Commit 0516f6fe by Steven Bosscher Committed by Steven Bosscher

Makefile.in (OBJS-common): Add postreload-gcse.c.

	* Makefile.in (OBJS-common): Add postreload-gcse.c.
	Add new postreload-gcse.o.
	* cse.c (SAFE_HASH): Define as wrapper around safe_hash.
	(lookup_as_function, insert, rehash_using_reg, use_related_value,
	equiv_constant): Use SAFE_HASH instead of safe_hash.
	(exp_equiv_p): Export.  Add for_gcse argument when comparing
	for GCSE.
	(lookup, lookup_for_remove, merge_equiv_classes, find_best_addr,
	find_comparison_args, fold_rtx, cse_insn): Update callers.
	(hash_rtx): New function derived from old canon_hash and bits
	from gcse.c hash_expr_1.
	(canon_hash_string): Rename to hash_rtx_string.
	(canon_hash, safe_hash): Make static inline.  Call hash_rtx.
	* cselib.c (hash_rtx): Rename to cselib_hash_rtx.
	(cselib_lookup): Update this caller.
	* gcse.c (modify_mem_list_set, canon_modify_mem_list_set):
	Make static.
	(hash_expr): Call hash_rtx.
	(ldst_entry): Likewise.
	(expr_equiv_p): Call exp_equiv_p.
	(struct unoccr, hash_expr_1, hash_string_1, lookup_expr,
	reg_used_on_edge, reg_set_between_after_reload_p,
	reg_used_between_after_reload_p, get_avail_load_store_reg,
	is_jump_table_basic_block, bb_has_well_behaved_predecessors,
	get_bb_avail_insn, hash_scan_set_after_reload,
	compute_hash_table_after_reload,
	eliminate_partially_redundant_loads, gcse_after_reload,
	get_bb_avail_insn, gcse_after_reload_main): Remove.
	* postreload-gcse.c: New file, reincarnating most of the above.
	* rtl.h (exp_equiv_p, hash_rtx): New prototypes.
	(gcse_after_reload_main): Update prototype.
	* timevar.def (TV_GCSE_AFTER_RELOAD): New timevar.
	* passes.c (rest_of_handle_gcse2): Use it.

From-SVN: r86206
parent 95013377
2004-08-18 Steven Bosscher <stevenb@suse.de>
* Makefile.in (OBJS-common): Add postreload-gcse.c.
Add new postreload-gcse.o.
* cse.c (SAFE_HASH): Define as wrapper around safe_hash.
(lookup_as_function, insert, rehash_using_reg, use_related_value,
equiv_constant): Use SAFE_HASH instead of safe_hash.
(exp_equiv_p): Export. Add for_gcse argument when comparing
for GCSE.
(lookup, lookup_for_remove, merge_equiv_classes, find_best_addr,
find_comparison_args, fold_rtx, cse_insn): Update callers.
(hash_rtx): New function derived from old canon_hash and bits
from gcse.c hash_expr_1.
(canon_hash_string): Rename to hash_rtx_string.
(canon_hash, safe_hash): Make static inline. Call hash_rtx.
* cselib.c (hash_rtx): Rename to cselib_hash_rtx.
(cselib_lookup): Update this caller.
* gcse.c (modify_mem_list_set, canon_modify_mem_list_set):
Make static.
(hash_expr): Call hash_rtx.
(ldst_entry): Likewise.
(expr_equiv_p): Call exp_equiv_p.
(struct unoccr, hash_expr_1, hash_string_1, lookup_expr,
reg_used_on_edge, reg_set_between_after_reload_p,
reg_used_between_after_reload_p, get_avail_load_store_reg,
is_jump_table_basic_block, bb_has_well_behaved_predecessors,
get_bb_avail_insn, hash_scan_set_after_reload,
compute_hash_table_after_reload,
eliminate_partially_redundant_loads, gcse_after_reload,
get_bb_avail_insn, gcse_after_reload_main): Remove.
* postreload-gcse.c: New file, reincarnating most of the above.
* rtl.h (exp_equiv_p, hash_rtx): New prototypes.
(gcse_after_reload_main): Update prototype.
* timevar.def (TV_GCSE_AFTER_RELOAD): New timevar.
* passes.c (rest_of_handle_gcse2): Use it.
2004-08-18 Diego Novillo <dnovillo@redhat.com>
* tree-ssa-loop.c (pass_loop_init): Add TODO_dump_func.
......
......@@ -899,9 +899,12 @@ OBJS-common = \
genrtl.o ggc-common.o global.o graph.o gtype-desc.o \
haifa-sched.o hooks.o ifcvt.o insn-attrtab.o insn-emit.o insn-modes.o \
insn-extract.o insn-opinit.o insn-output.o insn-peep.o insn-recog.o \
integrate.o intl.o jump.o langhooks.o lcm.o lists.o local-alloc.o \
loop.o modulo-sched.o optabs.o options.o opts.o \
params.o postreload.o postreload-gcse.o predict.o \
insn-preds.o integrate.o intl.o jump.o langhooks.o lcm.o lists.o \
local-alloc.o loop.o modulo-sched.o \
optabs.o options.o opts.o params.o postreload.o predict.o \
local-alloc.o loop.o modulo-sched.o optabs.o options.o opts.o \
params.o postreload.o postreload-gcse.o predict.o \
print-rtl.o print-tree.o value-prof.o var-tracking.o \
profile.o ra.o ra-build.o ra-colorize.o ra-debug.o ra-rewrite.o \
real.o recog.o reg-stack.o regclass.o regmove.o regrename.o \
......@@ -2047,6 +2050,10 @@ postreload.o : postreload.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H)
$(EXPR_H) $(OPTABS_H) reload.h $(REGS_H) hard-reg-set.h insn-config.h \
$(BASIC_BLOCK_H) $(RECOG_H) output.h function.h toplev.h cselib.h $(TM_P_H) \
except.h $(TREE_H)
postreload-gcse.o : postreload-gcse.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
$(RTL_H) $(REGS_H) hard-reg-set.h $(FLAGS_H) real.h insn-config.h $(GGC_H) \
$(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H) function.h output.h toplev.h $(TM_P_H) \
except.h $(TREE_H)
caller-save.o : caller-save.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
$(FLAGS_H) $(REGS_H) hard-reg-set.h insn-config.h $(BASIC_BLOCK_H) function.h \
$(RECOG_H) reload.h $(EXPR_H) toplev.h $(TM_P_H)
......
......@@ -489,6 +489,12 @@ struct table_elt
? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
: canon_hash (X, M)) & HASH_MASK)
/* Like HASH, but without side-effects. */
#define SAFE_HASH(X, M) \
((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
: safe_hash (X, M)) & HASH_MASK)
/* Determine whether register number N is considered a fixed register for the
purpose of approximating register costs.
It is desirable to replace other regs with fixed regs, to reduce need for
......@@ -625,10 +631,11 @@ static void rehash_using_reg (rtx);
static void invalidate_memory (void);
static void invalidate_for_call (void);
static rtx use_related_value (rtx, struct table_elt *);
static unsigned canon_hash (rtx, enum machine_mode);
static unsigned canon_hash_string (const char *);
static unsigned safe_hash (rtx, enum machine_mode);
static int exp_equiv_p (rtx, rtx, int, int);
static inline unsigned canon_hash (rtx, enum machine_mode);
static inline unsigned safe_hash (rtx, enum machine_mode);
static unsigned hash_rtx_string (const char *);
static rtx canon_reg (rtx, rtx);
static void find_best_addr (rtx, rtx *, enum machine_mode);
static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
......@@ -1324,7 +1331,7 @@ lookup (rtx x, unsigned int hash, enum machine_mode mode)
for (p = table[hash]; p; p = p->next_same_hash)
if (mode == p->mode && ((x == p->exp && REG_P (x))
|| exp_equiv_p (x, p->exp, !REG_P (x), 0)))
|| exp_equiv_p (x, p->exp, !REG_P (x), false)))
return p;
return 0;
......@@ -1352,7 +1359,8 @@ lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
else
{
for (p = table[hash]; p; p = p->next_same_hash)
if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
if (mode == p->mode
&& (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
return p;
}
......@@ -1366,7 +1374,7 @@ static rtx
lookup_as_function (rtx x, enum rtx_code code)
{
struct table_elt *p
= lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));
= lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
/* If we are looking for a CONST_INT, the mode doesn't really matter, as
long as we are narrowing. So if we looked in vain for a mode narrower
......@@ -1376,7 +1384,7 @@ lookup_as_function (rtx x, enum rtx_code code)
{
x = copy_rtx (x);
PUT_MODE (x, word_mode);
p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
}
if (p == 0)
......@@ -1385,7 +1393,7 @@ lookup_as_function (rtx x, enum rtx_code code)
for (p = p->first_same_value; p; p = p->next_same_value)
if (GET_CODE (p->exp) == code
/* Make sure this is a valid entry in the table. */
&& exp_equiv_p (p->exp, p->exp, 1, 0))
&& exp_equiv_p (p->exp, p->exp, 1, false))
return p->exp;
return 0;
......@@ -1568,7 +1576,7 @@ insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mo
if (subexp != 0)
{
/* Get the integer-free subexpression in the hash table. */
subhash = safe_hash (subexp, mode) & HASH_MASK;
subhash = SAFE_HASH (subexp, mode);
subelt = lookup (subexp, subhash, mode);
if (subelt == 0)
subelt = insert (subexp, NULL, subhash, mode);
......@@ -1622,7 +1630,7 @@ merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
/* Remove old entry, make a new one in CLASS1's class.
Don't do this for invalid entries as we cannot find their
hash code (it also isn't necessary). */
if (REG_P (exp) || exp_equiv_p (exp, exp, 1, 0))
if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
{
bool need_rehash = false;
......@@ -1917,8 +1925,8 @@ rehash_using_reg (rtx x)
{
next = p->next_same_hash;
if (reg_mentioned_p (x, p->exp)
&& exp_equiv_p (p->exp, p->exp, 1, 0)
&& i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
&& exp_equiv_p (p->exp, p->exp, 1, false)
&& i != (hash = SAFE_HASH (p->exp, p->mode)))
{
if (p->next_same_hash)
p->next_same_hash->prev_same_hash = p->prev_same_hash;
......@@ -2017,7 +2025,7 @@ use_related_value (rtx x, struct table_elt *elt)
rtx subexp = get_related_value (x);
if (subexp != 0)
relt = lookup (subexp,
safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
SAFE_HASH (subexp, GET_MODE (subexp)),
GET_MODE (subexp));
}
......@@ -2068,7 +2076,7 @@ use_related_value (rtx x, struct table_elt *elt)
/* Hash a string. Just add its bytes up. */
static inline unsigned
canon_hash_string (const char *ps)
hash_rtx_string (const char *ps)
{
unsigned hash = 0;
const unsigned char *p = (const unsigned char *) ps;
......@@ -2085,23 +2093,26 @@ canon_hash_string (const char *ps)
MODE is used in hashing for CONST_INTs only;
otherwise the mode of X is used.
Store 1 in do_not_record if any subexpression is volatile.
Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
Store 1 in hash_arg_in_memory if X contains a MEM rtx
which does not have the MEM_READONLY_P bit set.
If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
Note that cse_insn knows that the hash code of a MEM expression
is just (int) MEM plus the hash code of the address. */
static unsigned
canon_hash (rtx x, enum machine_mode mode)
unsigned
hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
int *hash_arg_in_memory_p, bool have_reg_qty)
{
int i, j;
unsigned hash = 0;
enum rtx_code code;
const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */
/* Used to turn recursion into iteration. We can't rely on GCC's
tail-recursion elimination since we need to keep accumulating values
in HASH. */
repeat:
if (x == 0)
return hash;
......@@ -2112,8 +2123,9 @@ canon_hash (rtx x, enum machine_mode mode)
case REG:
{
unsigned int regno = REGNO (x);
bool record;
if (!reload_completed)
{
/* On some machines, we can't record any non-fixed hard register,
because extending its life will cause reload problems. We
consider ap, fp, sp, gp to be fixed for this purpose.
......@@ -2125,6 +2137,7 @@ canon_hash (rtx x, enum machine_mode mode)
On all machines, we can't record any global registers.
Nor should we record any register that is in a small
class, as defined by CLASS_LIKELY_SPILLED_P. */
bool record;
if (regno >= FIRST_PSEUDO_REGISTER)
record = true;
......@@ -2149,11 +2162,13 @@ canon_hash (rtx x, enum machine_mode mode)
if (!record)
{
do_not_record = 1;
*do_not_record_p = 1;
return 0;
}
}
hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
hash += ((unsigned int) REG << 7);
hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
return hash;
}
......@@ -2164,7 +2179,7 @@ canon_hash (rtx x, enum machine_mode mode)
{
if (REG_P (SUBREG_REG (x)))
{
hash += (((unsigned) SUBREG << 7)
hash += (((unsigned int) SUBREG << 7)
+ REGNO (SUBREG_REG (x))
+ (SUBREG_BYTE (x) / UNITS_PER_WORD));
return hash;
......@@ -2173,21 +2188,19 @@ canon_hash (rtx x, enum machine_mode mode)
}
case CONST_INT:
{
unsigned HOST_WIDE_INT tem = INTVAL (x);
hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
+ (unsigned int) INTVAL (x));
return hash;
}
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
hash += (unsigned) code + (unsigned) GET_MODE (x);
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
if (GET_MODE (x) != VOIDmode)
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
else
hash += ((unsigned) CONST_DOUBLE_LOW (x)
+ (unsigned) CONST_DOUBLE_HIGH (x));
hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+ (unsigned int) CONST_DOUBLE_HIGH (x));
return hash;
case CONST_VECTOR:
......@@ -2200,7 +2213,8 @@ canon_hash (rtx x, enum machine_mode mode)
for (i = 0; i < units; ++i)
{
elt = CONST_VECTOR_ELT (x, i);
hash += canon_hash (elt, GET_MODE (elt));
hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
hash_arg_in_memory_p, have_reg_qty);
}
return hash;
......@@ -2208,23 +2222,39 @@ canon_hash (rtx x, enum machine_mode mode)
/* Assume there is only one rtx object for any given label. */
case LABEL_REF:
hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
differences and differences between each stage's debugging dumps. */
hash += (((unsigned int) LABEL_REF << 7)
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
return hash;
case SYMBOL_REF:
hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
{
/* Don't hash on the symbol's address to avoid bootstrap differences.
Different hash values may cause expressions to be recorded in
different orders and thus different registers to be used in the
final assembler. This also avoids differences in the dump files
between various stages. */
unsigned int h = 0;
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
while (*p)
h += (h << 7) + *p++; /* ??? revisit */
hash += ((unsigned int) SYMBOL_REF << 7) + h;
return hash;
}
case MEM:
/* We don't record if marked volatile or if BLKmode since we don't
know the size of the move. */
if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
{
do_not_record = 1;
*do_not_record_p = 1;
return 0;
}
if (!MEM_READONLY_P (x))
hash_arg_in_memory = 1;
if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
*hash_arg_in_memory_p = 1;
/* Now that we have already found this special case,
might as well speed it up as much as possible. */
......@@ -2236,15 +2266,16 @@ canon_hash (rtx x, enum machine_mode mode)
/* A USE that mentions non-volatile memory needs special
handling since the MEM may be BLKmode which normally
prevents an entry from being made. Pure calls are
marked by a USE which mentions BLKmode memory. */
marked by a USE which mentions BLKmode memory.
See calls.c:emit_call_1. */
if (MEM_P (XEXP (x, 0))
&& ! MEM_VOLATILE_P (XEXP (x, 0)))
{
hash += (unsigned) USE;
x = XEXP (x, 0);
if (!MEM_READONLY_P (x))
hash_arg_in_memory = 1;
if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
*hash_arg_in_memory_p = 1;
/* Now that we have already found this special case,
might as well speed it up as much as possible. */
......@@ -2264,34 +2295,36 @@ canon_hash (rtx x, enum machine_mode mode)
case CC0:
case CALL:
case UNSPEC_VOLATILE:
do_not_record = 1;
*do_not_record_p = 1;
return 0;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
{
do_not_record = 1;
*do_not_record_p = 1;
return 0;
}
else
{
/* We don't want to take the filename and line into account. */
hash += (unsigned) code + (unsigned) GET_MODE (x)
+ canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
+ canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
+ hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
+ hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
+ (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
{
hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
GET_MODE (ASM_OPERANDS_INPUT (x, i)))
+ canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
(x, i)));
hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
GET_MODE (ASM_OPERANDS_INPUT (x, i)),
do_not_record_p, hash_arg_in_memory_p,
have_reg_qty)
+ hash_rtx_string
(ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
}
hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
x = ASM_OPERANDS_INPUT (x, 0);
mode = GET_MODE (x);
goto repeat;
......@@ -2312,48 +2345,59 @@ canon_hash (rtx x, enum machine_mode mode)
{
if (fmt[i] == 'e')
{
rtx tem = XEXP (x, i);
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = tem;
x = XEXP (x, i);
goto repeat;
}
hash += canon_hash (tem, 0);
hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
hash_arg_in_memory_p, have_reg_qty);
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
hash += canon_hash (XVECEXP (x, i, j), 0);
else if (fmt[i] == 's')
hash += canon_hash_string (XSTR (x, i));
else if (fmt[i] == 'i')
{
unsigned tem = XINT (x, i);
hash += tem;
hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
hash_arg_in_memory_p, have_reg_qty);
}
else if (fmt[i] == 's')
hash += hash_rtx_string (XSTR (x, i));
else if (fmt[i] == 'i')
hash += (unsigned int) XINT (x, i);
else if (fmt[i] == '0' || fmt[i] == 't')
/* Unused. */
;
else
abort ();
}
return hash;
}
/* Like canon_hash but with no side effects. */
/* Hash an rtx X for cse via hash_rtx.
Stores 1 in do_not_record if any subexpression is volatile.
Stores 1 in hash_arg_in_memory if X contains a mem rtx which
does not have the RTX_UNCHANGING_P bit set. */
static unsigned
static inline unsigned
canon_hash (rtx x, enum machine_mode mode)
{
return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
}
/* Like canon_hash but with no side effects, i.e. do_not_record
and hash_arg_in_memory are not changed. */
static inline unsigned
safe_hash (rtx x, enum machine_mode mode)
{
int save_do_not_record = do_not_record;
int save_hash_arg_in_memory = hash_arg_in_memory;
unsigned hash = canon_hash (x, mode);
hash_arg_in_memory = save_hash_arg_in_memory;
do_not_record = save_do_not_record;
return hash;
int dummy_do_not_record;
return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
}
/* Return 1 iff X and Y would canonicalize into the same thing,
......@@ -2363,16 +2407,10 @@ safe_hash (rtx x, enum machine_mode mode)
and Y was found in the hash table. We check register refs
in Y for being marked as valid.
If EQUAL_VALUES is nonzero, we allow a register to match a constant value
that is known to be in the register. Ordinarily, we don't allow them
to match, because letting them match would cause unpredictable results
in all the places that search a hash table chain for an equivalent
for a given value. A possible equivalent that has different structure
has its hash code computed from different data. Whether the hash code
is the same as that of the given value is pure luck. */
If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
static int
exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
int
exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
{
int i, j;
enum rtx_code code;
......@@ -2382,42 +2420,13 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
if VALIDATE is nonzero. */
if (x == y && !validate)
return 1;
if (x == 0 || y == 0)
return x == y;
code = GET_CODE (x);
if (code != GET_CODE (y))
{
if (!equal_values)
return 0;
/* If X is a constant and Y is a register or vice versa, they may be
equivalent. We only have to validate if Y is a register. */
if (CONSTANT_P (x) && REG_P (y)
&& REGNO_QTY_VALID_P (REGNO (y)))
{
int y_q = REG_QTY (REGNO (y));
struct qty_table_elem *y_ent = &qty_table[y_q];
if (GET_MODE (y) == y_ent->mode
&& rtx_equal_p (x, y_ent->const_rtx)
&& (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
return 1;
}
if (CONSTANT_P (y) && code == REG
&& REGNO_QTY_VALID_P (REGNO (x)))
{
int x_q = REG_QTY (REGNO (x));
struct qty_table_elem *x_ent = &qty_table[x_q];
if (GET_MODE (x) == x_ent->mode
&& rtx_equal_p (y, x_ent->const_rtx))
return 1;
}
return 0;
}
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
......@@ -2437,12 +2446,15 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
return XSTR (x, 0) == XSTR (y, 0);
case REG:
if (for_gcse)
return REGNO (x) == REGNO (y);
else
{
unsigned int regno = REGNO (y);
unsigned int i;
unsigned int endregno
= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
: hard_regno_nregs[regno][GET_MODE (y)]);
unsigned int i;
/* If the quantities are not the same, the expressions are not
equivalent. If there are and we are not to validate, they
......@@ -2461,6 +2473,22 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
return 1;
}
case MEM:
if (for_gcse)
{
/* Can't merge two expressions in different alias sets, since we
can decide that the expression is transparent in a block when
it isn't, due to it being set with the different alias set. */
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
return 0;
/* A volatile mem should not be considered equivalent to any
other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
}
break;
/* For commutative operations, check both orders. */
case PLUS:
case MULT:
......@@ -2469,13 +2497,14 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
case XOR:
case NE:
case EQ:
return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
validate, for_gcse)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
validate, equal_values))
validate, for_gcse))
|| (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
validate, equal_values)
validate, for_gcse)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
validate, equal_values)));
validate, for_gcse)));
case ASM_OPERANDS:
/* We don't use the generic code below because we want to
......@@ -2498,7 +2527,7 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
ASM_OPERANDS_INPUT (y, i),
validate, equal_values)
validate, for_gcse)
|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
return 0;
......@@ -2511,7 +2540,7 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
}
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
fail to match, return 0 for the whole thing. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
......@@ -2519,7 +2548,8 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
switch (fmt[i])
{
case 'e':
if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
validate, for_gcse))
return 0;
break;
......@@ -2528,7 +2558,7 @@ exp_equiv_p (rtx x, rtx y, int validate, int equal_values)
return 0;
for (j = 0; j < XVECLEN (x, i); j++)
if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
validate, equal_values))
validate, for_gcse))
return 0;
break;
......@@ -2827,7 +2857,7 @@ find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
if (! p->flag)
{
if ((REG_P (p->exp)
|| exp_equiv_p (p->exp, p->exp, 1, 0))
|| exp_equiv_p (p->exp, p->exp, 1, false))
&& ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
|| (exp_cost == best_addr_cost
&& ((p->cost + 1) >> 1) > best_rtx_cost)))
......@@ -2903,7 +2933,7 @@ find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
p = p->next_same_value, count++)
if (! p->flag
&& (REG_P (p->exp)
|| exp_equiv_p (p->exp, p->exp, 1, 0)))
|| exp_equiv_p (p->exp, p->exp, 1, false)))
{
rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
p->exp, op1);
......@@ -3012,8 +3042,7 @@ find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
if (x == 0)
/* Look up ARG1 in the hash table and see if it has an equivalence
that lets us see what is being compared. */
p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
GET_MODE (arg1));
p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
if (p)
{
p = p->first_same_value;
......@@ -3038,7 +3067,7 @@ find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
#endif
/* If the entry isn't valid, skip it. */
if (! exp_equiv_p (p->exp, p->exp, 1, 0))
if (! exp_equiv_p (p->exp, p->exp, 1, false))
continue;
if (GET_CODE (p->exp) == COMPARE
......@@ -3235,7 +3264,7 @@ fold_rtx (rtx x, rtx insn)
if (GET_CODE (elt->exp) == SUBREG
&& GET_MODE (SUBREG_REG (elt->exp)) == mode
&& exp_equiv_p (elt->exp, elt->exp, 1, 0))
&& exp_equiv_p (elt->exp, elt->exp, 1, false))
return copy_rtx (SUBREG_REG (elt->exp));
}
......@@ -3264,8 +3293,6 @@ fold_rtx (rtx x, rtx insn)
{
struct table_elt *elt;
/* We can use HASH here since we know that canon_hash won't be
called. */
elt = lookup (folded_arg0,
HASH (folded_arg0, GET_MODE (folded_arg0)),
GET_MODE (folded_arg0));
......@@ -3370,7 +3397,7 @@ fold_rtx (rtx x, rtx insn)
&& GET_MODE (SUBREG_REG (elt->exp)) == mode
&& (GET_MODE_SIZE (GET_MODE (folded_arg0))
<= UNITS_PER_WORD)
&& exp_equiv_p (elt->exp, elt->exp, 1, 0))
&& exp_equiv_p (elt->exp, elt->exp, 1, false))
new = copy_rtx (SUBREG_REG (elt->exp));
if (new)
......@@ -3829,11 +3856,11 @@ fold_rtx (rtx x, rtx insn)
&& (REG_QTY (REGNO (folded_arg0))
== REG_QTY (REGNO (folded_arg1))))
|| ((p0 = lookup (folded_arg0,
(safe_hash (folded_arg0, mode_arg0)
& HASH_MASK), mode_arg0))
SAFE_HASH (folded_arg0, mode_arg0),
mode_arg0))
&& (p1 = lookup (folded_arg1,
(safe_hash (folded_arg1, mode_arg0)
& HASH_MASK), mode_arg0))
SAFE_HASH (folded_arg1, mode_arg0),
mode_arg0))
&& p0->first_same_value == p1->first_same_value))
{
/* Sadly two equal NaNs are not equivalent. */
......@@ -4007,8 +4034,7 @@ fold_rtx (rtx x, rtx insn)
{
rtx new_const = GEN_INT (-INTVAL (const_arg1));
struct table_elt *p
= lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
mode);
= lookup (new_const, SAFE_HASH (new_const, mode), mode);
if (p)
for (p = p->first_same_value; p; p = p->next_same_value)
......@@ -4195,7 +4221,7 @@ equiv_constant (rtx x)
if (CONSTANT_P (x))
return x;
elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
if (elt == 0)
return 0;
......@@ -5182,7 +5208,7 @@ cse_insn (rtx insn, rtx libcall_insn)
/* If the expression is not valid, ignore it. Then we do not
have to check for validity below. In most cases, we can use
`rtx_equal_p', since canonicalization has already been done. */
if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
continue;
/* Also skip paradoxical subregs, unless that's what we're
......@@ -5279,7 +5305,7 @@ cse_insn (rtx insn, rtx libcall_insn)
/* Skip invalid entries. */
while (elt && !REG_P (elt->exp)
&& ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
&& ! exp_equiv_p (elt->exp, elt->exp, 1, false))
elt = elt->next_same_value;
/* A paradoxical subreg would be bad here: it'll be the right
......@@ -6006,7 +6032,7 @@ cse_insn (rtx insn, rtx libcall_insn)
/* Ignore invalid entries. */
if (!REG_P (elt->exp)
&& ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
&& ! exp_equiv_p (elt->exp, elt->exp, 1, false))
continue;
/* We may have already been playing subreg games. If the
......@@ -6059,7 +6085,7 @@ cse_insn (rtx insn, rtx libcall_insn)
/* Ignore invalid entries. */
while (classp
&& !REG_P (classp->exp)
&& ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
&& ! exp_equiv_p (classp->exp, classp->exp, 1, false))
classp = classp->next_same_value;
}
}
......
......@@ -55,7 +55,7 @@ static int discard_useless_locs (void **, void *);
static int discard_useless_values (void **, void *);
static void remove_useless_values (void);
static rtx wrap_constant (enum machine_mode, rtx);
static unsigned int hash_rtx (rtx, enum machine_mode, int);
static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
static cselib_val *cselib_lookup_mem (rtx, int);
......@@ -257,8 +257,8 @@ entry_and_rtx_equal_p (const void *entry, const void *x_arg)
}
/* The hash function for our hash table. The value is always computed with
hash_rtx when adding an element; this function just extracts the hash
value from a cselib_val structure. */
cselib_hash_rtx when adding an element; this function just extracts the
hash value from a cselib_val structure. */
static hashval_t
get_value_hash (const void *entry)
......@@ -554,7 +554,7 @@ wrap_constant (enum machine_mode mode, rtx x)
otherwise the mode of X is used. */
static unsigned int
hash_rtx (rtx x, enum machine_mode mode, int create)
cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
{
cselib_val *e;
int i, j;
......@@ -600,7 +600,7 @@ hash_rtx (rtx x, enum machine_mode mode, int create)
for (i = 0; i < units; ++i)
{
elt = CONST_VECTOR_ELT (x, i);
hash += hash_rtx (elt, GET_MODE (elt), 0);
hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
}
return hash;
......@@ -646,7 +646,7 @@ hash_rtx (rtx x, enum machine_mode mode, int create)
if (fmt[i] == 'e')
{
rtx tem = XEXP (x, i);
unsigned int tem_hash = hash_rtx (tem, 0, create);
unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
if (tem_hash == 0)
return 0;
......@@ -656,7 +656,7 @@ hash_rtx (rtx x, enum machine_mode mode, int create)
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
{
unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
unsigned int tem_hash = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
if (tem_hash == 0)
return 0;
......@@ -926,7 +926,7 @@ cselib_lookup (rtx x, enum machine_mode mode, int create)
if (MEM_P (x))
return cselib_lookup_mem (x, create);
hashval = hash_rtx (x, mode, create);
hashval = cselib_hash_rtx (x, mode, create);
/* Can't even create if hashing is not possible. */
if (! hashval)
return 0;
......
......@@ -495,11 +495,12 @@ static sbitmap *reg_set_in_block;
/* Array, indexed by basic block number for a list of insns which modify
memory within that block. */
static rtx * modify_mem_list;
bitmap modify_mem_list_set;
static bitmap modify_mem_list_set;
/* This array parallels modify_mem_list, but is kept canonicalized. */
static rtx * canon_modify_mem_list;
bitmap canon_modify_mem_list_set;
static bitmap canon_modify_mem_list_set;
/* Various variables for statistics gathering. */
/* Memory used in a pass.
......@@ -564,8 +565,6 @@ static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
struct hash_table *);
static void insert_set_in_table (rtx, rtx, struct hash_table *);
static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
static unsigned int hash_expr_1 (rtx, enum machine_mode, int *);
static unsigned int hash_string_1 (const char *);
static unsigned int hash_set (int, int);
static int expr_equiv_p (rtx, rtx);
static void record_last_reg_set_info (rtx, int);
......@@ -576,7 +575,6 @@ static void alloc_hash_table (int, struct hash_table *, int);
static void free_hash_table (struct hash_table *);
static void compute_hash_table_work (struct hash_table *);
static void dump_hash_table (FILE *, const char *, struct hash_table *);
static struct expr *lookup_expr (rtx, struct hash_table *);
static struct expr *lookup_set (unsigned int, struct hash_table *);
static struct expr *next_set (unsigned int, struct expr *);
static void reset_opr_set_tables (void);
......@@ -1462,9 +1460,7 @@ oprs_available_p (rtx x, rtx insn)
MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
indicating if a volatile operand is found or if the expression contains
something we don't want to insert in the table. HASH_TABLE_SIZE is
the current size of the hash table to be probed.
??? One might want to merge this with canon_hash. Later. */
the current size of the hash table to be probed. */
static unsigned int
hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
......@@ -1474,208 +1470,11 @@ hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
*do_not_record_p = 0;
hash = hash_expr_1 (x, mode, do_not_record_p);
hash = hash_rtx (x, mode, do_not_record_p,
NULL, /*have_reg_qty=*/false);
return hash % hash_table_size;
}
/* Hash a string. Just add its bytes up. */
static inline unsigned
hash_string_1 (const char *ps)
{
unsigned hash = 0;
const unsigned char *p = (const unsigned char *) ps;
if (p)
while (*p)
hash += *p++;
return hash;
}
/* Subroutine of hash_expr to do the actual work. */
static unsigned int
hash_expr_1 (rtx x, enum machine_mode mode, int *do_not_record_p)
{
int i, j;
unsigned hash = 0;
enum rtx_code code;
const char *fmt;
if (x == 0)
return hash;
/* Used to turn recursion into iteration. We can't rely on GCC's
tail-recursion elimination since we need to keep accumulating values
in HASH. */
repeat:
code = GET_CODE (x);
switch (code)
{
case REG:
hash += ((unsigned int) REG << 7) + REGNO (x);
return hash;
case CONST_INT:
hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
+ (unsigned int) INTVAL (x));
return hash;
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
if (GET_MODE (x) != VOIDmode)
for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
hash += (unsigned int) XWINT (x, i);
else
hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+ (unsigned int) CONST_DOUBLE_HIGH (x));
return hash;
case CONST_VECTOR:
{
int units;
rtx elt;
units = CONST_VECTOR_NUNITS (x);
for (i = 0; i < units; ++i)
{
elt = CONST_VECTOR_ELT (x, i);
hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
}
return hash;
}
/* Assume there is only one rtx object for any given label. */
case LABEL_REF:
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
differences and differences between each stage's debugging dumps. */
hash += (((unsigned int) LABEL_REF << 7)
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
return hash;
case SYMBOL_REF:
{
/* Don't hash on the symbol's address to avoid bootstrap differences.
Different hash values may cause expressions to be recorded in
different orders and thus different registers to be used in the
final assembler. This also avoids differences in the dump files
between various stages. */
unsigned int h = 0;
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
while (*p)
h += (h << 7) + *p++; /* ??? revisit */
hash += ((unsigned int) SYMBOL_REF << 7) + h;
return hash;
}
case MEM:
if (MEM_VOLATILE_P (x))
{
*do_not_record_p = 1;
return 0;
}
hash += (unsigned int) MEM;
/* We used alias set for hashing, but this is not good, since the alias
set may differ in -fprofile-arcs and -fbranch-probabilities compilation
causing the profiles to fail to match. */
x = XEXP (x, 0);
goto repeat;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PC:
case CC0:
case CALL:
case UNSPEC_VOLATILE:
*do_not_record_p = 1;
return 0;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
{
*do_not_record_p = 1;
return 0;
}
else
{
/* We don't want to take the filename and line into account. */
hash += (unsigned) code + (unsigned) GET_MODE (x)
+ hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
+ hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
+ (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
{
hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
GET_MODE (ASM_OPERANDS_INPUT (x, i)),
do_not_record_p)
+ hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
(x, i)));
}
hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
x = ASM_OPERANDS_INPUT (x, 0);
mode = GET_MODE (x);
goto repeat;
}
return hash;
}
default:
break;
}
hash += (unsigned) code + (unsigned) GET_MODE (x);
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = XEXP (x, i);
goto repeat;
}
hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
if (*do_not_record_p)
return 0;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
{
hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
if (*do_not_record_p)
return 0;
}
else if (fmt[i] == 's')
hash += hash_string_1 (XSTR (x, i));
else if (fmt[i] == 'i')
hash += (unsigned int) XINT (x, i);
else
abort ();
}
return hash;
}
/* Hash a set of register REGNO.
Sets are hashed on the register that is set. This simplifies the PRE copy
......@@ -1692,148 +1491,12 @@ hash_set (int regno, int hash_table_size)
return hash % hash_table_size;
}
/* Return nonzero if exp1 is equivalent to exp2.
??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
/* Return nonzero if exp1 is equivalent to exp2. */
static int
expr_equiv_p (rtx x, rtx y)
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == y)
return 1;
if (x == 0 || y == 0)
return 0;
code = GET_CODE (x);
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
switch (code)
{
case PC:
case CC0:
case CONST_INT:
return 0;
case LABEL_REF:
return XEXP (x, 0) == XEXP (y, 0);
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
case REG:
return REGNO (x) == REGNO (y);
case MEM:
/* Can't merge two expressions in different alias sets, since we can
decide that the expression is transparent in a block when it isn't,
due to it being set with the different alias set. */
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
return 0;
/* A volatile mem should not be considered equivalent to any other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
break;
/* For commutative operations, check both orders. */
case PLUS:
case MULT:
case AND:
case IOR:
case XOR:
case NE:
case EQ:
return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
|| (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
case ASM_OPERANDS:
/* We don't use the generic code below because we want to
disregard filename and line numbers. */
/* A volatile asm isn't equivalent to any other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
if (GET_MODE (x) != GET_MODE (y)
|| strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
|| strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
|| ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
|| ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
return 0;
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
ASM_OPERANDS_INPUT (y, i))
|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
return 0;
}
return 1;
default:
break;
}
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole thing. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'e':
if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
return 0;
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = 0; j < XVECLEN (x, i); j++)
if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
return 0;
break;
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case '0':
break;
default:
abort ();
}
}
return 1;
return exp_equiv_p (x, y, 0, true);
}
/* Insert expression X in INSN in the hash TABLE.
......@@ -2556,28 +2219,6 @@ compute_hash_table (struct hash_table *table)
/* Expression tracking support. */
/* Lookup pattern PAT in the expression TABLE.
The result is a pointer to the table entry, or NULL if not found. */
static struct expr *
lookup_expr (rtx pat, struct hash_table *table)
{
int do_not_record_p;
unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
table->size);
struct expr *expr;
if (do_not_record_p)
return NULL;
expr = table->table[hash];
while (expr && ! expr_equiv_p (expr->expr, pat))
expr = expr->next_same_hash;
return expr;
}
/* Lookup REGNO in the set TABLE. The result is a pointer to the
table entry, or NULL if not found. */
......@@ -5426,7 +5067,8 @@ ldst_entry (rtx x)
struct ls_expr * ptr;
unsigned int hash;
hash = hash_expr_1 (x, GET_MODE (x), & do_not_record_p);
hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
NULL, /*have_reg_qty=*/false);
for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
......@@ -6945,654 +6587,4 @@ is_too_expensive (const char *pass)
return false;
}
/* The following code implements gcse after reload, the purpose of this
pass is to cleanup redundant loads generated by reload and other
optimizations that come after gcse. It searches for simple inter-block
redundancies and tries to eliminate them by adding moves and loads
in cold places. */
/* The following structure holds the information about the occurrences of
the redundant instructions. */
struct unoccr
{
struct unoccr *next;
edge pred;
rtx insn;
};
static bool reg_used_on_edge (rtx, edge);
static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
static rtx get_avail_load_store_reg (rtx);
static bool is_jump_table_basic_block (basic_block);
static bool bb_has_well_behaved_predecessors (basic_block);
static struct occr* get_bb_avail_insn (basic_block, struct occr *);
static void hash_scan_set_after_reload (rtx, rtx, struct hash_table *);
static void compute_hash_table_after_reload (struct hash_table *);
static void eliminate_partially_redundant_loads (basic_block,
rtx,
struct expr *);
static void gcse_after_reload (void);
static struct occr* get_bb_avail_insn (basic_block, struct occr *);
void gcse_after_reload_main (rtx, FILE *);
/* Check if register REG is used in any insn waiting to be inserted on E.
Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
with PREV(insn),NEXT(insn) instead of calling
reg_overlap_mentioned_p. */
static bool
reg_used_on_edge (rtx reg, edge e)
{
rtx insn;
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
return true;
return false;
}
/* Return the insn that sets register REG or clobbers it in between
FROM_INSN and TO_INSN (exclusive of those two).
Just like reg_set_between but for hard registers and not pseudos. */
static rtx
reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
{
rtx insn;
int regno;
if (! REG_P (reg))
abort ();
regno = REGNO (reg);
/* We are called after register allocation. */
if (regno >= FIRST_PSEUDO_REGISTER)
abort ();
if (from_insn == to_insn)
return NULL_RTX;
for (insn = NEXT_INSN (from_insn);
insn != to_insn;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
if (FIND_REG_INC_NOTE (insn, reg)
|| (CALL_P (insn)
&& call_used_regs[regno])
|| find_reg_fusage (insn, CLOBBER, reg))
return insn;
}
if (set_of (reg, insn) != NULL_RTX)
return insn;
}
return NULL_RTX;
}
/* Return the insn that uses register REG in between FROM_INSN and TO_INSN
(exclusive of those two). Similar to reg_used_between but for hard
registers and not pseudos. */
static rtx
reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
{
rtx insn;
int regno;
if (! REG_P (reg))
return to_insn;
regno = REGNO (reg);
/* We are called after register allocation. */
if (regno >= FIRST_PSEUDO_REGISTER)
abort ();
if (from_insn == to_insn)
return NULL_RTX;
for (insn = NEXT_INSN (from_insn);
insn != to_insn;
insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|| (CALL_P (insn)
&& call_used_regs[regno])
|| find_reg_fusage (insn, USE, reg)
|| find_reg_fusage (insn, CLOBBER, reg)))
return insn;
return NULL_RTX;
}
/* Return the loaded/stored register of a load/store instruction. */
static rtx
get_avail_load_store_reg (rtx insn)
{
if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
return SET_DEST(PATTERN(insn));
if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
return SET_SRC (PATTERN (insn));
abort ();
}
/* Don't handle ABNORMAL edges or jump tables. */
static bool
is_jump_table_basic_block (basic_block bb)
{
rtx insn = BB_END (bb);
if (JUMP_TABLE_DATA_P (insn))
return true;
return false;
}
/* Return nonzero if the predecessors of BB are "well behaved". */
static bool
bb_has_well_behaved_predecessors (basic_block bb)
{
edge pred;
if (! bb->pred)
return false;
for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
if (((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
|| is_jump_table_basic_block (pred->src))
return false;
return true;
}
/* Search for the occurrences of expression in BB. */
static struct occr*
get_bb_avail_insn (basic_block bb, struct occr *occr)
{
for (; occr != NULL; occr = occr->next)
if (BLOCK_FOR_INSN (occr->insn)->index == bb->index)
return occr;
return NULL;
}
/* Perform partial GCSE pass after reload, try to eliminate redundant loads
created by the reload pass. We try to look for a full or partial
redundant loads fed by one or more loads/stores in predecessor BBs,
and try adding loads to make them fully redundant. We also check if
it's worth adding loads to be able to delete the redundant load.
Algorithm:
1. Build available expressions hash table:
For each load/store instruction, if the loaded/stored memory didn't
change until the end of the basic block add this memory expression to
the hash table.
2. Perform Redundancy elimination:
For each load instruction do the following:
perform partial redundancy elimination, check if it's worth adding
loads to make the load fully redundant. If so add loads and
register copies and delete the load.
Future enhancement:
if loaded register is used/defined between load and some store,
look for some other free register between load and all its stores,
and replace load with a copy from this register to the loaded
register. */
/* This handles the case where several stores feed a partially redundant
load. It checks if the redundancy elimination is possible and if it's
worth it. */
static void
eliminate_partially_redundant_loads (basic_block bb, rtx insn,
struct expr *expr)
{
edge pred;
rtx avail_insn = NULL_RTX;
rtx avail_reg;
rtx dest, pat;
struct occr *a_occr;
struct unoccr *occr, *avail_occrs = NULL;
struct unoccr *unoccr, *unavail_occrs = NULL;
int npred_ok = 0;
gcov_type ok_count = 0; /* Redundant load execution count. */
gcov_type critical_count = 0; /* Execution count of critical edges. */
/* The execution count of the loads to be added to make the
load fully redundant. */
gcov_type not_ok_count = 0;
basic_block pred_bb;
pat = PATTERN (insn);
dest = SET_DEST (pat);
/* Check that the loaded register is not used, set, or killed from the
beginning of the block. */
if (reg_used_between_after_reload_p (dest,
PREV_INSN (BB_HEAD (bb)), insn)
|| reg_set_between_after_reload_p (dest,
PREV_INSN (BB_HEAD (bb)), insn))
return;
/* Check potential for replacing load with copy for predecessors. */
for (pred = bb->pred; pred; pred = pred->pred_next)
{
rtx next_pred_bb_end;
avail_insn = NULL_RTX;
pred_bb = pred->src;
next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
{
/* Check if the loaded register is not used. */
avail_insn = a_occr->insn;
if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
abort ();
/* Make sure we can generate a move from register avail_reg to
dest. */
extract_insn (gen_move_insn (copy_rtx (dest),
copy_rtx (avail_reg)));
if (! constrain_operands (1)
|| reg_killed_on_edge (avail_reg, pred)
|| reg_used_on_edge (dest, pred))
{
avail_insn = NULL;
continue;
}
if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
next_pred_bb_end))
/* AVAIL_INSN remains non-null. */
break;
else
avail_insn = NULL;
}
if (avail_insn != NULL_RTX)
{
npred_ok++;
ok_count += pred->count;
if (EDGE_CRITICAL_P (pred))
critical_count += pred->count;
occr = gmalloc (sizeof (struct unoccr));
occr->insn = avail_insn;
occr->pred = pred;
occr->next = avail_occrs;
avail_occrs = occr;
}
else
{
not_ok_count += pred->count;
if (EDGE_CRITICAL_P (pred))
critical_count += pred->count;
unoccr = gmalloc (sizeof (struct unoccr));
unoccr->insn = NULL_RTX;
unoccr->pred = pred;
unoccr->next = unavail_occrs;
unavail_occrs = unoccr;
}
}
if (npred_ok == 0 /* No load can be replaced by copy. */
|| (optimize_size && npred_ok > 1)) /* Prevent exploding the code. */
goto cleanup;
/* Check if it's worth applying the partial redundancy elimination. */
if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
goto cleanup;
if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
goto cleanup;
/* Generate moves to the loaded register from where
the memory is available. */
for (occr = avail_occrs; occr; occr = occr->next)
{
avail_insn = occr->insn;
pred = occr->pred;
/* Set avail_reg to be the register having the value of the
memory. */
avail_reg = get_avail_load_store_reg (avail_insn);
if (! avail_reg)
abort ();
insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
copy_rtx (avail_reg)),
pred);
if (gcse_file)
fprintf (gcse_file,
"GCSE AFTER reload generating move from %d to %d on \
edge from %d to %d\n",
REGNO (avail_reg),
REGNO (dest),
pred->src->index,
pred->dest->index);
}
/* Regenerate loads where the memory is unavailable. */
for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
{
pred = unoccr->pred;
insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
if (gcse_file)
fprintf (gcse_file,
"GCSE AFTER reload: generating on edge from %d to %d\
a copy of load:\n",
pred->src->index,
pred->dest->index);
}
/* Delete the insn if it is not available in this block and mark it
for deletion if it is available. If insn is available it may help
discover additional redundancies, so mark it for later deletion.*/
for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
a_occr && (a_occr->insn != insn);
a_occr = get_bb_avail_insn (bb, a_occr->next));
if (!a_occr)
delete_insn (insn);
else
a_occr->deleted_p = 1;
cleanup:
while (unavail_occrs)
{
struct unoccr *temp = unavail_occrs->next;
free (unavail_occrs);
unavail_occrs = temp;
}
while (avail_occrs)
{
struct unoccr *temp = avail_occrs->next;
free (avail_occrs);
avail_occrs = temp;
}
}
/* Performing the redundancy elimination as described before. */
static void
gcse_after_reload (void)
{
unsigned int i;
rtx insn;
basic_block bb;
struct expr *expr;
struct occr *occr;
/* Note we start at block 1. */
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
return;
FOR_BB_BETWEEN (bb,
ENTRY_BLOCK_PTR->next_bb->next_bb,
EXIT_BLOCK_PTR,
next_bb)
{
if (! bb_has_well_behaved_predecessors (bb))
continue;
/* Do not try this optimization on cold basic blocks. */
if (probably_cold_bb_p (bb))
continue;
reset_opr_set_tables ();
for (insn = BB_HEAD (bb);
insn != NULL
&& insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
/* Is it a load - of the form (set (reg) (mem))? */
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SET
&& REG_P (SET_DEST (PATTERN (insn)))
&& MEM_P (SET_SRC (PATTERN (insn))))
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
struct expr *expr;
if (general_operand (src, GET_MODE (src))
/* Is the expression recorded? */
&& (expr = lookup_expr (src, &expr_hash_table)) != NULL
/* Are the operands unchanged since the start of the
block? */
&& oprs_not_set_p (src, insn)
&& ! MEM_VOLATILE_P (src)
&& GET_MODE (src) != BLKmode
&& !(flag_non_call_exceptions && may_trap_p (src))
&& !side_effects_p (src))
{
/* We now have a load (insn) and an available memory at
its BB start (expr). Try to remove the loads if it is
redundant. */
eliminate_partially_redundant_loads (bb, insn, expr);
}
}
/* Keep track of everything modified by this insn. */
if (INSN_P (insn))
mark_oprs_set (insn);
}
}
commit_edge_insertions ();
/* Go over the expression hash table and delete insns that were
marked for later deletion. */
for (i = 0; i < expr_hash_table.size; i++)
{
for (expr = expr_hash_table.table[i];
expr != NULL;
expr = expr->next_same_hash)
for (occr = expr->avail_occr; occr; occr = occr->next)
if (occr->deleted_p)
delete_insn (occr->insn);
}
}
/* Scan pattern PAT of INSN and add an entry to the hash TABLE.
After reload we are interested in loads/stores only. */
static void
hash_scan_set_after_reload (rtx pat, rtx insn, struct hash_table *table)
{
rtx src = SET_SRC (pat);
rtx dest = SET_DEST (pat);
if (! MEM_P (src) && ! MEM_P (dest))
return;
if (REG_P (dest))
{
if (/* Don't GCSE something if we can't do a reg/reg copy. */
can_copy_p (GET_MODE (dest))
/* GCSE commonly inserts instruction after the insn. We can't
do that easily for EH_REGION notes so disable GCSE on these
for now. */
&& ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
/* Is SET_SRC something we want to gcse? */
&& general_operand (src, GET_MODE (src))
/* Don't CSE a nop. */
&& ! set_noop_p (pat)
&& ! JUMP_P (insn))
{
/* An expression is not available if its operands are
subsequently modified, including this insn. */
if (oprs_available_p (src, insn))
insert_expr_in_table (src, GET_MODE (dest), insn, 0, 1, table);
}
}
else if (REG_P (src))
{
/* Only record sets of pseudo-regs in the hash table. */
if (/* Don't GCSE something if we can't do a reg/reg copy. */
can_copy_p (GET_MODE (src))
/* GCSE commonly inserts instruction after the insn. We can't
do that easily for EH_REGION notes so disable GCSE on these
for now. */
&& ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
/* Is SET_DEST something we want to gcse? */
&& general_operand (dest, GET_MODE (dest))
/* Don't CSE a nop. */
&& ! set_noop_p (pat)
&&! JUMP_P (insn)
&& ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
/* Check if the memory expression is killed after insn. */
&& ! load_killed_in_block_p (BLOCK_FOR_INSN (insn),
INSN_CUID (insn) + 1,
dest,
1)
&& oprs_unchanged_p (XEXP (dest, 0), insn, 1))
{
insert_expr_in_table (dest, GET_MODE (dest), insn, 0, 1, table);
}
}
}
/* Create hash table of memory expressions available at end of basic
blocks. */
static void
compute_hash_table_after_reload (struct hash_table *table)
{
unsigned int i;
table->set_p = 0;
/* Initialize count of number of entries in hash table. */
table->n_elems = 0;
memset ((char *) table->table, 0,
table->size * sizeof (struct expr *));
/* While we compute the hash table we also compute a bit array of which
registers are set in which blocks. */
sbitmap_vector_zero (reg_set_in_block, last_basic_block);
/* Re-cache any INSN_LIST nodes we have allocated. */
clear_modify_mem_tables ();
/* Some working arrays used to track first and last set in each block. */
reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
for (i = 0; i < max_gcse_regno; ++i)
reg_avail_info[i].last_bb = NULL;
FOR_EACH_BB (current_bb)
{
rtx insn;
unsigned int regno;
/* First pass over the instructions records information used to
determine when registers and memory are first and last set. */
for (insn = BB_HEAD (current_bb);
insn && insn != NEXT_INSN (BB_END (current_bb));
insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
continue;
if (CALL_P (insn))
{
bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP
&& find_reg_note (insn, REG_SETJMP, NULL_RTX))
clobbers_all = true;
#endif
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (clobbers_all
|| TEST_HARD_REG_BIT (regs_invalidated_by_call,
regno))
record_last_reg_set_info (insn, regno);
mark_call (insn);
}
note_stores (PATTERN (insn), record_last_set_info, insn);
if (GET_CODE (PATTERN (insn)) == SET)
{
rtx src, dest;
src = SET_SRC (PATTERN (insn));
dest = SET_DEST (PATTERN (insn));
if (MEM_P (src) && auto_inc_p (XEXP (src, 0)))
{
regno = REGNO (XEXP (XEXP (src, 0), 0));
record_last_reg_set_info (insn, regno);
}
if (MEM_P (dest) && auto_inc_p (XEXP (dest, 0)))
{
regno = REGNO (XEXP (XEXP (dest, 0), 0));
record_last_reg_set_info (insn, regno);
}
}
}
/* The next pass builds the hash table. */
for (insn = BB_HEAD (current_bb);
insn && insn != NEXT_INSN (BB_END (current_bb));
insn = NEXT_INSN (insn))
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
if (! find_reg_note (insn, REG_LIBCALL, NULL_RTX))
hash_scan_set_after_reload (PATTERN (insn), insn, table);
}
free (reg_avail_info);
reg_avail_info = NULL;
}
/* Main entry point of the GCSE after reload - clean some redundant loads
due to spilling. */
void
gcse_after_reload_main (rtx f, FILE* file)
{
gcse_subst_count = 0;
gcse_create_count = 0;
gcse_file = file;
gcc_obstack_init (&gcse_obstack);
bytes_used = 0;
/* We need alias. */
init_alias_analysis ();
max_gcse_regno = max_reg_num ();
alloc_reg_set_mem (max_gcse_regno);
alloc_gcse_mem (f);
alloc_hash_table (max_cuid, &expr_hash_table, 0);
compute_hash_table_after_reload (&expr_hash_table);
if (gcse_file)
dump_hash_table (gcse_file, "Expression", &expr_hash_table);
if (expr_hash_table.n_elems > 0)
gcse_after_reload ();
free_hash_table (&expr_hash_table);
free_gcse_mem ();
free_reg_set_mem ();
/* We are finished with alias. */
end_alias_analysis ();
obstack_free (&gcse_obstack, NULL);
}
#include "gt-gcse.h"
......@@ -841,10 +841,10 @@ rest_of_handle_sched2 (void)
static void
rest_of_handle_gcse2 (void)
{
timevar_push (TV_RELOAD_CSE_REGS);
timevar_push (TV_GCSE_AFTER_RELOAD);
open_dump_file (DFI_gcse2, current_function_decl);
gcse_after_reload_main (get_insns (), dump_file);
gcse_after_reload_main (get_insns ());
rebuild_jump_labels (get_insns ());
delete_trivially_dead_insns (get_insns (), max_reg_num ());
close_dump_file (DFI_gcse2, print_rtl_with_bb, get_insns ());
......@@ -855,7 +855,7 @@ rest_of_handle_gcse2 (void)
verify_flow_info ();
#endif
timevar_pop (TV_RELOAD_CSE_REGS);
timevar_pop (TV_GCSE_AFTER_RELOAD);
}
/* Register allocation pre-pass, to reduce number of moves necessary
......
