// ================================================================ // NVDLA Open Source Project // // Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the // NVDLA Open Hardware License; Check "LICENSE" which comes with // this distribution for more information. // ================================================================ // File Name: NV_NVDLA_SDP_HLS_Y_int_idx.v module NV_NVDLA_SDP_HLS_Y_int_idx ( cfg_lut_hybrid_priority //|< i ,cfg_lut_le_function //|< i ,cfg_lut_le_index_offset //|< i ,cfg_lut_le_index_select //|< i ,cfg_lut_le_start //|< i ,cfg_lut_lo_index_select //|< i ,cfg_lut_lo_start //|< i ,cfg_lut_oflow_priority //|< i ,cfg_lut_uflow_priority //|< i ,lut_data_in //|< i ,lut_in_pvld //|< i ,lut_out_prdy //|< i ,nvdla_core_clk //|< i ,nvdla_core_rstn //|< i ,lut_in_prdy //|> o ,lut_out_frac //|> o ,lut_out_le_hit //|> o ,lut_out_lo_hit //|> o ,lut_out_oflow //|> o ,lut_out_pvld //|> o ,lut_out_ram_addr //|> o ,lut_out_ram_sel //|> o ,lut_out_uflow //|> o ,lut_out_x //|> o ); input cfg_lut_hybrid_priority; input cfg_lut_le_function; input [7:0] cfg_lut_le_index_offset; input [7:0] cfg_lut_le_index_select; input [31:0] cfg_lut_le_start; input [7:0] cfg_lut_lo_index_select; input [31:0] cfg_lut_lo_start; input cfg_lut_oflow_priority; input cfg_lut_uflow_priority; input [31:0] lut_data_in; input lut_in_pvld; input lut_out_prdy; input nvdla_core_clk; input nvdla_core_rstn; output lut_in_prdy; output [34:0] lut_out_frac; output lut_out_le_hit; output lut_out_lo_hit; output lut_out_oflow; output lut_out_pvld; output [8:0] lut_out_ram_addr; output lut_out_ram_sel; output lut_out_uflow; output [31:0] lut_out_x; reg [34:0] lut_final_frac; reg lut_final_oflow; reg [8:0] lut_final_ram_addr; reg lut_final_ram_sel; reg lut_final_uflow; wire [7:0] le_expn_cfg_offset; wire [31:0] le_expn_cfg_start; wire [31:0] le_expn_data_in; wire [34:0] le_expn_frac; wire le_expn_in_prdy; wire le_expn_in_pvld; wire [8:0] le_expn_index; wire le_expn_oflow; wire le_expn_out_prdy; wire le_expn_out_pvld; wire le_expn_uflow; wire [34:0] le_frac; wire le_hit; wire [8:0] le_index; wire [7:0] le_line_cfg_sel; wire [31:0] le_line_cfg_start; wire [31:0] le_line_data_in; wire [34:0] le_line_frac; wire le_line_in_prdy; wire le_line_in_pvld; wire [8:0] le_line_index; wire le_line_oflow; wire le_line_out_prdy; wire le_line_out_pvld; wire le_line_uflow; wire le_miss; wire le_oflow; wire le_uflow; wire [34:0] lo_frac; wire lo_hit; wire [8:0] lo_index; wire [34:0] lo_line_frac; wire lo_line_in_pvld; wire lo_line_in_prdy; wire [8:0] lo_line_index; wire lo_line_oflow; wire lo_line_out_pvld; wire lo_line_out_prdy; wire lo_line_uflow; wire lo_miss; wire lo_oflow; wire lo_uflow; wire [80:0] lut_final_pd; wire lut_final_prdy; wire lut_final_pvld; wire [31:0] lut_final_x; wire lut_x_in_pvld; wire lut_x_in_prdy; wire lut_x_out_pvld; wire lut_x_out_prdy; wire lut_pipe2_prdy; wire lut_pipe2_pvld; wire [31:0] lut_pipe2_x; wire lut_pipe_prdy; wire lut_pipe_pvld; wire [31:0] lut_pipe_x; wire [80:0] lut_out_pd; //The same three stage pipe with lut_expn and lut_line NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p1 pipe_p1 ( .nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.lut_data_in (lut_data_in[31:0]) //|< i ,.lut_x_in_pvld (lut_x_in_pvld) //|< i ,.lut_pipe_prdy (lut_pipe_prdy) //|< w ,.lut_x_in_prdy (lut_x_in_prdy) //|> w ,.lut_pipe_pvld (lut_pipe_pvld) //|> w ,.lut_pipe_x (lut_pipe_x[31:0]) //|> w ); NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p2 pipe_p2 ( .nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.lut_pipe2_prdy (lut_pipe2_prdy) //|< w ,.lut_pipe_pvld (lut_pipe_pvld) //|< w ,.lut_pipe_x (lut_pipe_x[31:0]) //|< w ,.lut_pipe2_pvld (lut_pipe2_pvld) //|> w ,.lut_pipe2_x (lut_pipe2_x[31:0]) //|> w ,.lut_pipe_prdy (lut_pipe_prdy) //|> w ); NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p3 pipe_p3 ( .nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.lut_pipe3_prdy (lut_x_out_prdy) //|< w ,.lut_pipe2_pvld (lut_pipe2_pvld) //|< w ,.lut_pipe2_x (lut_pipe2_x[31:0]) //|< w ,.lut_pipe3_x (lut_final_x[31:0]) //|> w ,.lut_pipe2_prdy (lut_pipe2_prdy) //|> w ,.lut_pipe3_pvld (lut_x_out_pvld) //|> w ); NV_NVDLA_SDP_HLS_lut_expn #(.LUT_DEPTH(65 )) lut_le_expn ( .cfg_lut_offset (le_expn_cfg_offset[7:0]) //|< w ,.cfg_lut_start (le_expn_cfg_start[31:0]) //|< w ,.idx_data_in (le_expn_data_in[31:0]) //|< w ,.idx_in_pvld (le_expn_in_pvld) //|< w ,.idx_out_prdy (le_expn_out_prdy) //|< w ,.nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.idx_in_prdy (le_expn_in_prdy) //|> w ,.idx_out_pvld (le_expn_out_pvld) //|> w ,.lut_frac_out (le_expn_frac[34:0]) //|> w ,.lut_index_out (le_expn_index[8:0]) //|> w ,.lut_oflow_out (le_expn_oflow) //|> w ,.lut_uflow_out (le_expn_uflow) //|> w ); NV_NVDLA_SDP_HLS_lut_line #(.LUT_DEPTH(65 )) lut_le_line ( .cfg_lut_sel (le_line_cfg_sel[7:0]) //|< w ,.cfg_lut_start (le_line_cfg_start[31:0]) //|< w ,.idx_data_in (le_line_data_in[31:0]) //|< w ,.idx_in_pvld (le_line_in_pvld) //|< w ,.idx_out_prdy (le_line_out_prdy) //|< w ,.nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.idx_in_prdy (le_line_in_prdy) //|> w ,.idx_out_pvld (le_line_out_pvld) //|> w ,.lut_frac_out (le_line_frac[34:0]) //|> w ,.lut_index_out (le_line_index[8:0]) //|> w ,.lut_oflow_out (le_line_oflow) //|> w ,.lut_uflow_out (le_line_uflow) //|> w ); NV_NVDLA_SDP_HLS_lut_line #(.LUT_DEPTH(257 )) lut_lo_line ( .cfg_lut_sel (cfg_lut_lo_index_select[7:0]) //|< i ,.cfg_lut_start (cfg_lut_lo_start[31:0]) //|< i ,.idx_data_in (lut_data_in[31:0]) //|< i ,.idx_in_pvld (lo_line_in_pvld) //|< i ,.idx_out_prdy (lo_line_out_prdy) //|< w ,.nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.idx_in_prdy (lo_line_in_prdy) //|> w ,.idx_out_pvld (lo_line_out_pvld) //|> w ,.lut_frac_out (lo_line_frac[34:0]) //|> w ,.lut_index_out (lo_line_index[8:0]) //|> w ,.lut_oflow_out (lo_line_oflow) //|> w ,.lut_uflow_out (lo_line_uflow) //|> w ); //sync lut_x_in, le_in,lo_in assign le_expn_in_pvld = (cfg_lut_le_function == 0 ) & lut_in_pvld & lo_line_in_prdy & lut_x_in_prdy; assign le_line_in_pvld = (cfg_lut_le_function != 0 ) & lut_in_pvld & lo_line_in_prdy & lut_x_in_prdy; assign lo_line_in_pvld = ((cfg_lut_le_function == 0 ) ? le_expn_in_prdy : le_line_in_prdy ) & lut_in_pvld & lut_x_in_prdy; assign lut_x_in_pvld = ((cfg_lut_le_function == 0 ) ? le_expn_in_prdy : le_line_in_prdy ) & lut_in_pvld & lo_line_in_prdy; assign lut_in_prdy = ((cfg_lut_le_function == 0 ) ? le_expn_in_prdy : le_line_in_prdy ) & lo_line_in_prdy & lut_x_in_prdy; //sync lut_x_out, le_out,lo_out assign le_expn_out_prdy = (cfg_lut_le_function == 0 ) & lut_final_prdy & lo_line_out_pvld & lut_x_out_pvld; assign le_line_out_prdy = (cfg_lut_le_function != 0 ) & lut_final_prdy & lo_line_out_pvld & lut_x_out_pvld; assign lo_line_out_prdy = ((cfg_lut_le_function == 0 ) ? le_expn_out_pvld : le_line_out_pvld) & lut_final_prdy & lut_x_out_pvld; assign lut_x_out_prdy = ((cfg_lut_le_function == 0 ) ? le_expn_out_pvld : le_line_out_pvld) & lut_final_prdy & lo_line_out_pvld; assign lut_final_pvld = ((cfg_lut_le_function == 0 ) ? le_expn_out_pvld : le_line_out_pvld) & lo_line_out_pvld & lut_x_out_pvld; assign le_expn_data_in[31:0] = (cfg_lut_le_function == 0 ) ? lut_data_in[31:0] : {32 {1'b0}}; assign le_expn_cfg_start[31:0] = (cfg_lut_le_function == 0 ) ? cfg_lut_le_start[31:0] : {32 {1'b0}}; assign le_expn_cfg_offset[7:0] = (cfg_lut_le_function == 0 ) ? cfg_lut_le_index_offset[7:0] : {8 {1'b0}}; assign le_line_data_in[31:0] = (cfg_lut_le_function != 0 ) ? lut_data_in[31:0] : {32 {1'b0}}; assign le_line_cfg_start[31:0] = (cfg_lut_le_function != 0 ) ? cfg_lut_le_start[31:0] : {32 {1'b0}}; assign le_line_cfg_sel[7:0] = (cfg_lut_le_function != 0 ) ? cfg_lut_le_index_select[7:0] : {8 {1'b0}}; assign le_oflow = (cfg_lut_le_function == 0 ) ? le_expn_oflow : le_line_oflow; assign le_uflow = (cfg_lut_le_function == 0 ) ? le_expn_uflow : le_line_uflow; assign le_index[8:0] = (cfg_lut_le_function == 0 ) ? le_expn_index[8:0] : le_line_index[8:0]; assign le_frac[34:0] = (cfg_lut_le_function == 0 ) ? le_expn_frac[34:0] : le_line_frac[34:0]; assign lo_oflow = lo_line_oflow; assign lo_uflow = lo_line_uflow; assign lo_index[8:0] = lo_line_index[8:0]; assign lo_frac[34:0] = lo_line_frac[34:0]; //hit miss assign le_miss = (le_uflow | le_oflow); assign le_hit = !le_miss; assign lo_miss = (lo_uflow | lo_oflow); assign lo_hit = !lo_miss; always @( le_uflow or lo_uflow or cfg_lut_uflow_priority or lo_index or le_index or lo_frac or le_frac or le_oflow or lo_oflow or cfg_lut_oflow_priority or le_hit or lo_hit or cfg_lut_hybrid_priority or le_miss or lo_miss ) begin if (le_uflow & lo_uflow) begin lut_final_uflow = cfg_lut_uflow_priority ? lo_uflow : le_uflow; lut_final_oflow = 0; lut_final_ram_sel = cfg_lut_uflow_priority ? 1 : 0 ; lut_final_ram_addr= cfg_lut_uflow_priority ? lo_index : le_index; lut_final_frac = cfg_lut_uflow_priority ? lo_frac : le_frac; end else if (le_oflow & lo_oflow) begin lut_final_uflow = 0; lut_final_oflow = cfg_lut_oflow_priority ? lo_oflow : le_oflow; lut_final_ram_sel = cfg_lut_oflow_priority ? 1 : 0 ; lut_final_ram_addr= cfg_lut_oflow_priority ? lo_index : le_index; lut_final_frac = cfg_lut_oflow_priority ? lo_frac : le_frac; end else if (le_hit & lo_hit) begin lut_final_ram_addr= cfg_lut_hybrid_priority ? lo_index : le_index; lut_final_frac = cfg_lut_hybrid_priority ? lo_frac : le_frac; lut_final_ram_sel = cfg_lut_hybrid_priority ? 1 : 0 ; lut_final_uflow = 0; lut_final_oflow = 0; end else if (le_miss & lo_miss) begin lut_final_ram_addr= cfg_lut_hybrid_priority ? lo_index : le_index; lut_final_frac = cfg_lut_hybrid_priority ? lo_frac : le_frac; lut_final_ram_sel = cfg_lut_hybrid_priority ? 1 : 0 ; lut_final_uflow = cfg_lut_hybrid_priority ? lo_uflow : le_uflow; lut_final_oflow = cfg_lut_hybrid_priority ? lo_oflow : le_oflow; end else if (le_hit) begin lut_final_ram_addr= le_index; lut_final_frac = le_frac; lut_final_ram_sel = 0 ; lut_final_uflow = 0; lut_final_oflow = 0; end else begin // if (lo_hit) begin lut_final_ram_addr= lo_index; lut_final_frac = lo_frac; lut_final_ram_sel = 1 ; lut_final_uflow = 0; lut_final_oflow = 0; end end assign lut_final_pd = {lo_hit,le_hit,lut_final_oflow,lut_final_uflow,lut_final_frac[34:0],lut_final_ram_addr[8:0],lut_final_ram_sel,lut_final_x[31:0]}; assign {lut_out_lo_hit,lut_out_le_hit,lut_out_oflow,lut_out_uflow,lut_out_frac[34:0],lut_out_ram_addr[8:0],lut_out_ram_sel,lut_out_x[31:0]} = lut_out_pd; NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p4 pipe_p4 ( .nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.lut_final_pd (lut_final_pd[80:0]) //|< w ,.lut_final_pvld (lut_final_pvld) //|< w ,.lut_out_prdy (lut_out_prdy) //|< i ,.lut_final_prdy (lut_final_prdy) //|> w ,.lut_out_pd (lut_out_pd[80:0]) //|> w ,.lut_out_pvld (lut_out_pvld) //|> o ); endmodule // NV_NVDLA_SDP_HLS_Y_int_idx // ************************************************************************************************************** // Generated by ::pipe -m -bc -rand none -is lut_pipe_x[31:0] (lut_pipe_pvld,lut_pipe_prdy) <= lut_data_in[31:0] (lut_x_in_pvld,lut_x_in_prdy) // ************************************************************************************************************** module NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p1 ( nvdla_core_clk ,nvdla_core_rstn ,lut_data_in ,lut_x_in_pvld ,lut_pipe_prdy ,lut_x_in_prdy ,lut_pipe_pvld ,lut_pipe_x ); input nvdla_core_clk; input nvdla_core_rstn; input [31:0] lut_data_in; input lut_x_in_pvld; input lut_pipe_prdy; output lut_x_in_prdy; output lut_pipe_pvld; output [31:0] lut_pipe_x; reg lut_x_in_prdy; reg lut_pipe_pvld; reg [31:0] lut_pipe_x; reg [31:0] p1_pipe_data; reg p1_pipe_ready; reg p1_pipe_ready_bc; reg p1_pipe_valid; reg p1_skid_catch; reg [31:0] p1_skid_data; reg [31:0] p1_skid_pipe_data; reg p1_skid_pipe_ready; reg p1_skid_pipe_valid; reg p1_skid_ready; reg p1_skid_ready_flop; reg p1_skid_valid; //## pipe (1) skid buffer always @( lut_x_in_pvld or p1_skid_ready_flop or p1_skid_pipe_ready or p1_skid_valid ) begin p1_skid_catch = lut_x_in_pvld && p1_skid_ready_flop && !p1_skid_pipe_ready; p1_skid_ready = (p1_skid_valid)? p1_skid_pipe_ready : !p1_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p1_skid_valid <= 1'b0; p1_skid_ready_flop <= 1'b1; lut_x_in_prdy <= 1'b1; end else begin p1_skid_valid <= (p1_skid_valid)? !p1_skid_pipe_ready : p1_skid_catch; p1_skid_ready_flop <= p1_skid_ready; lut_x_in_prdy <= p1_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p1_skid_data <= (p1_skid_catch)? lut_data_in[31:0] : p1_skid_data; // VCS sop_coverage_off end end always @( p1_skid_ready_flop or lut_x_in_pvld or p1_skid_valid or lut_data_in or p1_skid_data ) begin p1_skid_pipe_valid = (p1_skid_ready_flop)? lut_x_in_pvld : p1_skid_valid; // VCS sop_coverage_off start p1_skid_pipe_data = (p1_skid_ready_flop)? lut_data_in[31:0] : p1_skid_data; // VCS sop_coverage_off end end //## pipe (1) valid-ready-bubble-collapse always @( p1_pipe_ready or p1_pipe_valid ) begin p1_pipe_ready_bc = p1_pipe_ready || !p1_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p1_pipe_valid <= 1'b0; end else begin p1_pipe_valid <= (p1_pipe_ready_bc)? p1_skid_pipe_valid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p1_pipe_data <= (p1_pipe_ready_bc && p1_skid_pipe_valid)? p1_skid_pipe_data : p1_pipe_data; // VCS sop_coverage_off end end always @( p1_pipe_ready_bc ) begin p1_skid_pipe_ready = p1_pipe_ready_bc; end //## pipe (1) output always @( p1_pipe_valid or lut_pipe_prdy or p1_pipe_data ) begin lut_pipe_pvld = p1_pipe_valid; p1_pipe_ready = lut_pipe_prdy; lut_pipe_x[31:0] = p1_pipe_data; end //## pipe (1) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p1_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_1x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (lut_pipe_pvld^lut_pipe_prdy^lut_x_in_pvld^lut_x_in_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_2x (nvdla_core_clk, `ASSERT_RESET, (lut_x_in_pvld && !lut_x_in_prdy), (lut_x_in_pvld), (lut_x_in_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule // NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p1 // ************************************************************************************************************** // Generated by ::pipe -m -bc -rand none -is lut_pipe2_x[31:0] (lut_pipe2_pvld,lut_pipe2_prdy) <= lut_pipe_x[31:0] (lut_pipe_pvld,lut_pipe_prdy) // ************************************************************************************************************** module NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p2 ( nvdla_core_clk ,nvdla_core_rstn ,lut_pipe2_prdy ,lut_pipe_pvld ,lut_pipe_x ,lut_pipe2_pvld ,lut_pipe2_x ,lut_pipe_prdy ); input nvdla_core_clk; input nvdla_core_rstn; input lut_pipe2_prdy; input lut_pipe_pvld; input [31:0] lut_pipe_x; output lut_pipe2_pvld; output [31:0] lut_pipe2_x; output lut_pipe_prdy; reg lut_pipe2_pvld; reg [31:0] lut_pipe2_x; reg lut_pipe_prdy; reg [31:0] p2_pipe_data; reg p2_pipe_ready; reg p2_pipe_ready_bc; reg p2_pipe_valid; reg p2_skid_catch; reg [31:0] p2_skid_data; reg [31:0] p2_skid_pipe_data; reg p2_skid_pipe_ready; reg p2_skid_pipe_valid; reg p2_skid_ready; reg p2_skid_ready_flop; reg p2_skid_valid; //## pipe (2) skid buffer always @( lut_pipe_pvld or p2_skid_ready_flop or p2_skid_pipe_ready or p2_skid_valid ) begin p2_skid_catch = lut_pipe_pvld && p2_skid_ready_flop && !p2_skid_pipe_ready; p2_skid_ready = (p2_skid_valid)? p2_skid_pipe_ready : !p2_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p2_skid_valid <= 1'b0; p2_skid_ready_flop <= 1'b1; lut_pipe_prdy <= 1'b1; end else begin p2_skid_valid <= (p2_skid_valid)? !p2_skid_pipe_ready : p2_skid_catch; p2_skid_ready_flop <= p2_skid_ready; lut_pipe_prdy <= p2_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p2_skid_data <= (p2_skid_catch)? lut_pipe_x[31:0] : p2_skid_data; // VCS sop_coverage_off end end always @( p2_skid_ready_flop or lut_pipe_pvld or p2_skid_valid or lut_pipe_x or p2_skid_data ) begin p2_skid_pipe_valid = (p2_skid_ready_flop)? lut_pipe_pvld : p2_skid_valid; // VCS sop_coverage_off start p2_skid_pipe_data = (p2_skid_ready_flop)? lut_pipe_x[31:0] : p2_skid_data; // VCS sop_coverage_off end end //## pipe (2) valid-ready-bubble-collapse always @( p2_pipe_ready or p2_pipe_valid ) begin p2_pipe_ready_bc = p2_pipe_ready || !p2_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p2_pipe_valid <= 1'b0; end else begin p2_pipe_valid <= (p2_pipe_ready_bc)? p2_skid_pipe_valid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p2_pipe_data <= (p2_pipe_ready_bc && p2_skid_pipe_valid)? p2_skid_pipe_data : p2_pipe_data; // VCS sop_coverage_off end end always @( p2_pipe_ready_bc ) begin p2_skid_pipe_ready = p2_pipe_ready_bc; end //## pipe (2) output always @( p2_pipe_valid or lut_pipe2_prdy or p2_pipe_data ) begin lut_pipe2_pvld = p2_pipe_valid; p2_pipe_ready = lut_pipe2_prdy; lut_pipe2_x[31:0] = p2_pipe_data; end //## pipe (2) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p2_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_3x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (lut_pipe2_pvld^lut_pipe2_prdy^lut_pipe_pvld^lut_pipe_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_4x (nvdla_core_clk, `ASSERT_RESET, (lut_pipe_pvld && !lut_pipe_prdy), (lut_pipe_pvld), (lut_pipe_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule // NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p2 // ************************************************************************************************************** // Generated by ::pipe -m -bc -rand none -is lut_pipe3_x[31:0] (lut_pipe3_pvld,lut_pipe3_prdy) <= lut_pipe2_x[31:0] (lut_pipe2_pvld,lut_pipe2_prdy) // ************************************************************************************************************** module NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p3 ( nvdla_core_clk ,nvdla_core_rstn ,lut_pipe3_prdy ,lut_pipe2_pvld ,lut_pipe2_x ,lut_pipe3_x ,lut_pipe2_prdy ,lut_pipe3_pvld ); input nvdla_core_clk; input nvdla_core_rstn; input lut_pipe3_prdy; input lut_pipe2_pvld; input [31:0] lut_pipe2_x; output [31:0] lut_pipe3_x; output lut_pipe2_prdy; output lut_pipe3_pvld; reg [31:0] lut_pipe3_x; reg lut_pipe2_prdy; reg lut_pipe3_pvld; reg [31:0] p3_pipe_data; reg p3_pipe_ready; reg p3_pipe_ready_bc; reg p3_pipe_valid; reg p3_skid_catch; reg [31:0] p3_skid_data; reg [31:0] p3_skid_pipe_data; reg p3_skid_pipe_ready; reg p3_skid_pipe_valid; reg p3_skid_ready; reg p3_skid_ready_flop; reg p3_skid_valid; //## pipe (3) skid buffer always @( lut_pipe2_pvld or p3_skid_ready_flop or p3_skid_pipe_ready or p3_skid_valid ) begin p3_skid_catch = lut_pipe2_pvld && p3_skid_ready_flop && !p3_skid_pipe_ready; p3_skid_ready = (p3_skid_valid)? p3_skid_pipe_ready : !p3_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p3_skid_valid <= 1'b0; p3_skid_ready_flop <= 1'b1; lut_pipe2_prdy <= 1'b1; end else begin p3_skid_valid <= (p3_skid_valid)? !p3_skid_pipe_ready : p3_skid_catch; p3_skid_ready_flop <= p3_skid_ready; lut_pipe2_prdy <= p3_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p3_skid_data <= (p3_skid_catch)? lut_pipe2_x[31:0] : p3_skid_data; // VCS sop_coverage_off end end always @( p3_skid_ready_flop or lut_pipe2_pvld or p3_skid_valid or lut_pipe2_x or p3_skid_data ) begin p3_skid_pipe_valid = (p3_skid_ready_flop)? lut_pipe2_pvld : p3_skid_valid; // VCS sop_coverage_off start p3_skid_pipe_data = (p3_skid_ready_flop)? lut_pipe2_x[31:0] : p3_skid_data; // VCS sop_coverage_off end end //## pipe (3) valid-ready-bubble-collapse always @( p3_pipe_ready or p3_pipe_valid ) begin p3_pipe_ready_bc = p3_pipe_ready || !p3_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p3_pipe_valid <= 1'b0; end else begin p3_pipe_valid <= (p3_pipe_ready_bc)? p3_skid_pipe_valid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p3_pipe_data <= (p3_pipe_ready_bc && p3_skid_pipe_valid)? p3_skid_pipe_data : p3_pipe_data; // VCS sop_coverage_off end end always @( p3_pipe_ready_bc ) begin p3_skid_pipe_ready = p3_pipe_ready_bc; end //## pipe (3) output always @( p3_pipe_valid or lut_pipe3_prdy or p3_pipe_data ) begin lut_pipe3_pvld = p3_pipe_valid; p3_pipe_ready = lut_pipe3_prdy; lut_pipe3_x[31:0] = p3_pipe_data; end //## pipe (3) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p3_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_5x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (lut_pipe3_pvld^lut_pipe3_prdy^lut_pipe2_pvld^lut_pipe2_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_6x (nvdla_core_clk, `ASSERT_RESET, (lut_pipe2_pvld && !lut_pipe2_prdy), (lut_pipe2_pvld), (lut_pipe2_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule // NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p3 // ************************************************************************************************************** // Generated by ::pipe -m -bc -rand none -is lut_out_pd[80:0] (lut_out_pvld,lut_out_prdy) <= lut_final_pd[80:0] (lut_final_pvld,lut_final_prdy) // ************************************************************************************************************** module NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p4 ( nvdla_core_clk ,nvdla_core_rstn ,lut_final_pd ,lut_final_pvld ,lut_out_prdy ,lut_final_prdy ,lut_out_pd ,lut_out_pvld ); input nvdla_core_clk; input nvdla_core_rstn; input [80:0] lut_final_pd; input lut_final_pvld; input lut_out_prdy; output lut_final_prdy; output [80:0] lut_out_pd; output lut_out_pvld; reg lut_final_prdy; reg [80:0] lut_out_pd; reg lut_out_pvld; reg [80:0] p4_pipe_data; reg p4_pipe_ready; reg p4_pipe_ready_bc; reg p4_pipe_valid; reg p4_skid_catch; reg [80:0] p4_skid_data; reg [80:0] p4_skid_pipe_data; reg p4_skid_pipe_ready; reg p4_skid_pipe_valid; reg p4_skid_ready; reg p4_skid_ready_flop; reg p4_skid_valid; //## pipe (4) skid buffer always @( lut_final_pvld or p4_skid_ready_flop or p4_skid_pipe_ready or p4_skid_valid ) begin p4_skid_catch = lut_final_pvld && p4_skid_ready_flop && !p4_skid_pipe_ready; p4_skid_ready = (p4_skid_valid)? p4_skid_pipe_ready : !p4_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p4_skid_valid <= 1'b0; p4_skid_ready_flop <= 1'b1; lut_final_prdy <= 1'b1; end else begin p4_skid_valid <= (p4_skid_valid)? !p4_skid_pipe_ready : p4_skid_catch; p4_skid_ready_flop <= p4_skid_ready; lut_final_prdy <= p4_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p4_skid_data <= (p4_skid_catch)? lut_final_pd[80:0] : p4_skid_data; // VCS sop_coverage_off end end always @( p4_skid_ready_flop or lut_final_pvld or p4_skid_valid or lut_final_pd or p4_skid_data ) begin p4_skid_pipe_valid = (p4_skid_ready_flop)? lut_final_pvld : p4_skid_valid; // VCS sop_coverage_off start p4_skid_pipe_data = (p4_skid_ready_flop)? lut_final_pd[80:0] : p4_skid_data; // VCS sop_coverage_off end end //## pipe (4) valid-ready-bubble-collapse always @( p4_pipe_ready or p4_pipe_valid ) begin p4_pipe_ready_bc = p4_pipe_ready || !p4_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p4_pipe_valid <= 1'b0; end else begin p4_pipe_valid <= (p4_pipe_ready_bc)? p4_skid_pipe_valid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p4_pipe_data <= (p4_pipe_ready_bc && p4_skid_pipe_valid)? p4_skid_pipe_data : p4_pipe_data; // VCS sop_coverage_off end end always @( p4_pipe_ready_bc ) begin p4_skid_pipe_ready = p4_pipe_ready_bc; end //## pipe (4) output always @( p4_pipe_valid or lut_out_prdy or p4_pipe_data ) begin lut_out_pvld = p4_pipe_valid; p4_pipe_ready = lut_out_prdy; lut_out_pd[80:0] = p4_pipe_data; end //## pipe (4) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p4_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_7x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (lut_out_pvld^lut_out_prdy^lut_final_pvld^lut_final_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_8x (nvdla_core_clk, `ASSERT_RESET, (lut_final_pvld && !lut_final_prdy), (lut_final_pvld), (lut_final_prdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule // NV_NVDLA_SDP_HLS_Y_INT_IDX_pipe_p4