// ================================================================ // NVDLA Open Source Project // // Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the // NVDLA Open Hardware License; Check "LICENSE" which comes with // this distribution for more information. // ================================================================ // File Name: NV_NVDLA_NOCIF_DRAM_READ_eg.v `include "simulate_x_tick.vh" // ================================================================ // NVDLA Open Source Project // // Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the // NVDLA Open Hardware License; Check "LICENSE" which comes with // this distribution for more information. // ================================================================ // File Name: NV_NVDLA_define.h /////////////////////////////////////////////////// // //#if ( NVDLA_PRIMARY_MEMIF_WIDTH == 512 ) // #define LARGE_MEMBUS //#endif //#if ( NVDLA_PRIMARY_MEMIF_WIDTH == 64 ) // #define SMALL_MEMBUS //#endif module NV_NVDLA_NOCIF_DRAM_READ_eg ( nvdla_core_clk //|< i ,nvdla_core_rstn //|< i //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print(",cq_rd${i}_pd\n"); //:print(",cq_rd${i}_pvld\n"); //:print(",cq_rd${i}_prdy\n"); //:print(",mcif2client${i}_rd_rsp_ready\n"); //:print(",mcif2client${i}_rd_rsp_pd\n"); //:print(",mcif2client${i}_rd_rsp_valid\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) ,cq_rd0_pd ,cq_rd0_pvld ,cq_rd0_prdy ,mcif2client0_rd_rsp_ready ,mcif2client0_rd_rsp_pd ,mcif2client0_rd_rsp_valid ,cq_rd1_pd ,cq_rd1_pvld ,cq_rd1_prdy ,mcif2client1_rd_rsp_ready ,mcif2client1_rd_rsp_pd ,mcif2client1_rd_rsp_valid ,cq_rd2_pd ,cq_rd2_pvld ,cq_rd2_prdy ,mcif2client2_rd_rsp_ready ,mcif2client2_rd_rsp_pd ,mcif2client2_rd_rsp_valid ,cq_rd3_pd ,cq_rd3_pvld ,cq_rd3_prdy ,mcif2client3_rd_rsp_ready ,mcif2client3_rd_rsp_pd ,mcif2client3_rd_rsp_valid ,cq_rd4_pd ,cq_rd4_pvld ,cq_rd4_prdy ,mcif2client4_rd_rsp_ready ,mcif2client4_rd_rsp_pd ,mcif2client4_rd_rsp_valid ,cq_rd5_pd ,cq_rd5_pvld ,cq_rd5_prdy ,mcif2client5_rd_rsp_ready ,mcif2client5_rd_rsp_pd ,mcif2client5_rd_rsp_valid ,cq_rd6_pd ,cq_rd6_pvld ,cq_rd6_prdy ,mcif2client6_rd_rsp_ready ,mcif2client6_rd_rsp_pd ,mcif2client6_rd_rsp_valid //| eperl: generated_end (DO NOT EDIT ABOVE) ,noc2mcif_axi_r_rdata //|< i ,noc2mcif_axi_r_rid //|< i ,noc2mcif_axi_r_rlast //|< i ,noc2mcif_axi_r_rvalid //|< i ,pwrbus_ram_pd //|< i ,eg2ig_axi_vld //|> o ,noc2mcif_axi_r_rready //|> o ); //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print("output mcif2client${i}_rd_rsp_valid;\n"); //:print("input mcif2client${i}_rd_rsp_ready;\n"); //:print qq( //:output [64 +(( 64 )/8/8)-1:0] mcif2client${i}_rd_rsp_pd; //:); //:print("input cq_rd${i}_pvld;\n"); //:print("output cq_rd${i}_prdy;\n"); //:print("input [6:0] cq_rd${i}_pd;\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) output mcif2client0_rd_rsp_valid; input mcif2client0_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client0_rd_rsp_pd; input cq_rd0_pvld; output cq_rd0_prdy; input [6:0] cq_rd0_pd; output mcif2client1_rd_rsp_valid; input mcif2client1_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client1_rd_rsp_pd; input cq_rd1_pvld; output cq_rd1_prdy; input [6:0] cq_rd1_pd; output mcif2client2_rd_rsp_valid; input mcif2client2_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client2_rd_rsp_pd; input cq_rd2_pvld; output cq_rd2_prdy; input [6:0] cq_rd2_pd; output mcif2client3_rd_rsp_valid; input mcif2client3_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client3_rd_rsp_pd; input cq_rd3_pvld; output cq_rd3_prdy; input [6:0] cq_rd3_pd; output mcif2client4_rd_rsp_valid; input mcif2client4_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client4_rd_rsp_pd; input cq_rd4_pvld; output cq_rd4_prdy; input [6:0] cq_rd4_pd; output mcif2client5_rd_rsp_valid; input mcif2client5_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client5_rd_rsp_pd; input cq_rd5_pvld; output cq_rd5_prdy; input [6:0] cq_rd5_pd; output mcif2client6_rd_rsp_valid; input mcif2client6_rd_rsp_ready; output [64 +(( 64 )/8/8)-1:0] mcif2client6_rd_rsp_pd; input cq_rd6_pvld; output cq_rd6_prdy; input [6:0] cq_rd6_pd; //| eperl: generated_end (DO NOT EDIT ABOVE) input nvdla_core_clk; input nvdla_core_rstn; input noc2mcif_axi_r_rvalid; /* data valid */ output noc2mcif_axi_r_rready; /* data return handshake */ input [7:0] noc2mcif_axi_r_rid; input noc2mcif_axi_r_rlast; input [64 -1:0] noc2mcif_axi_r_rdata; input [31:0] pwrbus_ram_pd; output eg2ig_axi_vld; reg [1:0] arb_cnt; reg [6:0] arb_cq_pd; reg [64 -1:0] arb_data; reg [1:0] arb_wen; //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print("reg [1:0] ctt${i}_cnt;\n"); //:print("reg [6:0] ctt${i}_cq_pd;\n"); //:print("reg ctt${i}_vld;\n"); //:print("wire ctt${i}_accept;\n"); //:print("wire ctt${i}_last_beat;\n"); //:print("wire ctt${i}_rdy;\n"); //:print qq( //:wire [64 -1:0] dma${i}_data; //:); //:print qq( //:wire [64/2-1:0] dma${i}_data0; //:); //:print qq( //:wire [64/2-1:0] dma${i}_data1; //:); //:print("wire dma${i}_is_last_odd;\n"); //:print("wire dma${i}_last_odd;\n"); //:print("wire [1:0] dma${i}_mask;\n"); //:print qq( //:wire [64/2-1:0] dma${i}_mdata0; //:); //:print qq( //:wire [64/2-1:0] dma${i}_mdata1; //:); //:print qq( //:wire [64 +(( 64 )/8/8)-1:0] dma${i}_pd; //:); //:print("wire dma${i}_rdy;\n"); //:print("wire dma${i}_vld;\n"); //:print("wire mon_dma${i}_lodd;\n"); //:print qq(wire [64/2:0] ro${i}_rd0_pd;\n); //:print qq(wire [64/2:0] ro${i}_rd1_pd;\n); //:print("wire ro${i}_rd0_prdy;\n"); //:print("wire ro${i}_rd0_pvld;\n"); //:print("wire ro${i}_wr_rdy;\n"); //:print("wire ro${i}_wr0_prdy;\n"); //:print("wire ro${i}_wr1_prdy;\n"); //:print qq(wire [64 -1:0] rq${i}_rd_pd;\n); //:print("wire rq${i}_rd_prdy;\n"); //:print("wire rq${i}_rd_pvld;\n"); //:print("wire src${i}_gnt;\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) reg [1:0] ctt0_cnt; reg [6:0] ctt0_cq_pd; reg ctt0_vld; wire ctt0_accept; wire ctt0_last_beat; wire ctt0_rdy; wire [64 -1:0] dma0_data; wire [64/2-1:0] dma0_data0; wire [64/2-1:0] dma0_data1; wire dma0_is_last_odd; wire dma0_last_odd; wire [1:0] dma0_mask; wire [64/2-1:0] dma0_mdata0; wire [64/2-1:0] dma0_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma0_pd; wire dma0_rdy; wire dma0_vld; wire mon_dma0_lodd; wire [64/2:0] ro0_rd0_pd; wire [64/2:0] ro0_rd1_pd; wire ro0_rd0_prdy; wire ro0_rd0_pvld; wire ro0_wr_rdy; wire ro0_wr0_prdy; wire ro0_wr1_prdy; wire [64 -1:0] rq0_rd_pd; wire rq0_rd_prdy; wire rq0_rd_pvld; wire src0_gnt; reg [1:0] ctt1_cnt; reg [6:0] ctt1_cq_pd; reg ctt1_vld; wire ctt1_accept; wire ctt1_last_beat; wire ctt1_rdy; wire [64 -1:0] dma1_data; wire [64/2-1:0] dma1_data0; wire [64/2-1:0] dma1_data1; wire dma1_is_last_odd; wire dma1_last_odd; wire [1:0] dma1_mask; wire [64/2-1:0] dma1_mdata0; wire [64/2-1:0] dma1_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma1_pd; wire dma1_rdy; wire dma1_vld; wire mon_dma1_lodd; wire [64/2:0] ro1_rd0_pd; wire [64/2:0] ro1_rd1_pd; wire ro1_rd0_prdy; wire ro1_rd0_pvld; wire ro1_wr_rdy; wire ro1_wr0_prdy; wire ro1_wr1_prdy; wire [64 -1:0] rq1_rd_pd; wire rq1_rd_prdy; wire rq1_rd_pvld; wire src1_gnt; reg [1:0] ctt2_cnt; reg [6:0] ctt2_cq_pd; reg ctt2_vld; wire ctt2_accept; wire ctt2_last_beat; wire ctt2_rdy; wire [64 -1:0] dma2_data; wire [64/2-1:0] dma2_data0; wire [64/2-1:0] dma2_data1; wire dma2_is_last_odd; wire dma2_last_odd; wire [1:0] dma2_mask; wire [64/2-1:0] dma2_mdata0; wire [64/2-1:0] dma2_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma2_pd; wire dma2_rdy; wire dma2_vld; wire mon_dma2_lodd; wire [64/2:0] ro2_rd0_pd; wire [64/2:0] ro2_rd1_pd; wire ro2_rd0_prdy; wire ro2_rd0_pvld; wire ro2_wr_rdy; wire ro2_wr0_prdy; wire ro2_wr1_prdy; wire [64 -1:0] rq2_rd_pd; wire rq2_rd_prdy; wire rq2_rd_pvld; wire src2_gnt; reg [1:0] ctt3_cnt; reg [6:0] ctt3_cq_pd; reg ctt3_vld; wire ctt3_accept; wire ctt3_last_beat; wire ctt3_rdy; wire [64 -1:0] dma3_data; wire [64/2-1:0] dma3_data0; wire [64/2-1:0] dma3_data1; wire dma3_is_last_odd; wire dma3_last_odd; wire [1:0] dma3_mask; wire [64/2-1:0] dma3_mdata0; wire [64/2-1:0] dma3_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma3_pd; wire dma3_rdy; wire dma3_vld; wire mon_dma3_lodd; wire [64/2:0] ro3_rd0_pd; wire [64/2:0] ro3_rd1_pd; wire ro3_rd0_prdy; wire ro3_rd0_pvld; wire ro3_wr_rdy; wire ro3_wr0_prdy; wire ro3_wr1_prdy; wire [64 -1:0] rq3_rd_pd; wire rq3_rd_prdy; wire rq3_rd_pvld; wire src3_gnt; reg [1:0] ctt4_cnt; reg [6:0] ctt4_cq_pd; reg ctt4_vld; wire ctt4_accept; wire ctt4_last_beat; wire ctt4_rdy; wire [64 -1:0] dma4_data; wire [64/2-1:0] dma4_data0; wire [64/2-1:0] dma4_data1; wire dma4_is_last_odd; wire dma4_last_odd; wire [1:0] dma4_mask; wire [64/2-1:0] dma4_mdata0; wire [64/2-1:0] dma4_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma4_pd; wire dma4_rdy; wire dma4_vld; wire mon_dma4_lodd; wire [64/2:0] ro4_rd0_pd; wire [64/2:0] ro4_rd1_pd; wire ro4_rd0_prdy; wire ro4_rd0_pvld; wire ro4_wr_rdy; wire ro4_wr0_prdy; wire ro4_wr1_prdy; wire [64 -1:0] rq4_rd_pd; wire rq4_rd_prdy; wire rq4_rd_pvld; wire src4_gnt; reg [1:0] ctt5_cnt; reg [6:0] ctt5_cq_pd; reg ctt5_vld; wire ctt5_accept; wire ctt5_last_beat; wire ctt5_rdy; wire [64 -1:0] dma5_data; wire [64/2-1:0] dma5_data0; wire [64/2-1:0] dma5_data1; wire dma5_is_last_odd; wire dma5_last_odd; wire [1:0] dma5_mask; wire [64/2-1:0] dma5_mdata0; wire [64/2-1:0] dma5_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma5_pd; wire dma5_rdy; wire dma5_vld; wire mon_dma5_lodd; wire [64/2:0] ro5_rd0_pd; wire [64/2:0] ro5_rd1_pd; wire ro5_rd0_prdy; wire ro5_rd0_pvld; wire ro5_wr_rdy; wire ro5_wr0_prdy; wire ro5_wr1_prdy; wire [64 -1:0] rq5_rd_pd; wire rq5_rd_prdy; wire rq5_rd_pvld; wire src5_gnt; reg [1:0] ctt6_cnt; reg [6:0] ctt6_cq_pd; reg ctt6_vld; wire ctt6_accept; wire ctt6_last_beat; wire ctt6_rdy; wire [64 -1:0] dma6_data; wire [64/2-1:0] dma6_data0; wire [64/2-1:0] dma6_data1; wire dma6_is_last_odd; wire dma6_last_odd; wire [1:0] dma6_mask; wire [64/2-1:0] dma6_mdata0; wire [64/2-1:0] dma6_mdata1; wire [64 +(( 64 )/8/8)-1:0] dma6_pd; wire dma6_rdy; wire dma6_vld; wire mon_dma6_lodd; wire [64/2:0] ro6_rd0_pd; wire [64/2:0] ro6_rd1_pd; wire ro6_rd0_prdy; wire ro6_rd0_pvld; wire ro6_wr_rdy; wire ro6_wr0_prdy; wire ro6_wr1_prdy; wire [64 -1:0] rq6_rd_pd; wire rq6_rd_prdy; wire rq6_rd_pvld; wire src6_gnt; //| eperl: generated_end (DO NOT EDIT ABOVE) wire [3:0] ipipe_axi_axid; wire [64 -1:0] ipipe_axi_data; wire [64 +3:0] ipipe_axi_pd; wire ipipe_axi_rdy; wire ipipe_axi_vld; wire last_odd; wire [64 +3:0] noc2mcif_axi_r_pd; wire [4:0] noc2mcif_axi_r_rid_NC; wire noc2mcif_axi_r_rlast_NC; wire arb_cq_fdrop; wire arb_cq_ldrop; wire [1:0] arb_cq_lens; wire arb_cq_ltran; wire arb_cq_odd; wire arb_cq_swizzle; wire [(64/2)-1:0] arb_data0; wire [(64/2)-1:0] arb_data0_swizzled; wire [(64/2)-1:0] arb_data1; wire [(64/2)-1:0] arb_data1_swizzled; wire arb_first_beat; wire arb_last_beat; wire [(64/2):0] arb_pd0; wire [(64/2):0] arb_pd1; wire arb_wen0_swizzled; wire arb_wen1_swizzled; //stepheng,remove //// TIE-OFFs //assign noc2mcif_axi_r_rresp_NC = noc2mcif_axi_r_rresp; assign noc2mcif_axi_r_rlast_NC = noc2mcif_axi_r_rlast; //assign noc2mcif_axi_r_ruser_NC = noc2mcif_axi_r_ruser; assign noc2mcif_axi_r_rid_NC = noc2mcif_axi_r_rid[7:3]; assign noc2mcif_axi_r_pd = {noc2mcif_axi_r_rid[3:0],noc2mcif_axi_r_rdata}; NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p1 pipe_p1 ( .nvdla_core_clk (nvdla_core_clk) //|< i ,.nvdla_core_rstn (nvdla_core_rstn) //|< i ,.ipipe_axi_rdy (ipipe_axi_rdy) //|< w ,.noc2mcif_axi_r_pd (noc2mcif_axi_r_pd[64 +3:0]) //|< w ,.noc2mcif_axi_r_rvalid (noc2mcif_axi_r_rvalid) //|< i ,.ipipe_axi_pd (ipipe_axi_pd[64 +3:0]) //|> w ,.ipipe_axi_vld (ipipe_axi_vld) //|> w ,.noc2mcif_axi_r_rready (noc2mcif_axi_r_rready) //|> o ); //my $dw = eval(64 +4); //&eperl::pipe(" -os -wid $dw -do ipipe_axi_pd -vo ipipe_axi_vld -ri noc2mcif_axi_r_rready -vi noc2mcif_axi_r_rvalid -di noc2mcif_axi_r_pd -ro ipipe_axi_rdy"); wire [64 -1:0] rq_wr_pd; assign eg2ig_axi_vld = ipipe_axi_vld & ipipe_axi_rdy; assign {ipipe_axi_axid,ipipe_axi_data} = ipipe_axi_pd; assign rq_wr_pd = ipipe_axi_data; //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print qq(wire rq${i}_wr_pvld, rq${i}_wr_prdy;\n); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) wire rq0_wr_pvld, rq0_wr_prdy; wire rq1_wr_pvld, rq1_wr_prdy; wire rq2_wr_pvld, rq2_wr_prdy; wire rq3_wr_pvld, rq3_wr_prdy; wire rq4_wr_pvld, rq4_wr_prdy; wire rq5_wr_pvld, rq5_wr_prdy; wire rq6_wr_pvld, rq6_wr_prdy; //| eperl: generated_end (DO NOT EDIT ABOVE) assign ipipe_axi_rdy = 0 //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //: print ("| (rq${i}_wr_pvld & rq${i}_wr_prdy)\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) | (rq0_wr_pvld & rq0_wr_prdy) | (rq1_wr_pvld & rq1_wr_prdy) | (rq2_wr_pvld & rq2_wr_prdy) | (rq3_wr_pvld & rq3_wr_prdy) | (rq4_wr_pvld & rq4_wr_prdy) | (rq5_wr_pvld & rq5_wr_prdy) | (rq6_wr_pvld & rq6_wr_prdy) //| eperl: generated_end (DO NOT EDIT ABOVE) ; //:my $k = 7; //:my $i; //:my @dma_index = (0, 1, 1,1, 1,0, 1, 1, 0, 1,0,0,0,0,0,0); //:my @client_id = (0,8,9,3,2,4,1,5,7,6,0,0,0,0,0,0); //:my @remap_clientid = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); //:my $nindex = 0; //:for ($i=0;$i<16;$i++) { //: if ($dma_index[$i] != 0) { //: $remap_clientid[$nindex] = $client_id[$i]; //: $nindex++; //: } //:} //:for($i=0;$i<$k;$i++) { //:print("assign rq${i}_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == $remap_clientid[$i]);\n"); //:print qq(wire [64 -1:0] rq${i}_wr_pd = rq_wr_pd;\n); //:print("NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo${i} (\n"); //:print(".nvdla_core_clk(nvdla_core_clk)\n"); //:print(",.nvdla_core_rstn(nvdla_core_rstn)\n"); //:print(",.rq_wr_prdy(rq${i}_wr_prdy)\n"); //:print(",.rq_wr_pvld(rq${i}_wr_pvld)\n"); //:print(",.rq_wr_pd(rq${i}_wr_pd)\n"); //:print(",.rq_rd_prdy(rq${i}_rd_prdy)\n"); //:print(",.rq_rd_pvld(rq${i}_rd_pvld)\n"); //:print(",.rq_rd_pd(rq${i}_rd_pd)\n"); //:print(",.pwrbus_ram_pd(pwrbus_ram_pd)\n"); //:print(");\n"); //:} //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print("wire src${i}_req = rq${i}_rd_pvld && ctt${i}_vld && ro${i}_wr_rdy;\n"); //:print("assign ctt${i}_rdy = src${i}_gnt;\n"); //:print("assign rq${i}_rd_prdy = src${i}_gnt;\n"); //:} //:my $k = 7; //:my $i; //:for ($i=$k; $i<16;$i++) { //:print qq( //: assign src${i}_req = 1'b0; //: wire src${i}_gnt; //:); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) assign rq0_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 8); wire [64 -1:0] rq0_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq0_wr_prdy) ,.rq_wr_pvld(rq0_wr_pvld) ,.rq_wr_pd(rq0_wr_pd) ,.rq_rd_prdy(rq0_rd_prdy) ,.rq_rd_pvld(rq0_rd_pvld) ,.rq_rd_pd(rq0_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq1_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 9); wire [64 -1:0] rq1_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq1_wr_prdy) ,.rq_wr_pvld(rq1_wr_pvld) ,.rq_wr_pd(rq1_wr_pd) ,.rq_rd_prdy(rq1_rd_prdy) ,.rq_rd_pvld(rq1_rd_pvld) ,.rq_rd_pd(rq1_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq2_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 3); wire [64 -1:0] rq2_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo2 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq2_wr_prdy) ,.rq_wr_pvld(rq2_wr_pvld) ,.rq_wr_pd(rq2_wr_pd) ,.rq_rd_prdy(rq2_rd_prdy) ,.rq_rd_pvld(rq2_rd_pvld) ,.rq_rd_pd(rq2_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq3_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 2); wire [64 -1:0] rq3_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo3 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq3_wr_prdy) ,.rq_wr_pvld(rq3_wr_pvld) ,.rq_wr_pd(rq3_wr_pd) ,.rq_rd_prdy(rq3_rd_prdy) ,.rq_rd_pvld(rq3_rd_pvld) ,.rq_rd_pd(rq3_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq4_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 1); wire [64 -1:0] rq4_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo4 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq4_wr_prdy) ,.rq_wr_pvld(rq4_wr_pvld) ,.rq_wr_pd(rq4_wr_pd) ,.rq_rd_prdy(rq4_rd_prdy) ,.rq_rd_pvld(rq4_rd_pvld) ,.rq_rd_pd(rq4_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq5_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 5); wire [64 -1:0] rq5_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo5 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq5_wr_prdy) ,.rq_wr_pvld(rq5_wr_pvld) ,.rq_wr_pd(rq5_wr_pd) ,.rq_rd_prdy(rq5_rd_prdy) ,.rq_rd_pvld(rq5_rd_pvld) ,.rq_rd_pd(rq5_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign rq6_wr_pvld = ipipe_axi_vld & (ipipe_axi_axid == 6); wire [64 -1:0] rq6_wr_pd = rq_wr_pd; NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo lat_fifo6 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rq_wr_prdy(rq6_wr_prdy) ,.rq_wr_pvld(rq6_wr_pvld) ,.rq_wr_pd(rq6_wr_pd) ,.rq_rd_prdy(rq6_rd_prdy) ,.rq_rd_pvld(rq6_rd_pvld) ,.rq_rd_pd(rq6_rd_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire src0_req = rq0_rd_pvld && ctt0_vld && ro0_wr_rdy; assign ctt0_rdy = src0_gnt; assign rq0_rd_prdy = src0_gnt; wire src1_req = rq1_rd_pvld && ctt1_vld && ro1_wr_rdy; assign ctt1_rdy = src1_gnt; assign rq1_rd_prdy = src1_gnt; wire src2_req = rq2_rd_pvld && ctt2_vld && ro2_wr_rdy; assign ctt2_rdy = src2_gnt; assign rq2_rd_prdy = src2_gnt; wire src3_req = rq3_rd_pvld && ctt3_vld && ro3_wr_rdy; assign ctt3_rdy = src3_gnt; assign rq3_rd_prdy = src3_gnt; wire src4_req = rq4_rd_pvld && ctt4_vld && ro4_wr_rdy; assign ctt4_rdy = src4_gnt; assign rq4_rd_prdy = src4_gnt; wire src5_req = rq5_rd_pvld && ctt5_vld && ro5_wr_rdy; assign ctt5_rdy = src5_gnt; assign rq5_rd_prdy = src5_gnt; wire src6_req = rq6_rd_pvld && ctt6_vld && ro6_wr_rdy; assign ctt6_rdy = src6_gnt; assign rq6_rd_prdy = src6_gnt; assign src7_req = 1'b0; wire src7_gnt; assign src8_req = 1'b0; wire src8_gnt; assign src9_req = 1'b0; wire src9_gnt; assign src10_req = 1'b0; wire src10_gnt; assign src11_req = 1'b0; wire src11_gnt; assign src12_req = 1'b0; wire src12_gnt; assign src13_req = 1'b0; wire src13_gnt; assign src14_req = 1'b0; wire src14_gnt; assign src15_req = 1'b0; wire src15_gnt; //| eperl: generated_end (DO NOT EDIT ABOVE) read_eg_arb u_read_eg_arb ( .req0 (src0_req) //|< w ,.req1 (src1_req) //|< w ,.req2 (src2_req) //|< w ,.req3 (src3_req) //|< w ,.req4 (src4_req) //|< w ,.req5 (src5_req) //|< w ,.req6 (src6_req) //|< w ,.req7 (src7_req) //|< w ,.req8 (src8_req) //|< w ,.req9 (src9_req) //|< w ,.req10 (src10_req) //|< w ,.req11 (src11_req) //|< w ,.req12 (src12_req) //|< w ,.req13 (src13_req) //|< w ,.req14 (src14_req) //|< w ,.req15 (src15_req) //|< w ,.wt0 ({8{1'b1}}) //|< ? ,.wt1 ({8{1'b1}}) //|< ? ,.wt2 ({8{1'b1}}) //|< ? ,.wt3 ({8{1'b1}}) //|< ? ,.wt4 ({8{1'b1}}) //|< ? ,.wt5 ({8{1'b1}}) //|< ? ,.wt6 ({8{1'b1}}) //|< ? ,.wt7 ({8{1'b1}}) //|< ? ,.wt8 ({8{1'b1}}) //|< ? ,.wt9 ({8{1'b1}}) //|< ? ,.wt10 ({8{1'b1}}) //|< ? ,.wt11 ({8{1'b1}}) //|< ? ,.wt12 ({8{1'b1}}) //|< ? ,.wt13 ({8{1'b1}}) //|< ? ,.wt14 ({8{1'b1}}) //|< ? ,.wt15 ({8{1'b1}}) //|< ? ,.clk (nvdla_core_clk) //|< i ,.reset_ (nvdla_core_rstn) //|< i ,.gnt0 (src0_gnt) //|> w ,.gnt1 (src1_gnt) //|> w ,.gnt2 (src2_gnt) //|> w ,.gnt3 (src3_gnt) //|> w ,.gnt4 (src4_gnt) //|> w ,.gnt5 (src5_gnt) //|> w ,.gnt6 (src6_gnt) //|> w ,.gnt7 (src7_gnt) //|> w ,.gnt8 (src8_gnt) //|> w ,.gnt9 (src9_gnt) //|> w ,.gnt10 (src10_gnt) //|> w ,.gnt11 (src11_gnt) //|> w ,.gnt12 (src12_gnt) //|> w ,.gnt13 (src13_gnt) //|> w ,.gnt14 (src14_gnt) //|> w ,.gnt15 (src15_gnt) //|> w ); always @(src0_gnt or rq0_rd_pd //:my $k = 7; //:my $i; //:for($i=1;$i<$k;$i++) { //:print("or src${i}_gnt or rq${i}_rd_pd\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) or src1_gnt or rq1_rd_pd or src2_gnt or rq2_rd_pd or src3_gnt or rq3_rd_pd or src4_gnt or rq4_rd_pd or src5_gnt or rq5_rd_pd or src6_gnt or rq6_rd_pd //| eperl: generated_end (DO NOT EDIT ABOVE) ) begin case (1'b1) //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //: print("src${i}_gnt: arb_data = rq${i}_rd_pd;\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) src0_gnt: arb_data = rq0_rd_pd; src1_gnt: arb_data = rq1_rd_pd; src2_gnt: arb_data = rq2_rd_pd; src3_gnt: arb_data = rq3_rd_pd; src4_gnt: arb_data = rq4_rd_pd; src5_gnt: arb_data = rq5_rd_pd; src6_gnt: arb_data = rq6_rd_pd; //| eperl: generated_end (DO NOT EDIT ABOVE) default : begin arb_data[64 -1:0] = {64{`x_or_0}}; end //VCS coverage on endcase //spyglass enable_block W171 W226 end always @(src0_gnt or ctt0_cq_pd //:my $k = 7; //:my $i; //:for($i=1;$i<$k;$i++) { //:print("or src${i}_gnt or ctt${i}_cq_pd\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) or src1_gnt or ctt1_cq_pd or src2_gnt or ctt2_cq_pd or src3_gnt or ctt3_cq_pd or src4_gnt or ctt4_cq_pd or src5_gnt or ctt5_cq_pd or src6_gnt or ctt6_cq_pd //| eperl: generated_end (DO NOT EDIT ABOVE) ) begin case (1'b1) //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //: print("src${i}_gnt: arb_cq_pd = ctt${i}_cq_pd;\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) src0_gnt: arb_cq_pd = ctt0_cq_pd; src1_gnt: arb_cq_pd = ctt1_cq_pd; src2_gnt: arb_cq_pd = ctt2_cq_pd; src3_gnt: arb_cq_pd = ctt3_cq_pd; src4_gnt: arb_cq_pd = ctt4_cq_pd; src5_gnt: arb_cq_pd = ctt5_cq_pd; src6_gnt: arb_cq_pd = ctt6_cq_pd; //| eperl: generated_end (DO NOT EDIT ABOVE) default : begin arb_cq_pd = {64{`x_or_0}}; end //VCS coverage on endcase //spyglass enable_block W171 W226 end always @(src0_gnt or ctt0_cnt //:my $k = 7; //:my $i; //:for($i=1;$i<$k;$i++) { //:print("or src${i}_gnt or ctt${i}_cnt\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) or src1_gnt or ctt1_cnt or src2_gnt or ctt2_cnt or src3_gnt or ctt3_cnt or src4_gnt or ctt4_cnt or src5_gnt or ctt5_cnt or src6_gnt or ctt6_cnt //| eperl: generated_end (DO NOT EDIT ABOVE) ) begin case (1'b1) //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //: print("src${i}_gnt: arb_cnt = ctt${i}_cnt;\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) src0_gnt: arb_cnt = ctt0_cnt; src1_gnt: arb_cnt = ctt1_cnt; src2_gnt: arb_cnt = ctt2_cnt; src3_gnt: arb_cnt = ctt3_cnt; src4_gnt: arb_cnt = ctt4_cnt; src5_gnt: arb_cnt = ctt5_cnt; src6_gnt: arb_cnt = ctt6_cnt; //| eperl: generated_end (DO NOT EDIT ABOVE) default : begin arb_cnt = {64{`x_or_0}}; end //VCS coverage on endcase //spyglass enable_block W171 W226 end // PKT_UNPACK_WIRE( nocif_read_ig2eg , arb_cq_ , arb_cq_pd ) assign arb_cq_lens[1:0] = arb_cq_pd[1:0]; assign arb_cq_swizzle = arb_cq_pd[2]; assign arb_cq_odd = arb_cq_pd[3]; assign arb_cq_ltran = arb_cq_pd[4]; assign arb_cq_fdrop = arb_cq_pd[5]; assign arb_cq_ldrop = arb_cq_pd[6]; always @( arb_first_beat or arb_cq_fdrop or arb_last_beat or arb_cq_ldrop ) begin if (arb_first_beat && arb_cq_fdrop) begin arb_wen = 2'b10; end else if (arb_last_beat && arb_cq_ldrop) begin arb_wen = 2'b01; end else begin arb_wen = 2'b11; end end assign last_odd = arb_last_beat && arb_cq_ltran && arb_cq_odd; assign arb_data0 = {arb_data[(64/2)-1:0]}; assign arb_data1 = {arb_data[64 -1:(64/2)]}; assign arb_data0_swizzled = arb_cq_swizzle ? arb_data1 : arb_data0; assign arb_data1_swizzled = arb_cq_swizzle ? arb_data0 : arb_data1; assign arb_pd0 = {last_odd,arb_data0_swizzled}; assign arb_pd1 = {1'b0 ,arb_data1_swizzled}; assign arb_wen0_swizzled = arb_cq_swizzle ? arb_wen[1] : arb_wen[0]; assign arb_wen1_swizzled = arb_cq_swizzle ? arb_wen[0] : arb_wen[1]; assign arb_last_beat = (arb_cnt==arb_cq_lens); assign arb_first_beat = (arb_cnt==0); //:my $k = 7; //:my $i; //:my $j=(( 64 )/8/8); //:for($i=0;$i<$k;$i++) { //:print qq( //:assign ro${i}_wr_rdy = ro${i}_wr0_prdy & ro${i}_wr1_prdy; //:wire ro${i}_wr0_pvld = src${i}_gnt & arb_wen0_swizzled & ro${i}_wr1_prdy; //:wire ro${i}_rd1_prdy; //:wire [64/2:0] ro${i}_wr0_pd = arb_pd0; //:NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro${i}_fifo0 ( //:.nvdla_core_clk(nvdla_core_clk) //:,.nvdla_core_rstn(nvdla_core_rstn) //:,.ro_wr_prdy(ro${i}_wr0_prdy) //:,.ro_wr_pvld(ro${i}_wr0_pvld) //:,.ro_wr_pd(ro${i}_wr0_pd) //:,.ro_rd_prdy(ro${i}_rd0_prdy) //:,.ro_rd_pvld(ro${i}_rd0_pvld) //:,.ro_rd_pd(ro${i}_rd0_pd) //:,.pwrbus_ram_pd(pwrbus_ram_pd) //:); //:); //:print("wire ro${i}_wr1_pvld = src${i}_gnt & arb_wen1_swizzled & ro${i}_wr0_prdy;\n"); //:print qq(wire [64/2:0] ro${i}_wr1_pd = arb_pd1;\n); //:print qq( //:NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro${i}_fifo1 ( //:.nvdla_core_clk(nvdla_core_clk) //:,.nvdla_core_rstn(nvdla_core_rstn) //:,.ro_wr_prdy(ro${i}_wr1_prdy) //:,.ro_wr_pvld(ro${i}_wr1_pvld) //:,.ro_wr_pd(ro${i}_wr1_pd) //:,.ro_rd_prdy(ro${i}_rd1_prdy) //:,.ro_rd_pvld(ro${i}_rd1_pvld) //:,.ro_rd_pd(ro${i}_rd1_pd) //:,.pwrbus_ram_pd(pwrbus_ram_pd) //:); //:); //:print("assign dma${i}_vld = ro${i}_rd0_pvld & (dma${i}_last_odd ? 1'b1 : ro${i}_rd1_pvld);\n"); //:print("assign {dma${i}_last_odd,dma${i}_data0} = ro${i}_rd0_pd;\n"); //:print("assign {mon_dma${i}_lodd,dma${i}_data1} = ro${i}_rd1_pd;\n"); //:print("assign dma${i}_is_last_odd = ro${i}_rd0_pvld & dma${i}_last_odd;\n"); //:print("assign dma${i}_mask = dma${i}_is_last_odd ? 2'b01: 2'b11;\n"); //:print qq(assign dma${i}_mdata0 = {64/2{dma${i}_mask[0]}} & dma${i}_data0;\n); //:print qq(assign dma${i}_mdata1 = {64/2{dma${i}_mask[1]}} & dma${i}_data1;\n); //:if ($j > 1) { //: print("assign dma${i}_pd = {dma${i}_mask,dma${i}_data};\n"); //:} elsif ($j == 1) { //: print("assign dma${i}_pd = {1'b1,dma${i}_data};\n"); //:} //:print("assign dma${i}_data = {dma${i}_mdata1,dma${i}_mdata0};\n"); //:print("assign ro${i}_rd0_prdy = dma${i}_rdy & (dma${i}_is_last_odd ? 1'b1: ro${i}_rd1_pvld);\n"); //:print("assign ro${i}_rd1_prdy = dma${i}_rdy & (dma${i}_is_last_odd ? 1'b1: ro${i}_rd0_pvld);\n"); //:print qq( //:NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp${i} ( //:.nvdla_core_clk(nvdla_core_clk) //:,.nvdla_core_rstn(nvdla_core_rstn) //:,.rd_rsp_rdy(mcif2client${i}_rd_rsp_ready) //:,.dma_pd(dma${i}_pd) //:,.dma_vld(dma${i}_vld) //:,.rd_rsp_pd(mcif2client${i}_rd_rsp_pd) //:,.rd_rsp_valid(mcif2client${i}_rd_rsp_valid) //:,.dma_rdy(dma${i}_rdy) //:); //:); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) assign ro0_wr_rdy = ro0_wr0_prdy & ro0_wr1_prdy; wire ro0_wr0_pvld = src0_gnt & arb_wen0_swizzled & ro0_wr1_prdy; wire ro0_rd1_prdy; wire [64/2:0] ro0_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro0_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro0_wr0_prdy) ,.ro_wr_pvld(ro0_wr0_pvld) ,.ro_wr_pd(ro0_wr0_pd) ,.ro_rd_prdy(ro0_rd0_prdy) ,.ro_rd_pvld(ro0_rd0_pvld) ,.ro_rd_pd(ro0_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro0_wr1_pvld = src0_gnt & arb_wen1_swizzled & ro0_wr0_prdy; wire [64/2:0] ro0_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro0_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro0_wr1_prdy) ,.ro_wr_pvld(ro0_wr1_pvld) ,.ro_wr_pd(ro0_wr1_pd) ,.ro_rd_prdy(ro0_rd1_prdy) ,.ro_rd_pvld(ro0_rd1_pvld) ,.ro_rd_pd(ro0_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma0_vld = ro0_rd0_pvld & (dma0_last_odd ? 1'b1 : ro0_rd1_pvld); assign {dma0_last_odd,dma0_data0} = ro0_rd0_pd; assign {mon_dma0_lodd,dma0_data1} = ro0_rd1_pd; assign dma0_is_last_odd = ro0_rd0_pvld & dma0_last_odd; assign dma0_mask = dma0_is_last_odd ? 2'b01: 2'b11; assign dma0_mdata0 = {64/2{dma0_mask[0]}} & dma0_data0; assign dma0_mdata1 = {64/2{dma0_mask[1]}} & dma0_data1; assign dma0_pd = {1'b1,dma0_data}; assign dma0_data = {dma0_mdata1,dma0_mdata0}; assign ro0_rd0_prdy = dma0_rdy & (dma0_is_last_odd ? 1'b1: ro0_rd1_pvld); assign ro0_rd1_prdy = dma0_rdy & (dma0_is_last_odd ? 1'b1: ro0_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client0_rd_rsp_ready) ,.dma_pd(dma0_pd) ,.dma_vld(dma0_vld) ,.rd_rsp_pd(mcif2client0_rd_rsp_pd) ,.rd_rsp_valid(mcif2client0_rd_rsp_valid) ,.dma_rdy(dma0_rdy) ); assign ro1_wr_rdy = ro1_wr0_prdy & ro1_wr1_prdy; wire ro1_wr0_pvld = src1_gnt & arb_wen0_swizzled & ro1_wr1_prdy; wire ro1_rd1_prdy; wire [64/2:0] ro1_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro1_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro1_wr0_prdy) ,.ro_wr_pvld(ro1_wr0_pvld) ,.ro_wr_pd(ro1_wr0_pd) ,.ro_rd_prdy(ro1_rd0_prdy) ,.ro_rd_pvld(ro1_rd0_pvld) ,.ro_rd_pd(ro1_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro1_wr1_pvld = src1_gnt & arb_wen1_swizzled & ro1_wr0_prdy; wire [64/2:0] ro1_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro1_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro1_wr1_prdy) ,.ro_wr_pvld(ro1_wr1_pvld) ,.ro_wr_pd(ro1_wr1_pd) ,.ro_rd_prdy(ro1_rd1_prdy) ,.ro_rd_pvld(ro1_rd1_pvld) ,.ro_rd_pd(ro1_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma1_vld = ro1_rd0_pvld & (dma1_last_odd ? 1'b1 : ro1_rd1_pvld); assign {dma1_last_odd,dma1_data0} = ro1_rd0_pd; assign {mon_dma1_lodd,dma1_data1} = ro1_rd1_pd; assign dma1_is_last_odd = ro1_rd0_pvld & dma1_last_odd; assign dma1_mask = dma1_is_last_odd ? 2'b01: 2'b11; assign dma1_mdata0 = {64/2{dma1_mask[0]}} & dma1_data0; assign dma1_mdata1 = {64/2{dma1_mask[1]}} & dma1_data1; assign dma1_pd = {1'b1,dma1_data}; assign dma1_data = {dma1_mdata1,dma1_mdata0}; assign ro1_rd0_prdy = dma1_rdy & (dma1_is_last_odd ? 1'b1: ro1_rd1_pvld); assign ro1_rd1_prdy = dma1_rdy & (dma1_is_last_odd ? 1'b1: ro1_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client1_rd_rsp_ready) ,.dma_pd(dma1_pd) ,.dma_vld(dma1_vld) ,.rd_rsp_pd(mcif2client1_rd_rsp_pd) ,.rd_rsp_valid(mcif2client1_rd_rsp_valid) ,.dma_rdy(dma1_rdy) ); assign ro2_wr_rdy = ro2_wr0_prdy & ro2_wr1_prdy; wire ro2_wr0_pvld = src2_gnt & arb_wen0_swizzled & ro2_wr1_prdy; wire ro2_rd1_prdy; wire [64/2:0] ro2_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro2_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro2_wr0_prdy) ,.ro_wr_pvld(ro2_wr0_pvld) ,.ro_wr_pd(ro2_wr0_pd) ,.ro_rd_prdy(ro2_rd0_prdy) ,.ro_rd_pvld(ro2_rd0_pvld) ,.ro_rd_pd(ro2_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro2_wr1_pvld = src2_gnt & arb_wen1_swizzled & ro2_wr0_prdy; wire [64/2:0] ro2_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro2_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro2_wr1_prdy) ,.ro_wr_pvld(ro2_wr1_pvld) ,.ro_wr_pd(ro2_wr1_pd) ,.ro_rd_prdy(ro2_rd1_prdy) ,.ro_rd_pvld(ro2_rd1_pvld) ,.ro_rd_pd(ro2_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma2_vld = ro2_rd0_pvld & (dma2_last_odd ? 1'b1 : ro2_rd1_pvld); assign {dma2_last_odd,dma2_data0} = ro2_rd0_pd; assign {mon_dma2_lodd,dma2_data1} = ro2_rd1_pd; assign dma2_is_last_odd = ro2_rd0_pvld & dma2_last_odd; assign dma2_mask = dma2_is_last_odd ? 2'b01: 2'b11; assign dma2_mdata0 = {64/2{dma2_mask[0]}} & dma2_data0; assign dma2_mdata1 = {64/2{dma2_mask[1]}} & dma2_data1; assign dma2_pd = {1'b1,dma2_data}; assign dma2_data = {dma2_mdata1,dma2_mdata0}; assign ro2_rd0_prdy = dma2_rdy & (dma2_is_last_odd ? 1'b1: ro2_rd1_pvld); assign ro2_rd1_prdy = dma2_rdy & (dma2_is_last_odd ? 1'b1: ro2_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp2 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client2_rd_rsp_ready) ,.dma_pd(dma2_pd) ,.dma_vld(dma2_vld) ,.rd_rsp_pd(mcif2client2_rd_rsp_pd) ,.rd_rsp_valid(mcif2client2_rd_rsp_valid) ,.dma_rdy(dma2_rdy) ); assign ro3_wr_rdy = ro3_wr0_prdy & ro3_wr1_prdy; wire ro3_wr0_pvld = src3_gnt & arb_wen0_swizzled & ro3_wr1_prdy; wire ro3_rd1_prdy; wire [64/2:0] ro3_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro3_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro3_wr0_prdy) ,.ro_wr_pvld(ro3_wr0_pvld) ,.ro_wr_pd(ro3_wr0_pd) ,.ro_rd_prdy(ro3_rd0_prdy) ,.ro_rd_pvld(ro3_rd0_pvld) ,.ro_rd_pd(ro3_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro3_wr1_pvld = src3_gnt & arb_wen1_swizzled & ro3_wr0_prdy; wire [64/2:0] ro3_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro3_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro3_wr1_prdy) ,.ro_wr_pvld(ro3_wr1_pvld) ,.ro_wr_pd(ro3_wr1_pd) ,.ro_rd_prdy(ro3_rd1_prdy) ,.ro_rd_pvld(ro3_rd1_pvld) ,.ro_rd_pd(ro3_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma3_vld = ro3_rd0_pvld & (dma3_last_odd ? 1'b1 : ro3_rd1_pvld); assign {dma3_last_odd,dma3_data0} = ro3_rd0_pd; assign {mon_dma3_lodd,dma3_data1} = ro3_rd1_pd; assign dma3_is_last_odd = ro3_rd0_pvld & dma3_last_odd; assign dma3_mask = dma3_is_last_odd ? 2'b01: 2'b11; assign dma3_mdata0 = {64/2{dma3_mask[0]}} & dma3_data0; assign dma3_mdata1 = {64/2{dma3_mask[1]}} & dma3_data1; assign dma3_pd = {1'b1,dma3_data}; assign dma3_data = {dma3_mdata1,dma3_mdata0}; assign ro3_rd0_prdy = dma3_rdy & (dma3_is_last_odd ? 1'b1: ro3_rd1_pvld); assign ro3_rd1_prdy = dma3_rdy & (dma3_is_last_odd ? 1'b1: ro3_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp3 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client3_rd_rsp_ready) ,.dma_pd(dma3_pd) ,.dma_vld(dma3_vld) ,.rd_rsp_pd(mcif2client3_rd_rsp_pd) ,.rd_rsp_valid(mcif2client3_rd_rsp_valid) ,.dma_rdy(dma3_rdy) ); assign ro4_wr_rdy = ro4_wr0_prdy & ro4_wr1_prdy; wire ro4_wr0_pvld = src4_gnt & arb_wen0_swizzled & ro4_wr1_prdy; wire ro4_rd1_prdy; wire [64/2:0] ro4_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro4_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro4_wr0_prdy) ,.ro_wr_pvld(ro4_wr0_pvld) ,.ro_wr_pd(ro4_wr0_pd) ,.ro_rd_prdy(ro4_rd0_prdy) ,.ro_rd_pvld(ro4_rd0_pvld) ,.ro_rd_pd(ro4_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro4_wr1_pvld = src4_gnt & arb_wen1_swizzled & ro4_wr0_prdy; wire [64/2:0] ro4_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro4_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro4_wr1_prdy) ,.ro_wr_pvld(ro4_wr1_pvld) ,.ro_wr_pd(ro4_wr1_pd) ,.ro_rd_prdy(ro4_rd1_prdy) ,.ro_rd_pvld(ro4_rd1_pvld) ,.ro_rd_pd(ro4_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma4_vld = ro4_rd0_pvld & (dma4_last_odd ? 1'b1 : ro4_rd1_pvld); assign {dma4_last_odd,dma4_data0} = ro4_rd0_pd; assign {mon_dma4_lodd,dma4_data1} = ro4_rd1_pd; assign dma4_is_last_odd = ro4_rd0_pvld & dma4_last_odd; assign dma4_mask = dma4_is_last_odd ? 2'b01: 2'b11; assign dma4_mdata0 = {64/2{dma4_mask[0]}} & dma4_data0; assign dma4_mdata1 = {64/2{dma4_mask[1]}} & dma4_data1; assign dma4_pd = {1'b1,dma4_data}; assign dma4_data = {dma4_mdata1,dma4_mdata0}; assign ro4_rd0_prdy = dma4_rdy & (dma4_is_last_odd ? 1'b1: ro4_rd1_pvld); assign ro4_rd1_prdy = dma4_rdy & (dma4_is_last_odd ? 1'b1: ro4_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp4 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client4_rd_rsp_ready) ,.dma_pd(dma4_pd) ,.dma_vld(dma4_vld) ,.rd_rsp_pd(mcif2client4_rd_rsp_pd) ,.rd_rsp_valid(mcif2client4_rd_rsp_valid) ,.dma_rdy(dma4_rdy) ); assign ro5_wr_rdy = ro5_wr0_prdy & ro5_wr1_prdy; wire ro5_wr0_pvld = src5_gnt & arb_wen0_swizzled & ro5_wr1_prdy; wire ro5_rd1_prdy; wire [64/2:0] ro5_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro5_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro5_wr0_prdy) ,.ro_wr_pvld(ro5_wr0_pvld) ,.ro_wr_pd(ro5_wr0_pd) ,.ro_rd_prdy(ro5_rd0_prdy) ,.ro_rd_pvld(ro5_rd0_pvld) ,.ro_rd_pd(ro5_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro5_wr1_pvld = src5_gnt & arb_wen1_swizzled & ro5_wr0_prdy; wire [64/2:0] ro5_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro5_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro5_wr1_prdy) ,.ro_wr_pvld(ro5_wr1_pvld) ,.ro_wr_pd(ro5_wr1_pd) ,.ro_rd_prdy(ro5_rd1_prdy) ,.ro_rd_pvld(ro5_rd1_pvld) ,.ro_rd_pd(ro5_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma5_vld = ro5_rd0_pvld & (dma5_last_odd ? 1'b1 : ro5_rd1_pvld); assign {dma5_last_odd,dma5_data0} = ro5_rd0_pd; assign {mon_dma5_lodd,dma5_data1} = ro5_rd1_pd; assign dma5_is_last_odd = ro5_rd0_pvld & dma5_last_odd; assign dma5_mask = dma5_is_last_odd ? 2'b01: 2'b11; assign dma5_mdata0 = {64/2{dma5_mask[0]}} & dma5_data0; assign dma5_mdata1 = {64/2{dma5_mask[1]}} & dma5_data1; assign dma5_pd = {1'b1,dma5_data}; assign dma5_data = {dma5_mdata1,dma5_mdata0}; assign ro5_rd0_prdy = dma5_rdy & (dma5_is_last_odd ? 1'b1: ro5_rd1_pvld); assign ro5_rd1_prdy = dma5_rdy & (dma5_is_last_odd ? 1'b1: ro5_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp5 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client5_rd_rsp_ready) ,.dma_pd(dma5_pd) ,.dma_vld(dma5_vld) ,.rd_rsp_pd(mcif2client5_rd_rsp_pd) ,.rd_rsp_valid(mcif2client5_rd_rsp_valid) ,.dma_rdy(dma5_rdy) ); assign ro6_wr_rdy = ro6_wr0_prdy & ro6_wr1_prdy; wire ro6_wr0_pvld = src6_gnt & arb_wen0_swizzled & ro6_wr1_prdy; wire ro6_rd1_prdy; wire [64/2:0] ro6_wr0_pd = arb_pd0; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro6_fifo0 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro6_wr0_prdy) ,.ro_wr_pvld(ro6_wr0_pvld) ,.ro_wr_pd(ro6_wr0_pd) ,.ro_rd_prdy(ro6_rd0_prdy) ,.ro_rd_pvld(ro6_rd0_pvld) ,.ro_rd_pd(ro6_rd0_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); wire ro6_wr1_pvld = src6_gnt & arb_wen1_swizzled & ro6_wr0_prdy; wire [64/2:0] ro6_wr1_pd = arb_pd1; NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ro6_fifo1 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.ro_wr_prdy(ro6_wr1_prdy) ,.ro_wr_pvld(ro6_wr1_pvld) ,.ro_wr_pd(ro6_wr1_pd) ,.ro_rd_prdy(ro6_rd1_prdy) ,.ro_rd_pvld(ro6_rd1_pvld) ,.ro_rd_pd(ro6_rd1_pd) ,.pwrbus_ram_pd(pwrbus_ram_pd) ); assign dma6_vld = ro6_rd0_pvld & (dma6_last_odd ? 1'b1 : ro6_rd1_pvld); assign {dma6_last_odd,dma6_data0} = ro6_rd0_pd; assign {mon_dma6_lodd,dma6_data1} = ro6_rd1_pd; assign dma6_is_last_odd = ro6_rd0_pvld & dma6_last_odd; assign dma6_mask = dma6_is_last_odd ? 2'b01: 2'b11; assign dma6_mdata0 = {64/2{dma6_mask[0]}} & dma6_data0; assign dma6_mdata1 = {64/2{dma6_mask[1]}} & dma6_data1; assign dma6_pd = {1'b1,dma6_data}; assign dma6_data = {dma6_mdata1,dma6_mdata0}; assign ro6_rd0_prdy = dma6_rdy & (dma6_is_last_odd ? 1'b1: ro6_rd1_pvld); assign ro6_rd1_prdy = dma6_rdy & (dma6_is_last_odd ? 1'b1: ro6_rd0_pvld); NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 pipe_pp6 ( .nvdla_core_clk(nvdla_core_clk) ,.nvdla_core_rstn(nvdla_core_rstn) ,.rd_rsp_rdy(mcif2client6_rd_rsp_ready) ,.dma_pd(dma6_pd) ,.dma_vld(dma6_vld) ,.rd_rsp_pd(mcif2client6_rd_rsp_pd) ,.rd_rsp_valid(mcif2client6_rd_rsp_valid) ,.dma_rdy(dma6_rdy) ); //| eperl: generated_end (DO NOT EDIT ABOVE) //my $dw = eval(64 +2); //&eperl::pipe("-is -wid $dw -vo mcif2client${i}_rd_rsp_valid -do mcif2client${i}_rd_rsp_pd -ro dma${i}_rdy -vi dma${i}_vld -di dma${i}_pd -ri mcif2client${i}_rd_rsp_ready"); //:my $k = 7; //:my $i; //:for($i=0;$i<$k;$i++) { //:print("assign ctt${i}_last_beat = src${i}_gnt & arb_last_beat;\n"); //:print("assign cq_rd${i}_prdy = (ctt${i}_rdy & ctt${i}_last_beat) || !ctt${i}_vld;\n"); //:print("always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin\n"); //:print(" if (!nvdla_core_rstn) begin\n"); //:print(" ctt${i}_vld <= 1'b0;\n"); //:print(" end else begin\n"); //:print(" if ((cq_rd${i}_prdy) == 1'b1) begin\n"); //:print(" ctt${i}_vld <= cq_rd${i}_pvld;\n"); //:print(" end\n"); //:print(" end\n"); //:print("end\n"); //:print("always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin\n"); //:print(" if (!nvdla_core_rstn) begin\n"); //:print(" ctt${i}_cnt <= {2{1'b0}};\n"); //:print(" end else begin\n"); //:print(" if (cq_rd${i}_pvld && cq_rd${i}_prdy) begin \n"); //:print(" ctt${i}_cnt <= 0;\n"); //:print(" end else if (ctt${i}_accept) begin\n"); //:print(" ctt${i}_cnt <= ctt${i}_cnt + 1;\n"); //:print(" end\n"); //:print(" end\n"); //:print("end\n"); //:print("assign ctt${i}_accept = ctt${i}_vld & ctt${i}_rdy;\n"); //:print("always @(posedge nvdla_core_clk) begin\n"); //:print(" if (cq_rd${i}_pvld && cq_rd${i}_prdy) begin\n"); //:print(" ctt${i}_cq_pd <= cq_rd${i}_pd;\n"); //:print(" end\n"); //:print("end\n"); //:} //| eperl: generated_beg (DO NOT EDIT BELOW) assign ctt0_last_beat = src0_gnt & arb_last_beat; assign cq_rd0_prdy = (ctt0_rdy & ctt0_last_beat) || !ctt0_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt0_vld <= 1'b0; end else begin if ((cq_rd0_prdy) == 1'b1) begin ctt0_vld <= cq_rd0_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt0_cnt <= {2{1'b0}}; end else begin if (cq_rd0_pvld && cq_rd0_prdy) begin ctt0_cnt <= 0; end else if (ctt0_accept) begin ctt0_cnt <= ctt0_cnt + 1; end end end assign ctt0_accept = ctt0_vld & ctt0_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd0_pvld && cq_rd0_prdy) begin ctt0_cq_pd <= cq_rd0_pd; end end assign ctt1_last_beat = src1_gnt & arb_last_beat; assign cq_rd1_prdy = (ctt1_rdy & ctt1_last_beat) || !ctt1_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt1_vld <= 1'b0; end else begin if ((cq_rd1_prdy) == 1'b1) begin ctt1_vld <= cq_rd1_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt1_cnt <= {2{1'b0}}; end else begin if (cq_rd1_pvld && cq_rd1_prdy) begin ctt1_cnt <= 0; end else if (ctt1_accept) begin ctt1_cnt <= ctt1_cnt + 1; end end end assign ctt1_accept = ctt1_vld & ctt1_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd1_pvld && cq_rd1_prdy) begin ctt1_cq_pd <= cq_rd1_pd; end end assign ctt2_last_beat = src2_gnt & arb_last_beat; assign cq_rd2_prdy = (ctt2_rdy & ctt2_last_beat) || !ctt2_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt2_vld <= 1'b0; end else begin if ((cq_rd2_prdy) == 1'b1) begin ctt2_vld <= cq_rd2_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt2_cnt <= {2{1'b0}}; end else begin if (cq_rd2_pvld && cq_rd2_prdy) begin ctt2_cnt <= 0; end else if (ctt2_accept) begin ctt2_cnt <= ctt2_cnt + 1; end end end assign ctt2_accept = ctt2_vld & ctt2_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd2_pvld && cq_rd2_prdy) begin ctt2_cq_pd <= cq_rd2_pd; end end assign ctt3_last_beat = src3_gnt & arb_last_beat; assign cq_rd3_prdy = (ctt3_rdy & ctt3_last_beat) || !ctt3_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt3_vld <= 1'b0; end else begin if ((cq_rd3_prdy) == 1'b1) begin ctt3_vld <= cq_rd3_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt3_cnt <= {2{1'b0}}; end else begin if (cq_rd3_pvld && cq_rd3_prdy) begin ctt3_cnt <= 0; end else if (ctt3_accept) begin ctt3_cnt <= ctt3_cnt + 1; end end end assign ctt3_accept = ctt3_vld & ctt3_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd3_pvld && cq_rd3_prdy) begin ctt3_cq_pd <= cq_rd3_pd; end end assign ctt4_last_beat = src4_gnt & arb_last_beat; assign cq_rd4_prdy = (ctt4_rdy & ctt4_last_beat) || !ctt4_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt4_vld <= 1'b0; end else begin if ((cq_rd4_prdy) == 1'b1) begin ctt4_vld <= cq_rd4_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt4_cnt <= {2{1'b0}}; end else begin if (cq_rd4_pvld && cq_rd4_prdy) begin ctt4_cnt <= 0; end else if (ctt4_accept) begin ctt4_cnt <= ctt4_cnt + 1; end end end assign ctt4_accept = ctt4_vld & ctt4_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd4_pvld && cq_rd4_prdy) begin ctt4_cq_pd <= cq_rd4_pd; end end assign ctt5_last_beat = src5_gnt & arb_last_beat; assign cq_rd5_prdy = (ctt5_rdy & ctt5_last_beat) || !ctt5_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt5_vld <= 1'b0; end else begin if ((cq_rd5_prdy) == 1'b1) begin ctt5_vld <= cq_rd5_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt5_cnt <= {2{1'b0}}; end else begin if (cq_rd5_pvld && cq_rd5_prdy) begin ctt5_cnt <= 0; end else if (ctt5_accept) begin ctt5_cnt <= ctt5_cnt + 1; end end end assign ctt5_accept = ctt5_vld & ctt5_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd5_pvld && cq_rd5_prdy) begin ctt5_cq_pd <= cq_rd5_pd; end end assign ctt6_last_beat = src6_gnt & arb_last_beat; assign cq_rd6_prdy = (ctt6_rdy & ctt6_last_beat) || !ctt6_vld; always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt6_vld <= 1'b0; end else begin if ((cq_rd6_prdy) == 1'b1) begin ctt6_vld <= cq_rd6_pvld; end end end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin ctt6_cnt <= {2{1'b0}}; end else begin if (cq_rd6_pvld && cq_rd6_prdy) begin ctt6_cnt <= 0; end else if (ctt6_accept) begin ctt6_cnt <= ctt6_cnt + 1; end end end assign ctt6_accept = ctt6_vld & ctt6_rdy; always @(posedge nvdla_core_clk) begin if (cq_rd6_pvld && cq_rd6_prdy) begin ctt6_cq_pd <= cq_rd6_pd; end end //| eperl: generated_end (DO NOT EDIT ABOVE) endmodule module NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p1 ( nvdla_core_clk ,nvdla_core_rstn ,ipipe_axi_rdy ,noc2mcif_axi_r_pd ,noc2mcif_axi_r_rvalid ,ipipe_axi_pd ,ipipe_axi_vld ,noc2mcif_axi_r_rready ); input nvdla_core_clk; input nvdla_core_rstn; input ipipe_axi_rdy; input [64 +3:0] noc2mcif_axi_r_pd; input noc2mcif_axi_r_rvalid; output [64 +3:0] ipipe_axi_pd; output ipipe_axi_vld; output noc2mcif_axi_r_rready; reg [64 +3:0] ipipe_axi_pd; reg ipipe_axi_vld; reg noc2mcif_axi_r_rready; reg [64 +3:0] p1_pipe_data; reg p1_pipe_ready; reg p1_pipe_ready_bc; reg [64 +3:0] p1_pipe_skid_data; reg p1_pipe_skid_ready; reg p1_pipe_skid_valid; reg p1_pipe_valid; reg p1_skid_catch; reg [64 +3:0] p1_skid_data; reg p1_skid_ready; reg p1_skid_ready_flop; reg p1_skid_valid; //## pipe (1) valid-ready-bubble-collapse always @( p1_pipe_ready or p1_pipe_valid ) begin p1_pipe_ready_bc = p1_pipe_ready || !p1_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p1_pipe_valid <= 1'b0; end else begin p1_pipe_valid <= (p1_pipe_ready_bc)? noc2mcif_axi_r_rvalid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p1_pipe_data <= (p1_pipe_ready_bc && noc2mcif_axi_r_rvalid)? noc2mcif_axi_r_pd[64 +3:0] : p1_pipe_data; // VCS sop_coverage_off end end always @( p1_pipe_ready_bc ) begin noc2mcif_axi_r_rready = p1_pipe_ready_bc; end //## pipe (1) skid buffer always @( p1_pipe_valid or p1_skid_ready_flop or p1_pipe_skid_ready or p1_skid_valid ) begin p1_skid_catch = p1_pipe_valid && p1_skid_ready_flop && !p1_pipe_skid_ready; p1_skid_ready = (p1_skid_valid)? p1_pipe_skid_ready : !p1_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p1_skid_valid <= 1'b0; p1_skid_ready_flop <= 1'b1; p1_pipe_ready <= 1'b1; end else begin p1_skid_valid <= (p1_skid_valid)? !p1_pipe_skid_ready : p1_skid_catch; p1_skid_ready_flop <= p1_skid_ready; p1_pipe_ready <= p1_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p1_skid_data <= (p1_skid_catch)? p1_pipe_data : p1_skid_data; // VCS sop_coverage_off end end always @( p1_skid_ready_flop or p1_pipe_valid or p1_skid_valid or p1_pipe_data or p1_skid_data ) begin p1_pipe_skid_valid = (p1_skid_ready_flop)? p1_pipe_valid : p1_skid_valid; // VCS sop_coverage_off start p1_pipe_skid_data = (p1_skid_ready_flop)? p1_pipe_data : p1_skid_data; // VCS sop_coverage_off end end //## pipe (1) output always @( p1_pipe_skid_valid or ipipe_axi_rdy or p1_pipe_skid_data ) begin ipipe_axi_vld = p1_pipe_skid_valid; p1_pipe_skid_ready = ipipe_axi_rdy; ipipe_axi_pd = p1_pipe_skid_data; end //## pipe (1) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p1_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_11x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (ipipe_axi_vld^ipipe_axi_rdy^noc2mcif_axi_r_rvalid^noc2mcif_axi_r_rready)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_12x (nvdla_core_clk, `ASSERT_RESET, (noc2mcif_axi_r_rvalid && !noc2mcif_axi_r_rready), (noc2mcif_axi_r_rvalid), (noc2mcif_axi_r_rready)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule module NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 ( nvdla_core_clk ,nvdla_core_rstn ,rd_rsp_rdy ,dma_pd ,dma_vld ,rd_rsp_pd ,rd_rsp_valid ,dma_rdy ); input nvdla_core_clk; input nvdla_core_rstn; input rd_rsp_rdy; input [64 +(( 64 )/8/8)-1:0] dma_pd; input dma_vld; output [64 +(( 64 )/8/8)-1:0] rd_rsp_pd; output rd_rsp_valid; output dma_rdy; reg [64 +(( 64 )/8/8)-1:0] rd_rsp_pd; reg rd_rsp_valid; reg dma_rdy; reg [64 +(( 64 )/8/8)-1:0] p2_pipe_data; reg p2_pipe_ready; reg p2_pipe_ready_bc; reg p2_pipe_valid; reg p2_skid_catch; reg [64 +(( 64 )/8/8)-1:0] p2_skid_data; reg [64 +(( 64 )/8/8)-1:0] p2_skid_pipe_data; reg p2_skid_pipe_ready; reg p2_skid_pipe_valid; reg p2_skid_ready; reg p2_skid_ready_flop; reg p2_skid_valid; //## pipe (2) skid buffer always @( dma_vld or p2_skid_ready_flop or p2_skid_pipe_ready or p2_skid_valid ) begin p2_skid_catch = dma_vld && p2_skid_ready_flop && !p2_skid_pipe_ready; p2_skid_ready = (p2_skid_valid)? p2_skid_pipe_ready : !p2_skid_catch; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p2_skid_valid <= 1'b0; p2_skid_ready_flop <= 1'b1; dma_rdy <= 1'b1; end else begin p2_skid_valid <= (p2_skid_valid)? !p2_skid_pipe_ready : p2_skid_catch; p2_skid_ready_flop <= p2_skid_ready; dma_rdy <= p2_skid_ready; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p2_skid_data <= (p2_skid_catch)? dma_pd[64 +(( 64 )/8/8)-1:0] : p2_skid_data; // VCS sop_coverage_off end end always @( p2_skid_ready_flop or dma_vld or p2_skid_valid or dma_pd or p2_skid_data ) begin p2_skid_pipe_valid = (p2_skid_ready_flop)? dma_vld : p2_skid_valid; // VCS sop_coverage_off start p2_skid_pipe_data = (p2_skid_ready_flop)? dma_pd[64 +(( 64 )/8/8)-1:0] : p2_skid_data; // VCS sop_coverage_off end end //## pipe (2) valid-ready-bubble-collapse always @( p2_pipe_ready or p2_pipe_valid ) begin p2_pipe_ready_bc = p2_pipe_ready || !p2_pipe_valid; end always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin if (!nvdla_core_rstn) begin p2_pipe_valid <= 1'b0; end else begin p2_pipe_valid <= (p2_pipe_ready_bc)? p2_skid_pipe_valid : 1'd1; end end always @(posedge nvdla_core_clk) begin // VCS sop_coverage_off start p2_pipe_data <= (p2_pipe_ready_bc && p2_skid_pipe_valid)? p2_skid_pipe_data : p2_pipe_data; // VCS sop_coverage_off end end always @( p2_pipe_ready_bc ) begin p2_skid_pipe_ready = p2_pipe_ready_bc; end //## pipe (2) output always @( p2_pipe_valid or rd_rsp_rdy or p2_pipe_data ) begin rd_rsp_valid = p2_pipe_valid; p2_pipe_ready = rd_rsp_rdy; rd_rsp_pd = p2_pipe_data; end //## pipe (2) assertions/testpoints `ifndef VIVA_PLUGIN_PIPE_DISABLE_ASSERTIONS wire p2_assert_clk = nvdla_core_clk; `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON `ifndef SYNTHESIS // VCS coverage off nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_13x (nvdla_core_clk, `ASSERT_RESET, nvdla_core_rstn, (rd_rsp_valid^rd_rsp_rdy^dma_vld^dma_rdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `endif `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass disable_block NoWidthInBasedNum-ML // spyglass disable_block STARC-2.10.3.2a // spyglass disable_block STARC05-2.1.3.1 // spyglass disable_block STARC-2.1.4.6 // spyglass disable_block W116 // spyglass disable_block W154 // spyglass disable_block W239 // spyglass disable_block W362 // spyglass disable_block WRN_58 // spyglass disable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `ifdef ASSERT_ON `ifdef FV_ASSERT_ON `define ASSERT_RESET nvdla_core_rstn `else `ifdef SYNTHESIS `define ASSERT_RESET nvdla_core_rstn `else `ifdef ASSERT_OFF_RESET_IS_X `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn) `else `define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn) `endif // ASSERT_OFF_RESET_IS_X `endif // SYNTHESIS `endif // FV_ASSERT_ON // VCS coverage off nv_assert_hold_throughout_event_interval #(0,1,0,"valid removed before ready") zzz_assert_hold_throughout_event_interval_14x (nvdla_core_clk, `ASSERT_RESET, (dma_vld && !dma_rdy), (dma_vld), (dma_rdy)); // spyglass disable W504 SelfDeterminedExpr-ML // VCS coverage on `undef ASSERT_RESET `endif // ASSERT_ON `ifdef SPYGLASS_ASSERT_ON `else // spyglass enable_block NoWidthInBasedNum-ML // spyglass enable_block STARC-2.10.3.2a // spyglass enable_block STARC05-2.1.3.1 // spyglass enable_block STARC-2.1.4.6 // spyglass enable_block W116 // spyglass enable_block W154 // spyglass enable_block W239 // spyglass enable_block W362 // spyglass enable_block WRN_58 // spyglass enable_block WRN_61 `endif // SPYGLASS_ASSERT_ON `endif endmodule // NV_NVDLA_NOCIF_DRAM_READ_EG_pipe_p2 // // AUTOMATICALLY GENERATED -- DO NOT EDIT OR CHECK IN // // /home/nvtools/engr/2017/03/11_05_00_06/nvtools/scripts/fifogen // fifogen -input_config_yaml ../../../../../../../socd/ip_chip_tools/1.0/defs/public/fifogen/golden/tlit5/fifogen.yml -no_make_ram -no_make_ram -stdout -m NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo -clk_name nvdla_core_clk -reset_name nvdla_core_rstn -wr_pipebus rq_wr -rd_pipebus rq_rd -d 4 -w 64 -ram ff [Chosen ram type: ff - fifogen_flops (user specified, thus no other ram type is allowed)] // chip config vars: assertion_module_prefix=nv_ strict_synchronizers=1 strict_synchronizers_use_lib_cells=1 strict_synchronizers_use_tm_lib_cells=1 strict_sync_randomizer=1 assertion_message_prefix=FIFOGEN_ASSERTION allow_async_fifola=0 ignore_ramgen_fifola_variant=1 uses_p_SSYNC=0 uses_prand=1 uses_rammake_inc=1 use_x_or_0=1 force_wr_reg_gated=1 no_force_reset=1 no_timescale=1 no_pli_ifdef=1 requires_full_throughput=1 ram_auto_ff_bits_cutoff=16 ram_auto_ff_width_cutoff=2 ram_auto_ff_width_cutoff_max_depth=32 ram_auto_ff_depth_cutoff=-1 ram_auto_ff_no_la2_depth_cutoff=5 ram_auto_la2_width_cutoff=8 ram_auto_la2_width_cutoff_max_depth=56 ram_auto_la2_depth_cutoff=16 flopram_emu_model=1 dslp_single_clamp_port=1 dslp_clamp_port=1 slp_single_clamp_port=1 slp_clamp_port=1 master_clk_gated=1 clk_gate_module=NV_CLK_gate_power redundant_timing_flops=0 hot_reset_async_force_ports_and_loopback=1 ram_sleep_en_width=1 async_cdc_reg_id=NV_AFIFO_ rd_reg_default_for_async=1 async_ram_instance_prefix=NV_ASYNC_RAM_ allow_rd_busy_reg_warning=0 do_dft_xelim_gating=1 add_dft_xelim_wr_clkgate=1 add_dft_xelim_rd_clkgate=1 // // leda B_3208_NV OFF -- Unequal length LHS and RHS in assignment // leda B_1405 OFF -- 2 asynchronous resets in this unit detected `define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1 `include "simulate_x_tick.vh" module NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo ( nvdla_core_clk , nvdla_core_rstn , rq_wr_prdy , rq_wr_pvld `ifdef FV_RAND_WR_PAUSE , rq_wr_pause `endif , rq_wr_pd , rq_rd_prdy , rq_rd_pvld , rq_rd_pd , pwrbus_ram_pd ); // spyglass disable_block W401 -- clock is not input to module input nvdla_core_clk; input nvdla_core_rstn; output rq_wr_prdy; input rq_wr_pvld; `ifdef FV_RAND_WR_PAUSE input rq_wr_pause; `endif input [64 -1:0] rq_wr_pd; input rq_rd_prdy; output rq_rd_pvld; output [64 -1:0] rq_rd_pd; input [31:0] pwrbus_ram_pd; // Master Clock Gating (SLCG) // // We gate the clock(s) when idle or stalled. // This allows us to turn off numerous miscellaneous flops // that don't get gated during synthesis for one reason or another. // // We gate write side and read side separately. // If the fifo is synchronous, we also gate the ram separately, but if // -master_clk_gated_unified or -status_reg/-status_logic_reg is specified, // then we use one clk gate for write, ram, and read. // wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module wire nvdla_core_clk_mgated; // used only in synchronous fifos NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) ); // // WRITE SIDE // // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS wire wr_pause_rand; // random stalling `endif `endif // synopsys translate_on wire wr_reserving; reg rq_wr_busy_int; // copy for internal use assign rq_wr_prdy = !rq_wr_busy_int; assign wr_reserving = rq_wr_pvld && !rq_wr_busy_int; // reserving write space? wire wr_popping; // fwd: write side sees pop? reg [2:0] rq_wr_count; // write-side count wire [2:0] wr_count_next_wr_popping = wr_reserving ? rq_wr_count : (rq_wr_count - 1'd1); // spyglass disable W164a W484 wire [2:0] wr_count_next_no_wr_popping = wr_reserving ? (rq_wr_count + 1'd1) : rq_wr_count; // spyglass disable W164a W484 wire [2:0] wr_count_next = wr_popping ? wr_count_next_wr_popping : wr_count_next_no_wr_popping; wire wr_count_next_no_wr_popping_is_4 = ( wr_count_next_no_wr_popping == 3'd4 ); wire wr_count_next_is_4 = wr_popping ? 1'b0 : wr_count_next_no_wr_popping_is_4; wire [2:0] wr_limit_muxed; // muxed with simulation/emulation overrides wire [2:0] wr_limit_reg = wr_limit_muxed; `ifdef FV_RAND_WR_PAUSE // VCS coverage off wire rq_wr_busy_next = wr_count_next_is_4 || // busy next cycle? (wr_limit_reg != 3'd0 && // check rq_wr_limit if != 0 wr_count_next >= wr_limit_reg) || rq_wr_pause; // VCS coverage on `else // VCS coverage off wire rq_wr_busy_next = wr_count_next_is_4 || // busy next cycle? (wr_limit_reg != 3'd0 && // check rq_wr_limit if != 0 wr_count_next >= wr_limit_reg) // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || wr_pause_rand `endif `endif // synopsys translate_on ; // VCS coverage on `endif always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin rq_wr_busy_int <= 1'b0; rq_wr_count <= 3'd0; end else begin rq_wr_busy_int <= rq_wr_busy_next; if ( wr_reserving ^ wr_popping ) begin rq_wr_count <= wr_count_next; end //synopsys translate_off else if ( !(wr_reserving ^ wr_popping) ) begin end else begin rq_wr_count <= {3{`x_or_0}}; end //synopsys translate_on end end wire wr_pushing = wr_reserving; // data pushed same cycle as rq_wr_pvld // // RAM // reg [1:0] rq_wr_adr; // current write address // spyglass disable_block W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin rq_wr_adr <= 2'd0; end else begin if ( wr_pushing ) begin rq_wr_adr <= rq_wr_adr + 1'd1; end end end // spyglass enable_block W484 reg [1:0] rq_rd_adr; // read address this cycle wire ram_we = wr_pushing; // note: write occurs next cycle wire [64 -1:0] rq_rd_pd; // read data out of ram wire [31 : 0] pwrbus_ram_pd; // Adding parameter for fifogen to disable wr/rd contention assertion in ramgen. // Fifogen handles this by ignoring the data on the ram data out for that cycle. NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH ram ( .clk( nvdla_core_clk_mgated ) , .pwrbus_ram_pd ( pwrbus_ram_pd ) , .di ( rq_wr_pd ) , .we ( ram_we ) , .wa ( rq_wr_adr ) , .ra ( rq_rd_adr ) , .dout ( rq_rd_pd ) ); wire rd_popping; // read side doing pop this cycle? wire [1:0] rd_adr_next_popping = rq_rd_adr + 1'd1; // spyglass disable W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin rq_rd_adr <= 2'd0; end else begin if ( rd_popping ) begin rq_rd_adr <= rd_adr_next_popping; end //synopsys translate_off else if ( !rd_popping ) begin end else begin rq_rd_adr <= {2{`x_or_0}}; end //synopsys translate_on end end // // SYNCHRONOUS BOUNDARY // assign wr_popping = rd_popping; // let it be seen immediately wire rd_pushing = wr_pushing; // let it be seen immediately // // READ SIDE // reg rq_rd_pvld; // data out of fifo is valid reg rq_rd_pvld_int; // internal copy of rq_rd_pvld assign rd_popping = rq_rd_pvld_int && rq_rd_prdy; reg [2:0] rq_rd_count; // read-side fifo count // spyglass disable_block W164a W484 wire [2:0] rd_count_next_rd_popping = rd_pushing ? rq_rd_count : (rq_rd_count - 1'd1); wire [2:0] rd_count_next_no_rd_popping = rd_pushing ? (rq_rd_count + 1'd1) : rq_rd_count; // spyglass enable_block W164a W484 wire [2:0] rd_count_next = rd_popping ? rd_count_next_rd_popping : rd_count_next_no_rd_popping; wire rd_count_next_rd_popping_not_0 = rd_count_next_rd_popping != 0; wire rd_count_next_no_rd_popping_not_0 = rd_count_next_no_rd_popping != 0; wire rd_count_next_not_0 = rd_popping ? rd_count_next_rd_popping_not_0 : rd_count_next_no_rd_popping_not_0; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin rq_rd_count <= 3'd0; rq_rd_pvld <= 1'b0; rq_rd_pvld_int <= 1'b0; end else begin if ( rd_pushing || rd_popping ) begin rq_rd_count <= rd_count_next; end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin rq_rd_count <= {3{`x_or_0}}; end //synopsys translate_on if ( rd_pushing || rd_popping ) begin rq_rd_pvld <= (rd_count_next_not_0); end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin rq_rd_pvld <= `x_or_0; end //synopsys translate_on if ( rd_pushing || rd_popping ) begin rq_rd_pvld_int <= (rd_count_next_not_0); end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin rq_rd_pvld_int <= `x_or_0; end //synopsys translate_on end end // Master Clock Gating (SLCG) Enables // // plusarg for disabling this stuff: // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0; `endif `endif // synopsys translate_on // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg wr_pause_rand_dly; always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin wr_pause_rand_dly <= 1'b0; end else begin wr_pause_rand_dly <= wr_pause_rand; end end `endif `endif // synopsys translate_on assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (rq_wr_pvld && !rq_wr_busy_int) || (rq_wr_busy_int != rq_wr_busy_next)) || (rd_pushing || rd_popping || (rq_rd_pvld && rq_rd_prdy)) || (wr_pushing)) `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED || 1'b1 `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || master_clk_gating_disabled || (wr_pause_rand != wr_pause_rand_dly) `endif `endif // synopsys translate_on ; // Simulation and Emulation Overrides of wr_limit(s) // `ifdef EMU `ifdef EMU_FIFO_CFG // Emulation Global Config Override // assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_wr_limit : 3'd0; `else // No Global Override for Emulation // assign wr_limit_muxed = 3'd0; `endif // EMU_FIFO_CFG `else // !EMU `ifdef SYNTH_LEVEL1_COMPILE // No Override for GCS Compiles // assign wr_limit_muxed = 3'd0; `else `ifdef SYNTHESIS // No Override for RTL Synthesis // assign wr_limit_muxed = 3'd0; `else // RTL Simulation Plusarg Override // VCS coverage off reg wr_limit_override; reg [2:0] wr_limit_override_value; assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 3'd0; `ifdef NV_ARCHPRO event reinit; initial begin $display("fifogen reinit initial block %m"); -> reinit; end `endif `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif wr_limit_override = 0; wr_limit_override_value = 0; // to keep viva happy with dangles if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_wr_limit" ) ) begin wr_limit_override = 1; $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_wr_limit=%d", wr_limit_override_value); end end // VCS coverage on `endif `endif `endif // Random Write-Side Stalling // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS // VCS coverage off // leda W339 OFF -- Non synthesizable operator // leda W372 OFF -- Undefined PLI task // leda W373 OFF -- Undefined PLI function // leda W599 OFF -- This construct is not supported by Synopsys // leda W430 OFF -- Initial statement is not synthesizable // leda W182 OFF -- Illegal statement for synthesis // leda W639 OFF -- For synthesis, operands of a division or modulo operation need to be constants // leda DCVER_274_NV OFF -- This system task is not supported by DC integer stall_probability; // prob of stalling integer stall_cycles_min; // min cycles to stall integer stall_cycles_max; // max cycles to stall integer stall_cycles_left; // stall cycles left `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif stall_probability = 0; // no stalling by default stall_cycles_min = 1; stall_cycles_max = 10; `ifdef NO_PLI `else if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_probability" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_probability=%d", stall_probability); end else if ( $test$plusargs( "default_fifo_stall_probability" ) ) begin $value$plusargs( "default_fifo_stall_probability=%d", stall_probability); end if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_min" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_min=%d", stall_cycles_min); end else if ( $test$plusargs( "default_fifo_stall_cycles_min" ) ) begin $value$plusargs( "default_fifo_stall_cycles_min=%d", stall_cycles_min); end if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_max" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_max=%d", stall_cycles_max); end else if ( $test$plusargs( "default_fifo_stall_cycles_max" ) ) begin $value$plusargs( "default_fifo_stall_cycles_max=%d", stall_cycles_max); end `endif if ( stall_cycles_min < 1 ) begin stall_cycles_min = 1; end if ( stall_cycles_min > stall_cycles_max ) begin stall_cycles_max = stall_cycles_min; end end `ifdef NO_PLI `else // randomization globals `ifdef SIMTOP_RANDOMIZE_STALLS always @( `SIMTOP_RANDOMIZE_STALLS.global_stall_event ) begin if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_probability" ) ) stall_probability = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_probability; if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_min" ) ) stall_cycles_min = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_min; if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_fifo_stall_cycles_max" ) ) stall_cycles_max = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_max; end `endif `endif always @( negedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin stall_cycles_left <= 0; end else begin `ifdef NO_PLI stall_cycles_left <= 0; `else if ( rq_wr_pvld && !(!rq_wr_prdy) && stall_probability != 0 ) begin if ( prand_inst0(1, 100) <= stall_probability ) begin stall_cycles_left <= prand_inst1(stall_cycles_min, stall_cycles_max); end else if ( stall_cycles_left !== 0 ) begin stall_cycles_left <= stall_cycles_left - 1; end end else if ( stall_cycles_left !== 0 ) begin stall_cycles_left <= stall_cycles_left - 1; end `endif end end assign wr_pause_rand = (stall_cycles_left !== 0) ; // VCS coverage on `endif `endif // synopsys translate_on // VCS coverage on // leda W339 ON // leda W372 ON // leda W373 ON // leda W599 ON // leda W430 ON // leda W182 ON // leda W639 ON // leda DCVER_274_NV ON // // Histogram of fifo depth (from write side's perspective) // // NOTE: it will reference `SIMTOP.perfmon_enabled, so that // has to at least be defined, though not initialized. // tbgen testbenches have it already and various // ways to turn it on and off. // `ifdef PERFMON_HISTOGRAM // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS perfmon_histogram perfmon ( .clk ( nvdla_core_clk ) , .max ( {29'd0, (wr_limit_reg == 3'd0) ? 3'd4 : wr_limit_reg} ) , .curr ( {29'd0, rq_wr_count} ) ); `endif `endif // synopsys translate_on `endif // spyglass disable_block W164a W164b W116 W484 W504 `ifdef SPYGLASS `else `ifdef FV_ASSERT_ON `else // synopsys translate_off `endif `ifdef ASSERT_ON `ifdef SPYGLASS wire disable_assert_plusarg = 1'b0; `else `ifdef FV_ASSERT_ON wire disable_assert_plusarg = 1'b0; `else wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS"); `endif `endif wire assert_enabled = 1'b1 && !disable_assert_plusarg; `endif `ifdef FV_ASSERT_ON `else // synopsys translate_on `endif `ifdef ASSERT_ON //synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS always @(assert_enabled) begin if ( assert_enabled === 1'b0 ) begin $display("Asserts are disabled for %m"); end end `endif `endif //synopsys translate_on `endif `endif // spyglass enable_block W164a W164b W116 W484 W504 //The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH // define is set. This is to aid fifogen team search for fifogen fifo // instance and module names in a given design. `ifdef FIFOGEN_MODULE_SEARCH NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y()); `endif // spyglass enable_block W401 -- clock is not input to module // synopsys dc_script_begin // set_boundary_optimization find(design, "NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo") true // synopsys dc_script_end `ifdef SYNTH_LEVEL1_COMPILE `else `ifdef SYNTHESIS `else `ifdef PRAND_VERILOG // Only verilog needs any local variables reg [47:0] prand_local_seed0; reg prand_initialized0; reg prand_no_rollpli0; `endif `endif `endif function [31:0] prand_inst0; //VCS coverage off input [31:0] min; input [31:0] max; reg [32:0] diff; begin `ifdef SYNTH_LEVEL1_COMPILE prand_inst0 = min; `else `ifdef SYNTHESIS prand_inst0 = min; `else `ifdef PRAND_VERILOG if (prand_initialized0 !== 1'b1) begin prand_no_rollpli0 = $test$plusargs("NO_ROLLPLI"); if (!prand_no_rollpli0) prand_local_seed0 = {$prand_get_seed(0), 16'b0}; prand_initialized0 = 1'b1; end if (prand_no_rollpli0) begin prand_inst0 = min; end else begin diff = max - min + 1; prand_inst0 = min + prand_local_seed0[47:16] % diff; // magic numbers taken from Java's random class (same as lrand48) prand_local_seed0 = prand_local_seed0 * 48'h5deece66d + 48'd11; end `else `ifdef PRAND_OFF prand_inst0 = min; `else prand_inst0 = $RollPLI(min, max, "auto"); `endif `endif `endif `endif end //VCS coverage on endfunction `ifdef SYNTH_LEVEL1_COMPILE `else `ifdef SYNTHESIS `else `ifdef PRAND_VERILOG // Only verilog needs any local variables reg [47:0] prand_local_seed1; reg prand_initialized1; reg prand_no_rollpli1; `endif `endif `endif function [31:0] prand_inst1; //VCS coverage off input [31:0] min; input [31:0] max; reg [32:0] diff; begin `ifdef SYNTH_LEVEL1_COMPILE prand_inst1 = min; `else `ifdef SYNTHESIS prand_inst1 = min; `else `ifdef PRAND_VERILOG if (prand_initialized1 !== 1'b1) begin prand_no_rollpli1 = $test$plusargs("NO_ROLLPLI"); if (!prand_no_rollpli1) prand_local_seed1 = {$prand_get_seed(1), 16'b0}; prand_initialized1 = 1'b1; end if (prand_no_rollpli1) begin prand_inst1 = min; end else begin diff = max - min + 1; prand_inst1 = min + prand_local_seed1[47:16] % diff; // magic numbers taken from Java's random class (same as lrand48) prand_local_seed1 = prand_local_seed1 * 48'h5deece66d + 48'd11; end `else `ifdef PRAND_OFF prand_inst1 = min; `else prand_inst1 = $RollPLI(min, max, "auto"); `endif `endif `endif `endif end //VCS coverage on endfunction endmodule // NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo // // Flop-Based RAM // module NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH ( clk , pwrbus_ram_pd , di , we , wa , ra , dout ); input clk; // write clock input [31 : 0] pwrbus_ram_pd; input [64 -1:0] di; input we; input [1:0] wa; input [1:0] ra; output [64 -1:0] dout; `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31])); `endif `ifdef EMU // we use an emulation ram here to save flops on the emulation board // so that the monstrous chip can fit :-) // reg [1:0] Wa0_vmw; reg we0_vmw; reg [64 -1:0] Di0_vmw; always @( posedge clk ) begin Wa0_vmw <= wa; we0_vmw <= we; Di0_vmw <= di; end vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH emu_ram ( .Wa0( Wa0_vmw ) , .we0( we0_vmw ) , .Di0( Di0_vmw ) , .Ra0( ra ) , .Do0( dout ) ); `else reg [64 -1:0] ram_ff0; reg [64 -1:0] ram_ff1; reg [64 -1:0] ram_ff2; reg [64 -1:0] ram_ff3; always @( posedge clk ) begin if ( we && wa == 2'd0 ) begin ram_ff0 <= di; end if ( we && wa == 2'd1 ) begin ram_ff1 <= di; end if ( we && wa == 2'd2 ) begin ram_ff2 <= di; end if ( we && wa == 2'd3 ) begin ram_ff3 <= di; end end reg [64 -1:0] dout; always @(*) begin case( ra ) 2'd0: dout = ram_ff0; 2'd1: dout = ram_ff1; 2'd2: dout = ram_ff2; 2'd3: dout = ram_ff3; //VCS coverage off default: dout = {64{`x_or_0}}; //VCS coverage on endcase end `endif // EMU endmodule // NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH // emulation model of flopram guts // `ifdef EMU module vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH ( Wa0, we0, Di0, Ra0, Do0 ); input [1:0] Wa0; input we0; input [64 -1:0] Di0; input [1:0] Ra0; output [64 -1:0] Do0; // Only visible during Spyglass to avoid blackboxes. `ifdef SPYGLASS_FLOPRAM assign Do0 = NVDLA_PRIMARY_MEMIF_WIDTH'd0; wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0); `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg [64 -1:0] mem[3:0]; // expand mem for debug ease `ifdef EMU_EXPAND_FLOPRAM_MEM wire [64 -1:0] Q0 = mem[0]; wire [64 -1:0] Q1 = mem[1]; wire [64 -1:0] Q2 = mem[2]; wire [64 -1:0] Q3 = mem[3]; `endif // asynchronous ram writes always @(*) begin if ( we0 == 1'b1 ) begin #0.1; mem[Wa0] = Di0; end end assign Do0 = mem[Ra0]; `endif `endif // synopsys translate_on // synopsys dc_script_begin // synopsys dc_script_end // g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xPRIMARY_MEMIF_WIDTH] } endmodule // vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH //vmw: Memory vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH //vmw: Address-size 2 //vmw: Data-size 64 //vmw: Sensitivity level 1 //vmw: Ports W R //vmw: terminal we0 WriteEnable0 //vmw: terminal Wa0 address0 //vmw: terminal Di0[64 -1:0] data0[PRIMARY_MEMIF_WIDTH-1:0] //vmw: //vmw: terminal Ra0 address1 //vmw: terminal Do0[64 -1:0] data1[PRIMARY_MEMIF_WIDTH-1:0] //vmw: //qt: CELL vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_lat_fifo_flopram_rwsa_4xNVDLA_PRIMARY_MEMIF_WIDTH //qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1 //qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1 //qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1 //qt: //qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1 //qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1 //qt: `endif // EMU // // AUTOMATICALLY GENERATED -- DO NOT EDIT OR CHECK IN // // /home/nvtools/engr/2017/03/11_05_00_06/nvtools/scripts/fifogen // fifogen -input_config_yaml ../../../../../../../socd/ip_chip_tools/1.0/defs/public/fifogen/golden/tlit5/fifogen.yml -no_make_ram -no_make_ram -stdout -m NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo -clk_name nvdla_core_clk -reset_name nvdla_core_rstn -wr_pipebus ro_wr -rd_pipebus ro_rd -d 4 -ram_bypass -rd_reg -rd_busy_reg -w 257 -ram ff [Chosen ram type: ff - fifogen_flops (user specified, thus no other ram type is allowed)] // chip config vars: assertion_module_prefix=nv_ strict_synchronizers=1 strict_synchronizers_use_lib_cells=1 strict_synchronizers_use_tm_lib_cells=1 strict_sync_randomizer=1 assertion_message_prefix=FIFOGEN_ASSERTION allow_async_fifola=0 ignore_ramgen_fifola_variant=1 uses_p_SSYNC=0 uses_prand=1 uses_rammake_inc=1 use_x_or_0=1 force_wr_reg_gated=1 no_force_reset=1 no_timescale=1 no_pli_ifdef=1 requires_full_throughput=1 ram_auto_ff_bits_cutoff=16 ram_auto_ff_width_cutoff=2 ram_auto_ff_width_cutoff_max_depth=32 ram_auto_ff_depth_cutoff=-1 ram_auto_ff_no_la2_depth_cutoff=5 ram_auto_la2_width_cutoff=8 ram_auto_la2_width_cutoff_max_depth=56 ram_auto_la2_depth_cutoff=16 flopram_emu_model=1 dslp_single_clamp_port=1 dslp_clamp_port=1 slp_single_clamp_port=1 slp_clamp_port=1 master_clk_gated=1 clk_gate_module=NV_CLK_gate_power redundant_timing_flops=0 hot_reset_async_force_ports_and_loopback=1 ram_sleep_en_width=1 async_cdc_reg_id=NV_AFIFO_ rd_reg_default_for_async=1 async_ram_instance_prefix=NV_ASYNC_RAM_ allow_rd_busy_reg_warning=0 do_dft_xelim_gating=1 add_dft_xelim_wr_clkgate=1 add_dft_xelim_rd_clkgate=1 // // leda B_3208_NV OFF -- Unequal length LHS and RHS in assignment // leda B_1405 OFF -- 2 asynchronous resets in this unit detected `define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1 `include "simulate_x_tick.vh" module NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo ( nvdla_core_clk , nvdla_core_rstn , ro_wr_prdy , ro_wr_pvld `ifdef FV_RAND_WR_PAUSE , ro_wr_pause `endif , ro_wr_pd , ro_rd_prdy , ro_rd_pvld , ro_rd_pd , pwrbus_ram_pd ); // spyglass disable_block W401 -- clock is not input to module input nvdla_core_clk; input nvdla_core_rstn; output ro_wr_prdy; input ro_wr_pvld; `ifdef FV_RAND_WR_PAUSE input ro_wr_pause; `endif input [64/2:0] ro_wr_pd; input ro_rd_prdy; output ro_rd_pvld; output [64/2:0] ro_rd_pd; input [31:0] pwrbus_ram_pd; // Master Clock Gating (SLCG) // // We gate the clock(s) when idle or stalled. // This allows us to turn off numerous miscellaneous flops // that don't get gated during synthesis for one reason or another. // // We gate write side and read side separately. // If the fifo is synchronous, we also gate the ram separately, but if // -master_clk_gated_unified or -status_reg/-status_logic_reg is specified, // then we use one clk gate for write, ram, and read. // wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module wire nvdla_core_clk_mgated; // used only in synchronous fifos NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) ); // // WRITE SIDE // // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS wire wr_pause_rand; // random stalling `endif `endif // synopsys translate_on wire wr_reserving; reg ro_wr_busy_int; // copy for internal use assign ro_wr_prdy = !ro_wr_busy_int; assign wr_reserving = ro_wr_pvld && !ro_wr_busy_int; // reserving write space? wire wr_popping; // fwd: write side sees pop? reg [2:0] ro_wr_count; // write-side count wire [2:0] wr_count_next_wr_popping = wr_reserving ? ro_wr_count : (ro_wr_count - 1'd1); // spyglass disable W164a W484 wire [2:0] wr_count_next_no_wr_popping = wr_reserving ? (ro_wr_count + 1'd1) : ro_wr_count; // spyglass disable W164a W484 wire [2:0] wr_count_next = wr_popping ? wr_count_next_wr_popping : wr_count_next_no_wr_popping; wire wr_count_next_no_wr_popping_is_4 = ( wr_count_next_no_wr_popping == 3'd4 ); wire wr_count_next_is_4 = wr_popping ? 1'b0 : wr_count_next_no_wr_popping_is_4; wire [2:0] wr_limit_muxed; // muxed with simulation/emulation overrides wire [2:0] wr_limit_reg = wr_limit_muxed; `ifdef FV_RAND_WR_PAUSE // VCS coverage off wire ro_wr_busy_next = wr_count_next_is_4 || // busy next cycle? (wr_limit_reg != 3'd0 && // check ro_wr_limit if != 0 wr_count_next >= wr_limit_reg) || ro_wr_pause; // VCS coverage on `else // VCS coverage off wire ro_wr_busy_next = wr_count_next_is_4 || // busy next cycle? (wr_limit_reg != 3'd0 && // check ro_wr_limit if != 0 wr_count_next >= wr_limit_reg) // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || wr_pause_rand `endif `endif // synopsys translate_on ; // VCS coverage on `endif always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_wr_busy_int <= 1'b0; ro_wr_count <= 3'd0; end else begin ro_wr_busy_int <= ro_wr_busy_next; if ( wr_reserving ^ wr_popping ) begin ro_wr_count <= wr_count_next; end //synopsys translate_off else if ( !(wr_reserving ^ wr_popping) ) begin end else begin ro_wr_count <= {3{`x_or_0}}; end //synopsys translate_on end end wire wr_pushing = wr_reserving; // data pushed same cycle as ro_wr_pvld // // RAM // reg [1:0] ro_wr_adr; // current write address // spyglass disable_block W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_wr_adr <= 2'd0; end else begin if ( wr_pushing ) begin ro_wr_adr <= ro_wr_adr + 1'd1; end end end // spyglass enable_block W484 wire rd_popping; reg [1:0] ro_rd_adr; // read address this cycle wire ram_we = wr_pushing && (ro_wr_count > 3'd0 || !rd_popping); // note: write occurs next cycle wire [64/2:0] ro_rd_pd_p; // read data out of ram wire [31 : 0] pwrbus_ram_pd; // Adding parameter for fifogen to disable wr/rd contention assertion in ramgen. // Fifogen handles this by ignoring the data on the ram data out for that cycle. NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 ram ( .clk( nvdla_core_clk_mgated ) , .pwrbus_ram_pd ( pwrbus_ram_pd ) , .di ( ro_wr_pd ) , .we ( ram_we ) , .wa ( ro_wr_adr ) , .ra ( (ro_wr_count == 0) ? 3'd4 : {1'b0,ro_rd_adr} ) , .dout ( ro_rd_pd_p ) ); wire [1:0] rd_adr_next_popping = ro_rd_adr + 1'd1; // spyglass disable W484 always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_rd_adr <= 2'd0; end else begin if ( rd_popping ) begin ro_rd_adr <= rd_adr_next_popping; end //synopsys translate_off else if ( !rd_popping ) begin end else begin ro_rd_adr <= {2{`x_or_0}}; end //synopsys translate_on end end // // SYNCHRONOUS BOUNDARY // assign wr_popping = rd_popping; // let it be seen immediately wire rd_pushing = wr_pushing; // let it be seen immediately // // READ SIDE // reg ro_rd_prdy_d; // ro_rd_prdy registered in cleanly always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_rd_prdy_d <= 1'b1; end else begin ro_rd_prdy_d <= ro_rd_prdy; end end wire ro_rd_prdy_d_o; // combinatorial rd_busy reg ro_rd_pvld_int; // internal copy of ro_rd_pvld assign ro_rd_pvld = ro_rd_pvld_int; wire ro_rd_pvld_p; // data out of fifo is valid reg ro_rd_pvld_int_o; // internal copy of ro_rd_pvld_o wire ro_rd_pvld_o = ro_rd_pvld_int_o; assign rd_popping = ro_rd_pvld_p && !(ro_rd_pvld_int_o && !ro_rd_prdy_d_o); reg [2:0] ro_rd_count_p; // read-side fifo count // spyglass disable_block W164a W484 wire [2:0] rd_count_p_next_rd_popping = rd_pushing ? ro_rd_count_p : (ro_rd_count_p - 1'd1); wire [2:0] rd_count_p_next_no_rd_popping = rd_pushing ? (ro_rd_count_p + 1'd1) : ro_rd_count_p; // spyglass enable_block W164a W484 wire [2:0] rd_count_p_next = rd_popping ? rd_count_p_next_rd_popping : rd_count_p_next_no_rd_popping; assign ro_rd_pvld_p = ro_rd_count_p != 0 || rd_pushing; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_rd_count_p <= 3'd0; end else begin if ( rd_pushing || rd_popping ) begin ro_rd_count_p <= rd_count_p_next; end //synopsys translate_off else if ( !(rd_pushing || rd_popping ) ) begin end else begin ro_rd_count_p <= {3{`x_or_0}}; end //synopsys translate_on end end // // SKID for -rd_busy_reg // reg [64/2:0] ro_rd_pd_o; // output data register wire rd_req_next_o = (ro_rd_pvld_p || (ro_rd_pvld_int_o && !ro_rd_prdy_d_o)) ; always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_rd_pvld_int_o <= 1'b0; end else begin ro_rd_pvld_int_o <= rd_req_next_o; end end always @( posedge nvdla_core_clk_mgated ) begin if ( (ro_rd_pvld_int && rd_req_next_o && rd_popping) ) begin ro_rd_pd_o <= ro_rd_pd_p; end //synopsys translate_off else if ( !((ro_rd_pvld_int && rd_req_next_o && rd_popping)) ) begin end else begin ro_rd_pd_o <= {257{`x_or_0}}; end //synopsys translate_on end // // FINAL OUTPUT // reg [64/2:0] ro_rd_pd; // output data register reg ro_rd_pvld_int_d; // so we can bubble-collapse ro_rd_prdy_d assign ro_rd_prdy_d_o = !((ro_rd_pvld_o && ro_rd_pvld_int_d && !ro_rd_prdy_d ) ); wire rd_req_next = (!ro_rd_prdy_d_o ? ro_rd_pvld_o : ro_rd_pvld_p) ; always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin ro_rd_pvld_int <= 1'b0; ro_rd_pvld_int_d <= 1'b0; end else begin if ( !ro_rd_pvld_int || ro_rd_prdy ) begin ro_rd_pvld_int <= rd_req_next; end //synopsys translate_off else if ( !(!ro_rd_pvld_int || ro_rd_prdy) ) begin end else begin ro_rd_pvld_int <= `x_or_0; end //synopsys translate_on ro_rd_pvld_int_d <= ro_rd_pvld_int; end end always @( posedge nvdla_core_clk ) begin if ( rd_req_next && (!ro_rd_pvld_int || ro_rd_prdy ) ) begin case (!ro_rd_prdy_d_o) 1'b0: ro_rd_pd <= ro_rd_pd_p; 1'b1: ro_rd_pd <= ro_rd_pd_o; //VCS coverage off default: ro_rd_pd <= {257{`x_or_0}}; //VCS coverage on endcase end //synopsys translate_off else if ( !(rd_req_next && (!ro_rd_pvld_int || ro_rd_prdy)) ) begin end else begin ro_rd_pd <= {257{`x_or_0}}; end //synopsys translate_on end // Master Clock Gating (SLCG) Enables // // plusarg for disabling this stuff: // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0; `endif `endif // synopsys translate_on // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg wr_pause_rand_dly; always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin wr_pause_rand_dly <= 1'b0; end else begin wr_pause_rand_dly <= wr_pause_rand; end end `endif `endif // synopsys translate_on assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (ro_wr_pvld && !ro_wr_busy_int) || (ro_wr_busy_int != ro_wr_busy_next)) || (rd_pushing || rd_popping || (ro_rd_pvld_int && ro_rd_prdy_d) || (ro_rd_pvld_int_o && ro_rd_prdy_d_o)) || (wr_pushing)) `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED || 1'b1 `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS || master_clk_gating_disabled || (wr_pause_rand != wr_pause_rand_dly) `endif `endif // synopsys translate_on ; // Simulation and Emulation Overrides of wr_limit(s) // `ifdef EMU `ifdef EMU_FIFO_CFG // Emulation Global Config Override // assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_wr_limit : 3'd0; `else // No Global Override for Emulation // assign wr_limit_muxed = 3'd0; `endif // EMU_FIFO_CFG `else // !EMU `ifdef SYNTH_LEVEL1_COMPILE // No Override for GCS Compiles // assign wr_limit_muxed = 3'd0; `else `ifdef SYNTHESIS // No Override for RTL Synthesis // assign wr_limit_muxed = 3'd0; `else // RTL Simulation Plusarg Override // VCS coverage off reg wr_limit_override; reg [2:0] wr_limit_override_value; assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 3'd0; `ifdef NV_ARCHPRO event reinit; initial begin $display("fifogen reinit initial block %m"); -> reinit; end `endif `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif wr_limit_override = 0; wr_limit_override_value = 0; // to keep viva happy with dangles if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_wr_limit" ) ) begin wr_limit_override = 1; $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_wr_limit=%d", wr_limit_override_value); end end // VCS coverage on `endif `endif `endif // Random Write-Side Stalling // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS // VCS coverage off // leda W339 OFF -- Non synthesizable operator // leda W372 OFF -- Undefined PLI task // leda W373 OFF -- Undefined PLI function // leda W599 OFF -- This construct is not supported by Synopsys // leda W430 OFF -- Initial statement is not synthesizable // leda W182 OFF -- Illegal statement for synthesis // leda W639 OFF -- For synthesis, operands of a division or modulo operation need to be constants // leda DCVER_274_NV OFF -- This system task is not supported by DC integer stall_probability; // prob of stalling integer stall_cycles_min; // min cycles to stall integer stall_cycles_max; // max cycles to stall integer stall_cycles_left; // stall cycles left `ifdef NV_ARCHPRO always @( reinit ) begin `else initial begin `endif stall_probability = 0; // no stalling by default stall_cycles_min = 1; stall_cycles_max = 10; `ifdef NO_PLI `else if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_probability" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_probability=%d", stall_probability); end else if ( $test$plusargs( "default_fifo_stall_probability" ) ) begin $value$plusargs( "default_fifo_stall_probability=%d", stall_probability); end if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_min" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_min=%d", stall_cycles_min); end else if ( $test$plusargs( "default_fifo_stall_cycles_min" ) ) begin $value$plusargs( "default_fifo_stall_cycles_min=%d", stall_cycles_min); end if ( $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_max" ) ) begin $value$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_max=%d", stall_cycles_max); end else if ( $test$plusargs( "default_fifo_stall_cycles_max" ) ) begin $value$plusargs( "default_fifo_stall_cycles_max=%d", stall_cycles_max); end `endif if ( stall_cycles_min < 1 ) begin stall_cycles_min = 1; end if ( stall_cycles_min > stall_cycles_max ) begin stall_cycles_max = stall_cycles_min; end end `ifdef NO_PLI `else // randomization globals `ifdef SIMTOP_RANDOMIZE_STALLS always @( `SIMTOP_RANDOMIZE_STALLS.global_stall_event ) begin if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_probability" ) ) stall_probability = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_probability; if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_min" ) ) stall_cycles_min = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_min; if ( ! $test$plusargs( "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_fifo_stall_cycles_max" ) ) stall_cycles_max = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_max; end `endif `endif always @( negedge nvdla_core_clk or negedge nvdla_core_rstn ) begin if ( !nvdla_core_rstn ) begin stall_cycles_left <= 0; end else begin `ifdef NO_PLI stall_cycles_left <= 0; `else if ( ro_wr_pvld && !(!ro_wr_prdy) && stall_probability != 0 ) begin if ( prand_inst2(1, 100) <= stall_probability ) begin stall_cycles_left <= prand_inst3(stall_cycles_min, stall_cycles_max); end else if ( stall_cycles_left !== 0 ) begin stall_cycles_left <= stall_cycles_left - 1; end end else if ( stall_cycles_left !== 0 ) begin stall_cycles_left <= stall_cycles_left - 1; end `endif end end assign wr_pause_rand = (stall_cycles_left !== 0) ; // VCS coverage on `endif `endif // synopsys translate_on // VCS coverage on // leda W339 ON // leda W372 ON // leda W373 ON // leda W599 ON // leda W430 ON // leda W182 ON // leda W639 ON // leda DCVER_274_NV ON // // Histogram of fifo depth (from write side's perspective) // // NOTE: it will reference `SIMTOP.perfmon_enabled, so that // has to at least be defined, though not initialized. // tbgen testbenches have it already and various // ways to turn it on and off. // `ifdef PERFMON_HISTOGRAM // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS perfmon_histogram perfmon ( .clk ( nvdla_core_clk ) , .max ( {29'd0, (wr_limit_reg == 3'd0) ? 3'd4 : wr_limit_reg} ) , .curr ( {29'd0, ro_wr_count} ) ); `endif `endif // synopsys translate_on `endif // spyglass disable_block W164a W164b W116 W484 W504 `ifdef SPYGLASS `else `ifdef FV_ASSERT_ON `else // synopsys translate_off `endif `ifdef ASSERT_ON `ifdef SPYGLASS wire disable_assert_plusarg = 1'b0; `else `ifdef FV_ASSERT_ON wire disable_assert_plusarg = 1'b0; `else wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS"); `endif `endif wire assert_enabled = 1'b1 && !disable_assert_plusarg; `endif `ifdef FV_ASSERT_ON `else // synopsys translate_on `endif `ifdef ASSERT_ON //synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS always @(assert_enabled) begin if ( assert_enabled === 1'b0 ) begin $display("Asserts are disabled for %m"); end end `endif `endif //synopsys translate_on `endif `endif // spyglass enable_block W164a W164b W116 W484 W504 //The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH // define is set. This is to aid fifogen team search for fifogen fifo // instance and module names in a given design. `ifdef FIFOGEN_MODULE_SEARCH NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y()); `endif // spyglass enable_block W401 -- clock is not input to module // synopsys dc_script_begin // set_boundary_optimization find(design, "NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo") true // synopsys dc_script_end `ifdef SYNTH_LEVEL1_COMPILE `else `ifdef SYNTHESIS `else `ifdef PRAND_VERILOG // Only verilog needs any local variables reg [47:0] prand_local_seed2; reg prand_initialized2; reg prand_no_rollpli2; `endif `endif `endif function [31:0] prand_inst2; //VCS coverage off input [31:0] min; input [31:0] max; reg [32:0] diff; begin `ifdef SYNTH_LEVEL1_COMPILE prand_inst2 = min; `else `ifdef SYNTHESIS prand_inst2 = min; `else `ifdef PRAND_VERILOG if (prand_initialized2 !== 1'b1) begin prand_no_rollpli2 = $test$plusargs("NO_ROLLPLI"); if (!prand_no_rollpli2) prand_local_seed2 = {$prand_get_seed(2), 16'b0}; prand_initialized2 = 1'b1; end if (prand_no_rollpli2) begin prand_inst2 = min; end else begin diff = max - min + 1; prand_inst2 = min + prand_local_seed2[47:16] % diff; // magic numbers taken from Java's random class (same as lrand48) prand_local_seed2 = prand_local_seed2 * 48'h5deece66d + 48'd11; end `else `ifdef PRAND_OFF prand_inst2 = min; `else prand_inst2 = $RollPLI(min, max, "auto"); `endif `endif `endif `endif end //VCS coverage on endfunction `ifdef SYNTH_LEVEL1_COMPILE `else `ifdef SYNTHESIS `else `ifdef PRAND_VERILOG // Only verilog needs any local variables reg [47:0] prand_local_seed3; reg prand_initialized3; reg prand_no_rollpli3; `endif `endif `endif function [31:0] prand_inst3; //VCS coverage off input [31:0] min; input [31:0] max; reg [32:0] diff; begin `ifdef SYNTH_LEVEL1_COMPILE prand_inst3 = min; `else `ifdef SYNTHESIS prand_inst3 = min; `else `ifdef PRAND_VERILOG if (prand_initialized3 !== 1'b1) begin prand_no_rollpli3 = $test$plusargs("NO_ROLLPLI"); if (!prand_no_rollpli3) prand_local_seed3 = {$prand_get_seed(3), 16'b0}; prand_initialized3 = 1'b1; end if (prand_no_rollpli3) begin prand_inst3 = min; end else begin diff = max - min + 1; prand_inst3 = min + prand_local_seed3[47:16] % diff; // magic numbers taken from Java's random class (same as lrand48) prand_local_seed3 = prand_local_seed3 * 48'h5deece66d + 48'd11; end `else `ifdef PRAND_OFF prand_inst3 = min; `else prand_inst3 = $RollPLI(min, max, "auto"); `endif `endif `endif `endif end //VCS coverage on endfunction endmodule // NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo // // Flop-Based RAM // module NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 ( clk , pwrbus_ram_pd , di , we , wa , ra , dout ); input clk; // write clock input [31 : 0] pwrbus_ram_pd; input [64/2:0] di; input we; input [1:0] wa; input [2:0] ra; output [64/2:0] dout; `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30])); `endif `ifndef FPGA NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31])); `endif `ifdef EMU wire [64/2:0] dout_p; // we use an emulation ram here to save flops on the emulation board // so that the monstrous chip can fit :-) // reg [1:0] Wa0_vmw; reg we0_vmw; reg [64/2:0] Di0_vmw; always @( posedge clk ) begin Wa0_vmw <= wa; we0_vmw <= we; Di0_vmw <= di; end vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 emu_ram ( .Wa0( Wa0_vmw ) , .we0( we0_vmw ) , .Di0( Di0_vmw ) , .Ra0( ra[1:0] ) , .Do0( dout_p ) ); assign dout = (ra == 4) ? di : dout_p; `else reg [64/2:0] ram_ff0; reg [64/2:0] ram_ff1; reg [64/2:0] ram_ff2; reg [64/2:0] ram_ff3; always @( posedge clk ) begin if ( we && wa == 2'd0 ) begin ram_ff0 <= di; end if ( we && wa == 2'd1 ) begin ram_ff1 <= di; end if ( we && wa == 2'd2 ) begin ram_ff2 <= di; end if ( we && wa == 2'd3 ) begin ram_ff3 <= di; end end reg [64/2:0] dout; always @(*) begin case( ra ) 3'd0: dout = ram_ff0; 3'd1: dout = ram_ff1; 3'd2: dout = ram_ff2; 3'd3: dout = ram_ff3; 3'd4: dout = di; //VCS coverage off default: dout = {257{`x_or_0}}; //VCS coverage on endcase end `endif // EMU endmodule // NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 // emulation model of flopram guts // `ifdef EMU module vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 ( Wa0, we0, Di0, Ra0, Do0 ); input [1:0] Wa0; input we0; input [64/2:0] Di0; input [1:0] Ra0; output [64/2:0] Do0; // Only visible during Spyglass to avoid blackboxes. `ifdef SPYGLASS_FLOPRAM assign Do0 = 257'd0; wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0); `endif // synopsys translate_off `ifndef SYNTH_LEVEL1_COMPILE `ifndef SYNTHESIS reg [64/2:0] mem[3:0]; // expand mem for debug ease `ifdef EMU_EXPAND_FLOPRAM_MEM wire [64/2:0] Q0 = mem[0]; wire [64/2:0] Q1 = mem[1]; wire [64/2:0] Q2 = mem[2]; wire [64/2:0] Q3 = mem[3]; `endif // asynchronous ram writes always @(*) begin if ( we0 == 1'b1 ) begin #0.1; mem[Wa0] = Di0; end end assign Do0 = mem[Ra0]; `endif `endif // synopsys translate_on // synopsys dc_script_begin // synopsys dc_script_end // g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257] } endmodule // vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 //vmw: Memory vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 //vmw: Address-size 2 //vmw: Data-size 257 //vmw: Sensitivity level 1 //vmw: Ports W R //vmw: terminal we0 WriteEnable0 //vmw: terminal Wa0 address0 //vmw: terminal Di0[64/2:0] //data0[64/2:0] //vmw: //vmw: terminal Ra0 address1 //vmw: terminal Do0[64/2:0] //data1[64/2:0] //vmw: //qt: CELL vmw_NV_NVDLA_NOCIF_DRAM_READ_EG_ro_fifo_flopram_rwsa_4x257 //qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1 //qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1 //qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1 //qt: //qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1 //qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1 //qt: `endif // EMU