/* Post reload partially redundant load elimination
Copyright (C) 2004
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "except.h"
#include "intl.h"
#include "obstack.h"
#include "hashtab.h"
#include "params.h"
/* The following code implements gcse after reload, the purpose of this
pass is to cleanup redundant loads generated by reload and other
optimizations that come after gcse. It searches for simple inter-block
redundancies and tries to eliminate them by adding moves and loads
in cold places.
Perform partially redundant load elimination, try to eliminate redundant
loads created by the reload pass. We try to look for full or partial
redundant loads fed by one or more loads/stores in predecessor BBs,
and try adding loads to make them fully redundant. We also check if
it's worth adding loads to be able to delete the redundant load.
Algorithm:
1. Build available expressions hash table:
For each load/store instruction, if the loaded/stored memory didn't
change until the end of the basic block add this memory expression to
the hash table.
2. Perform Redundancy elimination:
For each load instruction do the following:
perform partial redundancy elimination, check if it's worth adding
loads to make the load fully redundant. If so add loads and
register copies and delete the load.
3. Delete instructions made redundant in step 2.
Future enhancement:
If the loaded register is used/defined between load and some store,
look for some other free register between load and all its stores,
and replace the load with a copy from this register to the loaded
register.
*/
/* Keep statistics of this pass. */
static struct
{
int moves_inserted;
int copies_inserted;
int insns_deleted;
} stats;
/* We need to keep a hash table of expressions. The table entries are of
type 'struct expr', and for each expression there is a single linked
list of occurences. */
/* The table itself. */
static htab_t expr_table;
/* Expression elements in the hash table. */
struct expr
{
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
rtx expr;
/* The same hash for this entry. */
hashval_t hash;
/* List of available occurrence in basic blocks in the function. */
struct occr *avail_occr;
};
static struct obstack expr_obstack;
/* Occurrence of an expression.
There is at most one occurence per basic block. If a pattern appears
more than once, the last appearance is used. */
struct occr
{
/* Next occurrence of this expression. */
struct occr *next;
/* The insn that computes the expression. */
rtx insn;
/* Nonzero if this [anticipatable] occurrence has been deleted. */
char deleted_p;
};
static struct obstack occr_obstack;
/* The following structure holds the information about the occurrences of
the redundant instructions. */
struct unoccr
{
struct unoccr *next;
edge pred;
rtx insn;
};
static struct obstack unoccr_obstack;
/* Array where each element is the CUID if the insn that last set the hard
register with the number of the element, since the start of the current
basic block. */
static int *reg_avail_info;
/* A list of insns that may modify memory within the current basic block. */
struct modifies_mem
{
rtx insn;
struct modifies_mem *next;
};
static struct modifies_mem *modifies_mem_list;
/* The modifies_mem structs also go on an obstack, only this obstack is
freed each time after completing the analysis or transformations on
a basic block. So we allocate a dummy modifies_mem_obstack_bottom
object on the obstack to keep track of the bottom of the obstack. */
static struct obstack modifies_mem_obstack;
static struct modifies_mem *modifies_mem_obstack_bottom;
/* Mapping of insn UIDs to CUIDs.
CUIDs are like UIDs except they increase monotonically in each basic
block, have no gaps, and only apply to real insns. */
static int *uid_cuid;
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
/* Helpers for memory allocation/freeing. */
static void alloc_mem (void);
static void free_mem (void);
/* Support for hash table construction and transformations. */
static bool oprs_unchanged_p (rtx, rtx, bool);
static void record_last_reg_set_info (rtx, int);
static void record_last_mem_set_info (rtx);
static void record_last_set_info (rtx, rtx, void *);
static void mark_call (rtx);
static void mark_set (rtx, rtx);
static void mark_clobber (rtx, rtx);
static void mark_oprs_set (rtx);
static void find_mem_conflicts (rtx, rtx, void *);
static int load_killed_in_block_p (int, rtx, bool);
static void reset_opr_set_tables (void);
/* Hash table support. */
static hashval_t hash_expr (rtx, int *);
static hashval_t hash_expr_for_htab (const void *);
static int expr_equiv_p (const void *, const void *);
static void insert_expr_in_table (rtx, rtx);
static struct expr *lookup_expr_in_table (rtx);
static int dump_hash_table_entry (void **, void *);
static void dump_hash_table (FILE *);
/* Helpers for eliminate_partially_redundant_load. */
static bool reg_killed_on_edge (rtx, edge);
static bool reg_used_on_edge (rtx, edge);
static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
static rtx get_avail_load_store_reg (rtx);
static bool bb_has_well_behaved_predecessors (basic_block);
static struct occr* get_bb_avail_insn (basic_block, struct occr *);
static void hash_scan_set (rtx);
static void compute_hash_table (void);
/* The work horses of this pass. */
static void eliminate_partially_redundant_load (basic_block,
rtx,
struct expr *);
static void eliminate_partially_redundant_loads (void);
/* Allocate memory for the CUID mapping array and register/memory
tracking tables. */
static void
alloc_mem (void)
{
int i;
basic_block bb;
rtx insn;
/* Find the largest UID and create a mapping from UIDs to CUIDs. */
uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
i = 0;
FOR_EACH_BB (bb)
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
uid_cuid[INSN_UID (insn)] = i++;
else
uid_cuid[INSN_UID (insn)] = i;
}
/* Allocate the available expressions hash table. We don't want to
make the hash table too small, but unnecessarily making it too large
also doesn't help. The i/4 is a gcse.c relic, and seems like a
reasonable choice. */
expr_table = htab_create (MAX (i / 4, 13),
hash_expr_for_htab, expr_equiv_p, NULL);
/* We allocate everything on obstacks because we often can roll back
the whole obstack to some point. Freeing obstacks is very fast. */
gcc_obstack_init (&expr_obstack);
gcc_obstack_init (&occr_obstack);
gcc_obstack_init (&unoccr_obstack);
gcc_obstack_init (&modifies_mem_obstack);
/* Working array used to track the last set for each register
in the current block. */
reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
/* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
can roll it back in reset_opr_set_tables. */
modifies_mem_obstack_bottom =
(struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
sizeof (struct modifies_mem));
}
/* Free memory allocated by alloc_mem. */
static void
free_mem (void)
{
free (uid_cuid);
htab_delete (expr_table);
obstack_free (&expr_obstack, NULL);
obstack_free (&occr_obstack, NULL);
obstack_free (&unoccr_obstack, NULL);
obstack_free (&modifies_mem_obstack, NULL);
free (reg_avail_info);
}
/* Hash expression X.
DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
or if the expression contains something we don't want to insert in the
table. */
static hashval_t
hash_expr (rtx x, int *do_not_record_p)
{
*do_not_record_p = 0;
return hash_rtx (x, GET_MODE (x), do_not_record_p,
NULL, /*have_reg_qty=*/false);
}
/* Callback for hashtab.
Return the hash value for expression EXP. We don't actually hash
here, we just return the cached hash value. */
static hashval_t
hash_expr_for_htab (const void *expp)
{
struct expr *exp = (struct expr *) expp;
return exp->hash;
}
/* Callbach for hashtab.
Return nonzero if exp1 is equivalent to exp2. */
static int
expr_equiv_p (const void *exp1p, const void *exp2p)
{
struct expr *exp1 = (struct expr *) exp1p;
struct expr *exp2 = (struct expr *) exp2p;
int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
if (equiv_p
&& exp1->hash != exp2->hash)
abort ();
return equiv_p;
}
/* Insert expression X in INSN in the hash TABLE.
If it is already present, record it as the last occurrence in INSN's
basic block. */
static void
insert_expr_in_table (rtx x, rtx insn)
{
int do_not_record_p;
hashval_t hash;
struct expr *cur_expr, **slot;
struct occr *avail_occr, *last_occr = NULL;
hash = hash_expr (x, &do_not_record_p);
/* Do not insert expression in the table if it contains volatile operands,
or if hash_expr determines the expression is something we don't want
to or can't handle. */
if (do_not_record_p)
return;
/* We anticipate that redundant expressions are rare, so for convenience
allocate a new hash table element here already and set its fields.
If we don't do this, we need a hack with a static struct expr. Anyway,
obstack_free is really fast and one more obstack_alloc doesn't hurt if
we're going to see more expressions later on. */
cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
sizeof (struct expr));
cur_expr->expr = x;
cur_expr->hash = hash;
cur_expr->avail_occr = NULL;
slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
hash, INSERT);
if (! (*slot))
/* The expression isn't found, so insert it. */
*slot = cur_expr;
else
{
/* The expression is already in the table, so roll back the
obstack and use the existing table entry. */
obstack_free (&expr_obstack, cur_expr);
cur_expr = *slot;
}
/* Search for another occurrence in the same basic block. */
avail_occr = cur_expr->avail_occr;
while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
{
/* If an occurrence isn't found, save a pointer to the end of
the list. */
last_occr = avail_occr;
avail_occr = avail_occr->next;
}
if (avail_occr)
/* Found another instance of the expression in the same basic block.
Prefer this occurrence to the currently recorded one. We want
the last one in the block and the block is scanned from start
to end. */
avail_occr->insn = insn;
else
{
/* First occurrence of this expression in this basic block. */
avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
sizeof (struct occr));
/* First occurrence of this expression in any block? */
if (cur_expr->avail_occr == NULL)
cur_expr->avail_occr = avail_occr;
else
last_occr->next = avail_occr;
avail_occr->insn = insn;
avail_occr->next = NULL;
avail_occr->deleted_p = 0;
}
}
/* Lookup pattern PAT in the expression hash table.
The result is a pointer to the table entry, or NULL if not found. */
static struct expr *
lookup_expr_in_table (rtx pat)
{
int do_not_record_p;
struct expr **slot, *tmp_expr;
hashval_t hash = hash_expr (pat, &do_not_record_p);
if (do_not_record_p)
return NULL;
tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
sizeof (struct expr));
tmp_expr->expr = pat;
tmp_expr->hash = hash;
tmp_expr->avail_occr = NULL;
slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
hash, INSERT);
obstack_free (&expr_obstack, tmp_expr);
if (!slot)
return NULL;
else
return (*slot);
}
/* Dump all expressions and occurences that are currently in the
expression hash table to FILE. */
/* This helper is called via htab_traverse. */
static int
dump_hash_table_entry (void **slot, void *filep)
{
struct expr *expr = (struct expr *) *slot;
FILE *file = (FILE *) filep;
struct occr *occr;
fprintf (file, "expr: ");
print_rtl (file, expr->expr);
fprintf (file,"\nhashcode: %u\n", expr->hash);
fprintf (file,"list of occurences:\n");
occr = expr->avail_occr;
while (occr)
{
rtx insn = occr->insn;
print_rtl_single (file, insn);
fprintf (file, "\n");
occr = occr->next;
}
fprintf (file, "\n");
return 1;
}
static void
dump_hash_table (FILE *file)
{
fprintf (file, "\n\nexpression hash table\n");
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
(long) htab_size (expr_table),
(long) htab_elements (expr_table),
htab_collisions (expr_table));
if (htab_elements (expr_table) > 0)
{
fprintf (file, "\n\ntable entries:\n");
htab_traverse (expr_table, dump_hash_table_entry, file);
}
fprintf (file, "\n");
}
/* Return nonzero if the operands of expression X are unchanged from the
start of INSN's basic block up to but not including INSN if AFTER_INSN
is false, or from INSN to the end of INSN's basic block if AFTER_INSN
is true. */
static bool
oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
#ifdef ENABLE_CHECKING
/* We are called after register allocation. */
if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
abort ();
#endif
if (after_insn)
/* If the last CUID setting the insn is less than the CUID of
INSN, then reg X is not changed in or after INSN. */
return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
else
/* Reg X is not set before INSN in the current basic block if
we have not yet recorded the CUID of an insn that touches
the reg. */
return reg_avail_info[REGNO (x)] == 0;
case MEM:
if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
return 0;
else
return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
case PC:
case CC0: /*FIXME*/
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 1;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
if (after_insn)
return 0;
break;
default:
break;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
return 0;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
return 0;
}
return 1;
}
/* Used for communication between find_mem_conflicts and
load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
conflict between two memory references.
This is a bit of a hack to work around the limitations of note_stores. */
static int mems_conflict_p;
/* DEST is the output of an instruction. If it is a memory reference, and
possibly conflicts with the load found in DATA, then set mems_conflict_p
to a nonzero value. */
static void
find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
void *data)
{
rtx mem_op = (rtx) data;
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If DEST is not a MEM, then it will not conflict with the load. Note
that function calls are assumed to clobber memory, but are handled
elsewhere. */
if (! MEM_P (dest))
return;
if (true_dependence (dest, GET_MODE (dest), mem_op,
rtx_addr_varies_p))
mems_conflict_p = 1;
}
/* Return nonzero if the expression in X (a memory reference) is killed
in block BB before if (AFTER_INSN is false) or after (if AFTER_INSN
is true) the insn with the CUID in UID_LIMIT. */
static int
load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
{
struct modifies_mem *list_entry = modifies_mem_list;
while (list_entry)
{
rtx setter = list_entry->insn;
/* Ignore entries in the list that do not apply. */
if ((after_insn
&& INSN_CUID (setter) < uid_limit)
|| (! after_insn
&& INSN_CUID (setter) > uid_limit))
{
list_entry = list_entry->next;
continue;
}
/* If SETTER is a call everything is clobbered. Note that calls
to pure functions are never put on the list, so we need not
worry about them. */
if (CALL_P (setter))
return 1;
/* SETTER must be an insn of some kind that sets memory. Call
note_stores to examine each hunk of memory that is modified.
It will set mems_conflict_p to nonzero if there may be a
conflict between X and SETTER. */
mems_conflict_p = 0;
note_stores (PATTERN (setter), find_mem_conflicts, x);
if (mems_conflict_p)
return 1;
list_entry = list_entry->next;
}
return 0;
}
/* Record register first/last/block set information for REGNO in INSN. */
static void
record_last_reg_set_info (rtx insn, int regno)
{
reg_avail_info[regno] = INSN_CUID (insn);
}
/* Record memory modification information for INSN. We do not actually care
about the memory location(s) that are set, or even how they are set (consider
a CALL_INSN). We merely need to record which insns modify memory. */
static void
record_last_mem_set_info (rtx insn)
{
struct modifies_mem *list_entry;
list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
sizeof (struct modifies_mem));
list_entry->insn = insn;
list_entry->next = modifies_mem_list;
modifies_mem_list = list_entry;
}
/* Called from compute_hash_table via note_stores to handle one
SET or CLOBBER in an insn. DATA is really the instruction in which
the SET is taking place. */
static void
record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
{
rtx last_set_insn = (rtx) data;
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (REG_P (dest))
record_last_reg_set_info (last_set_insn, REGNO (dest));
else if (MEM_P (dest)
/* Ignore pushes, they clobber nothing. */
&& ! push_operand (dest, GET_MODE (dest)))
record_last_mem_set_info (last_set_insn);
}
/* Reset tables used to keep track of what's still available since the
start of the block. */
static void
reset_opr_set_tables (void)
{
memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
modifies_mem_list = NULL;
}
/* Mark things set by a CALL. */
static void
mark_call (rtx insn)
{
if (! CONST_OR_PURE_CALL_P (insn))
record_last_mem_set_info (insn);
}
/* Mark things set by a SET. */
static void
mark_set (rtx pat, rtx insn)
{
rtx dest = SET_DEST (pat);
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (REG_P (dest))
record_last_reg_set_info (insn, REGNO (dest));
else if (MEM_P (dest))
record_last_mem_set_info (insn);
if (GET_CODE (SET_SRC (pat)) == CALL)
mark_call (insn);
}
/* Record things set by a CLOBBER. */
static void
mark_clobber (rtx pat, rtx insn)
{
rtx clob = XEXP (pat, 0);
while (GET_CODE (clob) == SUBREG
|| GET_CODE (clob) == STRICT_LOW_PART)
clob = XEXP (clob, 0);
if (REG_P (clob))
record_last_reg_set_info (insn, REGNO (clob));
else
record_last_mem_set_info (insn);
}
/* Record things set by INSN.
This data is used by oprs_unchanged_p. */
static void
mark_oprs_set (rtx insn)
{
rtx pat = PATTERN (insn);
int i;
if (GET_CODE (pat) == SET)
mark_set (pat, insn);
else if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx x = XVECEXP (pat, 0, i);
if (GET_CODE (x) == SET)
mark_set (x, insn);
else if (GET_CODE (x) == CLOBBER)
mark_clobber (x, insn);
else if (GET_CODE (x) == CALL)
mark_call (insn);
}
else if (GET_CODE (pat) == CLOBBER)
mark_clobber (pat, insn);
else if (GET_CODE (pat) == CALL)
mark_call (insn);
}
/* Scan the pattern of INSN and add an entry to the hash TABLE.
After reload we are interested in loads/stores only. */
static void
hash_scan_set (rtx insn)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
rtx dest = SET_DEST (pat);
/* We are only interested in loads and stores. */
if (! MEM_P (src) && ! MEM_P (dest))
return;
/* Don't mess with jumps and nops. */
if (JUMP_P (insn) || set_noop_p (pat))
return;
#ifdef ENABLE_CHEKCING
/* We shouldn't have any EH_REGION notes post reload. */
if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
abort ();
#endif
if (REG_P (dest))
{
if (/* Don't GCSE something if we can't do a reg/reg copy. */
can_copy_p (GET_MODE (dest))
/* Is SET_SRC something we want to gcse? */
&& general_operand (src, GET_MODE (src))
/* An expression is not available if its operands are
subsequently modified, including this insn. */
&& oprs_unchanged_p (src, insn, true))
{
insert_expr_in_table (src, insn);
}
}
else if (REG_P (src))
{
/* Only record sets of pseudo-regs in the hash table. */
if (/* Don't GCSE something if we can't do a reg/reg copy. */
can_copy_p (GET_MODE (src))
/* Is SET_DEST something we want to gcse? */
&& general_operand (dest, GET_MODE (dest))
&& ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
/* Check if the memory expression is killed after insn. */
&& ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
&& oprs_unchanged_p (XEXP (dest, 0), insn, true))
{
insert_expr_in_table (dest, insn);
}
}
}
/* Create hash table of memory expressions available at end of basic
blocks. */
static void
compute_hash_table (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
rtx insn;
unsigned int regno;
reset_opr_set_tables ();
/* First pass over the instructions records information used to
determine when registers and memory are first and last set. */
FOR_BB_INSNS (bb, insn)
{
if (! INSN_P (insn))
continue;
if (CALL_P (insn))
{
bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP
&& find_reg_note (insn, REG_SETJMP, NULL_RTX))
clobbers_all = true;
#endif
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (clobbers_all
|| TEST_HARD_REG_BIT (regs_invalidated_by_call,
regno))
record_last_reg_set_info (insn, regno);
if (! CONST_OR_PURE_CALL_P (insn))
record_last_mem_set_info (insn);
}
note_stores (PATTERN (insn), record_last_set_info, insn);
if (GET_CODE (PATTERN (insn)) == SET)
{
rtx src, dest;
src = SET_SRC (PATTERN (insn));
dest = SET_DEST (PATTERN (insn));
if (MEM_P (src) && auto_inc_p (XEXP (src, 0)))
{
regno = REGNO (XEXP (XEXP (src, 0), 0));
record_last_reg_set_info (insn, regno);
}
if (MEM_P (dest) && auto_inc_p (XEXP (dest, 0)))
{
regno = REGNO (XEXP (XEXP (dest, 0), 0));
record_last_reg_set_info (insn, regno);
}
}
}
/* The next pass builds the hash table. */
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
hash_scan_set (insn);
}
}
/* Check if register REG is killed in any insn waiting to be inserted on
edge E. This function is required to check that our data flow analysis
is still valid prior to commit_edge_insertions. */
static bool
reg_killed_on_edge (rtx reg, edge e)
{
rtx insn;
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_set_p (reg, insn))
return true;
return false;
}
/* Similar to above - check if register REG is used in any insn waiting
to be inserted on edge E.
Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
static bool
reg_used_on_edge (rtx reg, edge e)
{
rtx insn;
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
return true;
return false;
}
/* Return the insn that sets register REG or clobbers it in between
FROM_INSN and TO_INSN (exclusive of those two).
Just like reg_set_between but for hard registers and not pseudos. */
static rtx
reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
{
rtx insn;
int regno;
#ifdef ENABLE_CHECKING
/* We are called after register allocation. */
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
abort ();
#endif
if (from_insn == to_insn)
return NULL_RTX;
regno = REGNO (reg);
for (insn = NEXT_INSN (from_insn);
insn != to_insn;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
if (FIND_REG_INC_NOTE (insn, reg)
|| (CALL_P (insn)
&& call_used_regs[regno])
|| find_reg_fusage (insn, CLOBBER, reg))
return insn;
}
if (set_of (reg, insn) != NULL_RTX)
return insn;
}
return NULL_RTX;
}
/* Return the insn that uses register REG in between FROM_INSN and TO_INSN
(exclusive of those two). Similar to reg_used_between but for hard
registers and not pseudos. */
static rtx
reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
{
rtx insn;
int regno;
#ifdef ENABLE_CHECKING
/* We are called after register allocation. */
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
abort ();
#endif
if (from_insn == to_insn)
return NULL_RTX;
regno = REGNO (reg);
for (insn = NEXT_INSN (from_insn);
insn != to_insn;
insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|| (CALL_P (insn)
&& call_used_regs[regno])
|| find_reg_fusage (insn, USE, reg)
|| find_reg_fusage (insn, CLOBBER, reg)))
return insn;
return NULL_RTX;
}
/* Return true if REG is used, set, or killed between the beginning of
basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
static bool
reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
{
rtx insn, start = PREV_INSN (BB_HEAD (bb));
if (reg_avail_info[REGNO (reg)] != 0)
return true;
insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
if (! insn)
insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
if (insn)
reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
return insn != NULL_RTX;
}
/* Return the loaded/stored register of a load/store instruction. */
static rtx
get_avail_load_store_reg (rtx insn)
{
if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
return SET_DEST(PATTERN(insn));
if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
return SET_SRC (PATTERN (insn));
abort ();
}
/* Return nonzero if the predecessors of BB are "well behaved". */
static bool
bb_has_well_behaved_predecessors (basic_block bb)
{
edge pred;
if (! bb->pred)
return false;
for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
{
if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
return false;
if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
return false;
}
return true;
}
/* Search for the occurrences of expression in BB. */
static struct occr*
get_bb_avail_insn (basic_block bb, struct occr *occr)
{
for (; occr != NULL; occr = occr->next)
if (BLOCK_FOR_INSN (occr->insn) == bb)
return occr;
return NULL;
}
/* This handles the case where several stores feed a partially redundant
load. It checks if the redundancy elimination is possible and if it's
worth it. */
static void
eliminate_partially_redundant_load (basic_block bb, rtx insn,
struct expr *expr)
{
edge pred;
rtx avail_insn = NULL_RTX;
rtx avail_reg;
rtx dest, pat;
struct occr *a_occr;
struct unoccr *occr, *avail_occrs = NULL;
struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
int npred_ok = 0;
gcov_type ok_count = 0; /* Redundant load execution count. */
gcov_type critical_count = 0; /* Execution count of critical edges. */
/* The execution count of the loads to be added to make the
load fully redundant. */
gcov_type not_ok_count = 0;
basic_block pred_bb;
pat = PATTERN (insn);
dest = SET_DEST (pat);
/* Check that the loaded register is not used, set, or killed from the
beginning of the block. */
if (reg_set_or_used_since_bb_start (dest, bb, insn))
return;
/* Check potential for replacing load with copy for predecessors. */
for (pred = bb->pred; pred; pred = pred->pred_next)
{
rtx next_pred_bb_end;
avail_insn = NULL_RTX;
pred_bb = pred->src;
next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
{
/* Check if the loaded register is not used. */
avail_insn = a_occr->insn;
if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
abort ();
/* Make sure we can generate a move from register avail_reg to
dest. */
extract_insn (gen_move_insn (copy_rtx (dest),
copy_rtx (avail_reg)));
if (! constrain_operands (1)
|| reg_killed_on_edge (avail_reg, pred)
|| reg_used_on_edge (dest, pred))
{
avail_insn = NULL;
continue;
}
if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
next_pred_bb_end))
/* AVAIL_INSN remains non-null. */
break;
else
avail_insn = NULL;
}
if (EDGE_CRITICAL_P (pred))
critical_count += pred->count;
if (avail_insn != NULL_RTX)
{
npred_ok++;
ok_count += pred->count;
occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
sizeof (struct occr));
occr->insn = avail_insn;
occr->pred = pred;
occr->next = avail_occrs;
avail_occrs = occr;
if (! rollback_unoccr)
rollback_unoccr = occr;
}
else
{
not_ok_count += pred->count;
unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
sizeof (struct unoccr));
unoccr->insn = NULL_RTX;
unoccr->pred = pred;
unoccr->next = unavail_occrs;
unavail_occrs = unoccr;
if (! rollback_unoccr)
rollback_unoccr = unoccr;
}
}
if (/* No load can be replaced by copy. */
npred_ok == 0
/* Prevent exploding the code. */
|| (optimize_size && npred_ok > 1))
goto cleanup;
/* Check if it's worth applying the partial redundancy elimination. */
if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
goto cleanup;
if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
goto cleanup;
/* Generate moves to the loaded register from where
the memory is available. */
for (occr = avail_occrs; occr; occr = occr->next)
{
avail_insn = occr->insn;
pred = occr->pred;
/* Set avail_reg to be the register having the value of the
memory. */
avail_reg = get_avail_load_store_reg (avail_insn);
if (! avail_reg)
abort ();
insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
copy_rtx (avail_reg)),
pred);
stats.moves_inserted++;
if (dump_file)
fprintf (dump_file,
"generating move from %d to %d on edge from %d to %d\n",
REGNO (avail_reg),
REGNO (dest),
pred->src->index,
pred->dest->index);
}
/* Regenerate loads where the memory is unavailable. */
for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
{
pred = unoccr->pred;
insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
stats.copies_inserted++;
if (dump_file)
{
fprintf (dump_file,
"generating on edge from %d to %d a copy of load: ",
pred->src->index,
pred->dest->index);
print_rtl (dump_file, PATTERN (insn));
fprintf (dump_file, "\n");
}
}
/* Delete the insn if it is not available in this block and mark it
for deletion if it is available. If insn is available it may help
discover additional redundancies, so mark it for later deletion. */
for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
a_occr && (a_occr->insn != insn);
a_occr = get_bb_avail_insn (bb, a_occr->next));
if (!a_occr)
delete_insn (insn);
else
a_occr->deleted_p = 1;
cleanup:
if (rollback_unoccr)
obstack_free (&unoccr_obstack, rollback_unoccr);
}
/* Performing the redundancy elimination as described before. */
static void
eliminate_partially_redundant_loads (void)
{
rtx insn;
basic_block bb;
/* Note we start at block 1. */
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
return;
FOR_BB_BETWEEN (bb,
ENTRY_BLOCK_PTR->next_bb->next_bb,
EXIT_BLOCK_PTR,
next_bb)
{
if (! bb_has_well_behaved_predecessors (bb))
continue;
/* Do not try this optimization on cold basic blocks. */
if (probably_cold_bb_p (bb))
continue;
reset_opr_set_tables ();
FOR_BB_INSNS (bb, insn)
{
/* Is it a load - of the form (set (reg) (mem))? */
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SET
&& REG_P (SET_DEST (PATTERN (insn)))
&& MEM_P (SET_SRC (PATTERN (insn))))
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
struct expr *expr;
if (!MEM_VOLATILE_P (src)
&& GET_MODE (src) != BLKmode
&& general_operand (src, GET_MODE (src))
/* Are the operands unchanged since the start of the
block? */
&& oprs_unchanged_p (src, insn, false)
&& !(flag_non_call_exceptions && may_trap_p (src))
&& !side_effects_p (src)
/* Is the expression recorded? */
&& (expr = lookup_expr_in_table (src)) != NULL)
{
/* We now have a load (insn) and an available memory at
its BB start (expr). Try to remove the loads if it is
redundant. */
eliminate_partially_redundant_load (bb, insn, expr);
}
}
/* Keep track of everything modified by this insn. */
if (INSN_P (insn))
mark_oprs_set (insn);
}
}
commit_edge_insertions ();
}
/* Go over the expression hash table and delete insns that were
marked for later deletion. */
/* This helper is called via htab_traverse. */
static int
delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct expr *expr = (struct expr *) *slot;
struct occr *occr;
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
{
if (occr->deleted_p)
{
delete_insn (occr->insn);
stats.insns_deleted++;
if (dump_file)
{
fprintf (dump_file, "deleting insn:\n");
print_rtl_single (dump_file, occr->insn);
fprintf (dump_file, "\n");
}
}
}
return 1;
}
static void
delete_redundant_insns (void)
{
htab_traverse (expr_table, delete_redundant_insns_1, NULL);
if (dump_file)
fprintf (dump_file, "\n");
}
/* Main entry point of the GCSE after reload - clean some redundant loads
due to spilling. */
void
gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
{
memset (&stats, 0, sizeof (stats));
/* Allocate ememory for this pass.
Also computes and initializes the insns' CUIDs. */
alloc_mem ();
/* We need alias analysis. */
init_alias_analysis ();
compute_hash_table ();
if (dump_file)
dump_hash_table (dump_file);
if (htab_elements (expr_table) > 0)
{
eliminate_partially_redundant_loads ();
delete_redundant_insns ();
if (dump_file)
{
fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
fprintf (dump_file, "\n\n");
}
}
/* We are finished with alias. */
end_alias_analysis ();
free_mem ();
}
......@@ -2119,6 +2119,8 @@ extern int rtx_to_tree_code (enum rtx_code);
extern int delete_trivially_dead_insns (rtx, int);
extern int cse_main (rtx, int, int, FILE *);
extern void cse_condition_code_reg (void);
extern int exp_equiv_p (rtx, rtx, int, bool);
extern unsigned hash_rtx (rtx x, enum machine_mode, int *, int *, bool);
/* In jump.c */
extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
......@@ -2265,7 +2267,9 @@ extern bool can_copy_p (enum machine_mode);
extern rtx fis_get_condition (rtx);
extern int gcse_main (rtx, FILE *);
extern int bypass_jumps (FILE *);
extern void gcse_after_reload_main (rtx, FILE *);
/* In postreload-gcse.c */
extern void gcse_after_reload_main (rtx);
/* In global.c */
extern void mark_elimination (int, int);
......
......@@ -122,6 +122,7 @@ DEFTIMEVAR (TV_SCHED , "scheduling")
DEFTIMEVAR (TV_LOCAL_ALLOC , "local alloc")
DEFTIMEVAR (TV_GLOBAL_ALLOC , "global alloc")
DEFTIMEVAR (TV_RELOAD_CSE_REGS , "reload CSE regs")
DEFTIMEVAR (TV_GCSE_AFTER_RELOAD , "load CSE after reload")
DEFTIMEVAR (TV_FLOW2 , "flow 2")
DEFTIMEVAR (TV_IFCVT2 , "if-conversion 2")
DEFTIMEVAR (TV_PEEPHOLE2 , "peephole 2")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment