// ================================================================ // NVDLA Open Source Project // // Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the // NVDLA Open Hardware License; Check "LICENSE" which comes with // this distribution for more information. // ================================================================ // File Name: NV_NVDLA_CDMA_WT_fifo.v `define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1 `include "simulate_x_tick.vh" module NV_NVDLA_CDMA_WT_fifo ( clk , reset_ , wr_ready , wr_req , wr_data , rd_ready , rd_req , rd_data , pwrbus_ram_pd ); // spyglass disable_block W401 -- clock is not input to module input clk; input reset_; output wr_ready; input wr_req; input [5:0] wr_data; input rd_ready; output rd_req; output [5:0] rd_data; input [31:0] pwrbus_ram_pd; // Master Clock Gating (SLCG) // // We gate the clock(s) when idle or stalled. // This allows us to turn off numerous miscellaneous flops // that don't get gated during synthesis for one reason or another. // // We gate write side and read side separately. // If the fifo is synchronous, we also gate the ram separately, but if // -master_clk_gated_unified or -status_reg/-status_logic_reg is specified, // then we use one clk gate for write, ram, and read. // wire clk_mgated_enable; // assigned by code at end of this module wire clk_mgated; // used only in synchronous fifos NV_CLK_gate_power clk_mgate( .clk(clk), .reset_(reset_), .clk_en(clk_mgated_enable), .clk_gated(clk_mgated) ); // // WRITE SIDE // wire wr_reserving; reg wr_req_in; // registered wr_req reg [5:0] wr_data_in; // registered wr_data reg wr_busy_in; // inputs being held this cycle? assign wr_ready = !wr_busy_in; wire wr_busy_next; // fwd: fifo busy next? // factor for better timing with distant wr_req signal wire wr_busy_in_next_wr_req_eq_1 = wr_busy_next; wire wr_busy_in_next_wr_req_eq_0 = (wr_req_in && wr_busy_next) && !wr_reserving; wire wr_busy_in_next = (wr_req? wr_busy_in_next_wr_req_eq_1 : wr_busy_in_next_wr_req_eq_0) ; wire wr_busy_in_int; always @( posedge clk or negedge reset_ ) begin if ( !reset_ ) begin wr_req_in <= 1'b0; wr_busy_in <= 1'b0; end else begin wr_busy_in <= wr_busy_in_next; if ( !wr_busy_in_int ) begin wr_req_in <= wr_req && !wr_busy_in; end //synopsys translate_off else if ( wr_busy_in_int ) begin end else begin wr_req_in <= `x_or_0; end //synopsys translate_on end end always @( posedge clk ) begin if ( !wr_busy_in && wr_req ) begin wr_data_in <= wr_data; end //synopsys translate_off else if ( !(!wr_busy_in && wr_req) ) begin end else begin wr_data_in <= {6{`x_or_0}}; end //synopsys translate_on end reg wr_busy_int; // copy for internal use assign wr_reserving = wr_req_in && !wr_busy_int; // reserving write space? reg wr_popping; // fwd: write side sees pop? reg [7:0] wr_count; // write-side count wire [7:0] wr_count_next_wr_popping = wr_reserving ? wr_count : (wr_count - 1'd1); // spyglass disable W164a W484 wire [7:0] wr_count_next_no_wr_popping = wr_reserving ? (wr_count + 1'd1) : wr_count; // spyglass disable W164a W484 wire [7:0] wr_count_next = wr_popping ? wr_count_next_wr_popping : wr_count_next_no_wr_popping; wire wr_count_next_no_wr_popping_is_128 = ( wr_count_next_no_wr_popping == 8'd128 ); wire wr_count_next_is_128 = wr_popping ? 1'b0 : wr_count_next_no_wr_popping_is_128; wire [7:0] wr_limit_muxed; // muxed with simulation/emulation overrides wire [7:0] wr_limit_reg = wr_limit_muxed; // VCS coverage off assign wr_busy_next = wr_count_next_is_128 || // busy next cycle? (wr_limit_reg != 8'd0 && // check wr_limit if != 0 wr_count_next >= wr_limit_reg) ; // VCS coverage on assign wr_busy_in_int = wr_req_in && wr_busy_int; always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin wr_busy_int <= 1'b0; wr_count <= 8'd0; end else begin wr_busy_int <= wr_busy_next; if ( wr_reserving ^ wr_popping ) begin wr_count <= wr_count_next; end //synopsys translate_off else if ( !(wr_reserving ^ wr_popping) ) begin end else begin wr_count <= {8{`x_or_0}}; end //synopsys translate_on end end wire wr_pushing = wr_reserving; // data pushed same cycle as wr_req_in // // RAM // reg [6:0] wr_adr; // current write address wire [6:0] rd_adr_p; // read address to use for ram wire [5:0] rd_data_p; // read data directly out of ram wire rd_enable; wire ore; wire [31 : 0] pwrbus_ram_pd; // Adding parameter for fifogen to disable wr/rd contention assertion in ramgen. // Fifogen handles this by ignoring the data on the ram data out for that cycle. nv_ram_rwsp_128x6 #(`FORCE_CONTENTION_ASSERTION_RESET_ACTIVE) ram ( .clk ( clk ) , .pwrbus_ram_pd ( pwrbus_ram_pd ) , .wa ( wr_adr ) , .we ( wr_pushing ) , .di ( wr_data_in ) , .ra ( rd_adr_p ) , .re ( rd_enable ) , .dout ( rd_data_p ) , .ore ( ore ) ); // next wr_adr if wr_pushing=1 wire [6:0] wr_adr_next = wr_adr + 1'd1; // spyglass disable W484 // spyglass disable_block W484 always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin wr_adr <= 7'd0; end else begin if ( wr_pushing ) begin wr_adr <= wr_adr_next; end //synopsys translate_off else if ( !(wr_pushing) ) begin end else begin wr_adr <= {7{`x_or_0}}; end //synopsys translate_on end end // spyglass enable_block W484 wire rd_popping; // read side doing pop this cycle? reg [6:0] rd_adr; // current read address // next read address wire [6:0] rd_adr_next = rd_adr + 1'd1; // spyglass disable W484 assign rd_adr_p = rd_popping ? rd_adr_next : rd_adr; // for ram // spyglass disable_block W484 always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin rd_adr <= 7'd0; end else begin if ( rd_popping ) begin rd_adr <= rd_adr_next; end //synopsys translate_off else if ( !rd_popping ) begin end else begin rd_adr <= {7{`x_or_0}}; end //synopsys translate_on end end // spyglass enable_block W484 // // SYNCHRONOUS BOUNDARY // always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin wr_popping <= 1'b0; end else begin wr_popping <= rd_popping; end end reg rd_pushing; always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin rd_pushing <= 1'b0; end else begin rd_pushing <= wr_pushing; // let data go into ram first end end // // READ SIDE // reg rd_req_p; // data out of fifo is valid reg rd_req_int; // internal copy of rd_req assign rd_req = rd_req_int; assign rd_popping = rd_req_p && !(rd_req_int && !rd_ready); reg [7:0] rd_count_p; // read-side fifo count // spyglass disable_block W164a W484 wire [7:0] rd_count_p_next_rd_popping = rd_pushing ? rd_count_p : (rd_count_p - 1'd1); wire [7:0] rd_count_p_next_no_rd_popping = rd_pushing ? (rd_count_p + 1'd1) : rd_count_p; // spyglass enable_block W164a W484 wire [7:0] rd_count_p_next = rd_popping ? rd_count_p_next_rd_popping : rd_count_p_next_no_rd_popping; wire rd_count_p_next_rd_popping_not_0 = rd_count_p_next_rd_popping != 0; wire rd_count_p_next_no_rd_popping_not_0 = rd_count_p_next_no_rd_popping != 0; wire rd_count_p_next_not_0 = rd_popping ? rd_count_p_next_rd_popping_not_0 : rd_count_p_next_no_rd_popping_not_0; assign rd_enable = ((rd_count_p_next_not_0) && ((~rd_req_p) || rd_popping)); // anytime data's there and not stalled always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin rd_count_p <= 8'd0; rd_req_p <= 1'b0; end else begin if ( rd_pushing || rd_popping ) begin rd_count_p <= rd_count_p_next; end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin rd_count_p <= {8{`x_or_0}}; end //synopsys translate_on if ( rd_pushing || rd_popping ) begin rd_req_p <= (rd_count_p_next_not_0); end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin rd_req_p <= `x_or_0; end //synopsys translate_on end end wire rd_req_next = (rd_req_p || (rd_req_int && !rd_ready)) ; always @( posedge clk_mgated or negedge reset_ ) begin if ( !reset_ ) begin rd_req_int <= 1'b0; end else begin rd_req_int <= rd_req_next; end end assign rd_data = rd_data_p; assign ore = rd_popping; // Master Clock Gating (SLCG) Enables // // plusarg for disabling this stuff: // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0; `endif `endif // synopsys translate_on assign clk_mgated_enable = ((wr_reserving || wr_pushing || rd_popping || wr_popping || (wr_req_in && !wr_busy_int) || (wr_busy_int != wr_busy_next)) || (rd_pushing || rd_popping || (rd_req_int && rd_ready) || wr_pushing)) `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED || 1'b1 `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || master_clk_gating_disabled `endif `endif // synopsys translate_on ; // Simulation and Emulation Overrides of wr_limit(s) // `ifdef EMU `ifdef EMU_FIFO_CFG // Emulation Global Config Override // assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_CDMA_WT_fifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_CDMA_WT_fifo_wr_limit : 8'd0; `else // No Global Override for Emulation // assign wr_limit_muxed = 8'd0; `endif // EMU_FIFO_CFG `else // !EMU `ifdef SYNTH_LEVEL1_COMPILE // No Override for GCS Compiles // assign wr_limit_muxed = 8'd0; `else `ifdef SYNTHESIS // No Override for RTL Synthesis // assign wr_limit_muxed = 8'd0; `else // RTL Simulation Plusarg Override // VCS coverage off reg wr_limit_override; reg [7:0] wr_limit_override_value; assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 8'd0; `ifdef NV_ARCHPRO event reinit; initial begin $display("fifogen reinit initial block %m"); -> reinit; end `endif `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif wr_limit_override = 0; wr_limit_override_value = 0; // to keep viva happy with dangles if ( $test$plusargs( "NV_NVDLA_CDMA_WT_fifo_wr_limit" ) ) begin wr_limit_override = 1; $value$plusargs( "NV_NVDLA_CDMA_WT_fifo_wr_limit=%d", wr_limit_override_value); end end // VCS coverage on `endif `endif `endif // // Histogram of fifo depth (from write side's perspective) // // NOTE: it will reference `SIMTOP.perfmon_enabled, so that // has to at least be defined, though not initialized. // tbgen testbenches have it already and various // ways to turn it on and off. // `ifdef PERFMON_HISTOGRAM // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS perfmon_histogram perfmon ( .clk ( clk ) , .max ( {24'd0, (wr_limit_reg == 8'd0) ? 8'd128 : wr_limit_reg} ) , .curr ( {24'd0, wr_count} ) ); `endif `endif // synopsys translate_on `endif // spyglass disable_block W164a W164b W116 W484 W504 `ifdef SPYGLASS `else `ifdef FV_ASSERT_ON `else // synopsys translate_off `endif `ifdef ASSERT_ON `ifdef SPYGLASS wire disable_assert_plusarg = 1'b0; `else `ifdef FV_ASSERT_ON wire disable_assert_plusarg = 1'b0; `else wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS"); `endif `endif wire assert_enabled = 1'b1 && !disable_assert_plusarg; `endif `ifdef FV_ASSERT_ON `else // synopsys translate_on `endif `ifdef ASSERT_ON //synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS always @(assert_enabled) begin if ( assert_enabled === 1'b0 ) begin $display("Asserts are disabled for %m"); end end `endif `endif //synopsys translate_on `endif `endif // spyglass enable_block W164a W164b W116 W484 W504 //The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH // define is set. This is to aid fifogen team search for fifogen fifo // instance and module names in a given design. `ifdef FIFOGEN_MODULE_SEARCH NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y()); `endif // spyglass enable_block W401 -- clock is not input to module // synopsys dc_script_begin // set_boundary_optimization find(design, "NV_NVDLA_CDMA_WT_fifo") true // synopsys dc_script_end endmodule // NV_NVDLA_CDMA_WT_fifo