Commit 052a5bc0 by Dinple

Merge branch 'plc_client-open-source' of…

Merge branch 'plc_client-open-source' of https://github.com/TILOS-AI-Institute/MacroPlacement into plc_client-open-source
parents 563cfccc f6f9c681
# coding=utf-8
# Copyright 2021 The Circuit Training Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This class extracts features from observations."""
from typing import Dict, Optional, Text, Tuple
from Plc_client import observation_config as observation_config_lib
from Plc_client import plc_client
import gin
import numpy as np
@gin.configurable
class ObservationExtractor(object):
"""Extracts observation features from plc."""
EPSILON = 1E-6
def __init__(self,
plc: plc_client.PlacementCost,
observation_config: Optional[
observation_config_lib.ObservationConfig] = None,
default_location_x: float = 0.5,
default_location_y: float = 0.5):
self.plc = plc
self._observation_config = (
observation_config or observation_config_lib.ObservationConfig())
self._default_location_x = default_location_x
self._default_location_y = default_location_y
self.width, self.height = self.plc.get_canvas_width_height()
self.num_cols, self.num_rows = self.plc.get_grid_num_columns_rows()
self.grid_width = self.width / self.num_cols
self.grid_height = self.height / self.num_rows
# Since there are too many I/O ports, we have to cluster them together to
# make it manageable for the model to process. The ports that are located in
# the same grid cell are clustered togheter.
self.adj_vec, grid_cell_of_clustered_ports_vec = self.plc.get_macro_and_clustered_port_adjacency(
)
self.clustered_port_locations_vec = [
self._get_clustered_port_locations(i)
for i in grid_cell_of_clustered_ports_vec
]
# Extract static features.
self._features = self._extract_static_features()
# done
def _extract_static_features(self) -> Dict[Text, np.ndarray]:
"""Static features that are invariant across training steps."""
features = dict()
self._extract_num_macros(features)
self._extract_technology_info(features)
self._extract_node_types(features)
self._extract_macro_size(features)
self._extract_macro_and_port_adj_matrix(features)
self._extract_canvas_size(features)
self._extract_grid_size(features)
self._extract_initial_node_locations(features)
self._extract_normalized_static_features(features)
return features
# done
def _extract_normalized_static_features(
self, features: Dict[Text, np.ndarray]) -> None:
"""Normalizes static features."""
self._add_netlist_metadata(features)
self._normalize_adj_matrix(features)
self._pad_adj_matrix(features)
self._pad_macro_static_features(features)
self._normalize_macro_size_by_canvas(features)
self._normalize_grid_size(features)
self._normalize_locations_by_canvas(features)
self._replace_unplace_node_location(features)
self._pad_macro_dynamic_features(features)
# done
def _extract_num_macros(self, features: Dict[Text, np.ndarray]) -> None:
features['num_macros'] = np.asarray([len(self.plc.get_macro_indices())
]).astype(np.int32)
# done
def _extract_technology_info(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts Technology-related information."""
routing_resources = {
'horizontal_routes_per_micron':
self.plc.get_routes_per_micron()[0],
'vertical_routes_per_micron':
self.plc.get_routes_per_micron()[1],
'macro_horizontal_routing_allocation':
self.plc.get_macro_routing_allocation()[0],
'macro_vertical_routing_allocation':
self.plc.get_macro_routing_allocation()[0],
}
for k in routing_resources:
features[k] = np.asarray([routing_resources[k]]).astype(np.float32)
# done
def _extract_initial_node_locations(self, features: Dict[Text,
np.ndarray]) -> None:
"""Extracts initial node locations."""
locations_x = []
locations_y = []
is_node_placed = []
for macro_idx in self.plc.get_macro_indices():
x, y = self.plc.get_node_location(macro_idx)
locations_x.append(x)
locations_y.append(y)
is_node_placed.append(1 if self.plc.is_node_placed(macro_idx) else 0)
for x, y in self.clustered_port_locations_vec:
locations_x.append(x)
locations_y.append(y)
is_node_placed.append(1)
features['locations_x'] = np.asarray(locations_x).astype(np.float32)
features['locations_y'] = np.asarray(locations_y).astype(np.float32)
features['is_node_placed'] = np.asarray(is_node_placed).astype(np.int32)
# done
def _extract_node_types(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts node types."""
types = []
for macro_idx in self.plc.get_macro_indices():
if self.plc.is_node_soft_macro(macro_idx):
types.append(observation_config_lib.SOFT_MACRO)
else:
types.append(observation_config_lib.HARD_MACRO)
for _ in range(len(self.clustered_port_locations_vec)):
types.append(observation_config_lib.PORT_CLUSTER)
features['node_types'] = np.asarray(types).astype(np.int32)
def _extract_macro_size(self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts macro sizes."""
macros_w = []
macros_h = []
for macro_idx in self.plc.get_macro_indices():
if self.plc.is_node_soft_macro(macro_idx):
# Width and height of soft macros are set to zero.
width = 0
height = 0
else:
width, height = self.plc.get_node_width_height(macro_idx)
macros_w.append(width)
macros_h.append(height)
for _ in range(len(self.clustered_port_locations_vec)):
macros_w.append(0)
macros_h.append(0)
features['macros_w'] = np.asarray(macros_w).astype(np.float32)
features['macros_h'] = np.asarray(macros_h).astype(np.float32)
# done
def _extract_macro_and_port_adj_matrix(
self, features: Dict[Text, np.ndarray]) -> None:
"""Extracts adjacency matrix."""
num_nodes = len(self.plc.get_macro_indices()) + len(
self.clustered_port_locations_vec)
assert num_nodes * num_nodes == len(self.adj_vec)
sparse_adj_i = []
sparse_adj_j = []
sparse_adj_weight = []
edge_counts = np.zeros((self._observation_config.max_num_nodes,),
dtype=np.int32) # issue with determine max_num_nodes
for i in range(num_nodes):
for j in range(i + 1, num_nodes):
weight = self.adj_vec[i + num_nodes * j]
if weight > 0:
sparse_adj_i.append(i)
sparse_adj_j.append(j)
sparse_adj_weight.append(weight)
edge_counts[i] += 1
edge_counts[j] += 1
features['sparse_adj_i'] = np.asarray(sparse_adj_i).astype(np.int32)
features['sparse_adj_j'] = np.asarray(sparse_adj_j).astype(np.int32)
features['sparse_adj_weight'] = np.asarray(sparse_adj_weight).astype(
np.float32)
features['edge_counts'] = edge_counts
# if not enough edges
# print("edge_counts ", np.sum(features['edge_counts'])) # 16624
# done
def _extract_canvas_size(self, features: Dict[Text, np.ndarray]) -> None:
features['canvas_width'] = np.asarray([self.width])
features['canvas_height'] = np.asarray([self.height])
# done
def _extract_grid_size(self, features: Dict[Text, np.ndarray]) -> None:
features['grid_cols'] = np.asarray([self.num_cols]).astype(np.float32)
features['grid_rows'] = np.asarray([self.num_rows]).astype(np.float32)
# done
def _get_clustered_port_locations(
self, grid_cell_index: int) -> Tuple[float, float]:
"""Returns clustered port locations.
This function returns an approximation location of the ports in a grid
cell. Depending on the cell location in the canvas, the approximation
differs.
Args:
grid_cell_index: The index of the grid cell where the cluster port is
located.
Returns:
A tuple of float: Approximate x, y location of the port cluster in the
grid cell in the same unit as canvas width and height (micron).
"""
col = grid_cell_index % self.num_cols
row = grid_cell_index // self.num_cols
if col == 0 and row == 0:
return 0, 0
elif col == 0 and row == self.num_rows - 1:
return 0, self.height
elif col == self.num_cols - 1 and row == 0:
return self.width, 0
elif col == self.num_cols - 1 and row == self.num_rows - 1:
return self.width, self.height
elif col == 0:
return 0, (row + 0.5) * self.grid_height
elif col == self.num_cols - 1:
return self.width, (row + 0.5) * self.grid_height
elif row == 0:
return (col + 0.5) * self.grid_width, 0
elif row == self.num_rows - 1:
return (col + 0.5) * self.grid_width, self.height
else:
return (col + 0.5) * self.grid_width, (row + 0.5) * self.grid_height
def _add_netlist_metadata(self, features: Dict[Text, np.ndarray]) -> None:
"""Adds netlist metadata info."""
features['normalized_num_edges'] = np.asarray([
np.sum(features['sparse_adj_weight']) /
self._observation_config.max_num_edges
]).astype(np.float32)
features['normalized_num_hard_macros'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.HARD_MACRO).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
features['normalized_num_soft_macros'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.SOFT_MACRO).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
features['normalized_num_port_clusters'] = np.asarray([
np.sum(
np.equal(features['node_types'],
observation_config_lib.PORT_CLUSTER).astype(np.float32)) /
self._observation_config.max_num_nodes
]).astype(np.float32)
def _normalize_adj_matrix(self, features: Dict[Text, np.ndarray]) -> None:
"""Normalizes adj matrix weights."""
mean_weight = np.mean(features['sparse_adj_weight'])
features['sparse_adj_weight'] = (
features['sparse_adj_weight'] /
(mean_weight + ObservationExtractor.EPSILON)).astype(np.float32)
def _pad_1d_tensor(self, tensor: np.ndarray, pad_size: int) -> np.ndarray:
if (pad_size - tensor.shape[0]) < 0:
print("padding not applied", pad_size, tensor.shape[0])
return np.pad(
tensor, (0, 0),
mode='constant',
constant_values=0)
else:
return np.pad(
tensor, (0, pad_size - tensor.shape[0]),
mode='constant',
constant_values=0)
def _pad_adj_matrix(self, features: Dict[Text, np.ndarray]) -> None:
"""Pads indices and weights with zero to make their shape known."""
for var in ['sparse_adj_i', 'sparse_adj_j', 'sparse_adj_weight']:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_edges)
def _pad_macro_static_features(self, features: Dict[Text,
np.ndarray]) -> None:
"""Pads macro features to make their shape knwon."""
for var in [
'macros_w',
'macros_h',
'node_types',
]:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_nodes)
def _pad_macro_dynamic_features(self, features: Dict[Text,
np.ndarray]) -> None:
"""Pads macro features to make their shape knwon."""
for var in [
'locations_x',
'locations_y',
'is_node_placed',
]:
features[var] = self._pad_1d_tensor(
features[var], self._observation_config.max_num_nodes)
def _normalize_grid_size(self, features: Dict[Text, np.ndarray]) -> None:
features['grid_cols'] = (features['grid_cols'] /
self._observation_config.max_grid_size).astype(
np.float32)
features['grid_rows'] = (features['grid_rows'] /
self._observation_config.max_grid_size).astype(
np.float32)
def _normalize_macro_size_by_canvas(self, features: Dict[Text,
np.ndarray]) -> None:
"""Normalizes macro sizes with the canvas size."""
features['macros_w'] = (
features['macros_w'] /
(features['canvas_width'] + ObservationExtractor.EPSILON)).astype(
np.float32)
features['macros_h'] = (
features['macros_h'] /
(features['canvas_height'] + ObservationExtractor.EPSILON)).astype(
np.float32)
def _normalize_locations_by_canvas(self, features: Dict[Text,
np.ndarray]) -> None:
"""Normalizes locations with the canvas size."""
features['locations_x'] = (
features['locations_x'] /
(features['canvas_width'] + ObservationExtractor.EPSILON)).astype(
np.float32)
features['locations_y'] = (
features['locations_y'] /
(features['canvas_height'] + ObservationExtractor.EPSILON)).astype(
np.float32)
def _replace_unplace_node_location(self, features: Dict[Text,
np.ndarray]) -> None:
"""Replace the location of the unplaced macros with a constant."""
is_node_placed = np.equal(features['is_node_placed'], 1)
features['locations_x'] = np.where(
is_node_placed,
features['locations_x'],
self._default_location_x * np.ones_like(features['locations_x']),
).astype(np.float32)
features['locations_y'] = np.where(
is_node_placed,
features['locations_y'],
self._default_location_y * np.ones_like(features['locations_y']),
).astype(np.float32)
def get_static_features(self) -> Dict[Text, np.ndarray]:
return {
key: self._features[key]
for key in observation_config_lib.STATIC_OBSERVATIONS
}
def get_initial_features(self) -> Dict[Text, np.ndarray]:
return {
key: self._features[key]
for key in observation_config_lib.INITIAL_OBSERVATIONS
}
def _update_dynamic_features(self, previous_node_index: int,
current_node_index: int,
mask: np.ndarray) -> None:
"""Updates the dynamic features."""
if previous_node_index >= 0:
x, y = self.plc.get_node_location(
self.plc.get_macro_indices()[previous_node_index])
self._features['locations_x'][previous_node_index] = (
x / (self.width + ObservationExtractor.EPSILON))
self._features['locations_y'][previous_node_index] = (
y / (self.height + ObservationExtractor.EPSILON))
self._features['is_node_placed'][previous_node_index] = 1
self._features['mask'] = mask.astype(np.int32)
self._features['current_node'] = np.asarray([current_node_index
]).astype(np.int32)
def get_dynamic_features(self, previous_node_index: int,
current_node_index: int,
mask: np.ndarray) -> Dict[Text, np.ndarray]:
self._update_dynamic_features(previous_node_index, current_node_index, mask)
return {
key: self._features[key]
for key in observation_config_lib.DYNAMIC_OBSERVATIONS
if key in self._features
}
def get_all_features(self, previous_node_index: int, current_node_index: int,
mask: np.ndarray) -> Dict[Text, np.ndarray]:
features = self.get_static_features()
features.update(
self.get_dynamic_features(
previous_node_index=previous_node_index,
current_node_index=current_node_index,
mask=mask))
return features
# coding=utf-8
# Copyright 2021 The Circuit Training Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A collection of non-prod utility functions for placement.
All the dependencies in this files should be non-prod.
"""
import os
import datetime
import re
import textwrap
from typing import Dict, Iterator, List, Optional, Tuple, Any, Union
from absl import logging
logging.set_verbosity(logging.INFO)
# from circuit_training.environment import plc_client
from Plc_client import plc_client_os as plc_client
import numpy as np
# Internal gfile dependencies
# done
def nodes_of_types(plc: plc_client.PlacementCost,
type_list: List[str]) -> Iterator[int]:
"""Yields the index of a node of certain types."""
i = 0
while True:
node_type = plc.get_node_type(i)
if not node_type:
break
if node_type in type_list:
yield i
i += 1
# done
def get_node_xy_coordinates(
plc: plc_client.PlacementCost) -> Dict[int, Tuple[float, float]]:
"""Returns all node x,y coordinates (canvas) in a dict."""
node_coords = dict()
for node_index in nodes_of_types(plc, ['MACRO', 'STDCELL', 'PORT']):
if plc.is_node_placed(node_index):
node_coords[node_index] = plc.get_node_location(node_index)
return node_coords
# done
def get_macro_orientations(plc: plc_client.PlacementCost) -> Dict[int, int]:
"""Returns all macros' orientations in a dict."""
macro_orientations = dict()
for node_index in nodes_of_types(plc, ['MACRO']):
macro_orientations[node_index] = plc.get_macro_orientation(node_index)
return macro_orientations
# done
def restore_node_xy_coordinates(
plc: plc_client.PlacementCost,
node_coords: Dict[int, Tuple[float, float]]) -> None:
for node_index, coords in node_coords.items():
if not plc.is_node_fixed(node_index):
plc.update_node_coords(node_index, coords[0], coords[1])
# done
def restore_macro_orientations(plc: plc_client.PlacementCost,
macro_orientations: Dict[int, int]) -> None:
for node_index, orientation in macro_orientations.items():
plc.update_macro_orientation(node_index, orientation)
# done
def extract_attribute_from_comments(attribute: str,
filenames: List[str]) -> Optional[str]:
"""Parses the files' comments section, tries to extract the attribute.
Args:
attribute: attribute to look for (case sensetive).
filenames: List of protobuf file or a plc file.
Returns:
Attribute name string, or None if not found.
"""
for filename in filenames:
if filename:
f = filename.split(',')[0]
if f:
with open(f, 'rt') as infile:
for line in infile:
if line.startswith('#'):
match = re.search(fr'{attribute} : ([-\w]+)', line)
if match:
return match.group(1)
else:
# Do not parse the rest of the file, since all the comments are at
# the top.
break
return None
# done
def get_blockages_from_comments(
filenames: Union[str, List[str]]) -> Optional[List[List[float]]]:
"""Returns list of blockages if they exist in the file's comments section."""
for filename in filenames:
if not filename:
continue
blockages = []
# Read the first file if filename is comma separated list.
# Expected blockage info line format is:
# "# Blockage : <float> <float> <float> <float> <float>"
# where first four float numbers correspond to minx, miny, maxx, maxy of
# the rectangular region, the fifth one is the blockage rate. It's usually
# set to 1.
try:
with open(filename, 'rt') as infile:
for line in infile:
if line.startswith('# Blockage : '):
blockages.append([float(x) for x in line.split()[3:8]])
elif not line.startswith('#'):
break
except OSError:
logging.error('could not read file %s.', filename)
if blockages:
return blockages
#done
def extract_sizes_from_comments(
filenames: List[str]) -> Optional[Tuple[float, float, int, int]]:
"""Parses the file's comments section, tries to extract canvas/grid sizes.
Args:
filenames: A list of netlist (.pb.txt) or placement (.plc) files.
Returns:
Tuple of canvas_width, canvas_height, grid_cols, grid_rows
"""
for filename in filenames:
if not filename:
continue
canvas_width, canvas_height = None, None
grid_cols, grid_rows = None, None
with open(filename, 'rt') as infile:
for line in infile:
if line.startswith('#'):
fp_re = re.search(
r'FP bbox: \{([\d\.]+) ([\d\.]+)\} \{([\d\.]+) ([\d\.]+)\}', line)
if fp_re:
canvas_width = float(fp_re.group(3))
canvas_height = float(fp_re.group(4))
continue
plc_wh = re.search(r'Width : ([\d\.]+) Height : ([\d\.]+)', line)
if plc_wh:
canvas_width = float(plc_wh.group(1))
canvas_height = float(plc_wh.group(2))
continue
plc_cr = re.search(r'Columns : ([\d]+) Rows : ([\d]+)', line)
if plc_cr:
grid_cols = int(plc_cr.group(1))
grid_rows = int(plc_cr.group(2))
else:
# Do not parse the rest of the file, since all the comments are at the
# top.
break
if canvas_width and canvas_height and grid_cols and grid_rows:
return canvas_width, canvas_height, grid_cols, grid_rows
# done
def fix_port_coordinates(plc: plc_client.PlacementCost) -> None:
"""Find all ports and fix their coordinates.
Args:
plc: the placement cost object.
"""
for node in nodes_of_types(plc, ['PORT']):
# print("node to fix:", node)
plc.fix_node_coord(node)
# done
# The routing capacities are calculated based on the public information about
# 7nm technology (https://en.wikichip.org/wiki/7_nm_lithography_process)
# with an arbitary, yet reasonable, assumption of 18% of the tracks for
# the power grids.
def create_placement_cost(
plc_client: None,
netlist_file: str,
init_placement: Optional[str] = None,
overlap_threshold: float = 4e-3,
congestion_smooth_range: int = 2,
# TODO(b/211039937): Increase macro spacing to 3-5um, after matching the
# performance for Ariane.
macro_macro_x_spacing: float = 0.1,
macro_macro_y_spacing: float = 0.1,
boundary_check: bool = False,
horizontal_routes_per_micron: float = 70.33,
vertical_routes_per_micron: float = 74.51,
macro_horizontal_routing_allocation: float = 51.79,
macro_vertical_routing_allocation: float = 51.79,
) -> plc_client.PlacementCost:
"""Creates a placement_cost object.
Args:
netlist_file: Path to the netlist proto text file.
init_placement: Path to the inital placement .plc file.
overlap_threshold: Used for macro overlap detection.
congestion_smooth_range: Smoothing factor used for congestion estimation.
Congestion is distributed to this many neighboring columns/rows.'
macro_macro_x_spacing: Macro-to-macro x spacing in microns.
macro_macro_y_spacing: Macro-to-macro y spacing in microns.
boundary_check: Do a boundary check during node placement.
horizontal_routes_per_micron: Horizontal route capacity per micros.
vertical_routes_per_micron: Vertical route capacity per micros.
macro_horizontal_routing_allocation: Macro horizontal routing allocation.
macro_vertical_routing_allocation: Macro vertical routing allocation.
Returns:
A PlacementCost object.
"""
if not netlist_file:
raise ValueError('netlist_file should be provided.')
block_name = extract_attribute_from_comments('Block',
[init_placement, netlist_file])
if not block_name:
logging.warning(
'block_name is not set. '
'Please add the block_name in:\n%s\nor in:\n%s', netlist_file,
init_placement)
plc = plc_client.PlacementCost(netlist_file, macro_macro_x_spacing,
macro_macro_y_spacing)
blockages = get_blockages_from_comments([netlist_file, init_placement])
if blockages:
print(blockages)
for blockage in blockages:
print(*blockage)
plc.create_blockage(*blockage)
sizes = extract_sizes_from_comments([netlist_file, init_placement])
print(sizes)
if sizes:
canvas_width, canvas_height, grid_cols, grid_rows = sizes
if canvas_width and canvas_height and grid_cols and grid_rows:
plc.set_canvas_size(canvas_width, canvas_height)
plc.set_placement_grid(grid_cols, grid_rows)
plc.set_project_name('circuit_training')
plc.set_block_name(block_name or 'unset_block')
plc.set_routes_per_micron(horizontal_routes_per_micron,
vertical_routes_per_micron)
plc.set_macro_routing_allocation(macro_horizontal_routing_allocation,
macro_vertical_routing_allocation)
plc.set_congestion_smooth_range(congestion_smooth_range)
plc.set_overlap_threshold(overlap_threshold)
plc.set_canvas_boundary_check(boundary_check)
plc.make_soft_macros_square()
# exit(0)
# print(plc.get_soft_macros_count())
if init_placement:
plc.restore_placement(init_placement)
fix_port_coordinates(plc)
return plc
def get_node_type_counts(plc: plc_client.PlacementCost) -> Dict[str, int]:
"""Returns number of each type of nodes in the netlist.
Args:
plc: the placement cost object.
Returns:
Number of each type of node in a dict.
"""
counts = {
'MACRO': 0,
'STDCELL': 0,
'PORT': 0,
'MACRO_PIN': 0,
'SOFT_MACRO': 0,
'HARD_MACRO': 0,
'SOFT_MACRO_PIN': 0,
'HARD_MACRO_PIN': 0
}
for node_index in nodes_of_types(plc,
['MACRO', 'STDCELL', 'PORT', 'MACRO_PIN']):
node_type = plc.get_node_type(node_index)
counts[node_type] += 1
if node_type == 'MACRO':
if plc.is_node_soft_macro(node_index):
counts['SOFT_MACRO'] += 1
else:
counts['HARD_MACRO'] += 1
if node_type == 'MACRO_PIN':
ref_id = plc.get_ref_node_id(node_index)
# print("ref_id: ", ref_id)
if plc.is_node_soft_macro(ref_id):
counts['SOFT_MACRO_PIN'] += 1
else:
counts['HARD_MACRO_PIN'] += 1
return counts
# done
def make_blockage_text(plc: plc_client.PlacementCost) -> str:
ret = ''
for blockage in plc.get_blockages():
ret += 'Blockage : {}\n'.format(' '.join([str(b) for b in blockage]))
return ret
# done
def save_placement(plc: plc_client.PlacementCost,
filename: str,
user_comments: str = '') -> None:
"""Saves the placement file with some information in the comments section."""
cols, rows = plc.get_grid_num_columns_rows()
width, height = plc.get_canvas_width_height()
hor_routes, ver_routes = plc.get_routes_per_micron()
hor_macro_alloc, ver_macro_alloc = plc.get_macro_routing_allocation()
smooth = plc.get_congestion_smooth_range()
info = textwrap.dedent("""\
Placement file for Circuit Training
Source input file(s) : {src_filename}
This file : {filename}
Date : {date}
Columns : {cols} Rows : {rows}
Width : {width:.3f} Height : {height:.3f}
Area : {area}
Wirelength : {wl:.3f}
Wirelength cost : {wlc:.4f}
Congestion cost : {cong:.4f}
Density cost : {density:.4f}
Project : {project}
Block : {block_name}
Routes per micron, hor : {hor_routes:.3f} ver : {ver_routes:.3f}
Routes used by macros, hor : {hor_macro_alloc:.3f} ver : {ver_macro_alloc:.3f}
Smoothing factor : {smooth}
Overlap threshold : {overlap_threshold}
""".format(
src_filename=plc.get_source_filename(),
filename=filename,
date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
cols=cols,
rows=rows,
width=width,
height=height,
area=plc.get_area(),
wl=plc.get_wirelength(),
wlc=plc.get_cost(),
cong=plc.get_congestion_cost(),
density=plc.get_density_cost(),
project=plc.get_project_name(),
block_name=plc.get_block_name(),
hor_routes=hor_routes,
ver_routes=ver_routes,
hor_macro_alloc=hor_macro_alloc,
ver_macro_alloc=ver_macro_alloc,
smooth=smooth,
overlap_threshold=plc.get_overlap_threshold()))
info += '\n' + make_blockage_text(plc) + '\n'
info += '\nCounts of node types:\n'
node_type_counts = get_node_type_counts(plc)
for node_type in sorted(node_type_counts):
info += '{:<15} : {:>9}\n'.format(node_type + 's',
node_type_counts[node_type])
if user_comments:
info += '\nUser comments:\n' + user_comments + '\n'
info += '\nnode_index x y orientation fixed'
# print(info)
return plc.save_placement(filename, info)
# TODO: plc.optimize_stdcells
def fd_placement_schedule(plc: plc_client.PlacementCost,
num_steps: Tuple[int, ...] = (100, 100, 100),
io_factor: float = 1.0,
move_distance_factors: Tuple[float,
...] = (1.0, 1.0, 1.0),
attract_factor: Tuple[float,
...] = (100.0, 1.0e-3, 1.0e-5),
repel_factor: Tuple[float, ...] = (0.0, 1.0e6, 1.0e7),
use_current_loc: bool = False,
move_macros: bool = False) -> None:
"""A placement schedule that uses force directed method.
Args:
plc: The plc object.
num_steps: Number of steps of the force-directed algorithm during each call.
io_factor: I/O attract factor.
move_distance_factors: Maximum distance relative to canvas size that a node
can move in a single step of the force-directed algorithm.
attract_factor: The spring constants between two connected nodes in the
force-directed algorithm. The FD algorithm will be called size of this
list times. Make sure that the size of fd_repel_factor has the same size.
repel_factor: The repellent factor for spreading the nodes to avoid
congestion in the force-directed algorithm.'
use_current_loc: If true, use the current location as the initial location.
move_macros: If true, also move the macros.
"""
assert len(num_steps) == len(move_distance_factors)
assert len(num_steps) == len(repel_factor)
assert len(num_steps) == len(attract_factor)
canvas_size = max(plc.get_canvas_width_height())
max_move_distance = [
f * canvas_size / s for s, f in zip(num_steps, move_distance_factors)
]
move_stdcells = True
log_scale_conns = False
use_sizes = False
plc.optimize_stdcells(use_current_loc, move_stdcells, move_macros,
log_scale_conns, use_sizes, io_factor, num_steps,
max_move_distance, attract_factor, repel_factor)
# not tested
def get_ordered_node_indices(mode: str,
plc: plc_client.PlacementCost,
exclude_fixed_nodes: bool = True) -> List[int]:
"""Returns an ordering of node indices according to the specified mode.
Args:
mode: node ordering mode
plc: placement cost object
exclude_fixed_nodes: Whether fixed nodes should be excluded.
Returns:
Node indices sorted according to the mode.
"""
macro_indices = plc.get_macro_indices()
hard_macro_indices = [
m for m in macro_indices if not plc.is_node_soft_macro(m)
]
soft_macro_indices = [m for m in macro_indices if plc.is_node_soft_macro(m)]
def macro_area(idx):
w, h = plc.get_node_width_height(idx)
return w * h
if mode == 'descending_size_macro_first':
ordered_indices = (
sorted(hard_macro_indices, key=macro_area)[::-1] +
sorted(soft_macro_indices, key=macro_area)[::-1])
elif mode == 'random':
np.random.shuffle(macro_indices)
ordered_indices = macro_indices
elif mode == 'random_macro_first':
np.random.shuffle(hard_macro_indices)
ordered_indices = hard_macro_indices + soft_macro_indices
else:
raise ValueError('{} is an unsupported node placement mode.'.format(mode))
if exclude_fixed_nodes:
ordered_indices = [m for m in ordered_indices if not plc.is_node_fixed(m)]
return ordered_indices
# done
def extract_parameters_from_comments(
filename: str) -> Tuple[float, float, int, int]:
"""Parses the file's comments section, tries to extract canvas/grid sizes.
Args:
filename: protobuf file or a plc file.
Returns:
Tuple of canvas_width, canvas_height, grid_cols, grid_rows
"""
filename0 = filename.split(',')[0]
canvas_width, canvas_height = None, None
grid_cols, grid_rows = None, None
with open(filename0, 'r') as infile:
for line in infile:
if line.startswith('#'):
fp_re = re.search(
r'FP bbox: \{([\d\.]+) ([\d\.]+)\} \{([\d\.]+) ([\d\.]+)\}', line)
if fp_re:
# NOTE: first two argument contains origin coord but not used
canvas_width = float(fp_re.group(3))
canvas_height = float(fp_re.group(4))
continue
plc_wh = re.search(r'Width : ([\d\.]+) Height : ([\d\.]+)', line)
if plc_wh:
canvas_width = float(plc_wh.group(1))
canvas_height = float(plc_wh.group(2))
continue
plc_cr = re.search(r'Columns : ([\d]+) Rows : ([\d]+)', line)
if plc_cr:
grid_cols = int(plc_cr.group(1))
grid_rows = int(plc_cr.group(2))
else:
# Do not parse the rest of the file, since all the comments are at the
# top.
break
return canvas_width, canvas_height, grid_cols, grid_rows
# done
def get_routing_resources() -> Dict[str, float]:
"""Currently we only use default parameter settings.
In the future, for specific project, the resources may need to be tuned.
Returns:
Routing resources.
"""
return {
'horizontal_routes_per_micron': 57.031,
'vertical_routes_per_micron': 56.818,
'macro_horizontal_routing_allocation': 39.583,
'macro_vertical_routing_allocation': 30.303,
}
# done
def nodes_of_types(plc: plc_client.PlacementCost, type_list: List[str]):
"""Yields the index of a node of certain types."""
i = 0
while True:
node_type = plc.get_node_type(i)
if not node_type:
break
if node_type in type_list:
yield i
i += 1
# done
def num_nodes_of_type(plc, node_type):
"""Returns number of node of a particular type."""
count = 0
for _ in nodes_of_types(plc, [node_type]):
count += 1
return count
# not tested
def extract_blockages_from_tcl(filename: str,
block_name: str,
canvas_width: float,
canvas_height: float,
is_rectilinear: bool = False):
"""Reads blockage information from a given tcl file."""
# Assumptions: project is viperlite or viperfish.
# This is not a TCL parser, it just reads in a line of the format:
# dict set ::clockstrap <block name> <blockage index> <corner> <float number>
# corner is expected to be one of lly, ury.
blockage_info = dict()
try:
with open(filename, 'r') as infile:
for line in infile:
if line.startswith('dict set ::clockstrap '):
block, index, corner, value = line.split()[3:7]
if block != block_name:
continue
blockage_info[corner + index] = float(value)
except gfile.FileError:
logging.error('could not read file %s', filename)
return []
blockages = []
if is_rectilinear:
# Use blockage to model rectilinear floorplan.
index = 0
while ('llx' + str(index) in blockage_info and
'lly' + str(index) in blockage_info and
'urx' + str(index) in blockage_info and
'ury' + str(index) in blockage_info):
minx = blockage_info['llx' + str(index)]
maxx = blockage_info['urx' + str(index)]
miny = blockage_info['lly' + str(index)]
maxy = blockage_info['ury' + str(index)]
if minx < 0:
raise ValueError(f'Illegal blockage at index {index}: llx {minx} < 0')
if maxx > canvas_width:
raise ValueError(
f'Illegal blockage at index {index}: urx {maxx} > canvas '
f'width {canvas_width}')
if miny < 0:
raise ValueError(f'Illegal blockage at index {index}: lly {miny} < 0')
if maxy > canvas_height:
raise ValueError(
f'Illegal blockage at index {index}: ury {maxy} > canvas '
f'height {canvas_height}')
blockages.append([minx, miny, maxx, maxy, 1])
index += 1
else:
# Fully horizontal or vertical blockage.
# Horizontal straps.
index = 0
while 'lly' + str(index) in blockage_info and 'ury' + str(
index) in blockage_info:
minx = 0.0
maxx = canvas_width
miny = blockage_info['lly' + str(index)]
maxy = blockage_info['ury' + str(index)]
blockages.append([minx, miny, maxx, maxy, 1])
index += 1
# We don't have any vertical straps, now. Should we still support it?
# Vertical straps.
index = 0
while 'llx' + str(index) in blockage_info and 'urx' + str(
index) in blockage_info:
minx = blockage_info['llx' + str(index)]
maxx = blockage_info['urx' + str(index)]
miny = 0.0
maxy = canvas_height
blockages.append([minx, miny, maxx, maxy, 1])
index += 1
return blockages
# done
def get_ascii_picture(vect: List[Any],
cols: int,
rows: int,
scale: float = 10) -> str:
"""Returns an ascii picture for the input as a human readable matrix."""
ret_str = ' '
for c in range(cols):
ret_str += '|' + str(int(c / 10) % 10)
ret_str += '|\n '
for c in range(cols):
ret_str += '|' + str(c % 10)
ret_str += '|\n -' + '-' * 2 * cols + '\n'
for r in range(rows - 1, -1, -1):
ret_str += format('%3d' % r)
for c in range(cols):
mindex = r * cols + c
val = int(scale * vect[mindex])
if val > scale:
ret_str += '|!'
elif val == scale:
ret_str += '|#'
elif val == 0:
ret_str += '| '
else:
ret_str += '|' + str(val)
ret_str += '|\n'
ret_str += ' -' + '-' * 2 * cols + '\n'
return ret_str
# done
def get_hard_macro_density_map(plc: plc_client.PlacementCost) -> List[float]:
"""Returns the placement density map for hard macros only."""
# Unplaces all standard cells and soft macros, so that grid cell density
# only contains hard macros.
placements_to_restore = dict()
for node_index in nodes_of_types(plc, ['STDCELL']):
if plc.is_node_placed(node_index):
placements_to_restore[node_index] = plc.get_node_location(node_index)
plc.unplace_node(node_index)
for node_index in nodes_of_types(plc, ['MACRO']):
if plc.is_node_soft_macro(node_index) and plc.is_node_placed(node_index):
placements_to_restore[node_index] = plc.get_node_location(node_index)
plc.unplace_node(node_index)
hard_macro_density = plc.get_grid_cells_density()
check_boundary = plc.get_canvas_boundary_check()
# Restores placements, but original placement may be illegal (outside canvas
# area), ignore those cases.
plc.set_canvas_boundary_check(False)
for node_index, coords in placements_to_restore.items():
plc.update_node_coords(node_index, coords[0], coords[1])
plc.set_canvas_boundary_check(check_boundary)
return hard_macro_density
# done
def save_placement_with_info(plc: plc_client.PlacementCost,
filename: str,
user_comments: str = '') -> None:
"""Saves the placement file with some information in the comments section."""
cols, rows = plc.get_grid_num_columns_rows()
width, height = plc.get_canvas_width_height()
hor_routes, ver_routes = plc.get_routes_per_micron()
hor_macro_alloc, ver_macro_alloc = plc.get_macro_routing_allocation()
smooth = plc.get_congestion_smooth_range()
init_placement_config = ''
# Do not change the format of the comments section before updating
# extract_parameters_from_comments and extract_netlist_file_from_comments
# functions.
info = textwrap.dedent("""\
Placement file for Circuit Training
Source input file(s) : {src_filename}
This file : {filename}
Original initial placement : {init_placement_config}
Date : {date}
Columns : {cols} Rows : {rows}
Width : {width:.3f} Height : {height:.3f}
Area (stdcell+macros) : {area}
Wirelength : {wl:.3f}
Wirelength cost : {wlc:.4f}
Congestion cost : {cong:.4f}
Density cost : {density:.4f}
Fake net cost : {fake_net:.4f}
90% Congestion metric: {cong90}
Project : {project}
Block : {block_name}
Routes per micron, hor : {hor_routes:.3f} ver : {ver_routes:.3f}
Routes used by macros, hor : {hor_macro_alloc:.3f} ver : {ver_macro_alloc:.3f}
Smoothing factor : {smooth}
Use incremental cost : {incr_cost}
To view this file (most options are default):
viewer_binary\
--netlist_file {src_filename}\
--canvas_width {width} --canvas_height {height}\
--grid_cols {cols} --grid_rows={rows}\
--init_placement {filename}\
--project {project}\
--block_name {block_name}\
--congestion_smooth_range {smooth}\
--overlap_threshold {overlap_threshold}\
--noboundary_check
or you can simply run:
viewer_binary\
--init_placement {filename}
""".format(
src_filename=plc.get_source_filename(),
filename=filename,
init_placement_config=init_placement_config,
date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
cols=cols,
rows=rows,
width=width,
height=height,
area=plc.get_area(),
wl=plc.get_wirelength(),
wlc=plc.get_cost(),
cong=plc.get_congestion_cost(),
cong90=plc.get_congestion_cost_threshold(0.9),
density=plc.get_density_cost(),
fake_net=plc.get_fake_net_cost(),
project=plc.get_project_name(),
block_name=plc.get_block_name(),
hor_routes=hor_routes,
ver_routes=ver_routes,
hor_macro_alloc=hor_macro_alloc,
ver_macro_alloc=ver_macro_alloc,
smooth=smooth,
incr_cost=plc.get_use_incremental_cost(),
overlap_threshold=plc.get_overlap_threshold()))
info += '\n' + make_blockage_text(plc) + '\n'
info += '\nCounts of node types:\n'
node_type_counts = get_node_type_counts(plc)
for node_type in sorted(node_type_counts):
info += '{:<15} : {:>9}\n'.format(node_type + 's',
node_type_counts[node_type])
info += '\nHard Macro Placements:\n'
info += get_ascii_picture(get_hard_macro_density_map(plc), cols, rows)
info += '\nOverall Placement Density:\n'
info += get_ascii_picture(plc.get_grid_cells_density(), cols, rows)
info += '\nHorizontal Routing Congestion:\n'
info += get_ascii_picture(plc.get_horizontal_routing_congestion(), cols, rows)
info += '\nVertical Routing Congestion:\n'
info += get_ascii_picture(plc.get_vertical_routing_congestion(), cols, rows)
if user_comments:
info += '\nUser comments:\n' + user_comments + '\n'
info += '\nnode_index x y orientation fixed'
return plc.save_placement(filename, info)
# done
def create_placement_cost_using_common_arguments(
plc_client:None,
netlist_file: str,
init_placement: Optional[str] = None,
canvas_width: Optional[float] = None,
canvas_height: Optional[float] = None,
grid_cols: Optional[int] = None,
grid_rows: Optional[int] = None,
project: Optional[str] = None,
block_name: Optional[str] = None,
congestion_smooth_range: Optional[int] = None,
overlap_threshold: Optional[float] = None,
use_incremental_cost: Optional[bool] = None,
boundary_check: Optional[bool] = None,
blockages: Optional[List[List[float]]] = None,
fix_ports: Optional[bool] = True) -> plc_client.PlacementCost:
"""Creates a placement_cost object using the common arguments."""
if not project:
logging.info('Reading project name from file.')
project = extract_attribute_from_comments('Project',
[init_placement, netlist_file])
if init_placement and not block_name:
logging.info('Reading block name from file.')
block_name = extract_attribute_from_comments('Block',
[init_placement, netlist_file])
if not block_name:
logging.warning('block_name is not set. Please add the block_name in:\n%s',
init_placement)
plc = plc_client.PlacementCost(netlist_file)
# Create blockages.
if blockages is None:
# Try to read blockages from input files. To avoid file I/O, pass blockages,
# or an empty list if there are none.
logging.info('Reading blockages from file.')
for filename in [netlist_file, init_placement]:
if filename is None:
continue
blockages = get_blockages_from_comments([filename])
# Only read blockages from one file.
if blockages:
break
if blockages:
for blockage in blockages:
plc.create_blockage(*blockage)
# Give precedence to command line parameters for canvas/grid sizes.
canvas_size_set = False
if canvas_width and canvas_height:
plc.set_canvas_size(canvas_width, canvas_height)
canvas_size_set = True
grid_size_set = False
if grid_cols and grid_rows:
grid_size_set = True
plc.set_placement_grid(grid_cols, grid_rows)
# Extract and set canvas, grid sizes if they are not already set.
if not canvas_size_set or not grid_size_set:
logging.info('Reading netlist sizes from file.')
for filename in [netlist_file, init_placement]:
if filename is None:
continue
sizes = extract_parameters_from_comments(filename)
canvas_width, canvas_height, grid_cols, grid_rows = sizes
if canvas_width and canvas_height and not canvas_size_set:
plc.set_canvas_size(canvas_width, canvas_height)
if grid_cols and grid_rows and not grid_size_set:
plc.set_placement_grid(grid_cols, grid_rows)
routing_resources = get_routing_resources()
plc.set_project_name(project or 'unset_project')
plc.set_block_name(block_name or 'unset_block')
plc.set_routes_per_micron(routing_resources['horizontal_routes_per_micron'],
routing_resources['vertical_routes_per_micron'])
plc.set_macro_routing_allocation(
routing_resources['macro_horizontal_routing_allocation'],
routing_resources['macro_vertical_routing_allocation'])
plc.set_congestion_smooth_range(congestion_smooth_range)
plc.set_overlap_threshold(overlap_threshold)
plc.set_canvas_boundary_check(boundary_check)
# Set macros to initial locations.
if init_placement:
logging.info('Reading init_placement from file %s', init_placement)
# I/O is forbidden in forked child processes.
# Reads init placement from file only if init_locations are not provided.
plc.restore_placement(init_placement)
if fix_ports:
fix_port_coordinates(plc)
plc.set_use_incremental_cost(use_incremental_cost)
return plc
# done, but need verify
def get_node_locations(plc: plc_client.PlacementCost) -> Dict[int, int]:
"""Returns all node grid locations (macros and stdcells) in a dict."""
node_locations = dict()
for i in nodes_of_types(plc, ['MACRO', 'STDCELL']):
node_locations[i] = plc.get_grid_cell_of_node(i)
return node_locations
def get_node_ordering_by_size(plc: plc_client.PlacementCost) -> List[int]:
"""Returns the list of nodes (macros and stdcells) ordered by area."""
node_areas = dict()
for i in nodes_of_types(plc, ['MACRO', 'STDCELL']):
if plc.is_node_fixed(i):
continue
w, h = plc.get_node_width_height(i)
node_areas[i] = w * h
return sorted(node_areas, key=node_areas.get, reverse=True)
# not tested
def grid_locations_near(plc: plc_client.PlacementCost,
start_grid_index: int) -> Iterator[int]:
"""Yields node indices closest to the start_grid_index."""
# Starting from the start_grid_index, it goes around the area from closest
# (manhattan distance) to the farthest. For example, if the start grid index
# is at 0, the order of the next grid cells will be like:
# 24
# 22 12 23
# 20 10 4 11 21
# 18 8 2 0 3 9 19
# 16 6 1 7 17
# 14 5 15
# 13
cols, rows = plc.get_grid_num_columns_rows()
start_col, start_row = start_grid_index % cols, int(start_grid_index / cols)
# TODO(mustafay): This may be improved, but it's not crucial now.
for distance in range(cols + rows):
for row_offset in range(-distance, distance + 1):
for col_offset in range(-distance, distance + 1):
if abs(row_offset) + abs(col_offset) != distance:
continue
new_col = start_col + col_offset
new_row = start_row + row_offset
if new_col < 0 or new_row < 0 or new_col >= cols or new_row >= rows:
continue
yield int(new_col + new_row * cols)
# not tested
def place_near(plc: plc_client.PlacementCost, node_index: int,
location: int) -> bool:
"""Places a node (legally) closest to the given location.
Args:
plc: placement_cost object.
node_index: index of a node.
location: target grid cell location. (row * num_cols + num_cols)
Returns:
True on success, False if this node was not placed on any grid legally.
"""
for loc in grid_locations_near(plc, location):
if plc.can_place_node(node_index, loc):
plc.place_node(node_index, loc)
return True
return False
# not tested
def disconnect_high_fanout_nets(plc: plc_client.PlacementCost,
max_allowed_fanouts: int = 500) -> None:
high_fanout_nets = []
for i in nodes_of_types(plc, ['PORT', 'STDCELL', 'MACRO_PIN']):
num_fanouts = len(plc.get_fan_outs_of_node(i))
if num_fanouts > max_allowed_fanouts:
print('Disconnecting node: {} with {} fanouts.'.format(
plc.get_node_name(i), num_fanouts))
high_fanout_nets.append(i)
plc.disconnect_nets(high_fanout_nets)
# not tested
def legalize_placement(plc: plc_client.PlacementCost) -> bool:
"""Places the nodes to legal positions snapping to grid cells."""
# Unplace all except i/o's.
fix_port_coordinates(plc)
# First save each node's locations on the grid.
# Note that the orientations are not changed by this utility, we do not
# need saving/restoring existing orientations.
node_locations = get_node_locations(plc)
previous_xy_coords = get_node_xy_coordinates(plc)
total_macro_displacement = 0
total_macros = 0
plc.unplace_all_nodes()
# Starting with the biggest, place them trying to be as close as possible
# to the original position.
ordered_nodes = get_node_ordering_by_size(plc)
for node in ordered_nodes:
if not place_near(plc, node, node_locations[node]):
print('Could not place node')
return False
if node in previous_xy_coords and not plc.is_node_soft_macro(node):
x, y = plc.get_node_location(node)
px, py = previous_xy_coords[node]
print('x/y displacement: dx = {}, dy = {}, macro: {}'.format(
x - px, y - py, plc.get_node_name(node)))
total_macro_displacement += abs(x - px) + abs(y - py)
total_macros += 1
print('Total macro displacement: {}, avg: {}'.format(
total_macro_displacement, total_macro_displacement / total_macros))
return True
def main():
""" Run Command:
python3 -m Plc_client.placement_util_os
"""
test_netlist_dir = './Plc_client/test/'+'ariane'
netlist_file = os.path.join(test_netlist_dir,'netlist.pb.txt')
init_placement = os.path.join(test_netlist_dir,'initial.plc')
plc = create_placement_cost(plc_client=plc_client, netlist_file=netlist_file, init_placement=init_placement)
# plc = create_placement_cost_using_common_arguments(netlist_file=netlist_file, init_placement=init_placement,
# grid_cols=10, grid_rows=10, congestion_smooth_range=2.0, overlap_threshold=0.004, use_incremental_cost=False)
print(make_blockage_text(plc))
# save_placement(plc, "save_test", 'this is a comment')
# plc.nodes_of_types()
# node_xy_coordinates
NODE_XY_DICT = {}
for i in nodes_of_types(plc, ['MACRO', 'macro', 'STDCELL', 'PORT']):
NODE_XY_DICT[i] = (100, 100)
restore_node_xy_coordinates(plc, NODE_XY_DICT)
# print(get_node_xy_coordinates(plc))
# macro_orientation
MACRO_ORIENTATION = {}
for i in nodes_of_types(plc, ['MACRO', 'macro']):
MACRO_ORIENTATION[i] = "S"
restore_macro_orientations(plc, MACRO_ORIENTATION)
# print(get_macro_orientations(plc))
fix_port_coordinates(plc)
# write out new plc
save_placement(plc, "save_test", 'this is a comment')
# needs more testing
print(get_node_locations(plc))
# num_nodes_of_type
print("num_nodes_of_type 'MACRO':", num_nodes_of_type(plc, "MACRO"))
# get_hard_macro_density_map
print("get_hard_macro_density_map: \n", get_hard_macro_density_map(plc))
print("get_hard_macro_density_map in ASCII: \n", get_ascii_picture(get_hard_macro_density_map(plc), *plc.get_grid_num_columns_rows()))
print()
if __name__ == '__main__':
main()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment