tree-vectorizer.c 58.5 KB
Newer Older
1
/* Loop Vectorization
2
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
   Contributed by Dorit Naishlos <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* Loop Vectorization Pass.

   This pass tries to vectorize loops. This first implementation focuses on
   simple inner-most loops, with no conditional control flow, and a set of
   simple operations which vector form can be expressed using existing
   tree codes (PLUS, MULT etc).

   For example, the vectorizer transforms the following simple loop:

	short a[N]; short b[N]; short c[N]; int i;

	for (i=0; i<N; i++){
	  a[i] = b[i] + c[i];
	}

   as if it was manually vectorized by rewriting the source code into:

	typedef int __attribute__((mode(V8HI))) v8hi;
	short a[N];  short b[N]; short c[N];   int i;
	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
	v8hi va, vb, vc;

	for (i=0; i<N/8; i++){
	  vb = pb[i];
	  vc = pc[i];
	  va = vb + vc;
	  pa[i] = va;
	}

	The main entry to this pass is vectorize_loops(), in which
   the vectorizer applies a set of analyses on a given set of loops,
   followed by the actual vectorization transformation for the loops that
   had successfully passed the analysis phase.

	Throughout this pass we make a distinction between two types of
   data: scalars (which are represented by SSA_NAMES), and memory references
   ("data-refs"). These two types of data require different handling both 
   during analysis and transformation. The types of data-refs that the 
60 61 62
   vectorizer currently supports are ARRAY_REFS which base is an array DECL 
   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
   accesses are required to have a  simple (consecutive) access pattern.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

   Analysis phase:
   ===============
	The driver for the analysis phase is vect_analyze_loop_nest().
   It applies a set of analyses, some of which rely on the scalar evolution 
   analyzer (scev) developed by Sebastian Pop.

	During the analysis phase the vectorizer records some information
   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the 
   loop, as well as general information about the loop as a whole, which is
   recorded in a "loop_vec_info" struct attached to each loop.

   Transformation phase:
   =====================
	The loop transformation phase scans all the stmts in the loop, and
   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
   the loop that needs to be vectorized. It insert the vector code sequence
   just before the scalar stmt S, and records a pointer to the vector code
   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct 
   attached to S). This pointer will be used for the vectorization of following
   stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
   otherwise, we rely on dead code elimination for removing it.

	For example, say stmt S1 was vectorized into stmt VS1:

   VS1: vb = px[i];
   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   S2:  a = b;

   To vectorize stmt S2, the vectorizer first finds the stmt that defines
   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
   vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
   resulting sequence would be:

   VS1: vb = px[i];
   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   VS2: va = vb;
   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2

	Operands that are not SSA_NAMEs, are data-refs that appear in 
   load/store operations (like 'x[i]' in S1), and are handled differently.

   Target modeling:
   =================
	Currently the only target specific information that is used is the
   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can 
   support different sizes of vectors, for now will need to specify one value 
   for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.

	Since we only vectorize operations which vector form can be
   expressed using existing tree codes, to verify that an operation is
   supported, the vectorizer checks the relevant optab at the relevant
   machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
   the value found is CODE_FOR_nothing, then there's no target support, and
   we can't vectorize the stmt.

   For additional information on this project see:
   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "optabs.h"
141
#include "toplev.h"
142 143 144
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
145
#include "input.h"
146 147
#include "tree-vectorizer.h"
#include "tree-pass.h"
148 149 150 151 152 153 154 155

/*************************************************************************
  Simple Loop Peeling Utilities
 *************************************************************************/
static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg 
  (struct loop *, struct loops *, edge);
static void slpeel_update_phis_for_duplicate_loop 
  (struct loop *, struct loop *, bool after);
156 157 158 159
static void slpeel_update_phi_nodes_for_guard1 
  (edge, struct loop *, bool, basic_block *, bitmap *); 
static void slpeel_update_phi_nodes_for_guard2 
  (edge, struct loop *, bool, basic_block *);
160
static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
161

162 163 164 165 166 167
static void allocate_new_names (bitmap);
static void rename_use_op (use_operand_p);
static void rename_def_op (def_operand_p, tree);
static void rename_variables_in_bb (basic_block);
static void free_new_names (bitmap);
static void rename_variables_in_loop (struct loop *);
168

169
/*************************************************************************
170
  General Vectorization Utilities
171
 *************************************************************************/
172 173
static void vect_set_dump_settings (void);
static bool need_imm_uses_for (tree);
174 175 176 177

/* vect_dump will be set to stderr or dump_file if exist.  */
FILE *vect_dump;

178 179 180
/* vect_verbosity_level set to an invalid value 
   to mark that it's uninitialized.  */
enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
181

182 183


184 185 186 187 188
/*************************************************************************
  Simple Loop Peeling Utilities

  Utilities to support loop peeling for vectorization purposes.
 *************************************************************************/
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276


/* For each definition in DEFINITIONS this function allocates 
   new ssa name.  */

static void
allocate_new_names (bitmap definitions)
{
  unsigned ver;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
    {
      tree def = ssa_name (ver);
      tree *new_name_ptr = xmalloc (sizeof (tree));

      bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def);

      *new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def));
      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal;

      SSA_NAME_AUX (def) = new_name_ptr;
    }
}


/* Renames the use *OP_P.  */

static void
rename_use_op (use_operand_p op_p)
{
  tree *new_name_ptr;

  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
    return;

  new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p));

  /* Something defined outside of the loop.  */
  if (!new_name_ptr)
    return;

  /* An ordinary ssa name defined in the loop.  */

  SET_USE (op_p, *new_name_ptr);
}


/* Renames the def *OP_P in statement STMT.  */

static void
rename_def_op (def_operand_p op_p, tree stmt)
{
  tree *new_name_ptr;

  if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME)
    return;

  new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p));

  /* Something defined outside of the loop.  */
  if (!new_name_ptr)
    return;

  /* An ordinary ssa name defined in the loop.  */

  SET_DEF (op_p, *new_name_ptr);
  SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt;
}


/* Renames the variables in basic block BB.  */

static void
rename_variables_in_bb (basic_block bb)
{
  tree phi;
  block_stmt_iterator bsi;
  tree stmt;
  stmt_ann_t ann;
  use_optype uses;
  vuse_optype vuses;
  def_optype defs;
  v_may_def_optype v_may_defs;
  v_must_def_optype v_must_defs;
  unsigned i;
  edge e;
  edge_iterator ei;
277
  struct loop *loop = bb->loop_father;
278

279
  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    rename_def_op (PHI_RESULT_PTR (phi), phi);

  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      stmt = bsi_stmt (bsi);
      get_stmt_operands (stmt);
      ann = stmt_ann (stmt);

      uses = USE_OPS (ann);
      for (i = 0; i < NUM_USES (uses); i++)
	rename_use_op (USE_OP_PTR (uses, i));

      defs = DEF_OPS (ann);
      for (i = 0; i < NUM_DEFS (defs); i++)
	rename_def_op (DEF_OP_PTR (defs, i), stmt);

      vuses = VUSE_OPS (ann);
      for (i = 0; i < NUM_VUSES (vuses); i++)
	rename_use_op (VUSE_OP_PTR (vuses, i));

      v_may_defs = V_MAY_DEF_OPS (ann);
      for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
	{
	  rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i));
	  rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt);
	}

      v_must_defs = V_MUST_DEF_OPS (ann);
      for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
309 310 311 312
	{
	  rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i));
	  rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt);
	}
313 314 315
    }

  FOR_EACH_EDGE (e, ei, bb->succs)
316 317 318 319 320 321
    {
      if (!flow_bb_inside_loop_p (loop, e->dest))
	continue;
      for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
    }
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}


/* Releases the structures holding the new ssa names.  */

static void
free_new_names (bitmap definitions)
{
  unsigned ver;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
    {
      tree def = ssa_name (ver);

      if (SSA_NAME_AUX (def))
	{
	  free (SSA_NAME_AUX (def));
	  SSA_NAME_AUX (def) = NULL;
	}
    }
}


/* Renames variables in new generated LOOP.  */

static void
rename_variables_in_loop (struct loop *loop)
{
  unsigned i;
  basic_block *bbs;

  bbs = get_loop_body (loop);

  for (i = 0; i < loop->num_nodes; i++)
    rename_variables_in_bb (bbs[i]);

  free (bbs);
}


363
/* Update the PHI nodes of NEW_LOOP.
364

365 366 367 368
   NEW_LOOP is a duplicate of ORIG_LOOP.
   AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
   AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
   executes before it.  */
369 370

static void
371
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
372
				       struct loop *new_loop, bool after)
373 374
{
  tree *new_name_ptr, new_ssa_name;
375 376 377 378
  tree phi_new, phi_orig;
  tree def;
  edge orig_loop_latch = loop_latch_edge (orig_loop);
  edge orig_entry_e = loop_preheader_edge (orig_loop);
379
  edge new_loop_exit_e = new_loop->single_exit;
380 381 382 383 384 385 386 387 388 389 390
  edge new_loop_entry_e = loop_preheader_edge (new_loop);
  edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);

  /*
     step 1. For each loop-header-phi:
             Add the first phi argument for the phi in NEW_LOOP
            (the one associated with the entry of NEW_LOOP)

     step 2. For each loop-header-phi:
             Add the second phi argument for the phi in NEW_LOOP
            (the one associated with the latch of NEW_LOOP)
391

392
     step 3. Update the phis in the successor block of NEW_LOOP.
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        case 1: NEW_LOOP was placed before ORIG_LOOP:
                The successor block of NEW_LOOP is the header of ORIG_LOOP.
                Updating the phis in the successor block can therefore be done
                along with the scanning of the loop header phis, because the
                header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
                phi nodes, organized in the same order.

        case 2: NEW_LOOP was placed after ORIG_LOOP:
                The successor block of NEW_LOOP is the original exit block of 
                ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
                We postpone updating these phis to a later stage (when
                loop guards are added).
   */


  /* Scan the phis in the headers of the old and new loops
     (they are organized in exactly the same order).  */
411 412

  for (phi_new = phi_nodes (new_loop->header),
413 414 415
       phi_orig = phi_nodes (orig_loop->header);
       phi_new && phi_orig;
       phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
416
    {
417 418
      /* step 1.  */
      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
419
      add_phi_arg (phi_new, def, new_loop_entry_e);
420

421 422
      /* step 2.  */
      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
423
      if (TREE_CODE (def) != SSA_NAME)
424
        continue;
425 426 427

      new_name_ptr = SSA_NAME_AUX (def);
      if (!new_name_ptr)
428 429
        /* Something defined outside of the loop.  */
        continue;
430 431 432

      /* An ordinary ssa name defined in the loop.  */
      new_ssa_name = *new_name_ptr;
433
      add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
434

435 436 437 438 439
      /* step 3 (case 1).  */
      if (!after)
        {
          gcc_assert (new_loop_exit_e == orig_entry_e);
          SET_PHI_ARG_DEF (phi_orig,
440
                           new_loop_exit_e->dest_idx,
441 442
                           new_ssa_name);
        }
443 444 445 446 447 448
    }
}


/* Update PHI nodes for a guard of the LOOP.

449 450 451 452 453
   Input:
   - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
        controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
        originates from the guard-bb, skips LOOP and reaches the (unique) exit
        bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
454 455
        We denote this bb NEW_MERGE_BB because before the guard code was added
        it had a single predecessor (the LOOP header), and now it became a merge
456 457
        point of two paths - the path that ends with the LOOP exit-edge, and
        the path that ends with GUARD_EDGE.
458 459
   - NEW_EXIT_BB: New basic block that is added by this function between LOOP
        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
460

461 462 463 464 465 466
   ===> The CFG before the guard-code was added:
        LOOP_header_bb:
          loop_body
          if (exit_loop) goto update_bb
          else           goto LOOP_header_bb
        update_bb:
467

468 469 470 471
   ==> The CFG after the guard-code was added:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
472
        LOOP_header_bb:
473 474 475 476 477
          loop_body
          if (exit_loop_condition) goto new_merge_bb
          else                     goto LOOP_header_bb
        new_merge_bb:
          goto update_bb
478 479
        update_bb:

480 481 482 483
   ==> The CFG after this function:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
484
        LOOP_header_bb:
485 486 487 488
          loop_body
          if (exit_loop_condition) goto new_exit_bb
          else                     goto LOOP_header_bb
        new_exit_bb:
489 490 491 492
        new_merge_bb:
          goto update_bb
        update_bb:

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
   This function:
   1. creates and updates the relevant phi nodes to account for the new
      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
      1.1. Create phi nodes at NEW_MERGE_BB.
      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
   2. preserves loop-closed-ssa-form by creating the required phi nodes
      at the exit of LOOP (i.e, in NEW_EXIT_BB).

   There are two flavors to this function:

   slpeel_update_phi_nodes_for_guard1:
     Here the guard controls whether we enter or skip LOOP, where LOOP is a
     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop header.

   slpeel_update_phi_nodes_for_guard2:
     Here the guard controls whether we enter or skip LOOP, where LOOP is an
     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop exit.

   I.E., the overall structure is:

        loop1_preheader_bb:
                guard1 (goto loop1/merg1_bb)
        loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
   that have phis in loop1->header).

   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
   that have phis in next_bb). It also adds some of these phis to
   loop1_exit_bb.

   slpeel_update_phi_nodes_for_guard1 is always called before
   slpeel_update_phi_nodes_for_guard2. They are both needed in order
   to create correct data-flow and loop-closed-ssa-form.

   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
   that change between iterations of a loop (and therefore have a phi-node
   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
   phis for variables that are used out of the loop (and therefore have 
   loop-closed exit phis). Some variables may be both updated between 
   iterations and used after the loop. This is why in loop1_exit_bb we
   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
   and exit phis (created by slpeel_update_phi_nodes_for_guard2).

   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
     an original loop. i.e., we have:

           orig_loop
           guard_bb (goto LOOP/new_merge)
           new_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
     have:

           new_loop
           guard_bb (goto LOOP/new_merge)
           orig_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     The ssa-names defined in the original loop have an SSA_NAME_AUX pointer
     that records the corresponding new ssa-name used in the new duplicated
     loop copy.
572
  */
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/* Function slpeel_update_phi_nodes_for_guard1
   
   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
   - DEFS - a bitmap of ssa names to mark new names for which we recorded
            information. 
   
   In the context of the overall structure, we have:

        loop1_preheader_bb: 
                guard1 (goto loop1/merg1_bb)
LOOP->  loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name updated between loop iterations (i.e - for each name that has
   an entry (loop-header) phi in LOOP) we create a new phi in:
   1. merge1_bb (to account for the edge from guard1)
   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
*/

600
static void
601 602 603
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb,
                                    bitmap *defs)
604
{
605 606 607
  tree orig_phi, new_phi;
  tree update_phi, update_phi2;
  tree *new_name_ptr, *new_name_ptr2;
608 609
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
610
  edge e = EDGE_SUCC (new_merge_bb, 0);
611
  basic_block update_bb = e->dest;
612 613 614 615 616 617 618 619 620
  basic_block orig_bb = loop->header;
  edge new_exit_e;
  tree current_new_name;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (loop->single_exit);
  add_bb_to_loop (*new_exit_bb, loop->outer);

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
621 622 623 624 625

  for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
       orig_phi && update_phi;
       orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
    {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 new_merge_bb);

      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
            of LOOP. Set the two phi args in NEW_PHI for these edges:  */
      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));

      add_phi_arg (new_phi, loop_arg, new_exit_e);
      add_phi_arg (new_phi, guard_arg, guard_edge);

      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, loop->single_exit);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));

      /* 2.4. Record the newly created name in SSA_NAME_AUX.
         We want to find a name such that
                name = *(SSA_NAME_AUX (orig_loop_name))
         and to set its SSA_NAME_AUX as follows:
                *(SSA_NAME_AUX (name)) = new_phi_name

         If LOOP is a new loop then loop_arg is already the name we're
         looking for. If LOOP is the original loop, then loop_arg is
         the orig_loop_name and the relevant name is recorded in its
         SSA_NAME_AUX  */
      if (is_new_loop)
        current_new_name = loop_arg;
      else
        {
          new_name_ptr = SSA_NAME_AUX (loop_arg);
          gcc_assert (new_name_ptr);
          current_new_name = *new_name_ptr;
        }
#ifdef ENABLE_CHECKING
      gcc_assert (! SSA_NAME_AUX (current_new_name));
#endif

      new_name_ptr2 = xmalloc (sizeof (tree));
      *new_name_ptr2 = PHI_RESULT (new_phi);
      SSA_NAME_AUX (current_new_name) = new_name_ptr2;
      bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
    }

  set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
}


/* Function slpeel_update_phi_nodes_for_guard2

   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.

   In the context of the overall structure, we have:

        loop1_preheader_bb: 
                guard1 (goto loop1/merg1_bb)
        loop1
        loop1_exit_bb: 
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
LOOP->  loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name used out side the loop (i.e - for each name that has an exit
   phi in next_bb) we create a new phi in:
   1. merge2_bb (to account for the edge from guard_bb) 
   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
*/

static void
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb)
{
  tree orig_phi, new_phi;
  tree update_phi, update_phi2;
  tree *new_name_ptr, *new_name_ptr2;
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
  edge e = EDGE_SUCC (new_merge_bb, 0);
  basic_block update_bb = e->dest;
  edge new_exit_e;
  tree orig_def;
  tree new_name, new_name2;
  tree arg;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (loop->single_exit);
  add_bb_to_loop (*new_exit_bb, loop->outer);

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);

  for (update_phi = phi_nodes (update_bb); update_phi; 
       update_phi = PHI_CHAIN (update_phi))
    {
      orig_phi = update_phi;
      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
      new_name_ptr = SSA_NAME_AUX (orig_def);
      arg = NULL_TREE;

      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
751 752
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 new_merge_bb);
753

754
      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
755
            of LOOP. Set the two phi args in NEW_PHI for these edges:  */
756 757 758
      new_name = orig_def;
      new_name2 = NULL_TREE;
      if (new_name_ptr)
759
        {
760 761 762 763 764 765 766 767
          new_name = *new_name_ptr;
          new_name_ptr2 = SSA_NAME_AUX (new_name);
          if (new_name_ptr2)
            /* Some variables have both loop-entry-phis and loop-exit-phis.
               Such variables were given yet newer names by phis placed in
               guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
               new_name2 = SSA_NAME_AUX (SSA_NAME_AUX (orig_name)).  */
            new_name2 = *new_name_ptr2;
768
        }
769 770
  
      if (is_new_loop)
771
        {
772 773
          guard_arg = orig_def;
          loop_arg = new_name;
774
        }
775 776 777 778 779 780 781 782 783
      else
        {
          guard_arg = new_name;
          loop_arg = orig_def;
        }
      if (new_name2)
        guard_arg = new_name2;
  
      add_phi_arg (new_phi, loop_arg, new_exit_e);
784
      add_phi_arg (new_phi, guard_arg, guard_edge);
785

786 787
      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
788
      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, loop->single_exit);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));


      /** 3. Handle loop-closed-ssa-form phis for first loop  **/

      /* 3.1. Find the relevant names that need an exit-phi in GUARD_BB, i.e.
         names for which slpeel_update_phi_nodes_for_guard1 had not already
810 811
         created a phi node. This is the case for names that are used outside
	 the loop (and therefore need an exit phi) but are not updated
812 813
         across loop iterations (and therefore don't have a loop-header-phi).

814
         slpeel_update_phi_nodes_for_guard1 is responsible for creating
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
         loop-exit phis in GUARD_BB for names that have a loop-header-phi. When
         such a phi is created we also record the new name in SSA_NAME_AUX. If
         this new name exists, then guard_arg was set to this new name
         (see 1.2 above). Therefore, if guard_arg is not this new name, this is
         an indication that an exit-phi in GUARD_BB was not yet created, so we
         take care of it here.
       */
      if (guard_arg == new_name2)
	continue;
      arg = guard_arg;

      /* 3.2. Generate new phi node in GUARD_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 guard_edge->src);

      /* 3.3. GUARD_BB has one incoming edge:  */
      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));

      /* 3.4. Update phi in successor of GUARD_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
                                                                == guard_arg);
      SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
838
    }
839

840
  set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
841 842 843 844
}


/* Make the LOOP iterate NITERS times. This is done by adding a new IV
845 846 847
   that starts at zero, increases by one and its limit is NITERS.

   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */
848

849
void
850
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
851 852 853
{
  tree indx_before_incr, indx_after_incr, cond_stmt, cond;
  tree orig_cond;
854
  edge exit_edge = loop->single_exit;
855 856 857
  block_stmt_iterator loop_cond_bsi;
  block_stmt_iterator incr_bsi;
  bool insert_after;
858 859
  tree begin_label = tree_block_label (loop->latch);
  tree exit_label = tree_block_label (loop->single_exit->dest);
860 861
  tree init = build_int_cst (TREE_TYPE (niters), 0);
  tree step = build_int_cst (TREE_TYPE (niters), 1);
862 863
  tree then_label;
  tree else_label;
864
  LOC loop_loc;
865 866

  orig_cond = get_loop_exit_condition (loop);
867
#ifdef ENABLE_CHECKING
868
  gcc_assert (orig_cond);
869 870 871 872
#endif
  loop_cond_bsi = bsi_for_stmt (orig_cond);

  standard_iv_increment_position (loop, &incr_bsi, &insert_after);
873
  create_iv (init, step, NULL_TREE, loop,
874
             &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
875 876

  if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop.  */
877 878 879 880 881
    {
      cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
      then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
      else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
    }
882
  else /* 'then' edge loops back.  */
883 884 885 886 887
    {
      cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
      then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
      else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
    }
888

889
  cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
890
		     then_label, else_label);
891
  bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
892 893

  /* Remove old loop exit test:  */
894
  bsi_remove (&loop_cond_bsi);
895

896
  loop_loc = find_loop_location (loop);
897 898 899 900 901 902 903
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (loop_loc != UNKNOWN_LOC)
        fprintf (dump_file, "\nloop at %s:%d: ",
                 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
      print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
    }
904 905

  loop->nb_iterations = niters;
906 907 908 909 910 911 912
}


/* Given LOOP this function generates a new copy of it and puts it 
   on E which is either the entry or exit of LOOP.  */

static struct loop *
913 914
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops, 
					edge e)
915 916 917 918 919 920 921 922
{
  struct loop *new_loop;
  basic_block *new_bbs, *bbs;
  bool at_exit;
  bool was_imm_dom;
  basic_block exit_dest; 
  tree phi, phi_arg;

923
  at_exit = (e == loop->single_exit); 
924
  if (!at_exit && e != loop_preheader_edge (loop))
925
    return NULL;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

  bbs = get_loop_body (loop);

  /* Check whether duplication is possible.  */
  if (!can_copy_bbs_p (bbs, loop->num_nodes))
    {
      free (bbs);
      return NULL;
    }

  /* Generate new loop structure.  */
  new_loop = duplicate_loop (loops, loop, loop->outer);
  if (!new_loop)
    {
      free (bbs);
      return NULL;
    }

944
  exit_dest = loop->single_exit->dest;
945 946 947 948 949 950
  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS, 
					  exit_dest) == loop->header ? 
		 true : false);

  new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);

951 952
  copy_bbs (bbs, loop->num_nodes, new_bbs,
	    &loop->single_exit, 1, &new_loop->single_exit, NULL);
953 954 955

  /* Duplicating phi args at exit bbs as coming 
     also from exit of duplicated loop.  */
956
  for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
957
    {
958
      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
959 960 961 962 963 964 965 966 967
      if (phi_arg)
	{
	  edge new_loop_exit_edge;

	  if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
	  else
	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
  
968
	  add_phi_arg (phi, phi_arg, new_loop_exit_edge);	
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	}
    }    
   
  if (at_exit) /* Add the loop copy at exit.  */
    {
      redirect_edge_and_branch_force (e, new_loop->header);
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
      if (was_imm_dom)
	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
    }
  else /* Add the copy at entry.  */
    {
      edge new_exit_e;
      edge entry_e = loop_preheader_edge (loop);
      basic_block preheader = entry_e->src;
           
      if (!flow_bb_inside_loop_p (new_loop, 
				  EDGE_SUCC (new_loop->header, 0)->dest))
        new_exit_e = EDGE_SUCC (new_loop->header, 0);
      else
	new_exit_e = EDGE_SUCC (new_loop->header, 1); 

      redirect_edge_and_branch_force (new_exit_e, loop->header);
      set_immediate_dominator (CDI_DOMINATORS, loop->header,
			       new_exit_e->src);

      /* We have to add phi args to the loop->header here as coming 
	 from new_exit_e edge.  */
997
      for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
998 999 1000
	{
	  phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
	  if (phi_arg)
1001
	    add_phi_arg (phi, phi_arg, new_exit_e);	
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	}    

      redirect_edge_and_branch_force (entry_e, new_loop->header);
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
    }

  free (new_bbs);
  free (bbs);

  return new_loop;
}


/* Given the condition statement COND, put it as the last statement
   of GUARD_BB; EXIT_BB is the basic block to skip the loop;
   Assumes that this is the single exit of the guarded loop.  
   Returns the skip edge.  */

static edge
1021 1022
slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
		        basic_block dom_bb)
1023 1024 1025 1026 1027
{
  block_stmt_iterator bsi;
  edge new_e, enter_e;
  tree cond_stmt, then_label, else_label;

1028
  enter_e = EDGE_SUCC (guard_bb, 0);
1029 1030 1031 1032 1033 1034 1035 1036
  enter_e->flags &= ~EDGE_FALLTHRU;
  enter_e->flags |= EDGE_FALSE_VALUE;
  bsi = bsi_last (guard_bb);

  then_label = build1 (GOTO_EXPR, void_type_node,
                       tree_block_label (exit_bb));
  else_label = build1 (GOTO_EXPR, void_type_node,
                       tree_block_label (enter_e->dest));
1037
  cond_stmt = build3 (COND_EXPR, void_type_node, cond,
1038 1039
   		     then_label, else_label);
  bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
1040
  /* Add new edge to connect guard block to the merge/loop-exit block.  */
1041
  new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
1042
  set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
1043 1044 1045 1046
  return new_e;
}


1047 1048 1049 1050 1051 1052 1053
/* This function verifies that the following restrictions apply to LOOP:
   (1) it is innermost
   (2) it consists of exactly 2 basic blocks - header, and an empty latch.
   (3) it is single entry, single exit
   (4) its exit condition is the last stmt in the header
   (5) E is the entry/exit edge of LOOP.
 */
1054

1055
bool
1056
slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
1057
{
1058
  edge exit_e = loop->single_exit;
1059
  edge entry_e = loop_preheader_edge (loop);
1060 1061
  tree orig_cond = get_loop_exit_condition (loop);
  block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
1062

1063 1064
  if (any_marked_for_rewrite_p ())
    return false;
1065

1066 1067 1068 1069 1070 1071
  if (loop->inner
      /* All loops have an outer scope; the only case loop->outer is NULL is for
         the function itself.  */
      || !loop->outer
      || loop->num_nodes != 2
      || !empty_block_p (loop->latch)
1072
      || !loop->single_exit
1073 1074 1075 1076
      /* Verify that new loop exit condition can be trivially modified.  */
      || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
      || (e != exit_e && e != entry_e))
    return false;
1077 1078 1079 1080

  return true;
}

1081
#ifdef ENABLE_CHECKING
1082
void
1083 1084 1085
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
                                 struct loop *second_loop)
{
1086 1087
  basic_block loop1_exit_bb = first_loop->single_exit->dest;
  basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1088 1089 1090 1091 1092 1093 1094 1095
  basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;

  /* A guard that controls whether the second_loop is to be executed or skipped
     is placed in first_loop->exit.  first_loopt->exit therefore has two
     successors - one is the preheader of second_loop, and the other is a bb
     after second_loop.
   */
  gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1096
   
1097 1098
  /* 1. Verify that one of the successors of first_loopt->exit is the preheader
        of second_loop.  */
1099
   
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
  /* The preheader of new_loop is expected to have two predessors:
     first_loop->exit and the block that precedes first_loop.  */

  gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2 
              && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
               || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
  
  /* Verify that the other successor of first_loopt->exit is after the
     second_loop.  */
  /* TODO */
}
1113
#endif
1114

1115
/* Function slpeel_tree_peel_loop_to_edge.
1116

1117 1118 1119 1120
   Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
   that is placed on the entry (exit) edge E of LOOP. After this transformation
   we have two loops one after the other - first-loop iterates FIRST_NITERS
   times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130
   Input:
   - LOOP: the loop to be peeled.
   - E: the exit or entry edge of LOOP.
        If it is the entry edge, we peel the first iterations of LOOP. In this
        case first-loop is LOOP, and second-loop is the newly created loop.
        If it is the exit edge, we peel the last iterations of LOOP. In this
        case, first-loop is the newly created loop, and second-loop is LOOP.
   - NITERS: the number of iterations that LOOP iterates.
   - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1131
   - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible
1132 1133
        for updating the loop bound of the first-loop to FIRST_NITERS.  If it
        is false, the caller of this function may want to take care of this
1134
        (this can be useful if we don't want new stmts added to first-loop).
1135

1136 1137
   Output:
   The function returns a pointer to the new loop-copy, or NULL if it failed
1138
   to perform the transformation.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

   The function generates two if-then-else guards: one before the first loop,
   and the other before the second loop:
   The first guard is:
     if (FIRST_NITERS == 0) then skip the first loop,
     and go directly to the second loop.
   The second guard is:
     if (FIRST_NITERS == NITERS) then skip the second loop.

   FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
   FORNOW the resulting code will not be in loop-closed-ssa form.
*/
1151 1152

struct loop*
1153 1154 1155
slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops, 
			       edge e, tree first_niters, 
			       tree niters, bool update_first_loop_count)
1156 1157 1158 1159 1160
{
  struct loop *new_loop = NULL, *first_loop, *second_loop;
  edge skip_e;
  tree pre_condition;
  bitmap definitions;
1161 1162 1163
  basic_block bb_before_second_loop, bb_after_second_loop;
  basic_block bb_before_first_loop;
  basic_block bb_between_loops;
1164
  basic_block new_exit_bb;
1165
  edge exit_e = loop->single_exit;
1166
  LOC loop_loc;
1167
  
1168 1169
  if (!slpeel_can_duplicate_loop_p (loop, e))
    return NULL;
1170 1171
  
  /* We have to initialize cfg_hooks. Then, when calling
1172
   cfg_hooks->split_edge, the function tree_split_edge 
1173
   is actually called and, when calling cfg_hooks->duplicate_block,
1174 1175 1176
   the function tree_duplicate_bb is called.  */
  tree_register_cfg_hooks ();

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

  /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
        Resulting CFG would be:

        first_loop:
        do {
        } while ...

        second_loop:
        do {
        } while ...

        orig_exit_bb:
   */
  
1192
  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
1193
    {
1194
      loop_loc = find_loop_location (loop);
1195 1196 1197 1198 1199 1200 1201
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          if (loop_loc != UNKNOWN_LOC)
            fprintf (dump_file, "\n%s:%d: note: ",
                     LOC_FILE (loop_loc), LOC_LINE (loop_loc));
          fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
        }
1202 1203
      return NULL;
    }
1204
  
1205 1206
  if (e == exit_e)
    {
1207
      /* NEW_LOOP was placed after LOOP.  */
1208 1209 1210
      first_loop = loop;
      second_loop = new_loop;
    }
1211
  else
1212
    {
1213
      /* NEW_LOOP was placed before LOOP.  */
1214 1215 1216 1217
      first_loop = new_loop;
      second_loop = loop;
    }

1218 1219 1220 1221
  definitions = marked_ssa_names ();
  allocate_new_names (definitions);
  slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
  rename_variables_in_loop (new_loop);
1222 1223


1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  /* 2. Add the guard that controls whether the first loop is executed.
        Resulting CFG would be:

        bb_before_first_loop:
        if (FIRST_NITERS == 0) GOTO bb_before_second_loop
                               GOTO first-loop

        first_loop:
        do {
        } while ...

        bb_before_second_loop:
1236

1237 1238 1239
        second_loop:
        do {
        } while ...
1240

1241 1242
        orig_exit_bb:
   */
1243

1244 1245
  bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
  add_bb_to_loop (bb_before_first_loop, first_loop->outer);
1246
  bb_before_second_loop = split_edge (first_loop->single_exit);
1247 1248 1249
  add_bb_to_loop (bb_before_second_loop, first_loop->outer);

  pre_condition =
1250
    fold (build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node));
1251 1252
  skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
                                  bb_before_second_loop, bb_before_first_loop);
1253 1254 1255
  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
				      first_loop == new_loop,
				      &new_exit_bb, &definitions);
1256 1257 1258 1259


  /* 3. Add the guard that controls whether the second loop is executed.
        Resulting CFG would be:
1260

1261 1262 1263
        bb_before_first_loop:
        if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
                               GOTO first-loop
1264

1265 1266 1267
        first_loop:
        do {
        } while ...
1268

1269 1270 1271
        bb_between_loops:
        if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
                                    GOTO bb_before_second_loop
1272

1273
        bb_before_second_loop:
1274

1275 1276 1277
        second_loop:
        do {
        } while ...
1278

1279
        bb_after_second_loop:
1280

1281 1282 1283
        orig_exit_bb:
   */

1284
  bb_between_loops = new_exit_bb;
1285
  bb_after_second_loop = split_edge (second_loop->single_exit);
1286
  add_bb_to_loop (bb_after_second_loop, second_loop->outer);
1287

1288 1289
  pre_condition = 
	fold (build2 (EQ_EXPR, boolean_type_node, first_niters, niters));
1290 1291
  skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
                                  bb_after_second_loop, bb_before_first_loop);
1292 1293
  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
                                     second_loop == new_loop, &new_exit_bb);
1294

1295 1296 1297 1298
  /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
   */
  if (update_first_loop_count)
    slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1299

1300
  free_new_names (definitions);
1301
  BITMAP_FREE (definitions);
1302
  unmark_all_for_rewrite ();
1303

1304 1305 1306
  return new_loop;
}

1307 1308 1309 1310 1311 1312 1313
/* Function vect_get_loop_location.

   Extract the location of the loop in the source code.
   If the loop is not well formed for vectorization, an estimated
   location is calculated.
   Return the loop location if succeed and NULL if not.  */

1314
LOC
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
find_loop_location (struct loop *loop)
{
  tree node = NULL_TREE;
  basic_block bb;
  block_stmt_iterator si;

  if (!loop)
    return UNKNOWN_LOC;

  node = get_loop_exit_condition (loop);

  if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
      && EXPR_FILENAME (node) && EXPR_LINENO (node))
    return EXPR_LOC (node);

  /* If we got here the loop is probably not "well formed",
     try to estimate the loop location */

  if (!loop->header)
    return UNKNOWN_LOC;

  bb = loop->header;

  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
    {
      node = bsi_stmt (si);
      if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
        return EXPR_LOC (node);
    }

  return UNKNOWN_LOC;
}


1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/*************************************************************************
  Vectorization Debug Information.
 *************************************************************************/

/* Function vect_set_verbosity_level.

   Called from toplev.c upon detection of the
   -ftree-vectorizer-verbose=N option.  */

void
vect_set_verbosity_level (const char *val)
{
   unsigned int vl;

   vl = atoi (val);
   if (vl < MAX_VERBOSITY_LEVEL)
     vect_verbosity_level = vl;
   else
     vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
}


/* Function vect_set_dump_settings.

   Fix the verbosity level of the vectorizer if the
   requested level was not set explicitly using the flag
   -ftree-vectorizer-verbose=N.
   Decide where to print the debugging information (dump_file/stderr).
   If the user defined the verbosity level, but there is no dump file,
   print to stderr, otherwise print to the dump file.  */

static void
vect_set_dump_settings (void)
{
  vect_dump = dump_file;

  /* Check if the verbosity level was defined by the user:  */
  if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
    {
      /* If there is no dump file, print to stderr.  */
      if (!dump_file)
        vect_dump = stderr;
      return;
    }

  /* User didn't specify verbosity level:  */
1395
  if (dump_file && (dump_flags & TDF_DETAILS))
1396
    vect_verbosity_level = REPORT_DETAILS;
1397
  else if (dump_file && (dump_flags & TDF_STATS))
1398 1399 1400
    vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
  else
    vect_verbosity_level = REPORT_NONE;
1401 1402

  gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1403 1404 1405 1406 1407 1408 1409
}


/* Function debug_loop_details.

   For vectorization debug dumps.  */

1410
bool
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
vect_print_dump_info (enum verbosity_levels vl, LOC loc)
{
  if (vl > vect_verbosity_level)
    return false;

  if (loc == UNKNOWN_LOC)
    fprintf (vect_dump, "\n%s:%d: note: ",
		 DECL_SOURCE_FILE (current_function_decl),
		 DECL_SOURCE_LINE (current_function_decl));
  else
    fprintf (vect_dump, "\n%s:%d: note: ", LOC_FILE (loc), LOC_LINE (loc));


  return true;
}


1428 1429 1430 1431
/*************************************************************************
  Vectorization Utilities.
 *************************************************************************/

1432 1433 1434 1435 1436
/* Function new_stmt_vec_info.

   Create and initialize a new stmt_vec_info struct for STMT.  */

stmt_vec_info
1437
new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
1438 1439 1440 1441 1442 1443
{
  stmt_vec_info res;
  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));

  STMT_VINFO_TYPE (res) = undef_vec_info_type;
  STMT_VINFO_STMT (res) = stmt;
1444
  STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1445 1446 1447 1448 1449
  STMT_VINFO_RELEVANT_P (res) = 0;
  STMT_VINFO_VECTYPE (res) = NULL;
  STMT_VINFO_VEC_STMT (res) = NULL;
  STMT_VINFO_DATA_REF (res) = NULL;
  STMT_VINFO_MEMTAG (res) = NULL;
1450
  STMT_VINFO_PTR_INFO (res) = NULL;
1451
  STMT_VINFO_SUBVARS (res) = NULL;
1452
  STMT_VINFO_VECT_DR_BASE_ADDRESS (res) = NULL;
1453 1454 1455 1456
  STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE;
  STMT_VINFO_VECT_STEP (res) = NULL_TREE;
  STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false;
  STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

  return res;
}


/* Function new_loop_vec_info.

   Create and initialize a new loop_vec_info struct for LOOP, as well as
   stmt_vec_info structs for all the stmts in LOOP.  */

loop_vec_info
new_loop_vec_info (struct loop *loop)
{
  loop_vec_info res;
  basic_block *bbs;
  block_stmt_iterator si;
  unsigned int i;

  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));

  bbs = get_loop_body (loop);

  /* Create stmt_info for all stmts in the loop.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann;

	  get_stmt_operands (stmt);
	  ann = stmt_ann (stmt);
1490
	  set_stmt_info (ann, new_stmt_vec_info (stmt, res));
1491 1492 1493 1494 1495 1496
	}
    }

  LOOP_VINFO_LOOP (res) = loop;
  LOOP_VINFO_BBS (res) = bbs;
  LOOP_VINFO_EXIT_COND (res) = NULL;
1497
  LOOP_VINFO_NITERS (res) = NULL;
1498
  LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1499
  LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1500 1501 1502 1503 1504
  LOOP_VINFO_VECT_FACTOR (res) = 0;
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
			   "loop_write_datarefs");
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
			   "loop_read_datarefs");
1505
  LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1506
  LOOP_VINFO_LOC (res) = UNKNOWN_LOC;
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
  return res;
}


/* Function destroy_loop_vec_info.
 
   Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the 
   stmts in the loop.  */

void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
  struct loop *loop;
  basic_block *bbs;
  int nbbs;
  block_stmt_iterator si;
  int j;

  if (!loop_vinfo)
    return;

  loop = LOOP_VINFO_LOOP (loop_vinfo);

  bbs = LOOP_VINFO_BBS (loop_vinfo);
  nbbs = loop->num_nodes;

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann = stmt_ann (stmt);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  free (stmt_info);
	  set_stmt_info (ann, NULL);
	}
    }

  free (LOOP_VINFO_BBS (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));

  free (loop_vinfo);
}


1555 1556 1557 1558
/* Function vect_strip_conversions

   Strip conversions that don't narrow the mode.  */

1559
tree 
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
vect_strip_conversion (tree expr)
{
  tree to, ti, oprnd0;
  
  while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
    {
      to = TREE_TYPE (expr);
      oprnd0 = TREE_OPERAND (expr, 0);
      ti = TREE_TYPE (oprnd0);
 
      if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
	return NULL_TREE;
      if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
	return NULL_TREE;
      
      expr = oprnd0;
    }
  return expr; 
}


1581 1582 1583 1584 1585
/* Function vect_force_dr_alignment_p.

   Returns whether the alignment of a DECL can be forced to be aligned
   on ALIGNMENT bit boundary.  */

1586
bool 
1587 1588 1589 1590 1591 1592 1593 1594
vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
{
  if (TREE_CODE (decl) != VAR_DECL)
    return false;

  if (DECL_EXTERNAL (decl))
    return false;

1595 1596 1597
  if (TREE_ASM_WRITTEN (decl))
    return false;

1598 1599 1600
  if (TREE_STATIC (decl))
    return (alignment <= MAX_OFILE_ALIGNMENT);
  else
1601 1602 1603 1604 1605 1606
    /* This is not 100% correct.  The absolute correct stack alignment
       is STACK_BOUNDARY.  We're supposed to hope, but not assume, that
       PREFERRED_STACK_BOUNDARY is honored by all translation units.
       However, until someone implements forced stack alignment, SSE
       isn't really usable without this.  */  
    return (alignment <= PREFERRED_STACK_BOUNDARY); 
1607 1608 1609 1610 1611 1612 1613 1614
}


/* Function get_vectype_for_scalar_type.

   Returns the vector type corresponding to SCALAR_TYPE as supported
   by the target.  */

1615
tree
1616 1617 1618 1619 1620
get_vectype_for_scalar_type (tree scalar_type)
{
  enum machine_mode inner_mode = TYPE_MODE (scalar_type);
  int nbytes = GET_MODE_SIZE (inner_mode);
  int nunits;
1621
  tree vectype;
1622 1623 1624 1625 1626 1627 1628 1629

  if (nbytes == 0)
    return NULL_TREE;

  /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
     is expected.  */
  nunits = UNITS_PER_SIMD_WORD / nbytes;

1630
  vectype = build_vector_type (scalar_type, nunits);
1631
  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1632
    {
1633 1634
      fprintf (vect_dump, "get vectype with %d units of type ", nunits);
      print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1635 1636 1637
    }

  if (!vectype)
1638
    return NULL_TREE;
1639

1640
  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1641
    {
1642 1643
      fprintf (vect_dump, "vectype: ");
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
1644 1645 1646 1647 1648 1649 1650
    }

  if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
    {
      /* TODO: tree-complex.c sometimes can parallelize operations
         on generic vectors.  We can vectorize the loop in that case,
         but then we should re-run the lowering pass.  */
1651 1652
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
        fprintf (vect_dump, "mode not supported by target.");
1653 1654 1655
      return NULL_TREE;
    }

1656
  return vectype;
1657 1658 1659
}


1660
/* Function vect_supportable_dr_alignment
1661

1662 1663
   Return whether the data reference DR is supported with respect to its
   alignment.  */
1664

1665 1666
enum dr_alignment_support
vect_supportable_dr_alignment (struct data_reference *dr)
1667
{
1668 1669
  tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
  enum machine_mode mode = (int) TYPE_MODE (vectype);
1670

1671 1672
  if (aligned_access_p (dr))
    return dr_aligned;
1673

1674 1675 1676 1677 1678 1679 1680 1681
  /* Possibly unaligned access.  */
  
  if (DR_IS_READ (dr))
    {
      if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
	  && (!targetm.vectorize.builtin_mask_for_load
	      || targetm.vectorize.builtin_mask_for_load ()))
	return dr_unaligned_software_pipeline;
1682

1683 1684 1685 1686
      if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
	/* Can't software pipeline the loads, but can at least do them.  */
	return dr_unaligned_supported;
    }
1687

1688 1689 1690
  /* Unsupported.  */
  return dr_unaligned_unsupported;
}
1691 1692


1693
/* Function vect_is_simple_use.
1694

1695 1696 1697 1698
   Input:
   LOOP - the loop that is being vectorized.
   OPERAND - operand of a stmt in LOOP.
   DEF - the defining stmt in case OPERAND is an SSA_NAME.
1699

1700 1701 1702 1703 1704
   Returns whether a stmt with OPERAND can be vectorized.
   Supportable operands are constants, loop invariants, and operands that are
   defined by the current iteration of the loop. Unsupportable operands are 
   those that are defined by a previous iteration of the loop (as is the case
   in reduction/induction computations).  */
1705

1706 1707 1708 1709 1710 1711
bool
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def)
{ 
  tree def_stmt;
  basic_block bb;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1712

1713 1714
  if (def)
    *def = NULL_TREE;
1715

1716 1717
  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
    return true;
1718

1719 1720
  if (TREE_CODE (operand) != SSA_NAME)
    return false;
1721

1722 1723
  def_stmt = SSA_NAME_DEF_STMT (operand);
  if (def_stmt == NULL_TREE )
1724
    {
1725 1726 1727
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
        fprintf (vect_dump, "no def_stmt.");
      return false;
1728 1729
    }

1730 1731 1732
  /* empty stmt is expected only in case of a function argument.
     (Otherwise - we expect a phi_node or a modify_expr).  */
  if (IS_EMPTY_STMT (def_stmt))
1733
    {
1734 1735 1736 1737 1738 1739 1740 1741 1742
      tree arg = TREE_OPERAND (def_stmt, 0);
      if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
	return true;
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
	{
	  fprintf (vect_dump, "Unexpected empty stmt: ");
	  print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
	}
      return false;  
1743
    }
1744 1745 1746 1747 1748

  /* phi_node inside the loop indicates an induction/reduction pattern.
     This is not supported yet.  */
  bb = bb_for_stmt (def_stmt);
  if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
1749
    {
1750 1751 1752
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
	fprintf (vect_dump, "reduction/induction - unsupported.");
      return false; /* FORNOW: not supported yet.  */
1753
    }
1754 1755 1756 1757

  /* Expecting a modify_expr or a phi_node.  */
  if (TREE_CODE (def_stmt) == MODIFY_EXPR
      || TREE_CODE (def_stmt) == PHI_NODE)
1758
    {
1759 1760 1761
      if (def)
        *def = def_stmt; 	
      return true;
1762
    }
1763

1764
  return false;
1765 1766 1767
}


1768
/* Function vect_is_simple_iv_evolution.
1769

1770 1771
   FORNOW: A simple evolution of an induction variables in the loop is
   considered a polynomial evolution with constant step.  */
1772

1773 1774 1775
bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, 
			     tree * step)
1776
{
1777 1778 1779 1780
  tree init_expr;
  tree step_expr;
  
  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  /* When there is no evolution in this loop, the evolution function
     is not "simple".  */  
  if (evolution_part == NULL_TREE)
    return false;
  
  /* When the evolution is a polynomial of degree >= 2
     the evolution function is not "simple".  */
  if (tree_is_chrec (evolution_part))
    return false;
  
  step_expr = evolution_part;
  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
                                                           loop_nb));
1795

1796
  if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1797
    {
1798 1799 1800 1801
      fprintf (vect_dump, "step: ");
      print_generic_expr (vect_dump, step_expr, TDF_SLIM);
      fprintf (vect_dump, ",  init: ");
      print_generic_expr (vect_dump, init_expr, TDF_SLIM);
1802 1803
    }

1804 1805
  *init = init_expr;
  *step = step_expr;
1806

1807
  if (TREE_CODE (step_expr) != INTEGER_CST)
1808
    {
1809
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1810
        fprintf (vect_dump, "step unknown.");
1811 1812 1813
      return false;
    }

1814 1815 1816 1817
  return true;
}


1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/* Function need_imm_uses_for.

   Return whether we ought to include information for 'var'
   when calculating immediate uses.  For this pass we only want use
   information for non-virtual variables.  */

static bool
need_imm_uses_for (tree var)
{
  return is_gimple_reg (var);
}


/* Function vectorize_loops.
   
   Entry Point to loop vectorization phase.  */

void
vectorize_loops (struct loops *loops)
{
  unsigned int i, loops_num;
  unsigned int num_vectorized_loops = 0;

1841 1842 1843
  /* Fix the verbosity level if not defined explicitly by the user.  */
  vect_set_dump_settings ();

1844 1845 1846 1847
  /* Does the target support SIMD?  */
  /* FORNOW: until more sophisticated machine modelling is in place.  */
  if (!UNITS_PER_SIMD_WORD)
    {
1848 1849
      if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
	fprintf (vect_dump, "vectorizer: target vector size is not defined.");
1850 1851 1852
      return;
    }

1853 1854 1855 1856
#ifdef ENABLE_CHECKING
  verify_loop_closed_ssa ();
#endif

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
  compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);

  /*  ----------- Analyze loops. -----------  */

  /* If some loop was duplicated, it gets bigger number 
     than all previously defined loops. This fact allows us to run 
     only over initial loops skipping newly generated ones.  */
  loops_num = loops->num;
  for (i = 1; i < loops_num; i++)
    {
      loop_vec_info loop_vinfo;
      struct loop *loop = loops->parray[i];

      if (!loop)
        continue;

      loop_vinfo = vect_analyze_loop (loop);
      loop->aux = loop_vinfo;

      if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
	continue;

      vect_transform_loop (loop_vinfo, loops); 
      num_vectorized_loops++;
    }

1883 1884
  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, UNKNOWN_LOC))
    fprintf (vect_dump, "vectorized %u loops in function.\n",
1885 1886 1887 1888 1889 1890 1891 1892
	     num_vectorized_loops);

  /*  ----------- Finalize. -----------  */

  free_df ();
  for (i = 1; i < loops_num; i++)
    {
      struct loop *loop = loops->parray[i];
1893 1894
      loop_vec_info loop_vinfo;

1895
      if (!loop)
1896 1897
	continue;
      loop_vinfo = loop->aux;
1898 1899 1900 1901
      destroy_loop_vec_info (loop_vinfo);
      loop->aux = NULL;
    }
}