// ================================================================ // NVDLA Open Source Project // // Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the // NVDLA Open Hardware License; Check "LICENSE" which comes with // this distribution for more information. // ================================================================ // File Name: NV_NVDLA_BDMA_cq.v `define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1 `include "simulate_x_tick.vh" module NV_NVDLA_BDMA_cq ( nvdla_core_clk , nvdla_core_rstn , ld2st_wr_prdy , ld2st_wr_idle , ld2st_wr_pvld , ld2st_wr_pd , ld2st_rd_prdy , ld2st_rd_pvld , ld2st_rd_pd , pwrbus_ram_pd ); // spyglass disable_block W401 -- clock is not input to module input nvdla_core_clk; input nvdla_core_rstn; output ld2st_wr_prdy; output ld2st_wr_idle; input ld2st_wr_pvld; input [160:0] ld2st_wr_pd; input ld2st_rd_prdy; output ld2st_rd_pvld; output [160:0] ld2st_rd_pd; input [31:0] pwrbus_ram_pd; // Master Clock Gating (SLCG) // // We gate the clock(s) when idle or stalled. // This allows us to turn off numerous miscellaneous flops // that don't get gated during synthesis for one reason or another. // // We gate write side and read side separately. // If the fifo is synchronous, we also gate the ram separately, but if // -master_clk_gated_unified or -status_reg/-status_logic_reg is specified, // then we use one clk gate for write, ram, and read. // wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module wire nvdla_core_clk_mgated; // used only in synchronous fifos NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) ); // // WRITE SIDE // wire wr_reserving; reg ld2st_wr_pvld_in; // registered ld2st_wr_pvld reg wr_busy_in; // inputs being held this cycle? assign ld2st_wr_prdy = !wr_busy_in; wire ld2st_wr_busy_next; // fwd: fifo busy next? // factor for better timing with distant ld2st_wr_pvld signal wire wr_busy_in_next_wr_req_eq_1 = ld2st_wr_busy_next; wire wr_busy_in_next_wr_req_eq_0 = (ld2st_wr_pvld_in && ld2st_wr_busy_next) && !wr_reserving; wire wr_busy_in_next = (ld2st_wr_pvld? wr_busy_in_next_wr_req_eq_1 : wr_busy_in_next_wr_req_eq_0) ; wire wr_busy_in_int; always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_wr_pvld_in <= 1'b0; wr_busy_in <= 1'b0; end else begin wr_busy_in <= wr_busy_in_next; if ( !wr_busy_in_int ) begin ld2st_wr_pvld_in <= ld2st_wr_pvld && !wr_busy_in; end //synopsys translate_off else if ( wr_busy_in_int ) begin end else begin ld2st_wr_pvld_in <= `x_or_0; end //synopsys translate_on end end reg ld2st_wr_busy_int; // copy for internal use assign wr_reserving = ld2st_wr_pvld_in && !ld2st_wr_busy_int; // reserving write space? wire wr_popping; // fwd: write side sees pop? reg [4:0] ld2st_wr_count; // write-side count wire [4:0] wr_count_next_wr_popping = wr_reserving ? ld2st_wr_count : (ld2st_wr_count - 1'd1); // spyglass disable W164a W484 wire [4:0] wr_count_next_no_wr_popping = wr_reserving ? (ld2st_wr_count + 1'd1) : ld2st_wr_count; // spyglass disable W164a W484 wire [4:0] wr_count_next = wr_popping ? wr_count_next_wr_popping : wr_count_next_no_wr_popping; wire wr_count_next_no_wr_popping_is_20 = ( wr_count_next_no_wr_popping == 5'd20 ); wire wr_count_next_is_20 = wr_popping ? 1'b0 : wr_count_next_no_wr_popping_is_20; wire [4:0] wr_limit_muxed; // muxed with simulation/emulation overrides wire [4:0] wr_limit_reg = wr_limit_muxed; // VCS coverage off assign ld2st_wr_busy_next = wr_count_next_is_20 || // busy next cycle? (wr_limit_reg != 5'd0 && // check ld2st_wr_limit if != 0 wr_count_next >= wr_limit_reg) ; // VCS coverage on assign wr_busy_in_int = ld2st_wr_pvld_in && ld2st_wr_busy_int; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_wr_busy_int <= 1'b0; ld2st_wr_count <= 5'd0; end else begin ld2st_wr_busy_int <= ld2st_wr_busy_next; if ( wr_reserving ^ wr_popping ) begin ld2st_wr_count <= wr_count_next; end //synopsys translate_off else if ( !(wr_reserving ^ wr_popping) ) begin end else begin ld2st_wr_count <= {5{`x_or_0}}; end //synopsys translate_on end end wire wr_pushing = wr_reserving; // data pushed same cycle as ld2st_wr_pvld_in // // RAM // reg [4:0] ld2st_wr_adr; // current write address // spyglass disable_block W484 // next ld2st_wr_adr if wr_pushing=1 wire [4:0] wr_adr_next = (ld2st_wr_adr == 5'd19) ? 5'd0 : (ld2st_wr_adr + 1'd1); // spyglass disable W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_wr_adr <= 5'd0; end else begin if ( wr_pushing ) begin ld2st_wr_adr <= wr_adr_next; end end end // spyglass enable_block W484 wire rd_popping; reg [4:0] ld2st_rd_adr; // read address this cycle wire ram_we = wr_pushing && (ld2st_wr_count > 5'd0 || !rd_popping); // note: write occurs next cycle wire ram_iwe = !wr_busy_in && ld2st_wr_pvld; wire [160:0] ld2st_rd_pd_p; // read data out of ram wire [31 : 0] pwrbus_ram_pd; // Adding parameter for fifogen to disable wr/rd contention assertion in ramgen. // Fifogen handles this by ignoring the data on the ram data out for that cycle. NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 ram ( .clk( nvdla_core_clk ) , .clk_mgated( nvdla_core_clk_mgated ) , .pwrbus_ram_pd ( pwrbus_ram_pd ) , .di ( ld2st_wr_pd ) , .iwe ( ram_iwe ) , .we ( ram_we ) , .wa ( ld2st_wr_adr ) , .ra ( (ld2st_wr_count == 0) ? 5'd20 : ld2st_rd_adr ) , .dout ( ld2st_rd_pd_p ) ); wire [4:0] rd_adr_next_popping = (ld2st_rd_adr == 5'd19) ? 5'd0 : (ld2st_rd_adr + 1'd1); // spyglass disable W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_rd_adr <= 5'd0; end else begin if ( rd_popping ) begin ld2st_rd_adr <= rd_adr_next_popping; end //synopsys translate_off else if ( !rd_popping ) begin end else begin ld2st_rd_adr <= {5{`x_or_0}}; end //synopsys translate_on end end // // SYNCHRONOUS BOUNDARY // assign wr_popping = rd_popping; // let it be seen immediately wire rd_pushing = wr_pushing; // let it be seen immediately // // READ SIDE // wire ld2st_rd_pvld_p; // data out of fifo is valid reg ld2st_rd_pvld_int; // internal copy of ld2st_rd_pvld assign ld2st_rd_pvld = ld2st_rd_pvld_int; assign rd_popping = ld2st_rd_pvld_p && !(ld2st_rd_pvld_int && !ld2st_rd_prdy); reg [4:0] ld2st_rd_count_p; // read-side fifo count // spyglass disable_block W164a W484 wire [4:0] rd_count_p_next_rd_popping = rd_pushing ? ld2st_rd_count_p : (ld2st_rd_count_p - 1'd1); wire [4:0] rd_count_p_next_no_rd_popping = rd_pushing ? (ld2st_rd_count_p + 1'd1) : ld2st_rd_count_p; // spyglass enable_block W164a W484 wire [4:0] rd_count_p_next = rd_popping ? rd_count_p_next_rd_popping : rd_count_p_next_no_rd_popping; assign ld2st_rd_pvld_p = ld2st_rd_count_p != 0 || rd_pushing; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_rd_count_p <= 5'd0; end else begin if ( rd_pushing || rd_popping ) begin ld2st_rd_count_p <= rd_count_p_next; end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin ld2st_rd_count_p <= {5{`x_or_0}}; end //synopsys translate_on end end reg [160:0] ld2st_rd_pd; // output data register wire rd_req_next = (ld2st_rd_pvld_p || (ld2st_rd_pvld_int && !ld2st_rd_prdy)) ; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ld2st_rd_pvld_int <= 1'b0; end else begin ld2st_rd_pvld_int <= rd_req_next; end end always @( posedge nvdla_core_clk_mgated ) begin if ( (rd_popping) ) begin ld2st_rd_pd <= ld2st_rd_pd_p; end //synopsys translate_off else if ( !((rd_popping)) ) begin end else begin ld2st_rd_pd <= {161{`x_or_0}}; end //synopsys translate_on end // // Read-side Idle Calculation // wire rd_idle = !ld2st_rd_pvld_int && !rd_pushing && ld2st_rd_count_p == 0; // // Write-Side Idle Calculation // wire ld2st_wr_idle_d0 = !ld2st_wr_pvld_in && rd_idle && !wr_pushing && ld2st_wr_count == 0; wire ld2st_wr_idle = ld2st_wr_idle_d0; // Master Clock Gating (SLCG) Enables // // plusarg for disabling this stuff: // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0; `endif `endif // synopsys translate_on assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (ld2st_wr_pvld_in && !ld2st_wr_busy_int) || (ld2st_wr_busy_int != ld2st_wr_busy_next)) || (rd_pushing || rd_popping || (ld2st_rd_pvld_int && ld2st_rd_prdy)) || (wr_pushing)) `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED || 1'b1 `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || master_clk_gating_disabled `endif `endif // synopsys translate_on ; // Simulation and Emulation Overrides of wr_limit(s) // `ifdef EMU `ifdef EMU_FIFO_CFG // Emulation Global Config Override // assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_BDMA_cq_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_BDMA_cq_wr_limit : 5'd0; `else // No Global Override for Emulation // assign wr_limit_muxed = 5'd0; `endif // EMU_FIFO_CFG `else // !EMU `ifdef SYNTH_LEVEL1_COMPILE // No Override for GCS Compiles // assign wr_limit_muxed = 5'd0; `else `ifdef SYNTHESIS // No Override for RTL Synthesis // assign wr_limit_muxed = 5'd0; `else // RTL Simulation Plusarg Override // VCS coverage off reg wr_limit_override; reg [4:0] wr_limit_override_value; assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 5'd0; `ifdef NV_ARCHPRO event reinit; initial begin $display("fifogen reinit initial block %m"); -> reinit; end `endif `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif wr_limit_override = 0; wr_limit_override_value = 0; // to keep viva happy with dangles if ( $test$plusargs( "NV_NVDLA_BDMA_cq_wr_limit" ) ) begin wr_limit_override = 1; $value$plusargs( "NV_NVDLA_BDMA_cq_wr_limit=%d", wr_limit_override_value); end end // VCS coverage on `endif `endif `endif // // Histogram of fifo depth (from write side's perspective) // // NOTE: it will reference `SIMTOP.perfmon_enabled, so that // has to at least be defined, though not initialized. // tbgen testbenches have it already and various // ways to turn it on and off. // `ifdef PERFMON_HISTOGRAM // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS perfmon_histogram perfmon ( .clk ( nvdla_core_clk ) , .max ( {27'd0, (wr_limit_reg == 5'd0) ? 5'd20 : wr_limit_reg} ) , .curr ( {27'd0, ld2st_wr_count} ) ); `endif `endif // synopsys translate_on `endif // spyglass disable_block W164a W164b W116 W484 W504 `ifdef SPYGLASS `else `ifdef FV_ASSERT_ON `else // synopsys translate_off `endif `ifdef ASSERT_ON `ifdef SPYGLASS wire disable_assert_plusarg = 1'b0; `else `ifdef FV_ASSERT_ON wire disable_assert_plusarg = 1'b0; `else wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS"); `endif `endif wire assert_enabled = 1'b1 && !disable_assert_plusarg; `endif `ifdef FV_ASSERT_ON `else // synopsys translate_on `endif `ifdef ASSERT_ON //synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS always @(assert_enabled) begin if ( assert_enabled === 1'b0 ) begin $display("Asserts are disabled for %m"); end end `endif `endif //synopsys translate_on `endif `endif // spyglass enable_block W164a W164b W116 W484 W504 //The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH // define is set. This is to aid fifogen team search for fifogen fifo // instance and module names in a given design. `ifdef FIFOGEN_MODULE_SEARCH NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y()); `endif // spyglass enable_block W401 -- clock is not input to module // synopsys dc_script_begin // set_boundary_optimization find(design, "NV_NVDLA_BDMA_cq") true // synopsys dc_script_end endmodule // NV_NVDLA_BDMA_cq // // Flop-Based RAM (with internal wr_reg) // module NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 ( clk , clk_mgated , pwrbus_ram_pd , di , iwe , we , wa , ra , dout ); input clk; // write clock input clk_mgated; // write clock mgated input [31 : 0] pwrbus_ram_pd; input [160:0] di; input iwe; input we; input [4:0] wa; input [4:0] ra; output [160:0] dout; `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30])); NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31])); `endif reg [160:0] di_d; // -wr_reg always @( posedge clk ) begin if ( iwe ) begin di_d <= di; // -wr_reg end end `ifdef EMU wire [160:0] dout_p; // we use an emulation ram here to save flops on the emulation board // so that the monstrous chip can fit :-) // reg [4:0] Wa0_vmw; reg we0_vmw; reg [160:0] Di0_vmw; always @( posedge clk ) begin Wa0_vmw <= wa; we0_vmw <= we; Di0_vmw <= di_d; end vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 emu_ram ( .Wa0( Wa0_vmw ) , .we0( we0_vmw ) , .Di0( Di0_vmw ) , .Ra0( ra ) , .Do0( dout_p ) ); assign dout = (ra == 20) ? di_d : dout_p; `else reg [160:0] ram_ff0; reg [160:0] ram_ff1; reg [160:0] ram_ff2; reg [160:0] ram_ff3; reg [160:0] ram_ff4; reg [160:0] ram_ff5; reg [160:0] ram_ff6; reg [160:0] ram_ff7; reg [160:0] ram_ff8; reg [160:0] ram_ff9; reg [160:0] ram_ff10; reg [160:0] ram_ff11; reg [160:0] ram_ff12; reg [160:0] ram_ff13; reg [160:0] ram_ff14; reg [160:0] ram_ff15; reg [160:0] ram_ff16; reg [160:0] ram_ff17; reg [160:0] ram_ff18; reg [160:0] ram_ff19; always @( posedge clk_mgated ) begin if ( we && wa == 5'd0 ) begin ram_ff0 <= di_d; end if ( we && wa == 5'd1 ) begin ram_ff1 <= di_d; end if ( we && wa == 5'd2 ) begin ram_ff2 <= di_d; end if ( we && wa == 5'd3 ) begin ram_ff3 <= di_d; end if ( we && wa == 5'd4 ) begin ram_ff4 <= di_d; end if ( we && wa == 5'd5 ) begin ram_ff5 <= di_d; end if ( we && wa == 5'd6 ) begin ram_ff6 <= di_d; end if ( we && wa == 5'd7 ) begin ram_ff7 <= di_d; end if ( we && wa == 5'd8 ) begin ram_ff8 <= di_d; end if ( we && wa == 5'd9 ) begin ram_ff9 <= di_d; end if ( we && wa == 5'd10 ) begin ram_ff10 <= di_d; end if ( we && wa == 5'd11 ) begin ram_ff11 <= di_d; end if ( we && wa == 5'd12 ) begin ram_ff12 <= di_d; end if ( we && wa == 5'd13 ) begin ram_ff13 <= di_d; end if ( we && wa == 5'd14 ) begin ram_ff14 <= di_d; end if ( we && wa == 5'd15 ) begin ram_ff15 <= di_d; end if ( we && wa == 5'd16 ) begin ram_ff16 <= di_d; end if ( we && wa == 5'd17 ) begin ram_ff17 <= di_d; end if ( we && wa == 5'd18 ) begin ram_ff18 <= di_d; end if ( we && wa == 5'd19 ) begin ram_ff19 <= di_d; end end reg [160:0] dout; always @(*) begin case( ra ) 5'd0: dout = ram_ff0; 5'd1: dout = ram_ff1; 5'd2: dout = ram_ff2; 5'd3: dout = ram_ff3; 5'd4: dout = ram_ff4; 5'd5: dout = ram_ff5; 5'd6: dout = ram_ff6; 5'd7: dout = ram_ff7; 5'd8: dout = ram_ff8; 5'd9: dout = ram_ff9; 5'd10: dout = ram_ff10; 5'd11: dout = ram_ff11; 5'd12: dout = ram_ff12; 5'd13: dout = ram_ff13; 5'd14: dout = ram_ff14; 5'd15: dout = ram_ff15; 5'd16: dout = ram_ff16; 5'd17: dout = ram_ff17; 5'd18: dout = ram_ff18; 5'd19: dout = ram_ff19; 5'd20: dout = di_d; //VCS coverage off default: dout = {161{`x_or_0}}; //VCS coverage on endcase end `endif // EMU endmodule // NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 // emulation model of flopram guts // `ifdef EMU module vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 ( Wa0, we0, Di0, Ra0, Do0 ); input [4:0] Wa0; input we0; input [160:0] Di0; input [4:0] Ra0; output [160:0] Do0; // Only visible during Spyglass to avoid blackboxes. `ifdef SPYGLASS_FLOPRAM assign Do0 = 161'd0; wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0); `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg [160:0] mem[19:0]; // expand mem for debug ease `ifdef EMU_EXPAND_FLOPRAM_MEM wire [160:0] Q0 = mem[0]; wire [160:0] Q1 = mem[1]; wire [160:0] Q2 = mem[2]; wire [160:0] Q3 = mem[3]; wire [160:0] Q4 = mem[4]; wire [160:0] Q5 = mem[5]; wire [160:0] Q6 = mem[6]; wire [160:0] Q7 = mem[7]; wire [160:0] Q8 = mem[8]; wire [160:0] Q9 = mem[9]; wire [160:0] Q10 = mem[10]; wire [160:0] Q11 = mem[11]; wire [160:0] Q12 = mem[12]; wire [160:0] Q13 = mem[13]; wire [160:0] Q14 = mem[14]; wire [160:0] Q15 = mem[15]; wire [160:0] Q16 = mem[16]; wire [160:0] Q17 = mem[17]; wire [160:0] Q18 = mem[18]; wire [160:0] Q19 = mem[19]; `endif // asynchronous ram writes always @(*) begin if ( we0 == 1'b1 ) begin #0.1; mem[Wa0] = Di0; end end assign Do0 = mem[Ra0]; `endif `endif // synopsys translate_on // synopsys dc_script_begin // synopsys dc_script_end // g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161] } endmodule // vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 //vmw: Memory vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 //vmw: Address-size 5 //vmw: Data-size 161 //vmw: Sensitivity level 1 //vmw: Ports W R //vmw: terminal we0 WriteEnable0 //vmw: terminal Wa0 address0 //vmw: terminal Di0[160:0] data0[160:0] //vmw: //vmw: terminal Ra0 address1 //vmw: terminal Do0[160:0] data1[160:0] //vmw: //qt: CELL vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 //qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1 //qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1 //qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1 //qt: //qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1 //qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1 //qt: `endif // EMU