace_offset = current_function_outgoing_args_size;
int pretend = current_function_pretend_args_size;
int return_address_on_stack
= regs_ever_live[CRIS_SRP_REGNUM]
|| cfun->machine->needs_return_address_on_stack != 0;
save_last[0] = 0;
if (file && !TARGET_PROLOGUE_EPILOGUE)
return;
if (TARGET_PDEBUG && file)
fprintf (file, ";;\n");
/* Align byte count of stack frame. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
/* If the last insn was a BARRIER, we don't have to write any code,
then all returns were covered by "return" insns. */
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn
&& (GET_CODE (insn) == BARRIER
/* We must make sure that the insn really is a "return" and
not a conditional branch. Try to match the return exactly,
and if it doesn't match, assume it is a conditional branch
(and output an epilogue). */
|| (GET_CODE (insn) == JUMP_INSN
&& GET_CODE (PATTERN (insn)) == RETURN)))
{
if (TARGET_PDEBUG && file)
fprintf (file, ";;;;;\n");
return;
}
/* Check how many saved regs we can movem. They start at r0 and must
be contiguous. */
for (regno = 0;
regno < FIRST_PSEUDO_REGISTER;
regno++)
if ((((regs_ever_live[regno]
&& !call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
&& (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (current_function_calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3))))
{
if (regno == last_movem_reg + 1)
last_movem_reg++;
else
break;
}
for (regno = FIRST_PSEUDO_REGISTER - 1;
regno > last_movem_reg;
regno--)
if ((((regs_ever_live[regno]
&& !call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
&& (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (current_function_calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3))))
{
if (argspace_offset)
{
/* There is an area for outgoing parameters located before
the saved registers. We have to adjust for that. */
if (file)
fprintf (file, "\tAdd%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (argspace_offset),
argspace_offset);
/* Make sure we only do this once. */
argspace_offset = 0;
}
/* Flush previous non-movem:ed registers. */
if (*save_last && file)
fprintf (file, save_last);
sprintf (save_last, "\tPop $%s\n");
}
if (last_movem_reg != -1)
{
if (argspace_offset)
{
/* Adjust for the outgoing parameters area, if that's not
handled yet. */
if (*save_last && file)
{
fprintf (file, save_last);
*save_last = 0;
}
if (file)
fprintf (file, "\tAdd%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (argspace_offset),
argspace_offset);
argspace_offset = 0;
}
/* Flush previous non-movem:ed registers. */
else if (*save_last && file)
fprintf (file, save_last);
sprintf (save_last, "\tmovem [$sp+],$%s\n", reg_names[last_movem_reg]);
}
/* Restore frame pointer if necessary. */
if (frame_pointer_needed)
{
if (*save_last && file)
fprintf (file, save_last);
if (file)
fprintf (file, "\tmove.d $%s,$sp\n",
reg_names[FRAME_POINTER_REGNUM]);
sprintf (save_last, "\tPop $%s\n",
reg_names[FRAME_POINTER_REGNUM]);
}
else
{
/* If there was no frame-pointer to restore sp from, we must
explicitly deallocate local variables. */
/* Handle space for outgoing parameters that hasn't been handled
yet. */
size += argspace_offset;
if (size)
{
if (*save_last && file)
fprintf (file, save_last);
sprintf (save_last, "\tadd%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (size), size);
}
/* If the size was not in the range for a "quick", we must flush
it here. */
if (size > 63)
{
if (file)
fprintf (file, save_last);
*save_last = 0;
}
}
/* If this function has no pushed register parameters
(stdargs/varargs), and if it is not a leaf function, then we can
just jump-return here. */
if (return_address_on_stack && pretend == 0)
{
if (*save_last && file)
fprintf (file, save_last);
*save_last = 0;
if (file)
{
if (current_function_calls_eh_return)
{
/* The installed EH-return address is in *this* frame, so we
need to pop it before we return. */
fprintf (file, "\tpop $srp\n", reg_names[CRIS_STACKADJ_REG]);
fprintf (file, "\tret\n");
fprintf (file, "\tadd.d $%s,$sp\n", reg_names[CRIS_STACKADJ_REG]);
}
else
fprintf (file, "\tJump [$sp+]\n");
/* Do a sanity check to avoid generating invalid code. */
if (current_function_epilogue_delay_list)
internal_error ("Allocated but unused delay list in epilogue");
}
return;
}
/* Rather than add current_function_calls_eh_return conditions
everywhere in the following code (and not be able to test it
thoroughly), assert the assumption that all usage of
__builtin_eh_return are handled above. */
if (current_function_calls_eh_return)
internal_error ("Unexpected function type needing stack adjustment for\
__builtin_eh_return");
/* If we pushed some register parameters, then adjust the stack for
them. */
if (pretend)
{
/* Since srp is stored on the way, we need to restore it first. */
if (return_address_on_stack)
{
if (*save_last && file)
fprintf (file, save_last);
*save_last = 0;
if (file)
fprintf (file, "\tpop $srp\n");
}
if (*save_last && file)
fprintf (file, save_last);
sprintf (save_last, "\tadd%s %d,$sp\n",
ADDITIVE_SIZE_MODIFIER (pretend), pretend);
}
/* Here's where we have a delay-slot we need to fill. */
if (file && current_function_epilogue_delay_list)
{
/* If gcc has allocated an insn for the epilogue delay slot, but
things were arranged so we now thought we could do it
ourselves, don't forget to flush that insn. */
if (*save_last)
fprintf (file, save_last);
fprintf (file, "\tRet\n");
/* Output the delay-slot-insn the mandated way. */
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, 1, -2, 1);
}
else if (file)
{
fprintf (file, "\tRet\n");
/* If the GCC did not do it, we have to use whatever insn we have,
or a nop. */
if (*save_last)
fprintf (file, save_last);
else
fprintf (file, "\tnOp\n");
}
}
/* The PRINT_OPERAND worker. */
void
cris_print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
rtx operand = x;
/* Size-strings corresponding to MULT expressions. */
static const char *mults[] = { "BAD:0", ".b", ".w", "BAD:3", ".d" };
/* New code entries should just be added to the switch below. If
handling is finished, just return. If handling was just a
modification of the operand, the modified operand should be put in
"operand", and then do a break to let default handling
(zero-modifier) output the operand. */
switch (code)
{
case 'b':
/* Print the unsigned supplied integer as if it was signed
and < 0, i.e print 255 or 65535 as -1, 254, 65534 as -2, etc. */
if (GET_CODE (x) != CONST_INT
|| ! CONST_OK_FOR_LETTER_P (INTVAL (x), 'O'))
fatal_insn ("Internal: Invalid operand with 'b'", x);
fprintf (file, "%d", INTVAL (x)| (INTVAL (x) <= 255 ? ~255 : ~65535));
return;
case 'x':
/* Print assembler code for operator. */
fprintf (file, "%s", cris_op_str (operand));
return;
case 'v':
/* Print the operand without the PIC register. */
if (! flag_pic || ! cris_gotless_symbol (x))
fatal_insn ("Internal: Invalid operand with 'v'", x);
cris_pic_sympart_only++;
cris_output_addr_const (file, x);
cris_pic_sympart_only--;
return;
case 'P':
/* Print the PIC register. Applied to a GOT-less PIC symbol for
sanity. */
if (! flag_pic || ! cris_gotless_symbol (x))
fatal_insn ("Internal: Invalid operand with 'P'", x);
fprintf (file, "$%s", reg_names [PIC_OFFSET_TABLE_REGNUM]);
return;
case 'p':
/* Adjust a power of two to its log2. */
if (GET_CODE (x) != CONST_INT || exact_log2 (INTVAL (x)) < 0 )
fatal_insn ("Internal: Invalid operand with 'p'", x);
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
case 's':
/* For an integer, print 'b' or 'w' if <= 255 or <= 65535
respectively. This modifier also terminates the inhibiting
effects of the 'x' modifier. */
cris_output_insn_is_bound = 0;
if (GET_MODE (x) == VOIDmode && GET_CODE (x) == CONST_INT)
{
if (INTVAL (x) >= 0)
{
if (INTVAL (x) <= 255)
putc ('b', file);
else if (INTVAL (x) <= 65535)
putc ('w', file);
else
putc ('d', file);
}
else
putc ('d', file);
return;
}
/* For a non-integer, print the size of the operand. */
putc ((GET_MODE (x) == SImode || GET_MODE (x) == SFmode)
? 'd' : GET_MODE (x) == HImode ? 'w'
: GET_MODE (x) == QImode ? 'b'
/* If none of the above, emit an erroneous size letter. */
: 'X',
file);
return;
case 'z':
/* Const_int: print b for -127 <= x <= 255,
w for -32768 <= x <= 65535, else abort. */
if (GET_CODE (x) != CONST_INT
|| INTVAL (x) < -32768 || INTVAL (x) > 65535)
fatal_insn ("Internal: Invalid operand with 'z'", x);
putc (INTVAL (x) >= -128 && INTVAL (x) <= 255 ? 'b' : 'w', file);
return;
case '#':
/* Output a 'nop' if there's nothing for the delay slot.
This method stolen from the sparc files. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
case 'H':
/* Print high (most significant) part of something. */
switch (GET_CODE (operand))
{
case CONST_INT:
/* Sign-extension from a normal int to a long long. */
fprintf (file, INTVAL (operand) < 0 ? "-1" : "0");
return;
case CONST_DOUBLE:
/* High part of a long long constant. */
if (GET_MODE (operand) == VOIDmode)
{
fprintf (file, "0x%x", CONST_DOUBLE_HIGH (x));
return;
}
else
fatal_insn ("Internal: Invalid operand with 'H'", x);
case REG:
/* Print reg + 1. Check that there's not an attempt to print
high-parts of registers like stack-pointer or higher. */
if (REGNO (operand) > STACK_POINTER_REGNUM - 2)
internal_error ("Internal: Bad register: %d", REGNO (operand));
fprintf (file, "$%s", reg_names[REGNO (operand) + 1]);
return;
case MEM:
/* Adjust memory address to high part. */
{
rtx adj_mem = operand;
int size
= GET_MODE_BITSIZE (GET_MODE (operand)) / BITS_PER_UNIT;
/* Adjust so we can use two SImode in DImode.
Calling adj_offsettable_operand will make sure it is an
offsettable address. Don't do this for a postincrement
though; it should remain as it was. */
if (GET_CODE (XEXP (adj_mem, 0)) != POST_INC)
adj_mem
= adjust_address (adj_mem, GET_MODE (adj_mem), size / 2);
output_address (XEXP (adj_mem, 0));
return;
}
default:
fatal_insn ("Internal: Invalid operand for 'H'", x);
}
case 'L':
/* Strip the MEM expression. */
operand = XEXP (operand, 0);
break;
case 'e':
/* Print 's' if operand is SIGN_EXTEND or 'u' if ZERO_EXTEND unless
cris_output_insn_is_bound is nonzero. */
if (GET_CODE (operand) != SIGN_EXTEND
&& GET_CODE (operand) != ZERO_EXTEND
&& GET_CODE (operand) != CONST_INT)
fatal_insn ("Internal: Invalid operand with 'e'", x);
if (cris_output_insn_is_bound)
{
cris_output_insn_is_bound = 0;
return;
}
putc (GET_CODE (operand) == SIGN_EXTEND
|| (GET_CODE (operand) == CONST_INT && INTVAL (operand) < 0)
? 's' : 'u', file);
return;
case 'm':
/* Print the size letter of the inner element. We can do it by
calling ourselves with the 's' modifier. */
if (GET_CODE (operand) != SIGN_EXTEND && GET_CODE (operand) != ZERO_EXTEND)
fatal_insn ("Internal: Invalid operand with 'm'", x);
cris_print_operand (file, XEXP (operand, 0), 's');
return;
case 'M':
/* Print the least significant part of operand. */
if (GET_CODE (operand) == CONST_DOUBLE)
{
fprintf (file, "0x%x", CONST_DOUBLE_LOW (x));
return;
}
/* If not a CONST_DOUBLE, the least significant part equals the
normal part, so handle it normally. */
break;
case 'A':
/* When emitting an add for the high part of a DImode constant, we
want to use addq for 0 and adds.w for -1. */
if (GET_CODE (operand) != CONST_INT)
fatal_insn ("Internal: Invalid operand with 'A' output modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "adds.w" : "addq");
return;
case 'D':
/* When emitting an sub for the high part of a DImode constant, we
want to use subq for 0 and subs.w for -1. */
if (GET_CODE (operand) != CONST_INT)
fatal_insn ("Internal: Invalid operand with 'D' output modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "subs.w" : "subq");
return;
case 'S':
/* Print the operand as the index-part of an address.
Easiest way out is to use cris_print_index. */
cris_print_index (operand, file);
return;
case 'T':
/* Print the size letter for an operand to a MULT, which must be a
const_int with a suitable value. */
if (GET_CODE (operand) != CONST_INT || INTVAL (operand) > 4)
fatal_insn ("Internal: Invalid operand with 'T'", x);
fprintf (file, "%s", mults[INTVAL (operand)]);
return;
case 0:
/* No code, print as usual. */
break;
default:
{
#define BADFORMAT "Internal: Invalid operand for '%c'"
char s[sizeof BADFORMAT];
sprintf (s, BADFORMAT, code);
fatal_insn (s, x);
}
}
/* Print an operand as without a modifier letter. */
switch (GET_CODE (operand))
{
case REG:
if (REGNO (operand) > 15)
internal_error ("Internal: Bad register: %d", REGNO (operand));
fprintf (file, "$%s", reg_names[REGNO (operand)]);
return;
case MEM:
output_address (XEXP (operand, 0));
return;
case CONST_DOUBLE:
if (GET_MODE (operand) == VOIDmode)
/* A long long constant. */
output_addr_const (file, operand);
else
{
/* Only single precision is allowed as plain operands the
moment. FIXME: REAL_VALUE_FROM_CONST_DOUBLE isn't
documented. */
REAL_VALUE_TYPE r;
long l;
/* FIXME: Perhaps check overflow of the "single". */
REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
fprintf (file, "0x%lx", l);
}
return;
case UNSPEC:
ASSERT_PLT_UNSPEC (operand);
/* Fall through. */
case CONST:
cris_output_addr_const (file, operand);
return;
case MULT:
case ASHIFT:
{
/* For a (MULT (reg X) const_int) we output "rX.S". */
int i = GET_CODE (XEXP (operand, 1)) == CONST_INT
? INTVAL (XEXP (operand, 1)) : INTVAL (XEXP (operand, 0));
rtx reg = GET_CODE (XEXP (operand, 1)) == CONST_INT
? XEXP (operand, 0) : XEXP (operand, 1);
if (GET_CODE (reg) != REG
|| (GET_CODE (XEXP (operand, 0)) != CONST_INT
&& GET_CODE (XEXP (operand, 1)) != CONST_INT))
fatal_insn ("Can't print operand", x);
cris_print_base (reg, file);
fprintf (file, ".%c",
i == 0 || (i == 1 && GET_CODE (operand) == MULT) ? 'b'
: i == 4 ? 'd'
: (i == 2 && GET_CODE (operand) == MULT) || i == 1 ? 'w'
: 'd');
return;
}
default:
/* No need to handle all strange variants, let output_addr_const
do it for us. */
if (CONSTANT_P (operand))
{
cris_output_addr_const (file, operand);
return;
}
fatal_insn ("Internal: Cannot decode operand", x);
}
}
/* The PRINT_OPERAND_ADDRESS worker. */
void
cris_print_operand_address (file, x)
FILE *file;
rtx x;
{
/* All these were inside MEM:s so output indirection characters. */
putc ('[', file);
if (CONSTANT_ADDRESS_P (x))
cris_output_addr_const (file, x);
else if (BASE_OR_AUTOINCR_P (x))
cris_print_base (x, file);
else if (GET_CODE (x) == PLUS)
{
rtx x1, x2;
x1 = XEXP (x, 0);
x2 = XEXP (x, 1);
if (BASE_P (x1))
{
cris_print_base (x1, file);
cris_print_index (x2, file);
}
else if (BASE_P (x2))
{
cris_print_base (x2, file);
cris_print_index (x1, file);
}
else
fatal_insn ("Internal: This is not a recognized address", x);
}
else if (GET_CODE (x) == MEM)
{
/* A DIP. Output more indirection characters. */
putc ('[', file);
cris_print_base (XEXP (x, 0), file);
putc (']', file);
}
else
fatal_insn ("Internal: This is not a recognized address", x);
putc (']', file);
}
/* The RETURN_ADDR_RTX worker.
We mark that the return address is used, either by EH or
__builtin_return_address, for use by the function prologue and
epilogue. FIXME: This isn't optimal; we just use the mark in the
prologue and epilogue to say that the return address is to be stored
in the stack frame. We could return SRP for leaf-functions and use the
initial-value machinery. */
rtx
cris_return_addr_rtx (count, frameaddr)
int count;
rtx frameaddr ATTRIBUTE_UNUSED;
{
cfun->machine->needs_return_address_on_stack = 1;
/* The return-address is stored just above the saved frame-pointer (if
present). Apparently we can't eliminate from the frame-pointer in
that direction, so use the incoming args (maybe pretended) pointer. */
return count == 0
? gen_rtx_MEM (Pmode, plus_constant (virtual_incoming_args_rtx, -4))
: NULL_RTX;
}
/* This used to be the INITIAL_FRAME_POINTER_OFFSET worker; now only
handles FP -> SP elimination offset. */
static int
cris_initial_frame_pointer_offset ()
{
int regno;
/* Initial offset is 0 if we dont have a frame pointer. */
int offs = 0;
/* And 4 for each register pushed. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((((regs_ever_live[regno]
&& !call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
&& (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (current_function_calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3))))
offs += 4;
/* And then, last, we add the locals allocated. */
offs += get_frame_size ();
/* And more; the accumulated args size. */
offs += current_function_outgoing_args_size;
/* Then round it off, in case we use aligned stack. */
if (TARGET_STACK_ALIGN)
offs = TARGET_ALIGN_BY_32 ? (offs + 3) & ~3 : (offs + 1) & ~1;
return offs;
}
/* The INITIAL_ELIMINATION_OFFSET worker.
Calculate the difference between imaginary registers such as frame
pointer and the stack pointer. Used to eliminate the frame pointer
and imaginary arg pointer. */
int
cris_initial_elimination_offset (fromreg, toreg)
int fromreg;
int toreg;
{
int fp_sp_offset
= cris_initial_frame_pointer_offset ();
/* We should be able to use regs_ever_live and related prologue
information here, or alpha should not as well. */
int return_address_on_stack
= regs_ever_live[CRIS_SRP_REGNUM]
|| cfun->machine->needs_return_address_on_stack != 0;
/* Here we act as if the frame-pointer is needed. */
int ap_fp_offset = 4 + (return_address_on_stack ? 4 : 0);
if (fromreg == ARG_POINTER_REGNUM
&& toreg == FRAME_POINTER_REGNUM)
return ap_fp_offset;
/* Between the frame pointer and the stack are only "normal" stack
variables and saved registers. */
if (fromreg == FRAME_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return fp_sp_offset;
/* We need to balance out the frame pointer here. */
if (fromreg == ARG_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return ap_fp_offset + fp_sp_offset - 4;
abort ();
}
/* This function looks into the pattern to see how this insn affects
condition codes.
Used when to eliminate test insns before a condition-code user,
such as a "scc" insn or a conditional branch. This includes
checking if the entities that cc was updated by, are changed by the
operation.
Currently a jumble of the old peek-inside-the-insn and the newer
check-cc-attribute methods. */
void
cris_notice_update_cc (exp, insn)
rtx exp;
rtx insn;
{
/* Check if user specified "-mcc-init" as a bug-workaround. FIXME:
TARGET_CCINIT does not work; we must set CC_REVERSED as below.
Several test-cases will otherwise fail, for example
gcc.c-torture/execute/20000217-1.c -O0 and -O1. */
if (TARGET_CCINIT)
{
CC_STATUS_INIT;
return;
}
/* Slowly, we're converting to using attributes to control the setting
of condition-code status. */
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Even if it is "none", a setting may clobber a previous
cc-value, so check. */
if (GET_CODE (exp) == SET)
{
if (cc_status.value1
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value1))
cc_status.value1 = 0;
if (cc_status.value2
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value2))
cc_status.value2 = 0;
}
return;
case CC_CLOBBER:
CC_STATUS_INIT;
break;
case CC_NORMAL:
/* Which means, for:
(set (cc0) (...)):
CC is (...).
(set (reg) (...)):
CC is (reg) and (...) - unless (...) is 0, then CC does not change.
CC_NO_OVERFLOW unless (...) is reg or mem.
(set (mem) (...)):
CC does not change.
(set (pc) (...)):
CC does not change.
(parallel
(set (reg1) (mem (bdap/biap)))
(set (reg2) (bdap/biap))):
CC is (reg1) and (mem (reg2))
(parallel
(set (mem (bdap/biap)) (reg1)) [or 0]
(set (reg2) (bdap/biap))):
CC does not change.
(where reg and mem includes strict_low_parts variants thereof)
For all others, assume CC is clobbered.
Note that we do not have to care about setting CC_NO_OVERFLOW,
since the overflow flag is set to 0 (i.e. right) for
instructions where it does not have any sane sense, but where
other flags have meanings. (This includes shifts; the carry is
not set by them).
Note that there are other parallel constructs we could match,
but we don't do that yet. */
if (GET_CODE (exp) == SET)
{
/* FIXME: Check when this happens. It looks like we should
actually do a CC_STATUS_INIT here to be safe. */
if (SET_DEST (exp) == pc_rtx)
return;
/* Record CC0 changes, so we do not have to output multiple
test insns. */
if (SET_DEST (exp) == cc0_rtx)
{
cc_status.value1 = SET_SRC (exp);
cc_status.value2 = 0;
/* Handle flags for the special btstq on one bit. */
if (GET_CODE (SET_SRC (exp)) == ZERO_EXTRACT
&& XEXP (SET_SRC (exp), 1) == const1_rtx)
{
if (GET_CODE (XEXP (SET_SRC (exp), 0)) == CONST_INT)
/* Using cmpq. */
cc_status.flags = CC_INVERTED;
else
/* A one-bit btstq. */
cc_status.flags = CC_Z_IN_NOT_N;
}
else
cc_status.flags = 0;
if (GET_CODE (SET_SRC (exp)) == COMPARE)
{
if (!REG_P (XEXP (SET_SRC (exp), 0))
&& XEXP (SET_SRC (exp), 1) != const0_rtx)
/* For some reason gcc will not canonicalize compare
operations, reversing the sign by itself if
operands are in wrong order. */
/* (But NOT inverted; eq is still eq.) */
cc_status.flags = CC_REVERSED;
/* This seems to be overlooked by gcc. FIXME: Check again.
FIXME: Is it really safe? */
cc_status.value2
= gen_rtx_MINUS (GET_MODE (SET_SRC (exp)),
XEXP (SET_SRC (exp), 0),
XEXP (SET_SRC (exp), 1));
}
return;
}
else if (REG_P (SET_DEST (exp))
|| (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART
&& REG_P (XEXP (SET_DEST (exp), 0))))
{
/* A register is set; normally CC is set to show that no
test insn is needed. Catch the exceptions. */
/* If not to cc0, then no "set"s in non-natural mode give
ok cc0... */
if (GET_MODE_SIZE (GET_MODE (SET_DEST (exp))) > UNITS_PER_WORD
|| GET_MODE_CLASS (GET_MODE (SET_DEST (exp))) == MODE_FLOAT)
{
/* ... except add:s and sub:s in DImode. */
if (GET_MODE (SET_DEST (exp)) == DImode
&& (GET_CODE (SET_SRC (exp)) == PLUS
|| GET_CODE (SET_SRC (exp)) == MINUS))
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
cc_status.value2 = 0;
/* Add and sub may set V, which gets us
unoptimizable results in "gt" and "le" condition
codes. */
cc_status.flags |= CC_NO_OVERFLOW;
return;
}
}
else if (SET_SRC (exp) == const0_rtx)
{
/* There's no CC0 change when clearing a register or
memory. Just check for overlap. */
if ((cc_status.value1
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value1)))
cc_status.value1 = 0;
if ((cc_status.value2
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value2)))
cc_status.value2 = 0;
return;
}
else
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
cc_status.value2 = 0;
/* Some operations may set V, which gets us
unoptimizable results in "gt" and "le" condition
codes. */
if (GET_CODE (SET_SRC (exp)) == PLUS
|| GET_CODE (SET_SRC (exp)) == MINUS
|| GET_CODE (SET_SRC (exp)) == NEG)
cc_status.flags |= CC_NO_OVERFLOW;
return;
}
}
else if (GET_CODE (SET_DEST (exp)) == MEM
|| (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART
&& GET_CODE (XEXP (SET_DEST (exp), 0)) == MEM))
{
/* When SET to MEM, then CC is not changed (except for
overlap). */
if ((cc_status.value1
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value1)))
cc_status.value1 = 0;
if ((cc_status.value2
&& cris_reg_overlap_mentioned_p (SET_DEST (exp),
cc_status.value2)))
cc_status.value2 = 0;
return;
}
}
else if (GET_CODE (exp) == PARALLEL)
{
if (GET_CODE (XVECEXP (exp, 0, 0)) == SET
&& GET_CODE (XVECEXP (exp, 0, 1)) == SET
&& REG_P (XEXP (XVECEXP (exp, 0, 1), 0)))
{
if (REG_P (XEXP (XVECEXP (exp, 0, 0), 0))
&& GET_CODE (XEXP (XVECEXP (exp, 0, 0), 1)) == MEM)
{
/* For "move.S [rx=ry+o],rz", say CC reflects
value1=rz and value2=[rx] */
cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
cc_status.value2
= gen_rtx_MEM (GET_MODE (XEXP (XVECEXP (exp, 0, 0), 0)),
XEXP (XVECEXP (exp, 0, 1), 0));
cc_status.flags = 0;
/* Huh? A side-effect cannot change the destination
register. */
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
internal_error ("Internal: sideeffect-insn affecting main effect");
return;
}
else if ((REG_P (XEXP (XVECEXP (exp, 0, 0), 1))
|| XEXP (XVECEXP (exp, 0, 0), 1) == const0_rtx)
&& GET_CODE (XEXP (XVECEXP (exp, 0, 0), 0)) == MEM)
{
/* For "move.S rz,[rx=ry+o]" and "clear.S [rx=ry+o]",
say flags are not changed, except for overlap. */
if ((cc_status.value1
&& cris_reg_overlap_mentioned_p (XEXP
(XVECEXP
(exp, 0, 0), 0),
cc_status.value1))
|| (cc_status.value2
&& cris_reg_overlap_mentioned_p (XEXP
(XVECEXP
(exp, 0, 1), 0),
cc_status.value2)))
CC_STATUS_INIT;
return;
}
}
}
break;
default:
/* Unknown cc_attr value. */
abort ();
}
CC_STATUS_INIT;
}
/* Return != 0 if the return sequence for the current function is short,
like "ret" or "jump [sp+]". Prior to reloading, we can't tell how
many registers must be saved, so return 0 then. */
int
cris_simple_epilogue ()
{
int regno;
int reglimit = STACK_POINTER_REGNUM;
int lastreg = -1;
if (! reload_completed
|| frame_pointer_needed
|| get_frame_size () != 0
|| current_function_pretend_args_size
|| current_function_args_size
|| current_function_outgoing_args_size
|| current_function_calls_eh_return
/* If we're not supposed to emit prologue and epilogue, we must
not emit return-type instructions. */
|| !TARGET_PROLOGUE_EPILOGUE)
return 0;
/* We allow a "movem [sp+],rN" to sit in front if the "jump [sp+]" or
in the delay-slot of the "ret". */
for (regno = 0; regno < reglimit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
{
if (lastreg != regno - 1)
return 0;
lastreg = regno;
}
return 1;
}
/* The ADDRESS_COST worker. */
int
cris_address_cost (x)
rtx x;
{
/* The metric to use for the cost-macros is unclear.
The metric used here is (the number of cycles needed) / 2,
where we consider equal a cycle for a word of code and a cycle to
read memory. */
/* The cheapest addressing modes get 0, since nothing extra is needed. */
if (BASE_OR_AUTOINCR_P (x))
return 0;
/* An indirect mem must be a DIP. This means two bytes extra for code,
and 4 bytes extra for memory read, i.e. (2 + 4) / 2. */
if (GET_CODE (x) == MEM)
return (2 + 4) / 2;
/* Assume (2 + 4) / 2 for a single constant; a dword, since it needs
an extra DIP prefix and 4 bytes of constant in most cases.
For PIC and a symbol with a GOT entry, we double the cost since we
add a [rPIC+...] offset. A GOT-less symbol uses a BDAP prefix
equivalent to the DIP prefix for non-PIC, hence the same cost. */
if (CONSTANT_P (x))
return flag_pic && cris_got_symbol (x) ? 2 * (2 + 4) / 2 : (2 + 4) / 2;
/* Handle BIAP and BDAP prefixes. */
if (GET_CODE (x) == PLUS)
{
rtx tem1 = XEXP (x, 0);
rtx tem2 = XEXP (x, 1);
/* A BIAP is 2 extra bytes for the prefix insn, nothing more. We
recognize the typical MULT which is always in tem1 because of
insn canonicalization. */
if ((GET_CODE (tem1) == MULT && BIAP_INDEX_P (tem1))
|| REG_P (tem1))
return 2 / 2;
/* A BDAP (quick) is 2 extra bytes. Any constant operand to the
PLUS is always found in tem2. */
if (GET_CODE (tem2) == CONST_INT
&& INTVAL (tem2) < 128 && INTVAL (tem2) >= -128)
return 2 / 2;
/* A BDAP -32768 .. 32767 is like BDAP quick, but with 2 extra
bytes. */
if (GET_CODE (tem2) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (tem2), 'L'))
return (2 + 2) / 2;
/* A BDAP with some other constant is 2 bytes extra. */
if (CONSTANT_P (tem2))
return (2 + 2 + 2) / 2;
/* BDAP with something indirect should have a higher cost than
BIAP with register. FIXME: Should it cost like a MEM or more? */
/* Don't need to check it, it's the only one left.
FIXME: There was a REG test missing, perhaps there are others.
Think more. */
return (2 + 2 + 2) / 2;
}
/* What else? Return a high cost. It matters only for valid
addressing modes. */
return 10;
}
/* Check various objections to the side-effect. Used in the test-part
of an anonymous insn describing an insn with a possible side-effect.
Returns nonzero if the implied side-effect is ok.
code : PLUS or MULT
ops : An array of rtx:es. lreg, rreg, rval,
The variables multop and other_op are indexes into this,
or -1 if they are not applicable.
lreg : The register that gets assigned in the side-effect.
rreg : One register in the side-effect expression
rval : The other register, or an int.
multop : An integer to multiply rval with.
other_op : One of the entities of the main effect,
whose mode we must consider. */
int
cris_side_effect_mode_ok (code, ops, lreg, rreg, rval, multop, other_op)
enum rtx_code code;
rtx *ops;
int lreg, rreg, rval, multop, other_op;
{
/* Find what value to multiply with, for rx =ry + rz * n. */
int mult = multop < 0 ? 1 : INTVAL (ops[multop]);
rtx reg_rtx = ops[rreg];
rtx val_rtx = ops[rval];
/* The operands may be swapped. Canonicalize them in reg_rtx and
val_rtx, where reg_rtx always is a reg (for this constraint to
match). */
if (! BASE_P (reg_rtx))
reg_rtx = val_rtx, val_rtx = ops[rreg];
/* Don't forget to check that reg_rtx really is a reg. If it isn't,
we have no business. */
if (! BASE_P (reg_rtx))
return 0;
/* Don't do this when -mno-split. */
if (!TARGET_SIDE_EFFECT_PREFIXES)
return 0;
/* The mult expression may be hidden in lreg. FIXME: Add more
commentary about that. */
if (GET_CODE (val_rtx) == MULT)
{
mult = INTVAL (XEXP (val_rtx, 1));
val_rtx = XEXP (val_rtx, 0);
code = MULT;
}
/* First check the "other operand". */
if (other_op >= 0)
{
if (GET_MODE_SIZE (GET_MODE (ops[other_op])) > UNITS_PER_WORD)
return 0;
/* Check if the lvalue register is the same as the "other
operand". If so, the result is undefined and we shouldn't do
this. FIXME: Check again. */
if ((BASE_P (ops[lreg])
&& BASE_P (ops[other_op])
&& REGNO (ops[lreg]) == REGNO (ops[other_op]))
|| rtx_equal_p (ops[other_op], ops[lreg]))
return 0;
}
/* Do not accept frame_pointer_rtx as any operand. */
if (ops[lreg] == frame_pointer_rtx || ops[rreg] == frame_pointer_rtx
|| ops[rval] == frame_pointer_rtx
|| (other_op >= 0 && ops[other_op] == frame_pointer_rtx))
return 0;
if (code == PLUS
&& ! BASE_P (val_rtx))
{
/* Do not allow rx = rx + n if a normal add or sub with same size
would do. */
if (rtx_equal_p (ops[lreg], reg_rtx)
&& GET_CODE (val_rtx) == CONST_INT
&& (INTVAL (val_rtx) <= 63 && INTVAL (val_rtx) >= -63))
return 0;
/* Check allowed cases, like [r(+)?].[bwd] and const.
A symbol is not allowed with PIC. */
if (CONSTANT_P (val_rtx))
return flag_pic == 0 || cris_symbol (val_rtx) == 0;
if (GET_CODE (val_rtx) == MEM
&& BASE_OR_AUTOINCR_P (XEXP (val_rtx, 0)))
return 1;
if (GET_CODE (val_rtx) == SIGN_EXTEND
&& GET_CODE (XEXP (val_rtx, 0)) == MEM
&& BASE_OR_AUTOINCR_P (XEXP (XEXP (val_rtx, 0), 0)))
return 1;
/* If we got here, it's not a valid addressing mode. */
return 0;
}
else if (code == MULT
|| (code == PLUS && BASE_P (val_rtx)))
{
/* Do not allow rx = rx + ry.S, since it doesn't give better code. */
if (rtx_equal_p (ops[lreg], reg_rtx)
|| (mult == 1 && rtx_equal_p (ops[lreg], val_rtx)))
return 0;
/* Do not allow bad multiply-values. */
if (mult != 1 && mult != 2 && mult != 4)
return 0;
/* Only allow r + ... */
if (! BASE_P (reg_rtx))
return 0;
/* If we got here, all seems ok.
(All checks need to be done above). */
return 1;
}
/* If we get here, the caller got its initial tests wrong. */
internal_error ("Internal: cris_side_effect_mode_ok with bad operands");
}
/* The function reg_overlap_mentioned_p in CVS (still as of 2001-05-16)
does not handle the case where the IN operand is strict_low_part; it
does handle it for X. Test-case in Axis-20010516. This function takes
care of that for THIS port. FIXME: strict_low_part is going away
anyway. */
static int
cris_reg_overlap_mentioned_p (x, in)
rtx x, in;
{
/* The function reg_overlap_mentioned now handles when X is
strict_low_part, but not when IN is a STRICT_LOW_PART. */
if (GET_CODE (in) == STRICT_LOW_PART)
in = XEXP (in, 0);
return reg_overlap_mentioned_p (x, in);
}
/* The TARGET_ASM_NAMED_SECTION worker.
We just dispatch to the functions for ELF and a.out. */
void
cris_target_asm_named_section (name, flags)
const char *name;
unsigned int flags;
{
if (! TARGET_ELF)
default_no_named_section (name, flags);
else
default_elf_asm_named_section (name, flags);
}
/* The LEGITIMATE_PIC_OPERAND_P worker. */
int
cris_legitimate_pic_operand (x)
rtx x;
{
/* The PIC representation of a symbol with a GOT entry will be (for
example; relocations differ):
sym => [rPIC+sym:GOT]
and for a GOT-less symbol it will be (for example, relocation differ):
sym => rPIC+sym:GOTOFF
so only a symbol with a GOT is by itself a valid operand, and it
can't be a sum of a symbol and an offset. */
return ! cris_symbol (x) || cris_got_symbol (x);
}
/* Return non-zero if there's a SYMBOL_REF or LABEL_REF hiding inside this
CONSTANT_P. */
int
cris_symbol (x)
rtx x;
{
switch (GET_CODE (x))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case UNSPEC:
/* A PLT reference. */
ASSERT_PLT_UNSPEC (x);
return 1;
case CONST:
return cris_symbol (XEXP (x, 0));
case PLUS:
case MINUS:
return cris_symbol (XEXP (x, 0)) || cris_symbol (XEXP (x, 1));
case CONST_INT:
case CONST_DOUBLE:
case CONSTANT_P_RTX:
return 0;
default:
fatal_insn ("Unrecognized supposed constant", x);
}
return 1;
}
/* Return non-zero if there's a SYMBOL_REF or LABEL_REF hiding inside this
CONSTANT_P, and the symbol does not need a GOT entry. Also set
current_function_uses_pic_offset_table if we're generating PIC and ever
see something that would need one. */
int
cris_gotless_symbol (x)
rtx x;
{
switch (GET_CODE (x))
{
case UNSPEC:
ASSERT_PLT_UNSPEC (x);
return 1;
case SYMBOL_REF:
if (flag_pic && cfun != NULL)
current_function_uses_pic_offset_table = 1;
return SYMBOL_REF_FLAG (x);
case LABEL_REF:
/* We don't set current_function_uses_pic_offset_table for
LABEL_REF:s in here, since they are almost always originating
from some branch. The only time it does not come from a label is
when GCC does something like __builtin_setjmp. Then we get the
LABEL_REF from the movsi expander, so we mark it there as a
special case. */
return 1;
case CONST:
return cris_gotless_symbol (XEXP (x, 0));
case PLUS:
case MINUS:
{
int x0 = cris_gotless_symbol (XEXP (x, 0)) != 0;
int x1 = cris_gotless_symbol (XEXP (x, 1)) != 0;
/* One and only one of them must be a local symbol. Neither must
be some other, more general kind of symbol. */
return
(x0 ^ x1)
&& ! (x0 == 0 && cris_symbol (XEXP (x, 0)))
&& ! (x1 == 0 && cris_symbol (XEXP (x, 1)));
}
case CONST_INT:
case CONST_DOUBLE:
case CONSTANT_P_RTX:
return 0;
default:
fatal_insn ("Unrecognized supposed constant", x);
}
return 1;
}
/* Return non-zero if there's a SYMBOL_REF or LABEL_REF hiding inside this
CONSTANT_P, and the symbol needs a GOT entry. */
int
cris_got_symbol (x)
rtx x;
{
switch (GET_CODE (x))
{
case UNSPEC:
ASSERT_PLT_UNSPEC (x);
return 0;
case SYMBOL_REF:
if (flag_pic && cfun != NULL)
current_function_uses_pic_offset_table = 1;
return ! SYMBOL_REF_FLAG (x);
case CONST:
return cris_got_symbol (XEXP (x, 0));
case LABEL_REF:
/* A LABEL_REF is never visible as a symbol outside the local
function. */
case PLUS:
case MINUS:
/* Nope, can't access the GOT for "symbol + offset". */
return 0;
case CONST_INT:
case CONST_DOUBLE:
case CONSTANT_P_RTX:
return 0;
default:
fatal_insn ("Unrecognized supposed constant in cris_global_pic_symbol",
x);
}
return 1;
}
/* The OVERRIDE_OPTIONS worker.
As is the norm, this also parses -mfoo=bar type parameters. */
void
cris_override_options ()
{
if (cris_max_stackframe_str)
{
cris_max_stackframe = atoi (cris_max_stackframe_str);
/* Do some sanity checking. */
if (cris_max_stackframe < 0 || cris_max_stackframe > 0x20000000)
internal_error ("-max-stackframe=%d is not usable, not between 0 and %d",
cris_max_stackframe, 0x20000000);
}
/* Let "-metrax4" and "-metrax100" change the cpu version. */
if (TARGET_SVINTO && cris_cpu_version < CRIS_CPU_SVINTO)
cris_cpu_version = CRIS_CPU_SVINTO;
else if (TARGET_ETRAX4_ADD && cris_cpu_version < CRIS_CPU_ETRAX4)
cris_cpu_version = CRIS_CPU_ETRAX4;
/* Parse -march=... and its synonym, the deprecated -mcpu=... */
if (cris_cpu_str)
{
cris_cpu_version
= (*cris_cpu_str == 'v' ? atoi (cris_cpu_str + 1) : -1);
if (strcmp ("etrax4", cris_cpu_str) == 0)
cris_cpu_version = 3;
if (strcmp ("svinto", cris_cpu_str) == 0
|| strcmp ("etrax100", cris_cpu_str) == 0)
cris_cpu_version = 8;
if (strcmp ("ng", cris_cpu_str) == 0
|| strcmp ("etrax100lx", cris_cpu_str) == 0)
cris_cpu_version = 10;
if (cris_cpu_version < 0 || cris_cpu_version > 10)
error ("Unknown CRIS version specification in -march= or -mcpu= : %s",
cris_cpu_str);
/* Set the target flags. */
if (cris_cpu_version >= CRIS_CPU_ETRAX4)
target_flags |= TARGET_MASK_ETRAX4_ADD;
/* If this is Svinto or higher, align for 32 bit accesses. */
if (cris_cpu_version >= CRIS_CPU_SVINTO)
target_flags
|= (TARGET_MASK_SVINTO | TARGET_MASK_ALIGN_BY_32
| TARGET_MASK_STACK_ALIGN | TARGET_MASK_CONST_ALIGN
| TARGET_MASK_DATA_ALIGN);
/* Note that we do not add new flags when it can be completely
described with a macro that uses -mcpu=X. So
TARGET_HAS_MUL_INSNS is (cris_cpu_version >= CRIS_CPU_NG). */
}
if (cris_tune_str)
{
int cris_tune
= (*cris_tune_str == 'v' ? atoi (cris_tune_str + 1) : -1);
if (strcmp ("etrax4", cris_tune_str) == 0)
cris_tune = 3;
if (strcmp ("svinto", cris_tune_str) == 0
|| strcmp ("etrax100", cris_tune_str) == 0)
cris_tune = 8;
if (strcmp ("ng", cris_tune_str) == 0
|| strcmp ("etrax100lx", cris_tune_str) == 0)
cris_tune = 10;
if (cris_tune < 0 || cris_tune > 10)
error ("Unknown CRIS cpu version specification in -mtune= : %s",
cris_tune_str);
if (cris_tune >= CRIS_CPU_SVINTO)
/* We have currently nothing more to tune than alignment for
memory accesses. */
target_flags
|= (TARGET_MASK_STACK_ALIGN | TARGET_MASK_CONST_ALIGN
| TARGET_MASK_DATA_ALIGN | TARGET_MASK_ALIGN_BY_32);
}
if (flag_pic)
{
/* Use error rather than warning, so invalid use is easily
detectable. Still change to the values we expect, to avoid
further errors. */
if (! TARGET_LINUX)
{
error ("-fPIC not supported in this configuration");
flag_pic = 0;
}
/* Turn off function CSE. We need to have the addresses reach the
call expanders to get PLT-marked, as they could otherwise be
compared against zero directly or indirectly. After visiting the
call expanders they will then be cse:ed, as the call expanders
force_reg the addresses, effectively forcing flag_no_function_cse
to 0. */
flag_no_function_cse = 1;
}
if ((write_symbols == DWARF_DEBUG
|| write_symbols == DWARF2_DEBUG) && ! TARGET_ELF)
{
warning ("Specified -g option is invalid with -maout and -melinux");
write_symbols = DBX_DEBUG;
}
/* Set the per-function-data initializer. */
init_machine_status = cris_init_machine_status;
}
/* The ASM_OUTPUT_MI_THUNK worker. */
void
cris_asm_output_mi_thunk (stream, thunkdecl, delta, funcdecl)
FILE *stream;
tree thunkdecl ATTRIBUTE_UNUSED;
int delta;
tree funcdecl;
{
if (delta > 0)
asm_fprintf (stream, "\tadd%s %d,$%s\n",
ADDITIVE_SIZE_MODIFIER (delta), delta,
reg_names[CRIS_FIRST_ARG_REG]);
else if (delta < 0)
asm_fprintf (stream, "\tsub%s %d,$%s\n",
ADDITIVE_SIZE_MODIFIER (-delta), -delta,
reg_names[CRIS_FIRST_ARG_REG]);
if (flag_pic)
{
const char *name = XSTR (XEXP (DECL_RTL (funcdecl), 0), 0);
STRIP_NAME_ENCODING (name, name);
fprintf (stream, "add.d ");
assemble_name (stream, name);
fprintf (stream, "%s,$pc\n", CRIS_PLT_PCOFFSET_SUFFIX);
}
else
{
fprintf (stream, "jump ");
assemble_name (stream, XSTR (XEXP (DECL_RTL (funcdecl), 0), 0));
fprintf (stream, "\n");
}
}
/* The EXPAND_BUILTIN_VA_ARG worker. This is modified from the
"standard" implementation of va_arg: read the value from the current
address and increment by the size of one or two registers. The
important difference for CRIS is that if the type is
pass-by-reference, then perform an indirection. */
rtx
cris_expand_builtin_va_arg (valist, type)
tree valist;
tree type;
{
tree addr_tree, t;
rtx addr;
enum machine_mode mode = TYPE_MODE (type);
int passed_size;
/* Get AP. */
addr_tree = valist;
/* Check if the type is passed by value or by reference. */
if (MUST_PASS_IN_STACK (mode, type)
|| CRIS_FUNCTION_ARG_SIZE (mode, type) > 8)
{
tree type_ptr = build_pointer_type (type);
addr_tree = build1 (INDIRECT_REF, type_ptr, addr_tree);
passed_size = 4;
}
else
passed_size = (CRIS_FUNCTION_ARG_SIZE (mode, type) > 4) ? 8 : 4;
addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
addr = copy_to_reg (addr);
/* Compute new value for AP. */
t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
build (PLUS_EXPR, TREE_TYPE (valist), valist,
build_int_2 (passed_size, 0)));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
return addr;
}
/* The INIT_EXPANDERS worker sets the per-function-data initializer and
mark functions. */
void
cris_init_expanders ()
{
/* Nothing here at the moment. */
}
/* Zero initialization is OK for all current fields. */
static void
cris_init_machine_status (p)
struct function *p;
{
p->machine = xcalloc (1, sizeof (struct machine_function));
}
/* Split a 2 word move (DI or presumably DF) into component parts.
Originally a copy of gen_split_move_double in m32r.c. */
rtx
cris_split_movdx (operands)
rtx *operands;
{
enum machine_mode mode = GET_MODE (operands[0]);
rtx dest = operands[0];
rtx src = operands[1];
rtx val;
/* We might have (SUBREG (MEM)) here, so just get rid of the
subregs to make this code simpler. It is safe to call
alter_subreg any time after reload. */
if (GET_CODE (dest) == SUBREG)
dest = alter_subreg (dest);
if (GET_CODE (src) == SUBREG)
src = alter_subreg (src);
start_sequence ();
if (GET_CODE (dest) == REG)
{
int dregno = REGNO (dest);
/* Reg-to-reg copy. */
if (GET_CODE (src) == REG)
{
int sregno = REGNO (src);
int reverse = (dregno == sregno + 1);
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
operand_subword (src, reverse, TRUE, mode)));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, !reverse, TRUE, mode),
operand_subword (src, !reverse, TRUE, mode)));
}
/* Constant-to-reg copy. */
else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
{
rtx words[2];
split_double (src, &words[0], &words[1]);
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode),
words[0]));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode),
words[1]));
}
/* Mem-to-reg copy. */
else if (GET_CODE (src) == MEM)
{
/* If the high-address word is used in the address, we must load it
last. Otherwise, load it first. */
rtx addr = XEXP (src, 0);
int reverse
= (refers_to_regno_p (dregno, dregno + 1, addr, NULL) != 0);
/* The original code imples that we can't do
move.x [rN+],rM move.x [rN],rM+1
when rN is dead, because of REG_NOTES damage. That is
consistent with what I've seen, so don't try it.
We have two different cases here; if the addr is POST_INC,
just pass it through, otherwise add constants. */
if (GET_CODE (addr) == POST_INC)
{
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode),
change_address (src, SImode, addr)));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode),
change_address (src, SImode, addr)));
}
else
{
/* Make sure we don't get any other addresses with
embedded postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your
safety. */
if (side_effects_p (addr))
fatal_insn ("Unexpected side-effects in address", addr);
emit_insn (gen_rtx_SET
(VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (addr,
reverse * UNITS_PER_WORD))));
emit_insn (gen_rtx_SET
(VOIDmode,
operand_subword (dest, ! reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (addr,
(! reverse) *
UNITS_PER_WORD))));
}
}
else
abort ();
}
/* Reg-to-mem copy or clear mem. */
else if (GET_CODE (dest) == MEM
&& (GET_CODE (src) == REG
|| src == const0_rtx
|| src == CONST0_RTX (DFmode)))
{
rtx addr = XEXP (dest, 0);
if (GET_CODE (addr) == POST_INC)
{
emit_insn (gen_rtx_SET (VOIDmode,
change_address (dest, SImode, addr),
operand_subword (src, 0, TRUE, mode)));
emit_insn (gen_rtx_SET (VOIDmode,
change_address (dest, SImode, addr),
operand_subword (src, 1, TRUE, mode)));
}
else
{
/* Make sure we don't get any other addresses with embedded
postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your safety. */
if (side_effects_p (addr))
fatal_insn ("Unexpected side-effects in address", addr);
emit_insn (gen_rtx_SET
(VOIDmode,
change_address (dest, SImode, addr),
operand_subword (src, 0, TRUE, mode)));
emit_insn (gen_rtx_SET
(VOIDmode,
change_address (dest, SImode,
plus_constant (addr,
UNITS_PER_WORD)),
operand_subword (src, 1, TRUE, mode)));
}
}
else
abort ();
val = gen_sequence ();
end_sequence ();
return val;
}
/* This is in essence a copy of output_addr_const altered to output
symbolic operands as PIC.
FIXME: Add hooks similar to ASM_OUTPUT_SYMBOL_REF to get this effect in
the "real" output_addr_const. All we need is one for LABEL_REF (and
one for CODE_LABEL?). */
void
cris_output_addr_const (file, x)
FILE *file;
rtx x;
{
int is_plt = 0;
restart:
switch (GET_CODE (x))
{
case UNSPEC:
ASSERT_PLT_UNSPEC (x);
x = XVECEXP (x, 0, 0);
is_plt = 1;
/* Fall through. */
case SYMBOL_REF:
if (flag_pic)
{
const char *origstr = XSTR (x, 0);
const char *str;
STRIP_NAME_ENCODING (str, origstr);
if (is_plt)
{
if (cris_pic_sympart_only)
{
assemble_name (file, str);
fprintf (file, ":PLTG");
}
else
{
if (TARGET_AVOID_GOTPLT)
/* We shouldn't get here. */
abort ();
fprintf (file, "[$%s+", reg_names [PIC_OFFSET_TABLE_REGNUM]);
assemble_name (file, XSTR (x, 0));
if (flag_pic == 1)
fprintf (file, ":GOTPLT16]");
else
fprintf (file, ":GOTPLT]");
}
}
else if (cris_gotless_symbol (x))
{
if (! cris_pic_sympart_only)
fprintf (file, "$%s+", reg_names [PIC_OFFSET_TABLE_REGNUM]);
assemble_name (file, str);
fprintf (file, ":GOTOFF");
}
else if (cris_got_symbol (x))
{
if (cris_pic_sympart_only)
abort ();
fprintf (file, "[$%s+", reg_names [PIC_OFFSET_TABLE_REGNUM]);
assemble_name (file, XSTR (x, 0));
if (flag_pic == 1)
fprintf (file, ":GOT16]");
else
fprintf (file, ":GOT]");
}
else
fatal_insn ("Unexpected PIC symbol", x);
/* Sanity check. */
if (! current_function_uses_pic_offset_table)
internal_error ("Emitting PIC operand, but PIC register isn't set up");
}
else
assemble_name (file, XSTR (x, 0));
break;
case LABEL_REF:
/* If we get one of those here, it should be dressed as PIC. Branch
labels are normally output with the 'l' specifier, which means it
will go directly to output_asm_label and not end up here. */
if (GET_CODE (XEXP (x, 0)) != CODE_LABEL
&& (GET_CODE (XEXP (x, 0)) != NOTE
|| NOTE_LINE_NUMBER (XEXP (x, 0)) != NOTE_INSN_DELETED_LABEL))
fatal_insn ("Unexpected address expression", x);
if (flag_pic)
{
if (cris_gotless_symbol (x))
{
if (! cris_pic_sympart_only)
fprintf (file, "$%s+", reg_names [PIC_OFFSET_TABLE_REGNUM]);
cris_output_addr_const (file, XEXP (x, 0));
fprintf (file, ":GOTOFF");
}
else
/* Labels are never marked as global symbols. */
fatal_insn ("Unexpected PIC symbol", x);
/* Sanity check. */
if (! current_function_uses_pic_offset_table)
internal_error ("Emitting PIC operand, but PIC register isn't set up");
break;
}
output_addr_const (file, x);
break;
case NOTE:
if (NOTE_LINE_NUMBER (x) != NOTE_INSN_DELETED_LABEL)
fatal_insn ("Unexpected NOTE as addr_const:", x);
case CODE_LABEL:
case CONST_INT:
case CONST_DOUBLE:
case ZERO_EXTEND:
case SIGN_EXTEND:
output_addr_const (file, x);
break;
case CONST:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
cris_output_addr_const (file, XEXP (x, 0));
break;
case PLUS:
/* Some assemblers need integer constants to appear last (eg masm). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
cris_output_addr_const (file, XEXP (x, 1));
if (INTVAL (XEXP (x, 0)) >= 0)
fprintf (file, "+");
output_addr_const (file, XEXP (x, 0));
}
else
{
cris_output_addr_const (file, XEXP (x, 0));
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
cris_output_addr_const (file, XEXP (x, 1));
}
break;
case MINUS:
/* Avoid outputting things like x-x or x+5-x,
since some assemblers can't handle that. */
x = simplify_subtraction (x);
if (GET_CODE (x) != MINUS)
goto restart;
cris_output_addr_const (file, XEXP (x, 0));
fprintf (file, "-");
if ((GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < 0)
|| GET_CODE (XEXP (x, 1)) != CONST_INT)
{
fprintf (file, "%s", targetm.asm_out.open_paren);
cris_output_addr_const (file, XEXP (x, 1));
fprintf (file, "%s", targetm.asm_out.close_paren);
}
else
output_addr_const (file, XEXP (x, 1));
break;
default:
fatal_insn ("Unexpected address expression", x);
}
}
/* The ENCODE_SECTION_INFO worker. Code-in whether we can get away
without a GOT entry (needed for externally visible objects but not for
functions) into SYMBOL_REF_FLAG and add the PLT suffix for global
functions. */
void
cris_encode_section_info (exp)
tree exp;
{
if (flag_pic)
{
if (DECL_P (exp))
{
if (TREE_CODE (exp) == FUNCTION_DECL
&& (TREE_PUBLIC (exp) || DECL_WEAK (exp)))
SYMBOL_REF_FLAG (XEXP (DECL_RTL (exp), 0)) = 0;
else
SYMBOL_REF_FLAG (XEXP (DECL_RTL (exp), 0))
= ! TREE_PUBLIC (exp) && ! DECL_WEAK (exp);
}
else
/* Others are local entities. */
SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (exp), 0)) = 1;
}
}
#if 0
/* Various small functions to replace macros. Only called from a
debugger. They might collide with gcc functions or system functions,
so only emit them when '#if 1' above. */
enum rtx_code Get_code PARAMS ((rtx));
enum rtx_code
Get_code (x)
rtx x;
{
return GET_CODE (x);
}
const char *Get_mode PARAMS ((rtx));
const char *
Get_mode (x)
rtx x;
{
return GET_MODE_NAME (GET_MODE (x));
}
rtx Xexp PARAMS ((rtx, int));
rtx
Xexp (x, n)
rtx x;
int n;
{
return XEXP (x, n);
}
rtx Xvecexp PARAMS ((rtx, int, int));
rtx
Xvecexp (x, n, m)
rtx x;
int n;
{
return XVECEXP (x, n, m);
}
int Get_rtx_len PARAMS ((rtx));
int
Get_rtx_len (x)
rtx x;
{
return GET_RTX_LENGTH (GET_CODE (x));
}
/* Use upper-case to distinguish from local variables that are sometimes
called next_insn and prev_insn. */
rtx Next_insn PARAMS ((rtx));
rtx
Next_insn (insn)
rtx insn;
{
return NEXT_INSN (insn);
}
rtx Prev_insn PARAMS ((rtx));
rtx
Prev_insn (insn)
rtx insn;
{
return PREV_INSN (insn);
}
#endif
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
/* Note that other header files (e.g. config/elfos.h, config/linux.h,
config/cris/linux.h and config/cris/aout.h) are responsible for lots of
settings not repeated below. This file contains general CRIS
definitions and definitions for the cris-*-elf subtarget. */
/* Replacement for REG_P since it does not match SUBREGs. Happens for
testcase Axis-20000320 with gcc-2.9x. */
#define REG_S_P(x) \
(REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0))))
/* Last register in main register bank r0..r15. */
#define CRIS_LAST_GENERAL_REGISTER 15
/* Descriptions of registers used for arguments. */
#define CRIS_FIRST_ARG_REG 10
#define CRIS_MAX_ARGS_IN_REGS 4
/* Other convenience definitions. */
#define CRIS_PC_REGNUM 15
#define CRIS_SRP_REGNUM 16
/* Most of the time, we need the index into the register-names array.
When passing debug-info, we need the real register number. */
#define CRIS_CANONICAL_SRP_REGNUM (16 + 11)
#define CRIS_CANONICAL_MOF_REGNUM (16 + 7)
/* When generating PIC, these suffixes are added to the names of non-local
functions when being output. Contrary to other ports, we have offsets
relative to the GOT, not the PC. We might implement PC-relative PLT
semantics later for the general case; they are used in some cases right
now, such as MI thunks. */
#define CRIS_GOTPLT_SUFFIX ":GOTPLT"
#define CRIS_PLT_GOTOFFSET_SUFFIX ":PLTG"
#define CRIS_PLT_PCOFFSET_SUFFIX ":PLT"
#define CRIS_FUNCTION_ARG_SIZE(MODE, TYPE) \
((MODE) != BLKmode ? GET_MODE_SIZE (MODE) \
: (unsigned) int_size_in_bytes (TYPE))
/* Check for max allowed stackframe. A "const char *" to be parsed. */
extern const char *cris_max_stackframe_str;
/* Which CPU version this is. A "const char *" to be parsed. */
extern const char *cris_cpu_str;
/* Which CPU version this is. The parsed and adjusted cris_cpu_str. */
extern int cris_cpu_version;
/* Which CPU version to tune for. A "const char *" to be parsed. */
extern const char *cris_tune_str;
/* The argument to "-melinux-stacksize=". We don't parse it currently;
it's just passed on to the linker. We might want to do something
here someday. */
extern const char *cris_elinux_stacksize_str;
/* Changing the order used to be necessary to put the fourth __make_dp
argument (a DImode parameter) in registers, to fit with the libfunc
parameter passing scheme used for intrinsic functions. FIXME: Check
performance and maybe remove definition from TARGET_LIBGCC2_CFLAGS now
that it isn't strictly necessary. We used to do this through
TARGET_LIBGCC2_CFLAGS, but that became increasingly difficult as the
parenthesis (that needed quoting) travels through several layers of
make and shell invocations. */
#ifdef IN_LIBGCC2
#define __make_dp(a,b,c,d) __cris_make_dp(d,a,b,c)
#endif
/* Node: Driver */
/* When using make with defaults.mak for Sun this will handily remove
any "-target sun*" switches. */
/* We need to override any previous definitions (linux.h) */
#undef WORD_SWITCH_TAKES_ARG
#define WORD_SWITCH_TAKES_ARG(STR) \
(DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
|| !strcmp (STR, "target"))
/* Also provide canonical vN definitions when user specifies an alias.
Note that -melf overrides -maout. */
/* The `-$' is here mostly due to the integrated preprocessor not
handling the builtin expansion of "#define __REGISTER_PREFIX__ $"
gracefully. This is slightly redundant although not incorrect.
We're quite alone defining REGISTER_PREFIX as "$" so it's unlikely
someone will fight for us. This year in the mountains.
Note that for -melinux and -mlinux, command-line -isystem options are
emitted both before and after the synthesized one. We can't remove all
of them: a %{<isystem} will only remove the first one and %{<isystem*}
will not do TRT. Those extra occurences are harmless anyway. */
#define CPP_SPEC \
"-$ -D__CRIS_ABI_version=2\
%{mtune=*:-D__tune_%* %{mtune=v*:-D__CRIS_arch_tune=%*}}\
%{mtune=etrax4:-D__tune_v3 -D__CRIS_arch_tune=3}\
%{mtune=etrax100:-D__tune_v8 -D__CRIS_arch_tune=8}\
%{mtune=svinto:-D__tune_v8 -D__CRIS_arch_tune=8}\
%{mtune=etrax100lx:-D__tune_v10 -D__CRIS_arch_tune=10}\
%{mtune=ng:-D__tune_v10 -D__CRIS_arch_tune=10}\
%{mcpu=*:-D__arch_%* %{mcpu=v*:-D__CRIS_arch_version=%*}}\
%{mcpu=etrax4:-D__arch_v3 -D__CRIS_arch_version=3}\
%{mcpu=etrax100:-D__arch_v8 -D__CRIS_arch_version=8}\
%{mcpu=svinto:-D__arch_v8 -D__CRIS_arch_version=8}\
%{mcpu=etrax100lx:-D__arch_v10 -D__CRIS_arch_version=10}\
%{mcpu=ng:-D__arch_v10 -D__CRIS_arch_version=10}\
%{march=*:-D__arch_%* %{march=v*:-D__CRIS_arch_version=%*}}\
%{march=etrax4:-D__arch_v3 -D__CRIS_arch_version=3}\
%{march=etrax100:-D__arch_v8 -D__CRIS_arch_version=8}\
%{march=svinto:-D__arch_v8 -D__CRIS_arch_version=8}\
%{march=etrax100lx:-D__arch_v10 -D__CRIS_arch_version=10}\
%{march=ng:-D__arch_v10 -D__CRIS_arch_version=10}\
%{metrax100:-D__arch__v8 -D__CRIS_arch_version=8}\
%{metrax4:-D__arch__v3 -D__CRIS_arch_version=3}\
%(cpp_subtarget)"
/* For the cris-*-elf subtarget. */
#define CRIS_CPP_SUBTARGET_SPEC \
"-D__ELF__\
%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!metrax*:%{!mcpu=*:-D__tune_v10 -D__CRIS_arch_tune=10}}}}}"
/* Remove those Sun-make "target" switches. */
/* Override previous definitions (linux.h). */
#undef CC1_SPEC
#define CC1_SPEC \
"%{target*:}\
%{metrax4:-march=v3}\
%{metrax100:-march=v8}\
%(cc1_subtarget)"
/* For the cris-*-elf subtarget. */
#define CRIS_CC1_SUBTARGET_SPEC \
"-melf\
%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!mcpu=*:-mtune=v10 -D__CRIS_arch_tune=10}}\
%{!finhibit-size-directive:\
%{!fno-function-sections: -ffunction-sections}\
%{!fno-data-sections: -fdata-sections}}}}"
/* This adds to CC1_SPEC. When bugs are removed from -fvtable-gc
(-fforce-addr causes invalid .vtable_entry asm in tinfo.cc and
nothing at all works in GCC 3.0-pre), add this line:
"%{mbest-lib-options:%{!moverride-best-lib-options:\
%{!melinux:%{!maout|melf:%{!fno-vtable-gc:-fvtable-gc}}}}}". */
#define CC1PLUS_SPEC ""
/* Override previous definitions (linux.h). */
#undef ASM_SPEC
#define ASM_SPEC \
"%{v:-v}\
%(asm_subtarget)"
/* For the cris-*-elf subtarget. */
#define CRIS_ASM_SUBTARGET_SPEC "--em=criself"
/* FIXME: We should propagate the -melf option to make the criself
"emulation" unless a linker script is provided (-T*), but I don't know
how to do that if either of -Ttext, -Tdata or -Tbss is given but no
linker script, as is usually the case. Leave it to the user for the
time being.
Note that -melf overrides -maout except that a.out-compiled libraries
are linked in (multilibbing). The somewhat cryptic -rpath-link pair is
to avoid *only* picking up the linux multilib subdir from the "-B./"
option during build, while still giving it preference. We'd need some
%s-variant that checked for existance of some specific file. */
/* Override previous definitions (svr4.h). */
#undef LINK_SPEC
#define LINK_SPEC \
"%{v:--verbose}\
%(link_subtarget)"
/* For the cris-*-elf subtarget. */
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcriself\
%{sim2:%{!T*:-Tdata 0x4000000 -Tbss 0x8000000}}\
%{O2|O3: --gc-sections}"
/* Which library to get. The only difference from the default is to get
libsc.a if -sim is given to the driver. Repeat -lc -lsysX
{X=sim,linux}, because libsysX needs (at least) errno from libc, and
then we want to resolve new unknowns in libc against libsysX, not
libnosys. */
/* Override previous definitions (linux.h). */
#undef LIB_SPEC
#define LIB_SPEC \
"%{sim*:-lc -lsyssim -lc -lsyssim}\
%{!sim*:%{g*:-lg}\
%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} -lbsp}\
-lnosys"
/* Linker startfile options; crt0 flavors.
At the moment there are no gcrt0.o or mcrt0.o, but keep them here and
link them to crt0.o to be prepared. Use scrt0.c if running the
simulator, linear style, or s2crt0.c if fixed style. */
/* We need to remove any previous definition (elfos.h). */
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{sim2:s2crt0.o%s}\
%{!sim2:%{sim:scrt0.o%s}\
%{!sim:%{pg:gcrt0.o%s}\
%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}}\
crtbegin.o%s"
#define EXTRA_SPECS \
{"cpp_subtarget", CRIS_CPP_SUBTARGET_SPEC}, \
{"cc1_subtarget", CRIS_CC1_SUBTARGET_SPEC}, \
{"asm_subtarget", CRIS_ASM_SUBTARGET_SPEC}, \
{"link_subtarget", CRIS_LINK_SUBTARGET_SPEC}, \
CRIS_SUBTARGET_EXTRA_SPECS
#define CRIS_SUBTARGET_EXTRA_SPECS
/* Node: Run-time Target */
/* Only keep the non-varying ones here. */
#define CPP_PREDEFINES "-Dcris -DCRIS -DGNU_CRIS"
/* This needs to be at least 32 bits. */
extern int target_flags;
/* Currently this just affects aligment. FIXME: Redundant with
TARGET_ALIGN_BY_32, or put machine stuff here? */
#define TARGET_MASK_SVINTO 1
#define TARGET_SVINTO (target_flags & TARGET_MASK_SVINTO)
/* If to use condition-codes generated by insns other than the
immediately preceding compare/test insn.
Used to check for errors in notice_update_cc. */
#define TARGET_MASK_CCINIT 2
#define TARGET_CCINIT (target_flags & TARGET_MASK_CCINIT)
/* Debug option. */
#define TARGET_MASK_PDEBUG 4
#define TARGET_PDEBUG (target_flags & TARGET_MASK_PDEBUG)
/* If to use side-effect patterns. Used to debug the [rx=ry+i] type
patterns. */
#define TARGET_MASK_SIDE_EFFECT_PREFIXES 8
#define TARGET_SIDE_EFFECT_PREFIXES \
(target_flags & TARGET_MASK_SIDE_EFFECT_PREFIXES)
/* If to expand mul into mstep. Only used when making libc.a. */
#define TARGET_MASK_EXPAND_MUL 16
#define TARGET_EXPAND_MUL (target_flags & TARGET_MASK_EXPAND_MUL)
/* If to *keep* (not force) alignment of stack at 16 bits. */
#define TARGET_MASK_STACK_ALIGN 32
#define TARGET_STACK_ALIGN (target_flags & TARGET_MASK_STACK_ALIGN)
/* If to do alignment on individual non-modifiable objects. */
#define TARGET_MASK_CONST_ALIGN 64
#define TARGET_CONST_ALIGN (target_flags & TARGET_MASK_CONST_ALIGN)
/* If to do alignment on individual modifiable objects. */
#define TARGET_MASK_DATA_ALIGN 128
#define TARGET_DATA_ALIGN (target_flags & TARGET_MASK_DATA_ALIGN)
/* If not to omit funtion prologue and epilogue. */
#define TARGET_MASK_PROLOGUE_EPILOGUE 256
#define TARGET_PROLOGUE_EPILOGUE (target_flags & TARGET_MASK_PROLOGUE_EPILOGUE)
/* Instructions additions from Etrax 4 and up.
(Just "lz", which we don't really generate from GCC -- yet). */
#define TARGET_MASK_ETRAX4_ADD 512
#define TARGET_ETRAX4_ADD (target_flags & TARGET_MASK_ETRAX4_ADD)
/* Say that all alignment specifications say to prefer 32 rather
than 16 bits. */
#define TARGET_MASK_ALIGN_BY_32 1024
#define TARGET_ALIGN_BY_32 (target_flags & TARGET_MASK_ALIGN_BY_32)
/* This condition is of limited use, as gcc is riddled with #ifdef:s
controlling this, rather than if (...):s. */
#define TARGET_MASK_ELF 2048
#define TARGET_ELF (target_flags & TARGET_MASK_ELF)
/* Currently just used to error-check other options. Note that this is
*not* set for -melinux. */
#define TARGET_MASK_LINUX 4096
#define TARGET_LINUX (target_flags & TARGET_MASK_LINUX)
/* There's a small setup cost with using GOTPLT references, but should
in total be a win both in code-size and execution-time. */
#define TARGET_MASK_AVOID_GOTPLT 8192
#define TARGET_AVOID_GOTPLT (target_flags & TARGET_MASK_AVOID_GOTPLT)
#define TARGET_SWITCHES \
{ \
/* No "no-etrax" as it does not really imply any model. \
On the other hand, "etrax" implies the common (and large) \
subset matching all models. */ \
{"etrax4", TARGET_MASK_ETRAX4_ADD, \
N_("Compile for ETRAX 4 (CRIS v3)")}, \
{"no-etrax4", -TARGET_MASK_ETRAX4_ADD, ""}, \
{"etrax100", (TARGET_MASK_SVINTO \
+ TARGET_MASK_ETRAX4_ADD \
+ TARGET_MASK_ALIGN_BY_32), \
N_("Compile for ETRAX 100 (CRIS v8)")}, \
{"no-etrax100", -(TARGET_MASK_SVINTO \
+ TARGET_MASK_ETRAX4_ADD), ""}, \
{"pdebug", TARGET_MASK_PDEBUG, \
N_("Emit verbose debug information in assembly code")}, \
{"no-pdebug", -TARGET_MASK_PDEBUG, ""}, \
{"cc-init", TARGET_MASK_CCINIT, \
N_("Do not use condition codes from normal instructions")}, \
{"no-cc-init", -TARGET_MASK_CCINIT, ""}, \
{"side-effects", TARGET_MASK_SIDE_EFFECT_PREFIXES, ""}, \
{"no-side-effects", -TARGET_MASK_SIDE_EFFECT_PREFIXES, \
N_("Do not emit addressing modes with side-effect assignment")}, \
{"stack-align", TARGET_MASK_STACK_ALIGN, ""}, \
{"no-stack-align", -TARGET_MASK_STACK_ALIGN, \
N_("Do not tune stack alignment")}, \
{"data-align", TARGET_MASK_DATA_ALIGN, ""}, \
{"no-data-align", -TARGET_MASK_DATA_ALIGN, \
N_("Do not tune writable data alignment")}, \
{"const-align", TARGET_MASK_CONST_ALIGN, ""}, \
{"no-const-align", -TARGET_MASK_CONST_ALIGN, \
N_("Do not tune code and read-only data alignment")}, \
{"32-bit", (TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN \
+ TARGET_MASK_ALIGN_BY_32), ""}, \
{"32bit", (TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN \
+ TARGET_MASK_ALIGN_BY_32), \
N_("Align code and data to 32 bits")}, \
{"16-bit", (TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN), ""}, \
{"16bit", (TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN), ""}, \
{"8-bit", -(TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN), ""}, \
{"8bit", -(TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN \
+ TARGET_MASK_DATA_ALIGN), \
N_("Don't align items in code or data")}, \
{"prologue-epilogue", TARGET_MASK_PROLOGUE_EPILOGUE, ""}, \
{"no-prologue-epilogue", -TARGET_MASK_PROLOGUE_EPILOGUE, \
N_("Do not emit function prologue or epilogue")}, \
/* We have to handle this m-option here since we can't wash it off in \
both CC1_SPEC and CC1PLUS_SPEC. */ \
{"best-lib-options", 0, \
N_("Use the most feature-enabling options allowed by other options")}, \
\
/* We must call it "override-" since calling it "no-" will cause \
gcc.c to forget it, if there's a "later" -mbest-lib-options. \
Kludgy, but needed for some multilibbed files. */ \
{"override-best-lib-options", 0, \
N_("Override -mbest-lib-options")}, \
CRIS_SUBTARGET_SWITCHES \
{"", TARGET_DEFAULT | CRIS_SUBTARGET_DEFAULT, ""}} \
/* For the cris-*-elf subtarget. */
#define CRIS_SUBTARGET_SWITCHES \
{"elf", 0, ""},
/* Default target_flags if no switches specified. */
#ifndef TARGET_DEFAULT
# define TARGET_DEFAULT \
(TARGET_MASK_SIDE_EFFECT_PREFIXES + TARGET_MASK_STACK_ALIGN \
+ TARGET_MASK_CONST_ALIGN + TARGET_MASK_DATA_ALIGN \
+ TARGET_MASK_PROLOGUE_EPILOGUE)
#endif
/* For the cris-*-elf subtarget. */
#define CRIS_SUBTARGET_DEFAULT TARGET_MASK_ELF
#define CRIS_CPU_BASE 0
#define CRIS_CPU_ETRAX4 3 /* Just lz added. */
#define CRIS_CPU_SVINTO 8 /* Added swap, jsrc & Co., 32-bit accesses. */
#define CRIS_CPU_NG 10 /* Added mul[su]. */
/* Local, providing a default for cris_cpu_version. */
#define CRIS_DEFAULT_CPU_VERSION CRIS_CPU_BASE
#define TARGET_HAS_MUL_INSNS (cris_cpu_version >= CRIS_CPU_NG)
#define TARGET_OPTIONS \
{{"cpu=", &cris_cpu_str, ""}, \
{"arch=", &cris_cpu_str, \
N_("Generate code for the specified chip or CPU version")}, \
{"tune=", &cris_tune_str, \
N_("Tune alignment for the specified chip or CPU version")}, \
{"max-stackframe=", &cris_max_stackframe_str, \
N_("Warn when a stackframe is larger than the specified size")}, \
CRIS_SUBTARGET_LONG_OPTIONS \
{"ax-stackframe=", &cris_max_stackframe_str, ""}}
#define CRIS_SUBTARGET_LONG_OPTIONS
/* Print subsidiary information on the compiler version in use.
Do not use VD.D syntax (D=digit), since this will cause confusion
with the base gcc version among users, when we ask which version of
gcc-cris they are using. Please use some flavor of "R<number>" for
the version (no need for major.minor versions, I believe). */
#define TARGET_VERSION \
fprintf (stderr, " [Axis CRIS release R36a%s]", CRIS_SUBTARGET_VERSION)
/* For the cris-*-elf subtarget. */
#define CRIS_SUBTARGET_VERSION " - generic ELF"
#define OVERRIDE_OPTIONS cris_override_options ()
/* The following gives optimal code for gcc-2.7.2, but *may* be subject
to change. Omitting flag_force_addr gives .1-.7% faster code for gcc
*only*, but 1.3% larger code. On ipps it gives 5.3-10.6% slower
code(!) and 0.3% larger code. For products, images gets .1-1.8%
larger. Do not set strict aliasing from optimization options. */
#define OPTIMIZATION_OPTIONS(OPTIMIZE, SIZE) \
do \
{ \
if ((OPTIMIZE) >= 2 || (SIZE)) \
{ \
flag_force_addr = \
flag_omit_frame_pointer = 1; \
} \
flag_strict_aliasing = 0; \
} \
while (0)
/* Node: Storage Layout */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 0
/* WORDS_BIG_ENDIAN is not defined in the hardware, but for consistency,
we use little-endianness, and we may also be able to use
post-increment on DImode indirect. */
#define WORDS_BIG_ENDIAN 0
#define BITS_PER_UNIT 8
#define BITS_PER_WORD 32
#define UNITS_PER_WORD 4
#define POINTER_SIZE 32
/* A combination of defining PROMOTE_MODE, PROMOTE_FUNCTION_ARGS,
PROMOTE_FOR_CALL_ONLY and *not* defining PROMOTE_PROTOTYPES gives the
best code size and speed for gcc, ipps and products in gcc-2.7.2. */
#define CRIS_PROMOTED_MODE(MODE, UNSIGNEDP, TYPE) \
(GET_MODE_CLASS (MODE) == MODE_INT && GET_MODE_SIZE (MODE) < 4) \
? SImode : MODE
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
(MODE) = CRIS_PROMOTED_MODE (MODE, UNSIGNEDP, TYPE)
#define PROMOTE_FUNCTION_ARGS
/* Defining PROMOTE_FUNCTION_RETURN in gcc-2.7.2 uncovers bug 981110 (even
if defining FUNCTION_VALUE with MODE as PROMOTED_MODE ;-)
FIXME: Report this when cris.h is part of GCC, so others can easily
see the problem. Maybe check other systems that define
PROMOTE_FUNCTION_RETURN. */
#define PROMOTE_FOR_CALL_ONLY
/* We will be using prototype promotion, so they will be 32 bit. */
#define PARM_BOUNDARY 32
/* Stack boundary is guided by -mstack-align, -mno-stack-align,
-malign.
Old comment: (2.1: still valid in 2.7.2?)
Note that to make this macro affect the alignment of stack
locals, a fix was required, and special precautions when handling
the stack pointer in various other macros (FUNCTION_PROLOGUE et al)
were required. See file "function.c". If you would just define
this macro, it would only affect the builtin alloca and variable
local data (non-ANSI, non-K&R, Gnu C extension). */
#define STACK_BOUNDARY \
(TARGET_STACK_ALIGN ? (TARGET_ALIGN_BY_32 ? 32 : 16) : 8)
#define FUNCTION_BOUNDARY 16
/* Do not change BIGGEST_ALIGNMENT (when optimizing), as it will affect
strange places, at least in 2.1. */
#define BIGGEST_ALIGNMENT 8
/* If -m16bit, -m16-bit, -malign or -mdata-align,
align everything to 16 bit. */
#define DATA_ALIGNMENT(TYPE, BASIC_ALIGN) \
(TARGET_DATA_ALIGN \
? (TARGET_ALIGN_BY_32 \
? (BASIC_ALIGN < 32 ? 32 : BASIC_ALIGN) \
: (BASIC_ALIGN < 16 ? 16 : BASIC_ALIGN)) : BASIC_ALIGN)
/* Note that CONSTANT_ALIGNMENT has the effect of making gcc believe that
ALL references to constant stuff (in code segment, like strings) has
this alignment. That is a rather rushed assumption. Luckily we do not
care about the "alignment" operand to builtin memcpy (only place where
it counts), so it doesn't affect any bad spots. */
#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \
(TARGET_CONST_ALIGN \
? (TARGET_ALIGN_BY_32 \
? (BASIC_ALIGN < 32 ? 32 : BASIC_ALIGN) \
: (BASIC_ALIGN < 16 ? 16 : BASIC_ALIGN)) : BASIC_ALIGN)
/* FIXME: Define LOCAL_ALIGNMENT for word and dword or arrays and
structures (if -mstack-align=), and check that it is good. */
#define EMPTY_FIELD_BOUNDARY 8
#define STRUCTURE_SIZE_BOUNDARY 8
#define STRICT_ALIGNMENT 0
/* Remove any previous definition (elfos.h).
??? If it wasn't for all the other stuff that affects layout of
structures and bit-fields, this could presumably cause incompatibility
with other GNU/Linux ports (i.e. elfos.h users). */
#undef PCC_BITFIELD_TYPE_MATTERS
/* This is only used for non-scalars. Strange stuff happens to structs
(FIXME: What?) if we use anything larger than largest actually used
datum size, so lets make it 32. The type "long long" will still work
as usual. We can still have DImode insns, but they will only be used
for scalar data (i.e. long long). */
#define MAX_FIXED_MODE_SIZE 32
/* Node: Type Layout */
/* Note that DOUBLE_TYPE_SIZE is not defined anymore, since the default
value gives a 64-bit double, which is what we now use. */
/* For compatibility and historical reasons, a char should be signed. */
#define DEFAULT_SIGNED_CHAR 1
/* No DEFAULT_SHORT_ENUMS, please. */
/* Note that WCHAR_TYPE_SIZE is used in cexp.y,
where TARGET_SHORT is not available. */
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
/* Node: Register Basics */
/* We count all 16 non-special registers, SRP and a faked argument
pointer register. */
#define FIRST_PSEUDO_REGISTER (16 + 1 + 1)
/* For CRIS, these are r15 (pc) and r14 (sp). Register r8 is used as a
frame-pointer, but is not fixed. SRP is not included in general
registers and will not be used automatically. All other special
registers are fixed at the moment. The faked argument pointer register
is fixed too. */
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1}
/* Register r9 is used for structure-address, r10-r13 for parameters,
r10- for return values. */
#define CALL_USED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1}
#define CONDITIONAL_REGISTER_USAGE cris_conditional_register_usage ()
/* Node: Allocation Order */
/* We need this on CRIS, because call-used regs should be used first,
(so we dont need to push). Else start using registers from r0 and up.
This preference is mainly because if we put call-used-regs from r0
and up, then we can't use movem to push the rest, (which have to be
saved if we use them, and movem has to start with r0).
Change here if you change which registers to use as call registers.
The actual need to explicitly prefer call-used registers improved the
situation a lot for 2.1, but might not actually be needed anymore.
Still, this order reflects what GCC should find out by itself, so it
probably does not hurt.
Order of preference: Call-used-regs first, then r0 and up, last fp &
sp & pc as fillers.
Call-used regs in opposite order, so they will cause less conflict if
a function has few args (<= 3) and it wants a scratch reg.
Use struct-return address first, since very few functions use
structure return values so it is likely to be available. */
#define REG_ALLOC_ORDER \
{9, 13, 12, 11, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17}
/* Node: Values in Registers */
/* The VOIDmode test is so we can omit mode on anonymous insns. FIXME:
Still needed in 2.9x, at least for Axis-20000319. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(MODE == VOIDmode \
? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* CRIS permits all registers to hold all modes. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
#define MODES_TIEABLE_P(MODE1, MODE2) 1
/* Node: Leaf Functions */
/* (no definitions) */
/* Node: Stack Registers */
/* (no definitions) */
/* Node: Register Classes */
/* CRIS has only one kind of registers, so NO_REGS and ALL_REGS
are the only classes. FIXME: It actually makes sense to have another
class for special registers, and yet another class for the
multiply-overflow register in v10; then a class for the return
register also makes sense. */
enum reg_class {NO_REGS, ALL_REGS, LIM_REG_CLASSES};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES {"NO_REGS", "ALL_REGS"}
#define GENERAL_REGS ALL_REGS
/* Count in the faked argument register in GENERAL_REGS. Keep out SRP. */
#define REG_CLASS_CONTENTS {{0}, {0x2ffff}}
#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS
#define INDEX_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine
description. No letters are used, since 'r' is used for any
register. */
#define REG_CLASS_FROM_LETTER(C) NO_REGS
/* Since it uses reg_renumber, it is safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) <= CRIS_LAST_GENERAL_REGISTER \
|| (REGNO) == ARG_POINTER_REGNUM \
|| (unsigned) reg_renumber[REGNO] <= CRIS_LAST_GENERAL_REGISTER \
|| (unsigned) reg_renumber[REGNO] == ARG_POINTER_REGNUM)
/* See REGNO_OK_FOR_BASE_P. */
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
/* It seems like gcc (2.7.2 and 2.9x of 2000-03-22) may send "NO_REGS" as
the class for a constant (testcase: __Mul in arit.c). To avoid forcing
out a constant into the constant pool, we will trap this case and
return something a bit more sane. FIXME: Check if this is a bug. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
((CLASS) == NO_REGS ? GENERAL_REGS : (CLASS))
/* For CRIS, this is always the size of MODE in words,
since all registers are the same size. To use omitted modes in
patterns with reload constraints, you must say the widest size
which is allowed for VOIDmode.
FIXME: Does that still apply for gcc-2.9x? Keep poisoned until such
patterns are added back. News: 2001-03-16: Happens as early as the
underscore-test. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((MODE) == VOIDmode \
? 1 /* + cris_fatal ("CLASS_MAX_NREGS with VOIDmode") */ \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* We are now out of letters; we could use ten more. This forces us to
use C-code in the 'md' file. FIXME: Use some EXTRA_CONSTRAINTS. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
( \
/* MOVEQ, CMPQ, ANDQ, ORQ. */ \
(C) == 'I' ? (VALUE) >= -32 && (VALUE) <= 31 : \
/* ADDQ, SUBQ. */ \
(C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
/* ASRQ, BTSTQ, LSRQ, LSLQ. */ \
(C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 31 : \
/* A 16-bit signed number. */ \
(C) == 'L' ? (VALUE) >= -32768 && (VALUE) <= 32767 : \
/* The constant 0 for CLEAR. */ \
(C) == 'M' ? (VALUE) == 0 : \
/* A negative ADDQ or SUBQ. */ \
(C) == 'N' ? (VALUE) >= -63 && (VALUE) < 0 : \
/* Quickened ints, QI and HI. */ \
(C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 65535 \
&& ((VALUE) >= (65535-31) \
|| ((VALUE) >= (255-31) \
&& (VALUE) <= 255 )) : \
/* A 16-bit number signed *or* unsigned. */ \
(C) == 'P' ? (VALUE) >= -32768 && (VALUE) <= 65535 : \
0)
/* It is really simple to make up a 0.0; it is the same as int-0 in
IEEE754. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' && ((VALUE) == CONST0_RTX (DFmode) \
|| (VALUE) == CONST0_RTX (SFmode)))
/* We need this on cris to distinguish delay-slottable addressing modes. */
#define EXTRA_CONSTRAINT(X, C) \
( \
/* Slottable address mode? */ \
(C) == 'Q' ? EXTRA_CONSTRAINT_Q (X) : \
/* Operand to BDAP or BIAP? */ \
(C) == 'R' ? EXTRA_CONSTRAINT_R (X) : \
/* A local PIC symbol? */ \
(C) == 'S' ? EXTRA_CONSTRAINT_S (X) : \
/* A three-address addressing-mode? */ \
(C) == 'T' ? EXTRA_CONSTRAINT_T (X) : \
/* A global PIC symbol? */ \
(C) == 'U' ? EXTRA_CONSTRAINT_U (X) : \
0)
#define EXTRA_CONSTRAINT_Q(X) \
( \
/* Slottable addressing modes: \
A register? FIXME: Unnecessary. */ \
(BASE_P (X) && REGNO (X) != CRIS_PC_REGNUM) \
/* Indirect register: [reg]? */ \
|| (GET_CODE (X) == MEM && BASE_P (XEXP (X, 0)) \
&& REGNO (XEXP (X, 0)) != CRIS_PC_REGNUM) \
)
#define EXTRA_CONSTRAINT_R(X) \
( \
/* An operand to BDAP or BIAP: \
A BIAP; r.S? */ \
BIAP_INDEX_P (X) \
/* A [reg] or (int) [reg], maybe with post-increment. */ \
|| BDAP_INDEX_P (X) \
|| CONSTANT_INDEX_P (X) \
)
/* FIXME: Bug below: We can't have XEXP (X, 0)) both be MEM and a
CONSTANT_P. Parens don't match indentation. */
#define EXTRA_CONSTRAINT_T(X) \
( \
/* Three-address-operands. All are indirect-memory: */ \
GET_CODE (X) == MEM \
&& ((GET_CODE (XEXP (X, 0)) == MEM \
/* Double indirect: [[reg]] or [[reg+]]? */ \
&& (BASE_OR_AUTOINCR_P (XEXP (XEXP (X, 0), 0)))) \
/* Just an explicite indirect reference: [const]? */ \
|| CONSTANT_P (XEXP (X, 0)) \
/* Something that is indexed; [...+...]? */ \
|| (GET_CODE (XEXP (X, 0)) == PLUS \
/* A BDAP constant: [reg+(8|16|32)bit offset]? */ \
&& ((BASE_P (XEXP (XEXP (X, 0), 0)) \
&& CONSTANT_INDEX_P (XEXP (XEXP (X, 0), 1))) \
/* Swap arguments to the above. FIXME: gcc-2.9x? */ \
|| (BASE_P (XEXP (XEXP (X, 0), 1)) \
&& CONSTANT_INDEX_P (XEXP (XEXP (X, 0), 0))) \
/* A BDAP register: [reg+[reg(+)].S]? */ \
|| (BASE_P (XEXP (XEXP (X, 0), 0)) \
&& BDAP_INDEX_P(XEXP(XEXP(X, 0), 1))) \
/* Same, but with swapped arguments. */ \
|| (BASE_P (XEXP (XEXP (X, 0), 1)) \
&& BDAP_INDEX_P (XEXP (XEXP (X, 0), 0))) \
/* A BIAP: [reg+reg.S]. */ \
|| (BASE_P (XEXP (XEXP (X, 0), 0)) \
&& BIAP_INDEX_P (XEXP (XEXP (X, 0), 1))) \
/* Same, but with swapped arguments. */ \
|| (BASE_P (XEXP (XEXP (X, 0), 1)) \
&& BIAP_INDEX_P (XEXP (XEXP (X, 0), 0)))))) \
)
#define EXTRA_CONSTRAINT_S(X) \
(flag_pic && CONSTANT_P (X) && cris_gotless_symbol (X))
#define EXTRA_CONSTRAINT_U(X) \
(flag_pic && CONSTANT_P (X) && cris_got_symbol (X))
/* Node: Frame Layout */
#define STACK_GROWS_DOWNWARD
#define FRAME_GROWS_DOWNWARD
/* It seems to be indicated in the code (at least 2.1) that this is
better a constant, and best 0. */
#define STARTING_FRAME_OFFSET 0
#define FIRST_PARM_OFFSET(FNDECL) 0
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
cris_return_addr_rtx (COUNT, FRAMEADDR)
#define INCOMING_RETURN_ADDR_RTX gen_rtx (REG, Pmode, CRIS_SRP_REGNUM)
/* FIXME: Any __builtin_eh_return callers must not return anything and
there must not be collisions with incoming parameters. Luckily the
number of __builtin_eh_return callers is limited. For now return
parameter registers in reverse order and hope for the best. */
#define EH_RETURN_DATA_REGNO(N) \
(((N) >= 0 && (N) < 4) ? (CRIS_FIRST_ARG_REG + 3 - (N)) : INVALID_REGNUM)
/* Store the stack adjustment in the structure-return-address register. */
#define CRIS_STACKADJ_REG STRUCT_VALUE_REGNUM
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, CRIS_STACKADJ_REG)
#define EH_RETURN_HANDLER_RTX \
cris_return_addr_rtx (0, NULL)
#define INIT_EXPANDERS cris_init_expanders ()
/* FIXME: Move this to right node (it's not documented properly yet). */
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (CRIS_SRP_REGNUM)
/* FIXME: Move this to right node (it's not documented properly yet).
FIXME: Check what alignment we can assume regarding
TARGET_STACK_ALIGN and TARGET_ALIGN_BY_32. */
#define DWARF_CIE_DATA_ALIGNMENT -1
/* If we would ever need an exact mapping between canonical register
number and dwarf frame register, we would either need to include all
registers in the gcc decription (with some marked fixed of course), or
an inverse mapping from dwarf register to gcc register. There is one
need in dwarf2out.c:expand_builtin_init_dwarf_reg_sizes. Right now, I
don't see that we need exact correspondence between DWARF *frame*
registers and DBX_REGISTER_NUMBER, so map them onto GCC registers. */
#define DWARF_FRAME_REGNUM(REG) (REG)
/* Node: Stack Checking */
/* (no definitions) FIXME: Check. */
/* Node: Frame Registers */
#define STACK_POINTER_REGNUM 14
/* Register used for frame pointer. This is also the last of the saved
registers, when a frame pointer is not used. */
#define FRAME_POINTER_REGNUM 8
/* Faked register, is always eliminated. We need it to eliminate
allocating stack slots for the return address and the frame pointer. */
#define ARG_POINTER_REGNUM 17
#define STATIC_CHAIN_REGNUM 7
/* Node: Elimination */
/* Really only needed if the stack frame has variable length (alloca
or variable sized local arguments (GNU C extension). */
#define FRAME_POINTER_REQUIRED 0
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
/* We need not worry about when the frame-pointer is required for other
reasons. */
#define CAN_ELIMINATE(FROM, TO) 1
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = cris_initial_elimination_offset (FROM, TO)
/* Node: Stack Arguments */
/* Since many parameters take up one register each in any case,
PROMOTE_PROTOTYPES would seem like a good idea, but measurements
indicate that a combination using PROMOTE_MODE is better. */
#define ACCUMULATE_OUTGOING_ARGS 1
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACKSIZE) 0
/* Node: Register Arguments */
/* The void_type_node is sent as a "closing" call. We have to stop it
since it's invalid to FUNCTION_ARG_PASS_BY_REFERENCE (or was invalid at
some time). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((CUM).regs < CRIS_MAX_ARGS_IN_REGS \
&& (TYPE) != void_type_node \
&& ! FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED) \
? gen_rtx (REG, MODE, (CRIS_FIRST_ARG_REG) + (CUM).regs) \
: NULL_RTX)
/* The differences between this and the previous, is that this one checks
that an argument is named, since incoming stdarg/varargs arguments are
pushed onto the stack, and we don't have to check against the "closing"
void_type_node TYPE parameter. */
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
(((NAMED) && (CUM).regs < CRIS_MAX_ARGS_IN_REGS \
&& ! FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)) \
? gen_rtx (REG, MODE, CRIS_FIRST_ARG_REG + (CUM).regs) \
: NULL_RTX)
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
(((CUM).regs == (CRIS_MAX_ARGS_IN_REGS - 1) \
&& !MUST_PASS_IN_STACK (MODE, TYPE) \
&& CRIS_FUNCTION_ARG_SIZE (MODE, TYPE) > 4 \
&& CRIS_FUNCTION_ARG_SIZE (MODE, TYPE) <= 8) \
? 1 : 0)
/* Structs may be passed by value, but they must not be more than 8
bytes long. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
(MUST_PASS_IN_STACK (MODE, TYPE) \
|| CRIS_FUNCTION_ARG_SIZE (MODE, TYPE) > 8) \
/* Contrary to what you'd believe, defining FUNCTION_ARG_CALLEE_COPIES
seems like a (small total) loss, at least for gcc-2.7.2 compiling and
running gcc-2.1 (small win in size, small loss running -- 100.1%),
and similarly for size for products (.1 .. .3% bloat, sometimes win).
Due to the empirical likeliness of making slower code, it is not
defined. */
/* This no longer *needs* to be a structure; but keeping it as such should
not hurt (and hacking the ABI is simpler). */
#define CUMULATIVE_ARGS struct cum_args
struct cum_args {int regs;};
/* The regs member is an integer, the number of arguments got into
registers so far, and lib is nonzero if init_cumulative_args was
found to generate a call to a library function. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
((CUM).regs = 0)
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM).regs \
= (FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
? (CRIS_MAX_ARGS_IN_REGS) + 1 \
: ((CUM).regs \
+ (3 + (CRIS_FUNCTION_ARG_SIZE (MODE, TYPE))) / 4)))
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= CRIS_FIRST_ARG_REG \
&& (REGNO) < CRIS_FIRST_ARG_REG + (CRIS_MAX_ARGS_IN_REGS))
/* Node: Scalar Return */
/* Let's assume all functions return in r[CRIS_FIRST_ARG_REG] for the
time being. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), CRIS_FIRST_ARG_REG)
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, CRIS_FIRST_ARG_REG)
#define FUNCTION_VALUE_REGNO_P(N) ((N) == CRIS_FIRST_ARG_REG)
/* Node: Aggregate Return */
#if 0
/* FIXME: Let's try this some time, so we return structures in registers.
We would cast the result of int_size_in_bytes to unsigned, so we will
get a huge number for "structures" of variable size (-1). */
#define RETURN_IN_MEMORY(TYPE) \
((unsigned) int_size_in_bytes (TYPE) > CRIS_MAX_ARGS_IN_REGS * UNITS_PER_WORD)
#endif
#define STRUCT_VALUE_REGNUM ((CRIS_FIRST_ARG_REG) - 1)
/* Node: Caller Saves */
/* (no definitions) */
/* Node: Function entry */
/* See cris.c for TARGET_ASM_FUNCTION_PROLOGUE and
TARGET_ASM_FUNCTION_EPILOGUE. */
/* If the epilogue uses the "ret" insn, we need to fill the
delay slot. */
#define DELAY_SLOTS_FOR_EPILOGUE cris_delay_slots_for_epilogue ()
#define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN, N) \
cris_eligible_for_epilogue_delay (INSN)
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
cris_asm_output_mi_thunk(FILE, THUNK_FNDECL, DELTA, FUNCTION)
/* Node: Profiling */
#define FUNCTION_PROFILER(FILE, LABELNO) \
error ("No FUNCTION_PROFILER for CRIS")
/* No profiling for the time being. */
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
error ("No FUNCTION_BLOCK_PROFILER for CRIS")
/* No profiling for the time being. */
#define BLOCK_PROFILER(FILE, BLOCKNO) \
error ("No BLOCK_PROFILER for CRIS")
/* FIXME: Some of the undefined macros might be mandatory. If so, fix
documentation. */
/* Node: Varargs */
/* We save the register number of the first anonymous argument in
first_vararg_reg, and take care of this in the function prologue.
This behaviour is used by at least one more port (the ARM?), but
may be unsafe when compiling nested functions. (With varargs? Hairy.)
Note that nested-functions is a GNU C extension.
FIXME: We can actually put the size in PRETEND and deduce the number
of registers from it in the prologue and epilogue. */
#define SETUP_INCOMING_VARARGS(ARGSSF, MODE, TYPE, PRETEND, SECOND) \
do \
{ \
if ((ARGSSF).regs < (CRIS_MAX_ARGS_IN_REGS)) \
(PRETEND) = ((CRIS_MAX_ARGS_IN_REGS) - (ARGSSF).regs) * 4; \
if (TARGET_PDEBUG) \
{ \
fprintf (asm_out_file, \
"\n; VA:: %s: %d args before, anon @ #%d, %dtime\n", \
current_function_varargs ? "OLD" : "ANSI", \
(ARGSSF).regs, PRETEND, SECOND); \
} \
} \
while (0)
/* FIXME: This and other EXPAND_BUILTIN_VA_... target macros are not
documented, although used by several targets. */
#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
cris_expand_builtin_va_arg (VALIST, TYPE)
/* Node: Trampolines */
/* This looks too complicated, and it is. I assigned r7 to be the
static chain register, but it is call-saved, so we have to save it,
and come back to restore it after the call, so we have to save srp...
Anyway, trampolines are rare enough that we can cope with this
somewhat lack of elegance.
(Do not be tempted to "straighten up" whitespace in the asms; the
assembler #NO_APP state mandates strict spacing). */
#define TRAMPOLINE_TEMPLATE(FILE) \
do \
{ \
fprintf (FILE, "\tmove.d $%s,[$pc+20]\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tmove $srp,[$pc+22]\n"); \
fprintf (FILE, "\tmove.d 0,$%s\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tjsr 0\n"); \
fprintf (FILE, "\tmove.d 0,$%s\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tjump 0\n"); \
} \
while (0)
#define TRAMPOLINE_SIZE 32
/* CRIS wants instructions on word-boundary.
Note that due to a bug (reported) in 2.7.2 and earlier, this is
actually treated as alignment in _bytes_, not _bits_. (Obviously
this is not fatal, only a slight waste of stack space). */
#define TRAMPOLINE_ALIGNMENT 16
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
do \
{ \
emit_move_insn (gen_rtx (MEM, SImode, \
plus_constant (TRAMP, 10)), \
CXT); \
emit_move_insn (gen_rtx (MEM, SImode, \
plus_constant (TRAMP, 16)), \
FNADDR); \
} \
while (0)
/* Note that there is no need to do anything with the cache for sake of
a trampoline. */
/* Node: Library Calls */
#define MULSI3_LIBCALL "__Mul"
#define DIVSI3_LIBCALL "__Div"
#define UDIVSI3_LIBCALL "__Udiv"
#define MODSI3_LIBCALL "__Mod"
#define UMODSI3_LIBCALL "__Umod"
/* If you change this, you have to check whatever libraries and systems
that use it. */
#define TARGET_EDOM 33
/* Node: Addressing Modes */
#define HAVE_POST_INCREMENT 1
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
#define MAX_REGS_PER_ADDRESS 2
/* There are helper macros defined here which are used only in
GO_IF_LEGITIMATE_ADDRESS.
Note that you *have to* reject invalid addressing modes for mode
MODE, even if it is legal for normal addressing modes. You cannot
rely on the constraints to do this work. They can only be used to
doublecheck your intentions. One example is that you HAVE TO reject
(mem:DI (plus:SI (reg:SI x) (reg:SI y))) because for some reason
this cannot be reloaded. (Which of course you can argue that gcc
should have done.) FIXME: Strange. Check. */
/* No symbol can be used as an index (or more correct, as a base) together
with a register with PIC; the PIC register must be there. */
#define CONSTANT_INDEX_P(X) \
(CONSTANT_P (X) && !(flag_pic && cris_symbol (X)))
/* True if X is a valid base register. */
#define BASE_P(X) \
(REG_P (X) && REG_OK_FOR_BASE_P (X))
/* True if X is a valid base register with or without autoincrement. */
#define BASE_OR_AUTOINCR_P(X) \
(BASE_P (X) || (GET_CODE (X) == POST_INC && BASE_P (XEXP (X, 0))))
/* True if X is a valid (register) index for BDAP, i.e. [Rs].S or [Rs+].S. */
#define BDAP_INDEX_P(X) \
((GET_CODE (X) == MEM && GET_MODE (X) == SImode \
&& BASE_OR_AUTOINCR_P (XEXP (X, 0))) \
|| (GET_CODE (X) == SIGN_EXTEND \
&& GET_CODE (XEXP (X, 0)) == MEM \
&& (GET_MODE (XEXP (X, 0)) == HImode \
|| GET_MODE (XEXP (X, 0)) == QImode) \
&& BASE_OR_AUTOINCR_P (XEXP (XEXP (X, 0), 0))))
/* True if X is a valid (register) index for BIAP, i.e. Rd.m. */
#define BIAP_INDEX_P(X) \
((BASE_P (X) && REG_OK_FOR_INDEX_P (X)) \
|| (GET_CODE (X) == MULT \
&& BASE_P (XEXP (X, 0)) \
&& REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) == 2 \
|| INTVAL (XEXP (X, 1)) == 4)))
/* True if X is an address that doesn't need a prefix i.e. [Rs] or [Rs+]. */
#define SIMPLE_ADDRESS_P(X) \
(BASE_P (X) \
|| (GET_CODE (X) == POST_INC \
&& BASE_P (XEXP (X, 0))))
/* A PIC operand looks like a normal symbol here. At output we dress it
in "[rPIC+symbol:GOT]" (global symbol) or "rPIC+symbol:GOTOFF" (local
symbol) so we exclude all addressing modes where we can't replace a
plain "symbol" with that. A global PIC symbol does not fit anywhere
here (but is thankfully a general_operand in itself). A local PIC
symbol is valid for the plain "symbol + offset" case. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
rtx x1, x2; \
if (SIMPLE_ADDRESS_P (X)) \
goto ADDR; \
if (CONSTANT_P (X) \
&& (! flag_pic \
|| cris_gotless_symbol (X) \
|| ! cris_symbol (X))) \
goto ADDR; \
/* Indexed? */ \
if (GET_CODE (X) == PLUS) \
{ \
x1 = XEXP (X, 0); \
x2 = XEXP (X, 1); \
/* BDAP o, Rd. */ \
if ((BASE_P (x1) && CONSTANT_INDEX_P (x2)) \
|| (BASE_P (x2) && CONSTANT_INDEX_P (x1)) \
/* BDAP Rs[+], Rd. */ \
|| (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
&& ((BASE_P (x1) && BDAP_INDEX_P (x2)) \
|| (BASE_P (x2) && BDAP_INDEX_P (x1)) \
/* BIAP.m Rs, Rd */ \
|| (BASE_P (x1) && BIAP_INDEX_P (x2)) \
|| (BASE_P (x2) && BIAP_INDEX_P (x1))))) \
goto ADDR; \
} \
else if (GET_CODE (X) == MEM) \
{ \
/* DIP (Rs). Reject [[reg+]] and [[reg]] for \
DImode (long long). */ \
if (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
&& (BASE_P (XEXP (X, 0)) \
|| BASE_OR_AUTOINCR_P (XEXP (X, 0)))) \
goto ADDR; \
} \
}
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
# define REG_OK_FOR_BASE_P(X) \
(REGNO (X) <= CRIS_LAST_GENERAL_REGISTER \
|| REGNO (X) == ARG_POINTER_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
# define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
# define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
# define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#endif
/* For now, don't do anything. GCC does a good job most often.
Maybe we could do something about gcc:s misbehaviour when it
recalculates frame offsets for local variables, from fp+offs to
sp+offs. The resulting address expression gets screwed up
sometimes, but I'm not sure that it may be fixed here, since it is
already split up in several instructions (Is this still true?).
FIXME: Check and adjust for gcc-2.9x. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) {}
/* Functionality import from EGCS.
Kludge to solve Axis-990219: Work around imperfection in
reload_load_address1:
(plus (sign_extend (mem:qi (reg))) (reg))
should be reloaded as (plus (reg) (reg)), not
(plus (sign_extend (reg)) (reg)).
There are no checks that reload_load_address_1 "reloads"
addresses correctly, so invalidness is not caught or
corrected.
When the right thing happens, the "something_reloaded" kludge can
be removed. The right thing does not appear to happen for
EGCS CVS as of this date (above). */
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
do \
{ \
if (GET_CODE (X) == PLUS \
&& REG_P (XEXP (X, 1)) \
&& GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == MEM \
&& (GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode \
|| GET_MODE (XEXP (XEXP (X, 0), 0)) == QImode) \
&& (REG_P (XEXP (XEXP (XEXP (X, 0), 0), 0)) \
|| (GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 0)) \
== POST_INC \
&& REG_P (XEXP (XEXP (XEXP (XEXP (X, 0), 0), 0), \
0))))) \
{ \
int something_reloaded = 0; \
\
if (REGNO (XEXP (X, 1)) >= FIRST_PSEUDO_REGISTER) \
{ \
/* Second reg is pseudo, reload it. */ \
push_reload (XEXP (X, 1), NULL_RTX, &XEXP (X, 1), \
NULL, \
GENERAL_REGS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
something_reloaded = 1; \
} \
\
if (REG_P (XEXP (XEXP (X, 0), 0)) \
&& (REGNO (XEXP (XEXP (X, 0), 0)) \
>= FIRST_PSEUDO_REGISTER)) \
{ \
/* First one is a pseudo - reload that. */ \
push_reload (XEXP (XEXP (X, 0), 0), NULL_RTX, \
&XEXP (XEXP (X, 0), 0), NULL, \
GENERAL_REGS, \
GET_MODE (X), VOIDmode, 0, 0, OPNUM, TYPE); \
something_reloaded = 1; \
} \
\
if (! something_reloaded \
|| (GET_CODE (XEXP (XEXP (X, 0), 0)) == POST_INC \
&& (REGNO (XEXP (XEXP (XEXP (X, 0), 0), 0)) \
>= FIRST_PSEUDO_REGISTER))) \
/* Reload the sign_extend. Happens if neither reg is a \
pseudo, or the first one was inside post_increment. */ \
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
GENERAL_REGS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
goto WIN; \
} \
} \
while (0)
/* In CRIS, only the postincrement address mode depends thus,
since the increment depends on the size of the operand. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
do \
{ \
if (GET_CODE (ADDR) == POST_INC) \
goto LABEL; \
} \
while (0)
#define LEGITIMATE_CONSTANT_P(X) 1
/* Node: Condition Code */
#define NOTICE_UPDATE_CC(EXP, INSN) cris_notice_update_cc (EXP, INSN)
/* FIXME: Maybe define CANONICALIZE_COMPARISON later, when playing with
optimizations. It is needed; currently we do this with instruction
patterns and NOTICE_UPDATE_CC. */
/* Node: Costs */
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
case CONST_INT: \
if (INTVAL (RTX) == 0) \
return 0; \
if (INTVAL (RTX) < 32 && INTVAL (RTX) >= -32) \
return 1; \
/* Eight or 16 bits are a word and cycle more expensive. */ \
if (INTVAL (RTX) <= 32767 && INTVAL (RTX) >= -32768) \
return 2; \
/* A 32 bit constant (or very seldom, unsigned 16 bits) costs \
another word. FIXME: This isn't linear to 16 bits. */ \
return 4; \
case LABEL_REF: \
return 6; \
case CONST: \
case SYMBOL_REF: \
/* For PIC, we need a prefix (if it isn't already there), \
and the PIC register. For a global PIC symbol, we also need a \
read of the GOT. */ \
return \
flag_pic ? (cris_got_symbol (RTX) ? (2 + 4 + 6) : (2 + 6)) : 6; \
case CONST_DOUBLE: \
if (RTX != CONST0_RTX (GET_MODE (RTX) == VOIDmode ? DImode \
: GET_MODE (RTX))) \
return 12; \
/* Make 0.0 cheap, else test-insns will not be used. */ \
return 0;
#define RTX_COSTS(X, CODE, OUTER_CODE) \
case MULT: \
/* Identify values that are no powers of two. Powers of 2 are \
taken care of already and those values should not be \
changed. */ \
if (GET_CODE (XEXP (X, 1)) != CONST_INT \
|| exact_log2 (INTVAL (XEXP (X, 1)) < 0)) \
{ \
/* If we have a multiply insn, then the cost is between \
1 and 2 "fast" instructions. */ \
if (TARGET_HAS_MUL_INSNS) \
return COSTS_N_INSNS (1) + COSTS_N_INSNS (1) /2; \
\
/* Estimate as 4 + 4 * #ofbits. */ \
return COSTS_N_INSNS (132); \
} \
break; \
case UDIV: \
case MOD: \
case UMOD: \
case DIV: \
if (GET_CODE (XEXP (X, 1)) != CONST_INT \
|| exact_log2 (INTVAL (XEXP (X, 1)) < 0)) \
/* Estimate this as 4 + 8 * #of bits. */ \
return COSTS_N_INSNS (260); \
\
case AND: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
/* Two constants may actually happen before optimization. */ \
&& GET_CODE (XEXP (X, 0)) != CONST_INT \
&& !CONST_OK_FOR_LETTER_P (INTVAL (XEXP (X, 1)), 'I')) \
return \
rtx_cost (XEXP (X, 0), OUTER_CODE) + 2 \
+ 2 * GET_MODE_NUNITS (GET_MODE (XEXP (X, 0))); \
\
case ZERO_EXTEND: case SIGN_EXTEND: \
/* Same as move. If embedded in other insn, cost is 0. */ \
return rtx_cost (XEXP (X, 0), OUTER_CODE);
#define ADDRESS_COST(X) cris_address_cost (X)
/* FIXME: Need to define REGISTER_MOVE_COST when more register classes are
introduced. */
/* This isn't strictly correct for v0..3 in buswidth-8bit mode, but
should suffice. */
#define MEMORY_MOVE_COST(M, CLASS, IN) \
(((M) == QImode) ? 4 : ((M) == HImode) ? 4 : 6)
/* Regardless of the presence of delay slots, the default value of 1 for
BRANCH_COST is the best in the range (1, 2, 3), tested with gcc-2.7.2
with testcases ipps and gcc, giving smallest and fastest code. */
#define SLOW_BYTE_ACCESS 0
/* This is the threshold *below* which inline move sequences of
word-length sizes will be emitted. The "9" will translate to
(9 - 1) * 4 = 32 bytes maximum moved, but using 16 instructions
(8 instruction sequences) or less. */
#define MOVE_RATIO 9
/* Node: Sections */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#define FORCE_EH_FRAME_INFO_IN_DATA_SECTION (! TARGET_ELF)
/* The jump table is immediately connected to the preceding insn. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
/* We need to code in PIC-specific flags into SYMBOL_REF_FLAG. */
#define ENCODE_SECTION_INFO(EXP) cris_encode_section_info (EXP)
/* We pull a little trick to register the _fini function with atexit,
after (presumably) registering the eh frame info, since we don't handle
_fini (a.k.a. ___fini_start) in crt0 or have a crti for "pure" ELF. */
#ifdef CRT_BEGIN
#define FORCE_INIT_SECTION_ALIGN \
do \
{ \
extern void __fini__start (void); \
atexit (__fini__start); \
} \
while (0)
#endif
/* Node: PIC */
#define PIC_OFFSET_TABLE_REGNUM 0
#define LEGITIMATE_PIC_OPERAND_P(X) cris_legitimate_pic_operand (X)
/* Node: File Framework */
/* NO_APP *only at file start* means faster assembly.
It also means comments are not allowed.
In some cases comments will be output for debugging purposes.
Make sure they are allowed then. */
/* Override previous definitions (elfos.h). */
#undef ASM_FILE_START
#define ASM_FILE_START(STREAM) \
do \
{ \
if (TARGET_PDEBUG || flag_print_asm_name) \
fprintf ((STREAM), "#APP\n"); \
else \
fprintf ((STREAM), "#NO_APP\n"); \
if (TARGET_ELF) \
output_file_directive ((STREAM), main_input_filename); \
} \
while (0)
/* Override previous definitions (elfos.h). */
#undef ASM_FILE_END
#define ASM_FILE_END(STREAM)
/* We don't want an .ident for gcc. To avoid that but still support
#ident, we override ASM_OUTPUT_IDENT and, since the gcc .ident is its
only use besides ASM_OUTPUT_IDENT, undef IDENT_ASM_OP from elfos.h. */
#undef IDENT_ASM_OP
#undef ASM_OUTPUT_IDENT
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "%s\"%s\"\n", "\t.ident\t", NAME);
#define ASM_APP_ON "#APP\n"
#define ASM_APP_OFF "#NO_APP\n"
/* Node: Data Output */
/* We must use REAL_VALUE_TO_TARGET_SINGLE and
REAL_VALUE_TO_TARGET_LONG_DOUBLE. It seems real.h cannot support when
target-double is target-single is 32bit-single. */
#define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
do \
{ \
long l[2]; \
REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
fprintf (FILE, "\t.dword 0x%lx\n", l[0]); \
fprintf (FILE, "\t.dword 0x%lx\n", l[1]); \
} \
while (0)
/* FIXME: The manual says "array of long:s", but
REAL_VALUE_TO_TARGET_SINGLE actually writes a long. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
do \
{ \
long l; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
fprintf (FILE, "\t.dword 0x%lx\n", l); \
} \
while (0)
/* This is what is used by gcc for 64-bit floats,
not the "long double" one. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
ASM_OUTPUT_LONG_DOUBLE (FILE, VALUE)
/* This is a kludge for a.out+ELF support: For non-ELF prioritized
[cd]tors, globalize the function so collect2 can collect it. This is
due to short-sightedness guided by defined (ASM_OUTPUT_SECTION_NAME)
&& defined (ASM_OUTPUT_CONSTRUCTOR). */
#define ASM_OUTPUT_INT(FILE, VALUE) \
do \
{ \
fprintf (FILE, "\t.dword "); \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, "\n"); \
} \
while (0)
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
do \
{ \
fprintf (FILE, "\t.word "); \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, "\n"); \
} \
while (0)
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
do \
{ \
fprintf (FILE, "\t.byte "); \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, "\n"); \
} \
while (0)
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) (C) == '@'
/* FIXME: These are undocumented. */
/* We need to define these, since the 2byte, 4byte, 8byte op:s are only
available in ELF. These "normal" pseudos do not have any alignment
constraints or side-effects. */
#undef UNALIGNED_SHORT_ASM_OP
#define UNALIGNED_SHORT_ASM_OP "\t.word\t"
#undef INT_ASM_OP
#define INT_ASM_OP "\t.dword\t"
#undef UNALIGNED_INT_ASM_OP
#define UNALIGNED_INT_ASM_OP "\t.dword\t"
#undef UNALIGNED_DOUBLE_INT_ASM_OP
#define UNALIGNED_DOUBLE_INT_ASM_OP "\t.quad\t"
/* Node: Uninitialized Data */
/* Remember to round off odd values if we want data alignment,
since we cannot do that with an .align directive.
Using .comm causes the space not to be reserved in .bss, but by
tricks with the symbol type. Not good if other tools than binutils
are used on the object files. Since ".global ... .lcomm ..." works, we
use that. Use .._ALIGNED_COMMON, since gcc whines when we only have
..._COMMON, and we prefer to whine outselves; BIGGEST_ALIGNMENT is not
the one to check. This done for a.out only. */
/* FIXME: I suspect a bug in gcc with alignment. Do not warn until
investigated; it mucks up the testsuite results. */
#define CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, LOCAL) \
do \
{ \
int align_ = (ALIGN) / BITS_PER_UNIT; \
if (TARGET_DATA_ALIGN && TARGET_ALIGN_BY_32 && align_ < 4) \
align_ = 4; \
else if (TARGET_DATA_ALIGN && align_ < 2) \
align_ = 2; \
/* FIXME: Do we need this? */ \
else if (align_ < 1) \
align_ = 1; \
\
if (TARGET_ELF) \
{ \
if (LOCAL) \
{ \
fprintf ((FILE), "%s", LOCAL_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), "\n"); \
} \
fprintf ((FILE), "%s", COMMON_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u,%u\n", (SIZE), align_); \
} \
else \
{ \
/* We can't tell a one-only or weak COMM from a "global \
COMM" so just make all non-locals weak. */ \
if (! (LOCAL)) \
ASM_WEAKEN_LABEL (FILE, NAME); \
fputs ("\t.lcomm ", (FILE)); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u\n", \
((SIZE) + (align_ - 1)) & ~(align_ - 1)); \
} \
} \
while (0)
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, 0)
#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, 1)
/* FIXME: define ASM_OUTPUT_SHARED_COMMON and emit an error when it is
used with -melinux and a.out. */
/* Node: Label Output */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do \
{ \
assemble_name (FILE, NAME); \
fputs (":\n", FILE); \
} \
while (0)
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do \
{ \
fputs ("\t.global ", FILE); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE); \
} \
while (0)
#define SUPPORTS_WEAK 1
/* FIXME: This macro isn't documented, but this would probably be an
appropriate location. It's only used in crtstuff.c, else we'd have to
handle (to #undef or ignore it) in a.out. */
#define HAVE_GAS_HIDDEN 1
#undef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
do \
{ \
asm_fprintf (FILE, "%L%s%d:\n", PREFIX, NUM); \
} \
while (0)
/* Remove any previous definition (elfos.h). */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long) NUM)
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
do \
{ \
(OUTPUT) = (char *) alloca (strlen ((NAME)) + 10); \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)); \
} \
while (0)
/* Node: Initialization */
/* (no definitions) */
/* Node: Macros for Initialization */
/* We don't want to use "strip" for anything linked with "-melinux"
"-shlib", seen by the linker as "-Ur -d -Bdynamic" in combination. */
#define SET_STRIPPABLE_EXECUTABLE(DS, ARGC, ARGV) \
do \
{ \
int i; \
int flags = 0; \
for (i = (ARGC) - 1; i > 0; i--) \
{ \
if (strcmp ((ARGV)[i], "-Ur") == 0) \
flags |= 1; \
else if (strcmp ((ARGV)[i], "-d") == 0) \
flags |= 2; \
else if (strcmp ((ARGV)[i], "-Bdynamic") == 0) \
flags |= 4; \
\
if (flags == 7) \
break; \
} \
\
(DS) = (flags != 7); \
} \
while (0)
/* Node: Instruction Output */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
"r9", "r10", "r11", "r12", "r13", "sp", "pc", "srp", "faked_ap"}
#define ADDITIONAL_REGISTER_NAMES \
{{"r14", 14}, {"r15", 15}}
#define PRINT_OPERAND(FILE, X, CODE) \
cris_print_operand (FILE, X, CODE)
/* For delay-slot handling. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
cris_print_operand_address (FILE, ADDR)
/* Output an empty line to illustrate the presence of the delay slot. */
#define DBR_OUTPUT_SEQEND(FILE) \
fprintf (FILE, "\n")
#define LOCAL_LABEL_PREFIX (TARGET_ELF ? "." : "")
/* cppinit.c initializes a const array from this, so it must be constant,
can't have it different based on options. Luckily, the prefix is
always allowed, so let's have it on all GCC-generated code. Note that
we have this verbatim everywhere in the back-end, not using %R or %s or
such. */
#define REGISTER_PREFIX "$"
/* Remove any previous definition (elfos.h). */
/* We use -fno-leading-underscore to remove it, when necessary. */
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
fprintf (FILE, "\tpush $%s\n", reg_names[REGNO])
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
fprintf (FILE, "\tpop $%s\n", reg_names[REGNO])
/* Node: Dispatch Tables */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t.dword %LL%d\n", VALUE)
/* Defined to also emit an .align in elfos.h. We don't want that. */
#undef ASM_OUTPUT_CASE_LABEL
/* Since the "bound" insn loads the comparison value if the compared<
value (register) is out of bounds (0..comparison value-1), we need
to output another case to catch it.
The way to find it is to look for the label_ref at the else-arm inside
the expanded casesi core-insn.
FIXME: Check this construct when changing to new version of gcc. */
#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
do \
{ \
asm_fprintf (STREAM, "\t.word %LL%d-%LL%d%s\n", \
CODE_LABEL_NUMBER \
(XEXP (XEXP (XEXP \
(XVECEXP \
(PATTERN (PREV_INSN (PREV_INSN \
(TABLE))), \
0, 0), 1), 2), 0)), \
NUM, \
(TARGET_PDEBUG ? "; default" : "")); \
} \
while (0)
/* Node: Exception Region Output */
/* (no definitions) */
/* FIXME: Fill in with our own optimized layout. */
/* Node: Alignment Output */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* Node: All Debuggers */
#define DBX_REGISTER_NUMBER(REGNO) \
((REGNO) == CRIS_SRP_REGNUM ? CRIS_CANONICAL_SRP_REGNUM : (REGNO))
/* FIXME: Investigate DEBUGGER_AUTO_OFFSET, DEBUGGER_ARG_OFFSET. */
/* Node: DBX Options */
/* Is this correct? Check later. */
#define DBX_NO_XREFS
#define DBX_CONTIN_LENGTH 0
/* FIXME: Is this needed when we have 0 DBX_CONTIN_LENGTH? */
#define DBX_CONTIN_CHAR '?'
/* Node: DBX Hooks */
/* (no definitions) */
/* Node: File names and DBX */
/* (no definitions) */
/* Node: SDB and DWARF */
#define DWARF_LINE_MIN_INSTR_LENGTH 2
/* Node: Cross-compilation */
#define REAL_ARITHMETIC
/* Node: Misc */
/* FIXME: Check this one more time. */
#define PREDICATE_CODES \
{"cris_orthogonal_operator", \
{PLUS, MINUS, IOR, AND, UMIN}}, \
{"cris_commutative_orth_op", \
{PLUS, IOR, AND, UMIN}}, \
{"cris_operand_extend_operator", \
{PLUS, MINUS, UMIN}}, \
{"cris_extend_operator", \
{ZERO_EXTEND, SIGN_EXTEND}}, \
{"cris_plus_or_bound_operator", \
{PLUS, UMIN}}, \
{"cris_bdap_operand", \
{SUBREG, REG, LABEL_REF, SYMBOL_REF, MEM, CONST_INT, \
CONST_DOUBLE, CONST, SIGN_EXTEND}}, \
{"cris_bdap_biap_operand", \
{SUBREG, REG, LABEL_REF, SYMBOL_REF, MEM, CONST_INT, \
CONST_DOUBLE, CONST, SIGN_EXTEND, MULT}}, \
{"cris_general_operand_or_gotless_symbol", \
{CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM}}, \
{"cris_general_operand_or_symbol", \
{CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM}}, \
{"cris_general_operand_or_plt_symbol", \
{CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM}}, \
{"cris_mem_call_operand", \
{MEM}},
/* A combination of the bound (umin) insn together with a
sign-extended add via the table to PC seems optimal.
If the table overflows, the assembler will take care of it.
Theoretically, in extreme cases (uncertain if they occur), an error
will be emitted, so FIXME: Check how large case-tables are emitted,
possible add an option to emit SImode case-tables. */
#define CASE_VECTOR_MODE HImode
#define CASE_VECTOR_PC_RELATIVE 1
/* FIXME: Investigate CASE_VECTOR_SHORTEN_MODE to make sure HImode is not
used when broken-.word could possibly fail (plus test-case). */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* This is the number of bytes that can be moved in one
reasonably fast instruction sequence. For CRIS, this is two
instructions: mem => reg, reg => mem. */
#define MOVE_MAX 4
/* Maybe SHIFT_COUNT_TRUNCATED is safe to define? FIXME: Check later. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define STORE_FLAG_VALUE 1
#define Pmode SImode
#define FUNCTION_MODE QImode
#define NO_IMPLICIT_EXTERN_C
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
This source diff could not be displayed because it is too large. You can view the blob instead.
/* Define symbol to recognize CRIS ABI version 2, for a.out use.
Contributed by Axis Communications.
Written by Hans-Peter Nilsson <hp@axis.se>, c:a 1992.
Copyright (C) 2000, 2001 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
As a special exception, if you link this library with files, some of
which are compiled with GCC, this library does not by itself cause
the resulting object or executable to be covered by the GNU General
Public License.
This exception does not however invalidate any other reasons why
the executable file or object might be covered by the GNU General
Public License. */
#include "config.h"
#ifdef __AOUT__
/* ELF support was not released before the ABI was changed, so we
restrict this awkwardness to a.out. This symbol is for gdb to
recognize, so it can debug both old and new programs successfully. */
__asm__ (".global " CRIS_ABI_VERSION_SYMBOL_STRING);
__asm__ (".set " CRIS_ABI_VERSION_SYMBOL_STRING ",0");
#else /* not __AOUT__ */
/* The file must not be empty (declaration/definition-wise) according to
ISO, IIRC. */
extern int _Dummy;
#endif /* not __AOUT__ */
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 2001 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
/* This file defines the macros for cris-axis-linux-gnu that are not
covered by cris.h, elfos.h and (config/)linux.h. */
/* Node: Instruction Output */
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
/* Node: Driver */
/* These macros are CRIS-specific, but used in target driver macros. */
#undef CRIS_CPP_SUBTARGET_SPEC
#define CRIS_CPP_SUBTARGET_SPEC \
"-D__linux__ -D__unix__ -D__ELF__\
%{pthread:-D_REENTRANT}\
%{fPIC|fpic: -D__PIC__ -D__pic__}\
%{!fleading-underscore:-fno-leading-underscore -D__NO_UNDERSCORES__}\
%{!march=*:%{!cpu=*:-D__arch_v10 -D__CRIS_arch_version=10}}\
%{!ansi:%{!std=*:%{!undef:-Dlinux -Dunix}\
-Asystem(unix) -Asystem(posix) -Acpu(cris) -Amachine(cris)}}"
#undef CRIS_CC1_SUBTARGET_SPEC
#define CRIS_CC1_SUBTARGET_SPEC \
"%{!march=*:%{!cpu=*:-march=v10}}"
#undef CRIS_ASM_SUBTARGET_SPEC
#define CRIS_ASM_SUBTARGET_SPEC \
"--em=criself\
%{!fleading-underscore:--no-underscore}\
%{fPIC|fpic: --pic}"
/* Provide a legacy -mlinux option. */
#undef CRIS_SUBTARGET_SWITCHES
#define CRIS_SUBTARGET_SWITCHES \
{"linux", 0, ""}, \
{"gotplt", -TARGET_MASK_AVOID_GOTPLT, ""}, \
{"no-gotplt", TARGET_MASK_AVOID_GOTPLT, \
N_("Together with -fpic and -fPIC, do not use GOTPLT references")},
#undef CRIS_SUBTARGET_DEFAULT
#define CRIS_SUBTARGET_DEFAULT \
(TARGET_MASK_SVINTO \
+ TARGET_MASK_ETRAX4_ADD \
+ TARGET_MASK_ALIGN_BY_32 \
+ TARGET_MASK_ELF \
+ TARGET_MASK_LINUX)
#undef CRIS_DEFAULT_CPU_VERSION
#define CRIS_DEFAULT_CPU_VERSION CRIS_CPU_NG
#undef CRIS_SUBTARGET_VERSION
#define CRIS_SUBTARGET_VERSION " - cris-axis-linux-gnu"
/* Redefine what was in svr4.h. Include order madness makes it less
useful to include (config/)linux.h after cris.h. (config/)linux.h
includes svr4.h which undef:s lots of supposedly arch-specific macros
carefully defined by cris.h. */
#undef LIB_SPEC
#define LIB_SPEC "%{!shared:%{!symbolic:-lc}}"
/* We need an -rpath-link to ld.so.1, and presumably to each directory
specified with -B. */
#undef CRIS_LINK_SUBTARGET_SPEC
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcrislinux\
-rpath-link include/asm/../..%s\
%{shared} %{static}\
%{symbolic:-Bdynamic} %{shlib:-Bdynamic} %{static:-Bstatic}\
%{!shared:%{!static:%{rdynamic:-export-dynamic}}}\
%{O2|O3: --gc-sections}"
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{!shared:\
%{pg:gcrt1.o%s}\
%{!pg:\
%{p:gcrt1.o%s}\
%{!p:\
%{profile:gcrt1.o%s}\
%{!profile:crt1.o%s}}}}\
crti.o%s\
%{!shared:crtbegin.o%s}\
%{shared:crtbeginS.o%s}"
/* Node: Sections */
/* GNU/Linux has crti and crtn and does not need the
FORCE_INIT_SECTION_ALIGN trick in cris.h. */
#undef FORCE_INIT_SECTION_ALIGN
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
;; This code used to be expanded through interesting expansions in
;; the machine description, compiled from this code:
;;
;; #ifdef L_mulsi3
;; long __Mul (unsigned long a, unsigned long b) __attribute__ ((__const__));
;;
;; /* This must be compiled with the -mexpand-mul flag, to synthesize the
;; multiplication from the mstep instructions. The check for
;; smaller-size multiplication pays off in the order of .5-10%;
;; estimated median 1%, depending on application.
;; FIXME: It can be further optimized if we go to assembler code, as
;; gcc 2.7.2 adds a few unnecessary instructions and does not put the
;; basic blocks in optimal order. */
;; long
;; __Mul (unsigned long a, unsigned long b)
;; {
;; #if defined (__CRIS_arch_version) && __CRIS_arch_version >= 10
;; /* In case other code is compiled without -march=v10, they will
;; contain calls to __Mul, regardless of flags at link-time. The
;; "else"-code below will work, but is unnecessarily slow. This
;; sometimes cuts a few minutes off from simulation time by just
;; returning a "mulu.d". */
;; return a * b;
;; #else
;; unsigned long min;
;;
;; /* Get minimum via the bound insn. */
;; min = a < b ? a : b;
;;
;; /* Can we omit computation of the high part? */
;; if (min > 65535)
;; /* No. Perform full multiplication. */
;; return a * b;
;; else
;; {
;; /* Check if both operands are within 16 bits. */
;; unsigned long max;
;;
;; /* Get maximum, by knowing the minimum.
;; This will partition a and b into max and min.
;; This is not currently something GCC understands,
;; so do this trick by asm. */
;; __asm__ ("xor %1,%0\n\txor %2,%0"
;; : "=r" (max)
;; : "r" (b), "r" (a), "0" (min));
;;
;; if (max > 65535)
;; /* Make GCC understand that only the low part of "min" will be
;; used. */
;; return max * (unsigned short) min;
;; else
;; /* Only the low parts of both operands are necessary. */
;; return ((unsigned short) max) * (unsigned short) min;
;; }
;; #endif /* not __CRIS_arch_version >= 10 */
;; }
;; #endif /* L_mulsi3 */
;;
;; That approach was abandoned since the caveats outweighted the
;; benefits. The expand-multiplication machinery is also removed, so you
;; can't do this anymore.
;;
;; For doubters of there being any benefits, some where: insensitivity to:
;; - ABI changes (mostly for experimentation)
;; - assembler syntax differences (mostly debug format).
;; - insn scheduling issues.
;; Most ABI experiments will presumably happen with arches with mul insns,
;; so that argument doesn't really hold anymore, and it's unlikely there
;; being new arch variants needing insn scheduling and not having mul
;; insns.
;; ELF and a.out have different syntax for local labels: the "wrong"
;; one may not be omitted from the object.
#undef L
#ifdef __AOUT__
# define L(x) x
#else
# define L(x) .x
#endif
.global ___Mul
.type ___Mul,@function
___Mul:
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 10
ret
mulu.d $r11,$r10
#else
move.d $r10,$r12
move.d $r11,$r9
bound.d $r12,$r9
cmpu.w 65535,$r9
bls L(L3)
move.d $r12,$r13
movu.w $r11,$r9
lslq 16,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
clear.w $r10
test.d $r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
movu.w $r12,$r12
move.d $r11,$r9
clear.w $r9
test.d $r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
add.w $r9,$r10
lslq 16,$r10
ret
add.d $r13,$r10
L(L3):
move.d $r9,$r10
xor $r11,$r10
xor $r12,$r10
cmpu.w 65535,$r10
bls L(L5)
movu.w $r9,$r13
movu.w $r13,$r13
move.d $r10,$r9
lslq 16,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
clear.w $r10
test.d $r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
lslq 16,$r10
ret
add.d $r9,$r10
L(L5):
movu.w $r9,$r9
lslq 16,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
ret
mstep $r9,$r10
#endif
L(Lfe1):
.size ___Mul,L(Lfe1)-___Mul
LIB2FUNCS_STATIC_EXTRA = \
tmpabi_symbol.c $(srcdir)/config/cris/mulsi3.asm
MULTILIB_OPTIONS = melinux
MULTILIB_DIRNAMES = elinux
MULTILIB_EXTRA_OPTS = mbest-lib-options
INSTALL_LIBGCC = install-multilib
LIBGCC = stmp-multilib
tmpabi_symbol.c: $(srcdir)/config/cris/cris_abi_symbol.c
cp $(srcdir)/config/cris/cris_abi_symbol.c $@
#
# t-cris
#
# The Makefile fragment to include when compiling gcc et al for CRIS.
#
#
# The makefile macros etc. are included in the order found in the
# section "Target Fragment" in the gcc info-files (or the paper copy) of
# "Using and Porting GCC"
#
# Don't run fixproto
STMP_FIXPROTO =
LIB2FUNCS_EXTRA = _udivsi3.c _divsi3.c _umodsi3.c _modsi3.c
CRIS_LIB1CSRC = $(srcdir)/config/cris/arit.c
FPBIT = tmplibgcc_fp_bit.c
DPBIT = dp-bit.c
dp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' > dp-bit.c
cat $(srcdir)/config/fp-bit.c >> dp-bit.c
# Use another name to avoid confusing SUN make, if support for
# it is reinstated elsewhere. Prefixed with "tmplibgcc" means
# "make clean" will wipe it. We define a few L_ thingies
# because we can't select them individually through FPBIT_FUNCS;
# see above.
tmplibgcc_fp_bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' > $@
echo '#define FLOAT' >> $@
cat $(srcdir)/config/fp-bit.c >> $@
# The fixed-point arithmetic code is in one file, arit.c,
# similar to libgcc2.c (or the old libgcc1.c). We need to
# "split it up" with one file per define.
$(LIB2FUNCS_EXTRA): $(CRIS_LIB1CSRC)
name=`echo $@ | sed -e 's,.*/,,' | sed -e 's,.c$$,,'`; \
echo "#define L$$name" > tmp-$@ \
&& echo '#include "$<"' >> tmp-$@ \
&& mv -f tmp-$@ $@
TARGET_LIBGCC2_CFLAGS = -Dinhibit_libc
LIB2FUNCS_STATIC_EXTRA = $(srcdir)/config/cris/mulsi3.asm
EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o
MULTILIB_OPTIONS = march=v10
MULTILIB_DIRNAMES = v10
MULTILIB_MATCHES = \
march?v10=mcpu?etrax100lx \
march?v10=mcpu?ng \
march?v10=march?etrax100lx \
march?v10=march?ng \
march?v10=march?v11 \
march?v10=mcpu?v11 \
march?v10=mcpu?v10
MULTILIB_EXTRA_OPTS = mbest-lib-options
INSTALL_LIBGCC = install-multilib
LIBGCC = stmp-multilib
CRTSTUFF_T_CFLAGS = $(LIBGCC2_CFLAGS) -moverride-best-lib-options
TARGET_LIBGCC2_CFLAGS += -fPIC
CRTSTUFF_T_CFLAGS_S = $(TARGET_LIBGCC2_CFLAGS)
# Override t-slibgcc-elf-ver to export some libgcc symbols with
# the symbol versions that glibc used.
SHLIB_MAPFILES += $(srcdir)/config/libgcc-glibc.ver
......@@ -1787,6 +1787,45 @@ can also be obtained from:
</p>
<hr>
@end html
@heading @anchor{cris}CRIS
CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip
series. These are used in embedded applications.
@ifnothtml
@xref{CRIS Options,, CRIS Options, gcc, Using and Porting the GNU Compiler
Collection (GCC)},
@end ifnothtml
@ifhtml
See ``CRIS Options'' in the main manual
@end ifhtml
for a list of CRIS-specific options.
There are a few different CRIS targets:
@table @code
@item cris-axis-aout
Old target. Includes a multilib for the @samp{elinux} a.out-based
target. No multilibs for newer architecture variants.
@item cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the
@samp{v10} core used in @samp{ETRAX 100 LX}.
@item cris-axis-linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting
@samp{ETRAX 100 LX} by default.
@end table
For @code{cris-axis-aout} and @code{cris-axis-elf} you need binutils 2.11
or newer. For @code{cris-axis-linux-gnu} you need binutils 2.12 or newer.
Pre-packaged tools can be obtained from
@uref{ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/}. More
information about this platform is available at
@uref{http://developer.axis.com/}.
@html
</p>
<hr>
@end html
@heading @anchor{dos}DOS
Please have a look at our @uref{binaries.html,,binaries page}.
......
......@@ -588,6 +588,15 @@ in the following sections.
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
-m64 -m31 -mdebug -mno-debug}
@emph{CRIS Options}
@gccoptlist{
-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
-mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
-mstack-align -mdata-align -mconst-align @gol
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
-melf -maout -melinux -mlinux -sim -sim2}
@item Code Generation Options
@xref{Code Gen Options,,Options for Code Generation Conventions}.
@gccoptlist{
......@@ -5096,6 +5105,7 @@ that macro, which enables you to change the defaults.
* IA-64 Options::
* D30V Options::
* S/390 and zSeries Options::
* CRIS Options::
@end menu
@node M680x0 Options
......@@ -9464,6 +9474,143 @@ The default is to not print debug information.
@end table
@node CRIS Options
@subsection CRIS Options
@cindex CRIS Options
These options are defined specifically for the CRIS ports.
@table @gcctabopt
@item -march=@var{architecture-type}
@itemx -mcpu=@var{architecture-type}
@opindex march
@opindex mcpu
Generate code for the specified architecture. The choices for
@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX.
Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
@samp{v10}.
@item -mtune=@var{architecture-type}
@opindex mtune
Tune to @var{architecture-type} everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for @var{architecture-type} are the same as for
@option{-march=@var{architecture-type}}.
@item -mmax-stack-frame=@var{n}
@opindex mmax-stack-frame
Warn when the stack frame of a function exceeds @var{n} bytes.
@item -melinux-stacksize=@var{n}
@opindex melinux-stacksize
Only available with the @samp{cris-axis-aout} target. Arranges for
indications in the program to the kernel loader that the stack of the
program should be set to @var{n} bytes.
@item -metrax4
@itemx -metrax100
@opindex metrax4
@opindex metrax100
The options @option{-metrax4} and @option{-metrax100} are synonyms for
@option{-march=v3} and @option{-march=v8} respectively.
@item -mpdebug
@opindex mpdebug
Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect to turn off the @samp{#NO_APP}
formatted-code indicator to the assembler at the beginning of the
assembly file.
@item -mcc-init
@opindex mcc-init
Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
@item -mno-side-effects
@opindex mno-side-effects
Do not emit instructions with side-effects in addressing modes other than
post-increment.
@item -mstack-align
@itemx -mno-stack-align
@itemx -mdata-align
@itemx -mno-data-align
@itemx -mconst-align
@itemx -mno-const-align
@opindex mstack-align
@opindex mno-stack-align
@opindex mdata-align
@opindex mno-data-align
@opindex mconst-align
@opindex mno-const-align
These options (no-options) arranges (eliminate arrangements) for the
stack-frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model. The default is to
arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
@item -m32-bit
@itemx -m16-bit
@itemx -m8-bit
@opindex m32-bit
@opindex m16-bit
@opindex m8-bit
Similar to the stack- data- and const-align options above, these options
arrange for stack-frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
@item -mno-prologue-epilogue
@itemx -mprologue-epilogue
@opindex mno-prologue-epilogue
@opindex mprologue-epilogue
With @option{-mno-prologue-epilogue}, the normal function prologue and
epilogue that sets up the stack-frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variable needs to be allocated.
@item -mno-gotplt
@itemx -mgotplt
@opindex mno-gotplt
@opindex mgotplt
With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT. The default is @option{-mgotplt}.
@item -maout
@opindex maout
Legacy no-op option only recognized with the cris-axis-aout target.
@item -melf
@opindex melf
Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.
@item -melinux
@opindex melinux
Only recognized with the cris-axis-aout target, where it selects a
GNU/linux-like multilib, include files and instruction set for
@option{-march=v8}.
@item -mlinux
@opindex mlinux
Legacy no-op option only recognized with the cris-axis-linux-gnu target.
@item -sim
@opindex sim
This option, recognized for the cris-axis-aout and cris-axis-elf arranges
to link with input-output functions from a simulator library. Code,
initialized data and zero-initialized data are allocated consecutively.
@item -sim2
@opindex sim2
Like @option{-sim}, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
@end table
@node Code Gen Options
@section Options for Code Generation Conventions
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment