Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
M
macroplacement
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
macroplacement
Commits
06d79d2d
Commit
06d79d2d
authored
Sep 03, 2022
by
ZhiangWang033
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix gridding
parent
db0819cc
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
81 additions
and
47 deletions
+81
-47
CodeElements/Gridding/src/gridding.py
+81
-47
No files found.
CodeElements/Gridding/src/gridding.py
View file @
06d79d2d
...
...
@@ -2,7 +2,6 @@
### Input: a list of macros (each macro has a width and a height)
### Output: best choice of n_rows and n_cols
import
os
from
math
import
floor
from
math
import
ceil
...
...
@@ -22,6 +21,7 @@ class Grid:
self
.
y_
=
y
self
.
placed_
=
False
# if there is macro placed on the center of this grid
self
.
macros_id_
=
[]
# the id of macros intersecting with this grid
self
.
macro_area
=
0.0
# Check if there is an overlap with other placed macros
def
CheckOverlap
(
lx
,
ly
,
ux
,
uy
,
macro_box
):
...
...
@@ -33,19 +33,30 @@ def CheckOverlap(lx, ly, ux, uy, macro_box):
pass
else
:
return
True
# there is an overlap
return
False
# Get overlap area
def
GetOverlapArea
(
box_a
,
box_b
):
box_a_lx
,
box_a_ly
,
box_a_ux
,
box_a_uy
=
box_a
box_b_lx
,
box_b_ly
,
box_b_ux
,
box_b_uy
=
box_b
if
(
box_a_lx
>=
box_b_ux
or
box_a_ly
>=
box_b_uy
or
box_a_ux
<=
box_b_lx
or
box_a_uy
<=
box_b_ly
):
return
0.0
else
:
width
=
min
(
box_a_ux
,
box_b_ux
)
-
max
(
box_a_lx
,
box_b_lx
)
height
=
min
(
box_a_uy
,
box_b_uy
)
-
max
(
box_a_ly
,
box_b_ly
)
return
width
*
height
# Place macros one by one
# n = num_cols
def
PlaceMacros
(
macro_map
,
grid_list
,
chip_width
,
chip_height
,
n
):
### All the macro must be placed on the center of one grid
#Initialize the position of macros
ver_sum
=
0.0
ver_span_sum
=
0.0
hor_sum
=
0.0
hor_span_sum
=
0.0
macro_bbox
=
[]
# Place macro one by one
for
key
,
value
in
macro_map
.
items
():
width
=
value
[
0
]
...
...
@@ -55,7 +66,6 @@ def PlaceMacros(macro_map, grid_list, chip_width, chip_height, n):
for
grid
in
grid_list
:
if
(
grid
.
placed_
==
True
):
continue
# this grid has been occupied
# if the macro is placed on this
x
=
grid
.
x_
y
=
grid
.
y_
...
...
@@ -67,12 +77,10 @@ def PlaceMacros(macro_map, grid_list, chip_width, chip_height, n):
# check if the macro is within the outline
if
(
ux
>
chip_width
or
uy
>
chip_height
):
continue
# check if there is an overlap with other macros
if
(
CheckOverlap
(
lx
,
ly
,
ux
,
uy
,
macro_bbox
)
==
True
):
continue
# place current macro on this grid
grid
.
placed_
=
True
placed_flag
=
True
...
...
@@ -91,22 +99,43 @@ def PlaceMacros(macro_map, grid_list, chip_width, chip_height, n):
for
j
in
range
(
min_col_id
,
max_col_id
+
1
):
grid_id
=
i
*
n
+
j
# n is the num_cols
grid_list
[
grid_id
]
.
macros_id_
.
append
(
macro_id
)
grid_box
=
[
i
*
grid_width
,
j
*
grid_height
,
(
i
+
1
)
*
grid_width
,
(
j
+
1
)
*
grid_height
]
overlap_area
=
GetOverlapArea
(
grid_box
,
[
lx
,
ly
,
ux
,
uy
])
grid_list
[
grid_id
]
.
macro_area
+=
overlap_area
ver_sum
+=
height
ver_span_sum
+=
(
max_row_id
+
1
-
min_row_id
)
*
grid_height
hor_sum
+=
width
hor_span_sum
+=
(
max_col_id
+
1
-
min_col_id
)
*
grid_width
break
# stop search remaining candidates
# cannot find a valid position for the macro
if
(
placed_flag
==
False
):
return
False
return
False
,
[
0.0
,
0.0
,
0.0
,
0.0
]
return
True
return
True
,
[
ver_sum
,
ver_span_sum
,
hor_sum
,
hor_span_sum
]
# Define the gridding function
def
Gridding
(
macro_width_list
,
macro_height_list
,
chip_width
,
chip_height
,
tolerance
=
0.1
,
chip_width
,
chip_height
,
min_n_rows
=
10
,
min_n_cols
=
10
,
max_n_rows
=
100
,
max_n_cols
=
100
,
max_rows_times_cols
=
3000
,
min_rows_times_cols
=
500
,
max_aspect_ratio
=
1.5
):
max_n_rows
=
128
,
max_n_cols
=
128
,
min_num_grid_cells
=
500
,
max_num_grid_cells
=
2500
,
max_aspect_ratio
=
1.5
,
tolerance
=
0.05
):
"""
Arguments:
macro_width_list, macro_height_list : macro information
chip_width, chip_height : canvas size or core size of the chip
min_n_rows, min_n_cols : mininum number of rows/cols sweep
max_n_rows, max_n_rows : maximum number of rows/cols sweep
min_num_grid_cells, max_num_grid_cells : mininum or maxinum grid cells
max_aspect_ratio : maximum aspect ratio of a grid cell (either w/h or h/w)
tolerance : tolerance to choose lower number of grids
Return:
the best number of rows and cols
"""
### Sort all the macros in a non-decreasing order
if
(
len
(
macro_width_list
)
!=
len
(
macro_height_list
)):
print
(
"[Error] The macro information is wrong!!!"
)
...
...
@@ -116,30 +145,34 @@ def Gridding(macro_width_list, macro_height_list,
macro_map
=
{
}
for
i
in
range
(
len
(
macro_width_list
)):
macro_map
[
i
]
=
[
macro_width_list
[
i
],
macro_height_list
[
i
]]
macro_map
=
dict
(
sorted
(
macro_map
.
items
(),
key
=
lambda
item
:
item
[
1
][
0
]
*
item
[
1
][
1
],
reverse
=
True
))
macro_bbox
=
[]
# (lx, ly, ux, uy) for each bounding box
### Print information
print
(
"*"
*
80
)
print
(
"[INFO]
Outline Information : outline_width ="
,
chip_width
,
" outline
_height ="
,
chip_height
)
print
(
"[INFO]
Canvas Information : canvas_width ="
,
chip_width
,
"canvas
_height ="
,
chip_height
)
print
(
"
\n
"
)
print
(
"[INFO] Sorted Macro Information"
)
for
key
,
value
in
macro_map
.
items
():
print
(
"macro_"
+
str
(
key
),
" macro_width ="
,
round
(
value
[
0
],
2
),
" macro_height ="
,
round
(
value
[
1
],
2
),
" macro_area ="
,
round
(
value
[
0
]
*
value
[
1
],
2
))
line
=
"macro_"
+
str
(
key
)
+
" "
line
+=
"macro_width = "
+
str
(
round
(
value
[
0
],
2
))
+
" "
line
+=
"macro_height = "
+
str
(
round
(
value
[
1
],
2
))
+
" "
line
+=
"macro_area = "
+
str
(
round
(
value
[
0
]
*
value
[
1
],
2
))
print
(
line
)
print
(
"
\n
"
)
### Sweep the n_rows (m) and n_cols (n) in a row-based manner
macro_bbox
=
[]
# (lx, ly, ux, uy) for each bounding box
# we use m for max_n_rows and n for max_n_cols
m_best
=
-
1
n_best
=
-
1
best_cost
=
2.0
# cost should be less than 2.0 based on definition
choice_map
=
{
}
for
m
in
range
(
min_n_rows
,
max_n_rows
+
1
):
best_metric
=
-
1.0
choice_map
=
{
}
# [m][n] : (ver_cost, hor_cost, empty_ratio)
for
m
in
range
(
min_n_rows
,
max_n_rows
):
choice_map
[
m
]
=
{
}
for
n
in
range
(
min_n_cols
,
max_n_cols
+
1
):
if
(
m
*
n
>
max_
rows_times_co
ls
):
for
n
in
range
(
min_n_cols
,
max_n_cols
):
if
(
m
*
n
>
max_
num_grid_cel
ls
):
break
if
(
m
*
n
<
min_
rows_times_co
ls
):
if
(
m
*
n
<
min_
num_grid_cel
ls
):
continue
### Step1: Divide the canvas into grids
...
...
@@ -148,10 +181,10 @@ def Gridding(macro_width_list, macro_height_list,
grid_width
=
chip_width
/
n
if
(
grid_height
/
grid_width
>
max_aspect_ratio
):
continue
if
(
grid_width
/
grid_height
>
max_aspect_ratio
):
continue
### Step2: Try to place macros on canvas
grid_list
=
[]
for
i
in
range
(
m
):
for
j
in
range
(
n
):
...
...
@@ -160,24 +193,24 @@ def Gridding(macro_width_list, macro_height_list,
grid_id
=
len
(
grid_list
)
grid_list
.
append
(
Grid
(
grid_id
,
grid_width
,
grid_height
,
x
,
y
))
value
=
[
0.0
,
0.0
,
0.0
,
0.0
]
### Place macros one by one
if
(
PlaceMacros
(
macro_map
,
grid_list
,
chip_width
,
chip_height
,
n
)
==
False
):
result_flag
,
value
=
PlaceMacros
(
macro_map
,
grid_list
,
chip_width
,
chip_height
,
n
)
if
(
result_flag
==
False
):
continue
else
:
###
Calculate the cost
total_grid_width
=
0.0
total_grid_height
=
0.
0
###
compute the empty ratio
used_threshold
=
1e-5
num_empty_grids
=
0
for
grid
in
grid_list
:
if
(
len
(
grid
.
macros_id_
)
>
0
):
total_grid_width
+=
grid
.
width_
total_grid_height
+=
grid
.
height_
# calculate h_cost
cost
=
1.0
-
sum
(
macro_width_list
)
/
total_grid_width
cost
+=
1.0
-
sum
(
macro_height_list
)
/
total_grid_height
choice_map
[
m
][
n
]
=
cost
if
(
cost
<
best_cost
):
best_cost
=
cost
if
(
grid
.
macro_area
/
(
grid_width
*
grid_height
)
<
used_threshold
):
num_empty_grids
+=
1
metric
=
1.0
-
value
[
0
]
/
value
[
1
]
metric
+=
1.0
-
value
[
2
]
/
value
[
3
]
metric
+=
num_empty_grids
/
len
(
grid_list
)
choice_map
[
m
][
n
]
=
metric
if
(
metric
>
best_metric
):
best_metric
=
metric
m_best
=
m
n_best
=
n
m_opt
=
m_best
...
...
@@ -188,9 +221,9 @@ def Gridding(macro_width_list, macro_height_list,
print
(
"n_best = "
,
n_best
)
print
(
"tolerance = "
,
tolerance
)
for
[
m
,
m_map
]
in
choice_map
.
items
():
for
[
n
,
cost
]
in
m_map
.
items
():
print
(
"m = "
,
m
,
" n = "
,
n
,
"
cost = "
,
cost
)
if
((
cost
<=
(
1.0
+
tolerance
)
*
best_cost
)
and
(
m
*
n
<
num_grids_opt
)):
for
[
n
,
metric
]
in
m_map
.
items
():
print
(
"m = "
,
m
,
" n = "
,
n
,
"
metric = "
,
metric
)
if
((
metric
>=
(
1.0
-
tolerance
)
*
best_metric
)
and
(
m
*
n
<
num_grids_opt
)):
m_opt
=
m
n_opt
=
n
num_grids_opt
=
m
*
n
...
...
@@ -201,7 +234,7 @@ def Gridding(macro_width_list, macro_height_list,
class
GriddingLefDefInterface
:
def
__init__
(
self
,
src_dir
,
design
,
setup_file
=
"setup.tcl"
,
tolerance
=
0.05
,
halo_width
=
5
.0
,
min_n_rows
=
10
,
min_n_cols
=
10
,
max_n_rows
=
128
,
halo_width
=
0
.0
,
min_n_rows
=
10
,
min_n_cols
=
10
,
max_n_rows
=
128
,
max_n_cols
=
128
,
max_rows_times_cols
=
2500
,
min_rows_times_cols
=
500
,
max_aspect_ratio
=
1.5
):
self
.
src_dir
=
src_dir
...
...
@@ -227,11 +260,11 @@ class GriddingLefDefInterface:
self
.
GenerateHypergraph
()
self
.
ExtractInputs
()
self
.
m_opt
,
self
.
n_opt
=
Gridding
(
self
.
macro_width_list
,
self
.
macro_height_list
,
self
.
chip_width
,
self
.
chip_height
,
self
.
tolerance
,
self
.
chip_width
,
self
.
chip_height
,
self
.
min_n_rows
,
self
.
min_n_cols
,
self
.
max_n_rows
,
self
.
max_n_cols
,
self
.
m
ax_rows_times_cols
,
self
.
min
_rows_times_cols
,
self
.
max_aspect_ratio
)
self
.
m
in_rows_times_cols
,
self
.
max
_rows_times_cols
,
self
.
max_aspect_ratio
,
self
.
tolerance
)
def
GetNumRows
(
self
):
return
self
.
m_opt
...
...
@@ -278,6 +311,7 @@ class GriddingLefDefInterface:
f
.
close
()
items
=
content
[
0
]
.
split
()
print
(
items
)
self
.
chip_width
=
float
(
items
[
2
])
-
float
(
items
[
0
])
self
.
chip_height
=
float
(
items
[
3
])
-
float
(
items
[
1
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment