Unverified Commit 46ccb4e9 by Yucheng Wang Committed by GitHub

Update README.md

parent b5fadf19
......@@ -7,15 +7,19 @@ First, make sure you are under `CodeElements/EvalCT/`. To run `eval_ct.py`, we n
svn export -r 90 --force https://github.com/google-research/circuit_training.git/trunk/circuit_training
```
Next, we need to prepare your trained policy and the testcase you want to evaluate on. Assume you have trained models (which usually can be found under `./logs`), copy the run folder into `saved_model` folder. Make sure your testcase is under `./test`.
Next, we need to prepare your trained policy and the testcase you want to evaluate on. Assume you have trained models (which usually can be found under `./logs`), copy the run folder into `saved_model` folder. Make sure your testcase is under `./test`. The `ckptID` is the policy checkpoint ID saved after each iteration.
Finally, run the following command with path to netlist file, initial placement file and model run directory path.
```
$ python3 -m eval_ct --netlist ./test/ariane/netlist.pb.txt\
--plc ./test/ariane/initial.plc\
--rundir run_os_64128_g657_ub5_nruns10_c5_r3_v3_rc1
--rundir run_00\
--ckptID policy_checkpoint_0000103984
```
The placement will be stored under `CodeElements/EvalCT/` and named as `eval_[RUN_DIR]_to_[TESTCASE].plc`.
## Trained Policy
We are providing one of the run we trained from scratch using Google's Ariane testcase. **This is not a truthful representation of the potential of Circuit Training**. We are only providing these trained weights here for the sake of testing. Please feel free to load any of your own trained weights. You may find similar file structure under `./logs` after training.
## View Your Result
You can view the result by supplying this placement file into the open-sourced Plc_client testbench and use the `display_canvas` function.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment