Commit 04b633a8 by Robert Dewar Committed by Arnaud Charlet

s-arit64.adb: (Le3): New function, used by Scaled_Divide

2004-10-26  Robert Dewar  <dewar@gnat.com>

	* s-arit64.adb: (Le3): New function, used by Scaled_Divide
	(Sub3): New procedure, used by Scaled_Divide
	(Scaled_Divide): Substantial rewrite, avoid duplicated code, and also
	correct more than one instance of failure to propagate carries
	correctly.
	(Double_Divide): Handle overflow case of largest negative number
	divided by minus one.

	* s-arit64.ads (Double_Divide): Document that overflow can occur in
	the case of a quotient value out of range.
	Fix comments.

From-SVN: r89663
parent 1ae44ba2
......@@ -6,7 +6,7 @@
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
-- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
......@@ -56,10 +56,6 @@ package body System.Arith_64 is
pragma Inline ("+");
-- Length doubling additions
function "-" (A : Uns64; B : Uns32) return Uns64;
pragma Inline ("-");
-- Length doubling subtraction
function "*" (A, B : Uns32) return Uns64;
pragma Inline ("*");
-- Length doubling multiplication
......@@ -76,6 +72,9 @@ package body System.Arith_64 is
pragma Inline ("&");
-- Concatenate hi, lo values to form 64-bit result
function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean;
-- Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3
function Lo (A : Uns64) return Uns32;
pragma Inline (Lo);
-- Low order half of 64-bit value
......@@ -84,6 +83,9 @@ package body System.Arith_64 is
pragma Inline (Hi);
-- High order half of 64-bit value
procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : in Uns32);
-- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap
function To_Neg_Int (A : Uns64) return Int64;
-- Convert to negative integer equivalent. If the input is in the range
-- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
......@@ -132,15 +134,6 @@ package body System.Arith_64 is
end "+";
---------
-- "-" --
---------
function "-" (A : Uns64; B : Uns32) return Uns64 is
begin
return A - Uns64 (B);
end "-";
---------
-- "/" --
---------
......@@ -285,6 +278,25 @@ package body System.Arith_64 is
return Uns32 (Shift_Right (A, 32));
end Hi;
---------
-- Le3 --
---------
function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
begin
if X1 < Y1 then
return True;
elsif X1 > Y1 then
return False;
elsif X2 < Y2 then
return True;
elsif X2 > Y2 then
return False;
else
return X3 <= Y3;
end if;
end Le3;
--------
-- Lo --
--------
......@@ -382,11 +394,11 @@ package body System.Arith_64 is
Zhi : Uns32 := Hi (Zu);
Zlo : Uns32 := Lo (Zu);
D1, D2, D3, D4 : Uns32;
-- The dividend, four digits (D1 is high order)
D : array (1 .. 4) of Uns32;
-- The dividend, four digits (D(1) is high order)
Q1, Q2 : Uns32;
-- The quotient, two digits (Q1 is high order)
Qd : array (1 .. 2) of Uns32;
-- The quotient digits, two digits (Qd(1) is high order)
S1, S2, S3 : Uns32;
-- Value to subtract, three digits (S1 is high order)
......@@ -408,58 +420,58 @@ package body System.Arith_64 is
-- First do the multiplication, giving the four digit dividend
T1 := Xlo * Ylo;
D4 := Lo (T1);
D3 := Hi (T1);
D (4) := Lo (T1);
D (3) := Hi (T1);
if Yhi /= 0 then
T1 := Xlo * Yhi;
T2 := D3 + Lo (T1);
D3 := Lo (T2);
D2 := Hi (T1) + Hi (T2);
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D3 + Lo (T1);
D3 := Lo (T2);
T3 := D2 + Hi (T1);
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
T3 := D (2) + Hi (T1);
T3 := T3 + Hi (T2);
D2 := Lo (T3);
D1 := Hi (T3);
D (2) := Lo (T3);
D (1) := Hi (T3);
T1 := (D1 & D2) + Uns64'(Xhi * Yhi);
D1 := Hi (T1);
D2 := Lo (T1);
T1 := (D (1) & D (2)) + Uns64'(Xhi * Yhi);
D (1) := Hi (T1);
D (2) := Lo (T1);
else
D1 := 0;
D (1) := 0;
end if;
else
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D3 + Lo (T1);
D3 := Lo (T2);
D2 := Hi (T1) + Hi (T2);
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
else
D2 := 0;
D (2) := 0;
end if;
D1 := 0;
D (1) := 0;
end if;
-- Now it is time for the dreaded multiple precision division. First
-- an easy case, check for the simple case of a one digit divisor.
if Zhi = 0 then
if D1 /= 0 or else D2 >= Zlo then
if D (1) /= 0 or else D (2) >= Zlo then
Raise_Error;
-- Here we are dividing at most three digits by one digit
else
T1 := D2 & D3;
T2 := Lo (T1 rem Zlo) & D4;
T1 := D (2) & D (3);
T2 := Lo (T1 rem Zlo) & D (4);
Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
Ru := T2 rem Zlo;
......@@ -467,12 +479,12 @@ package body System.Arith_64 is
-- If divisor is double digit and too large, raise error
elsif (D1 & D2) >= Zu then
elsif (D (1) & D (2)) >= Zu then
Raise_Error;
-- This is the complex case where we definitely have a double digit
-- divisor and a dividend of at least three digits. We use the classical
-- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
-- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
-- of Computer Programming", Vol. 2 for a description (algorithm D).
else
......@@ -511,115 +523,63 @@ package body System.Arith_64 is
-- Note that when we scale up the dividend, it still fits in four
-- digits, since we already tested for overflow, and scaling does
-- not change the invariant that (D1 & D2) >= Zu.
T1 := Shift_Left (D1 & D2, Scale);
D1 := Hi (T1);
T2 := Shift_Left (0 & D3, Scale);
D2 := Lo (T1) or Hi (T2);
T3 := Shift_Left (0 & D4, Scale);
D3 := Lo (T2) or Hi (T3);
D4 := Lo (T3);
-- Compute first quotient digit. We have to divide three digits by
-- two digits, and we estimate the quotient by dividing the leading
-- two digits by the leading digit. Given the scaling we did above
-- which ensured the first bit of the divisor is set, this gives an
-- estimate of the quotient that is at most two too high.
if D1 = Zhi then
Q1 := 2 ** 32 - 1;
else
Q1 := Lo ((D1 & D2) / Zhi);
end if;
-- Compute amount to subtract
T1 := Q1 * Zlo;
T2 := Q1 * Zhi;
S3 := Lo (T1);
T1 := Hi (T1) + Lo (T2);
S2 := Lo (T1);
S1 := Hi (T1) + Hi (T2);
-- Adjust quotient digit if it was too high
loop
exit when S1 < D1;
if S1 = D1 then
exit when S2 < D2;
if S2 = D2 then
exit when S3 <= D3;
end if;
-- not change the invariant that (D (1) & D (2)) >= Zu.
T1 := Shift_Left (D (1) & D (2), Scale);
D (1) := Hi (T1);
T2 := Shift_Left (0 & D (3), Scale);
D (2) := Lo (T1) or Hi (T2);
T3 := Shift_Left (0 & D (4), Scale);
D (3) := Lo (T2) or Hi (T3);
D (4) := Lo (T3);
-- Loop to compute quotient digits, runs twice for Qd(1) and Qd(2).
for J in 0 .. 1 loop
-- Compute next quotient digit. We have to divide three digits by
-- two digits. We estimate the quotient by dividing the leading
-- two digits by the leading digit. Given the scaling we did above
-- which ensured the first bit of the divisor is set, this gives
-- an estimate of the quotient that is at most two too high.
if D (J + 1) = Zhi then
Qd (J + 1) := 2 ** 32 - 1;
else
Qd (J + 1) := Lo ((D (J + 1) & D (J + 2)) / Zhi);
end if;
Q1 := Q1 - 1;
-- Compute amount to subtract
T1 := (S2 & S3) - Zlo;
T1 := Qd (J + 1) * Zlo;
T2 := Qd (J + 1) * Zhi;
S3 := Lo (T1);
T1 := (S1 & S2) - Zhi;
T1 := Hi (T1) + Lo (T2);
S2 := Lo (T1);
S1 := Hi (T1);
end loop;
S1 := Hi (T1) + Hi (T2);
-- Subtract from dividend (note: do not bother to set D1 to
-- zero, since it is no longer needed in the calculation).
-- Adjust quotient digit if it was too high
T1 := (D2 & D3) - S3;
D3 := Lo (T1);
T1 := (D1 & Hi (T1)) - S2;
D2 := Lo (T1);
loop
exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
Qd (J + 1) := Qd (J + 1) - 1;
Sub3 (S1, S2, S3, 0, Zhi, Zlo);
end loop;
-- Compute second quotient digit in same manner
-- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
if D2 = Zhi then
Q2 := 2 ** 32 - 1;
else
Q2 := Lo ((D2 & D3) / Zhi);
end if;
T1 := Q2 * Zlo;
T2 := Q2 * Zhi;
S3 := Lo (T1);
T1 := Hi (T1) + Lo (T2);
S2 := Lo (T1);
S1 := Hi (T1) + Hi (T2);
loop
exit when S1 < D2;
if S1 = D2 then
exit when S2 < D3;
if S2 = D3 then
exit when S3 <= D4;
end if;
end if;
Q2 := Q2 - 1;
T1 := (S2 & S3) - Zlo;
S3 := Lo (T1);
T1 := (S1 & S2) - Zhi;
S2 := Lo (T1);
S1 := Hi (T1);
Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
end loop;
T1 := (D3 & D4) - S3;
D4 := Lo (T1);
T1 := (D2 & Hi (T1)) - S2;
D3 := Lo (T1);
-- The two quotient digits are now set, and the remainder of the
-- scaled division is in (D3 & D4). To get the remainder for the
-- scaled division is in D3&D4. To get the remainder for the
-- original unscaled division, we rescale this dividend.
-- We rescale the divisor as well, to make the proper comparison
-- for rounding below.
Qu := Q1 & Q2;
Ru := Shift_Right (D3 & D4, Scale);
Qu := Qd (1) & Qd (2);
Ru := Shift_Right (D (3) & D (4), Scale);
Zu := Shift_Right (Zu, Scale);
end if;
......@@ -655,9 +615,32 @@ package body System.Arith_64 is
Q := To_Pos_Int (Qu);
end if;
end if;
end Scaled_Divide;
----------
-- Sub3 --
----------
procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : in Uns32) is
begin
if Y3 > X3 then
if X2 = 0 then
X1 := X1 - 1;
end if;
X2 := X2 - 1;
end if;
X3 := X3 - Y3;
if Y2 > X2 then
X1 := X1 - 1;
end if;
X2 := X2 - Y2;
X1 := X1 - Y1;
end Sub3;
-------------------------------
-- Subtract_With_Ovflo_Check --
-------------------------------
......
......@@ -6,7 +6,7 @@
-- --
-- S p e c --
-- --
-- Copyright (C) 1994,1995,1996 Free Software Foundation, Inc. --
-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
......@@ -52,7 +52,7 @@ pragma Pure (Arith_64);
function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64;
-- Raises Constraint_Error if product of operands overflows 64
-- bits, otherwise returns the 64-bit signed integer difference.
-- bits, otherwise returns the 64-bit signed integer product.
procedure Scaled_Divide
(X, Y, Z : Int64;
......@@ -71,12 +71,11 @@ pragma Pure (Arith_64);
Q, R : out Int64;
Round : Boolean);
-- Performs the division X / (Y * Z), storing the quotient in Q and
-- the remainder in R. Constraint_Error is raised if Y or Z is zero.
-- Round indicates if the result should be rounded. If Round is False,
-- then Q, R are the normal quotient and remainder from a truncating
-- division. If Round is True, then Q is the rounded quotient. The
-- remainder R is not affected by the setting of the Round flag. The
-- result is known to be in range except for the noted possibility of
-- Y or Z being zero, so no other overflow checks are required.
-- the remainder in R. Constraint_Error is raised if Y or Z is zero,
-- or if the quotient does not fit in 64-bits. Round indicates if the
-- result should be rounded. If Round is False, then Q, R are the normal
-- quotient and remainder from a truncating division. If Round is True,
-- then Q is the rounded quotient. The remainder R is not affected by the
-- setting of the Round flag.
end System.Arith_64;
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment