/**CFile****************************************************************

  FileName    [kitTruth.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Computation kit.]

  Synopsis    [Procedures involving truth tables.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - Dec 6, 2006.]

  Revision    [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]

***********************************************************************/

#include "kit.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Swaps two adjacent variables in the truth table.]

  Description [Swaps var number Start and var number Start+1 (0-based numbers).
  The input truth table is pIn. The output truth table is pOut.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
{
    static unsigned PMasks[4][3] = {
        { 0x99999999, 0x22222222, 0x44444444 },
        { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 },
        { 0xF00FF00F, 0x00F000F0, 0x0F000F00 },
        { 0xFF0000FF, 0x0000FF00, 0x00FF0000 }
    };
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step, Shift;

    assert( iVar < nVars - 1 );
    if ( iVar < 4 )
    {
        Shift = (1 << iVar);
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
    }
    else if ( iVar > 4 )
    {
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 4*Step )
        {
            for ( i = 0; i < Step; i++ )
                pOut[i] = pIn[i];
            for ( i = 0; i < Step; i++ )
                pOut[Step+i] = pIn[2*Step+i];
            for ( i = 0; i < Step; i++ )
                pOut[2*Step+i] = pIn[Step+i];
            for ( i = 0; i < Step; i++ )
                pOut[3*Step+i] = pIn[3*Step+i];
            pIn  += 4*Step;
            pOut += 4*Step;
        }
    }
    else // if ( iVar == 4 )
    {
        for ( i = 0; i < nWords; i += 2 )
        {
            pOut[i]   = (pIn[i]   & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16);
            pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i]   & 0xFFFF0000) >> 16);
        }
    }
}

/**Function*************************************************************

  Synopsis    [Swaps two adjacent variables in the truth table.]

  Description [Swaps var number Start and var number Start+1 (0-based numbers).
  The input truth table is pIn. The output truth table is pOut.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start )
{
    int nWords = (nVars <= 5)? 1 : (1 << (nVars-5));
    int i, k, Step;

    assert( Start < nVars - 1 );
    switch ( Start )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i += 2 )
        {
            pOut[i]   = (pIn[i]   & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16);
            pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i]   & 0xFFFF0000) >> 16);
        }
        return;
    default:
        Step = (1 << (Start - 5));
        for ( k = 0; k < nWords; k += 4*Step )
        {
            for ( i = 0; i < Step; i++ )
                pOut[i] = pIn[i];
            for ( i = 0; i < Step; i++ )
                pOut[Step+i] = pIn[2*Step+i];
            for ( i = 0; i < Step; i++ )
                pOut[2*Step+i] = pIn[Step+i];
            for ( i = 0; i < Step; i++ )
                pOut[3*Step+i] = pIn[3*Step+i];
            pIn  += 4*Step;
            pOut += 4*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Expands the truth table according to the phase.]

  Description [The input and output truth tables are in pIn/pOut. The current number
  of variables is nVars. The total number of variables in nVarsAll. The last argument
  (Phase) contains shows where the variables should go.]
               
  SideEffects [The input truth table is modified.]

  SeeAlso     []

***********************************************************************/
void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn )
{
    unsigned * pTemp;
    int i, k, Var = nVars - 1, Counter = 0;
    for ( i = nVarsAll - 1; i >= 0; i-- )
        if ( Phase & (1 << i) )
        {
            for ( k = Var; k < i; k++ )
            {
                Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k );
                pTemp = pIn; pIn = pOut; pOut = pTemp;
                Counter++;
            }
            Var--;
        }
    assert( Var == -1 );
    // swap if it was moved an even number of times
    if ( fReturnIn ^ !(Counter & 1) )
        Kit_TruthCopy( pOut, pIn, nVarsAll );
}

/**Function*************************************************************

  Synopsis    [Shrinks the truth table according to the phase.]

  Description [The input and output truth tables are in pIn/pOut. The current number
  of variables is nVars. The total number of variables in nVarsAll. The last argument
  (Phase) shows what variables should remain.]
               
  SideEffects [The input truth table is modified.]

  SeeAlso     []

***********************************************************************/
void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn )
{
    unsigned * pTemp;
    int i, k, Var = 0, Counter = 0;
    for ( i = 0; i < nVarsAll; i++ )
        if ( Phase & (1 << i) )
        {
            for ( k = i-1; k >= Var; k-- )
            {
                Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k );
                pTemp = pIn; pIn = pOut; pOut = pTemp;
                Counter++;
            }
            Var++;
        }
    assert( Var == nVars );
    // swap if it was moved an even number of times
    if ( fReturnIn ^ !(Counter & 1) )
        Kit_TruthCopy( pOut, pIn, nVarsAll );
}

/**Function*************************************************************

  Synopsis    [Implement give permutation.]

  Description [The input and output truth tables are in pIn/pOut. 
  The number of variables is nVars. Permutation is in pPerm.]
               
  SideEffects [The input truth table is modified.]

  SeeAlso     []

***********************************************************************/
void Kit_TruthPermute( unsigned * pOut, unsigned * pIn, int nVars, char * pPerm, int fReturnIn )
{
    unsigned * pTemp;
    int i, Temp, fChange, Counter = 0;
    do {
        fChange = 0;
        for ( i = 0; i < nVars-1; i++ )
        {
            assert( pPerm[i] != pPerm[i+1] );
            if ( pPerm[i] <= pPerm[i+1] )
                continue;
            Counter++;
            fChange = 1;

            Temp = pPerm[i];
            pPerm[i] = pPerm[i+1];
            pPerm[i+1] = Temp;

            Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
            pTemp = pIn; pIn = pOut; pOut = pTemp;
        }
    } while ( fChange );
    if ( fReturnIn ^ !(Counter & 1) )
        Kit_TruthCopy( pOut, pIn, nVars );
}

/**Function*************************************************************

  Synopsis    [Returns 1 if TT depends on the given variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) )
                return 1;
        return 0;
    case 1:
        for ( i = 0; i < nWords; i++ )
            if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) )
                return 1;
        return 0;
    case 2:
        for ( i = 0; i < nWords; i++ )
            if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) )
                return 1;
        return 0;
    case 3:
        for ( i = 0; i < nWords; i++ )
            if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) )
                return 1;
        return 0;
    case 4:
        for ( i = 0; i < nWords; i++ )
            if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) )
                return 1;
        return 0;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                if ( pTruth[i] != pTruth[Step+i] )
                    return 1;
            pTruth += 2*Step;
        }
        return 0;
    }
}

/**Function*************************************************************

  Synopsis    [Returns the number of support vars.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthSupportSize( unsigned * pTruth, int nVars )
{
    int i, Counter = 0;
    for ( i = 0; i < nVars; i++ )
        Counter += Kit_TruthVarInSupport( pTruth, nVars, i );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Returns support of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Kit_TruthSupport( unsigned * pTruth, int nVars )
{
    int i, Support = 0;
    for ( i = 0; i < nVars; i++ )
        if ( Kit_TruthVarInSupport( pTruth, nVars, i ) )
            Support |= (1 << i);
    return Support;
}



/**Function*************************************************************

  Synopsis    [Computes negative cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                pTruth[Step+i] = pTruth[i];
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Computes negative cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthCofactor0Count( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step, Counter = 0;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes(pTruth[i] & 0x55555555);
        return Counter;
    case 1:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes(pTruth[i] & 0x33333333);
        return Counter;
    case 2:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes(pTruth[i] & 0x0F0F0F0F);
        return Counter;
    case 3:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes(pTruth[i] & 0x00FF00FF);
        return Counter;
    case 4:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes(pTruth[i] & 0x0000FFFF);
        return Counter;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                Counter += Kit_WordCountOnes(pTruth[i]);
            pTruth += 2*Step;
        }
        return Counter;
    }
}

/**Function*************************************************************

  Synopsis    [Computes positive cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                pTruth[i] = pTruth[Step+i];
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Computes positive cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x55555555) | ((pIn[i] & 0x55555555) << 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x33333333) | ((pIn[i] & 0x33333333) << 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x0F0F0F0F) | ((pIn[i] & 0x0F0F0F0F) << 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x00FF00FF) | ((pIn[i] & 0x00FF00FF) << 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i] & 0x0000FFFF) << 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                pOut[i] = pOut[Step+i] = pIn[i];
            pIn += 2*Step;
            pOut += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Computes positive cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xAAAAAAAA) | ((pIn[i] & 0xAAAAAAAA) >> 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xCCCCCCCC) | ((pIn[i] & 0xCCCCCCCC) >> 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xF0F0F0F0) | ((pIn[i] & 0xF0F0F0F0) >> 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xFF00FF00) | ((pIn[i] & 0xFF00FF00) >> 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pIn[i] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                pOut[i] = pOut[Step+i] = pIn[Step+i];
            pIn += 2*Step;
            pOut += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Computes negative cofactor of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []
 
***********************************************************************/
int Kit_TruthVarIsVacuous( unsigned * pOnset, unsigned * pOffset, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            if ( ((pOnset[i] & (pOffset[i] >> 1)) | (pOffset[i] & (pOnset[i] >> 1))) & 0x55555555 )
                 return 0;
        return 1;
    case 1:
        for ( i = 0; i < nWords; i++ )
            if ( ((pOnset[i] & (pOffset[i] >> 2)) | (pOffset[i] & (pOnset[i] >> 2))) & 0x33333333 )
                 return 0;
            return 1;
    case 2:
        for ( i = 0; i < nWords; i++ )
            if ( ((pOnset[i] & (pOffset[i] >> 4)) | (pOffset[i] & (pOnset[i] >> 4))) & 0x0F0F0F0F )
                 return 0;
        return 1;
    case 3:
        for ( i = 0; i < nWords; i++ )
            if ( ((pOnset[i] & (pOffset[i] >> 8)) | (pOffset[i] & (pOnset[i] >> 8))) & 0x00FF00FF )
                 return 0;
        return 1;
    case 4:
        for ( i = 0; i < nWords; i++ )
            if ( ((pOnset[i] & (pOffset[i] >> 16)) | (pOffset[i] & (pOnset[i] >> 16))) & 0x0000FFFF )
                 return 0;
        return 1;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                if ( (pOnset[i] & pOffset[Step+i]) | (pOffset[i] & pOnset[Step+i]) )
                     return 0;
            pOnset += 2*Step;
            pOffset += 2*Step;
        }
        return 1;
    }
}


/**Function*************************************************************

  Synopsis    [Existentially quantifies the variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] |=  ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] |=  ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] |=  ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] |=  ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] |=  ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pTruth[i]     |= pTruth[Step+i];
                pTruth[Step+i] = pTruth[i];
            }
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Existentially quantifies the variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] | ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] | ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] | ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] | ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] | ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pRes[i]      = pTruth[i] | pTruth[Step+i];
                pRes[Step+i] = pRes[i];
            }
            pRes += 2*Step;
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Existantially quantifies the set of variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask )
{
    int v;
    Kit_TruthCopy( pRes, pTruth, nVars );
    for ( v = 0; v < nVars; v++ )
        if ( uMask & (1 << v) )
            Kit_TruthExist( pRes, nVars, v );
}

/**Function*************************************************************

  Synopsis    [Unversally quantifies the variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] &=  ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] &=  ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] &=  ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] &=  ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] &=  ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pTruth[i]     &= pTruth[Step+i];
                pTruth[Step+i] = pTruth[i];
            }
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Universally quantifies the variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] & (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1));
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] & (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2));
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] & (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4));
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] & (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8));
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] & (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16));
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pRes[i]      = pTruth[i] & pTruth[Step+i];
                pRes[Step+i] = pRes[i];
            }
            pRes += 2*Step;
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Universally quantifies the variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] ^ (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1));
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] ^ (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2));
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] ^ (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4));
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] ^ (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8));
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pRes[i] =  pTruth[i] ^ (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16));
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pRes[i]      = pTruth[i] ^ pTruth[Step+i];
                pRes[Step+i] = pRes[i];
            }
            pRes += 2*Step;
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Returns the number of minterms in the Boolean difference.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthBooleanDiffCount( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step, Counter = 0;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 1)) & 0x55555555 );
        return Counter;
    case 1:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 2)) & 0x33333333 );
        return Counter;
    case 2:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 4)) & 0x0F0F0F0F );
        return Counter;
    case 3:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 8)) & 0x00FF00FF );
        return Counter;
    case 4:
        for ( i = 0; i < nWords; i++ )
            Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >>16)) & 0x0000FFFF );
        return Counter;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
                Counter += Kit_WordCountOnes( pTruth[i] ^ pTruth[Step+i] );
            pTruth += 2*Step;
        }
        return Counter;
    }
}

/**Function*************************************************************

  Synopsis    [Returns the number of minterms in the Boolean difference.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthXorCount( unsigned * pTruth0, unsigned * pTruth1, int nVars )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, Counter = 0;
    for ( i = 0; i < nWords; i++ )
        Counter += Kit_WordCountOnes( pTruth0[i] ^ pTruth1[i] );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Universally quantifies the set of variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask )
{
    int v;
    Kit_TruthCopy( pRes, pTruth, nVars );
    for ( v = 0; v < nVars; v++ )
        if ( uMask & (1 << v) )
            Kit_TruthForall( pRes, nVars, v );
}


/**Function*************************************************************

  Synopsis    [Multiplexes two functions with the given variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pOut[i]      = pCof0[i];
                pOut[Step+i] = pCof1[Step+i];
            }
            pOut += 2*Step;
            pCof0 += 2*Step;
            pCof1 += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Multiplexes two functions with the given variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;

    if ( fCompl0 == 0 )
    {
        Kit_TruthMuxVar( pOut, pCof0, pCof1, nVars, iVar );
        return;
    }

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (~pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (~pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (~pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (~pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pOut[i] = (~pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                pOut[i]      = ~pCof0[i];
                pOut[Step+i] = pCof1[Step+i];
            }
            pOut += 2*Step;
            pCof0 += 2*Step;
            pCof1 += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Checks symmetry of two variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 )
{
    static unsigned uTemp0[32], uTemp1[32];
    if ( pCof0 == NULL )
    {
        assert( nVars <= 10 );
        pCof0 = uTemp0;
    }
    if ( pCof1 == NULL )
    {
        assert( nVars <= 10 );
        pCof1 = uTemp1;
    }
    // compute Cof01
    Kit_TruthCopy( pCof0, pTruth, nVars );
    Kit_TruthCofactor0( pCof0, nVars, iVar0 );
    Kit_TruthCofactor1( pCof0, nVars, iVar1 );
    // compute Cof10
    Kit_TruthCopy( pCof1, pTruth, nVars );
    Kit_TruthCofactor1( pCof1, nVars, iVar0 );
    Kit_TruthCofactor0( pCof1, nVars, iVar1 );
    // compare
    return Kit_TruthIsEqual( pCof0, pCof1, nVars );
}

/**Function*************************************************************

  Synopsis    [Checks antisymmetry of two variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 )
{
    static unsigned uTemp0[32], uTemp1[32];
    if ( pCof0 == NULL )
    {
        assert( nVars <= 10 );
        pCof0 = uTemp0;
    }
    if ( pCof1 == NULL )
    {
        assert( nVars <= 10 );
        pCof1 = uTemp1;
    }
    // compute Cof00
    Kit_TruthCopy( pCof0, pTruth, nVars );
    Kit_TruthCofactor0( pCof0, nVars, iVar0 );
    Kit_TruthCofactor0( pCof0, nVars, iVar1 );
    // compute Cof11
    Kit_TruthCopy( pCof1, pTruth, nVars );
    Kit_TruthCofactor1( pCof1, nVars, iVar0 );
    Kit_TruthCofactor1( pCof1, nVars, iVar1 );
    // compare
    return Kit_TruthIsEqual( pCof0, pCof1, nVars );
}

/**Function*************************************************************

  Synopsis    [Changes phase of the function w.r.t. one variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Step;
    unsigned Temp;

    assert( iVar < nVars );
    switch ( iVar )
    {
    case 0:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1);
        return;
    case 1:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2);
        return;
    case 2:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4);
        return;
    case 3:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8);
        return;
    case 4:
        for ( i = 0; i < nWords; i++ )
            pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16);
        return;
    default:
        Step = (1 << (iVar - 5));
        for ( k = 0; k < nWords; k += 2*Step )
        {
            for ( i = 0; i < Step; i++ )
            {
                Temp = pTruth[i];
                pTruth[i] = pTruth[Step+i];
                pTruth[Step+i] = Temp;
            }
            pTruth += 2*Step;
        }
        return;
    }
}

/**Function*************************************************************

  Synopsis    [Computes minimum overlap in supports of cofactors.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin )
{
    static unsigned uCofactor[16];
    int i, ValueCur, ValueMin, VarMin;
    unsigned uSupp0, uSupp1;
    int nVars0, nVars1;
    assert( nVars <= 9 );
    ValueMin = 32;
    VarMin   = -1;
    for ( i = 0; i < nVars; i++ )
    {
        // get negative cofactor
        Kit_TruthCopy( uCofactor, pTruth, nVars );
        Kit_TruthCofactor0( uCofactor, nVars, i );
        uSupp0 = Kit_TruthSupport( uCofactor, nVars );
        nVars0 = Kit_WordCountOnes( uSupp0 );
//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" );
        // get positive cofactor
        Kit_TruthCopy( uCofactor, pTruth, nVars );
        Kit_TruthCofactor1( uCofactor, nVars, i );
        uSupp1 = Kit_TruthSupport( uCofactor, nVars );
        nVars1 = Kit_WordCountOnes( uSupp1 );
//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" );
        // get the number of common vars
        ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 );
        if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 )
        {
            ValueMin = ValueCur;
            VarMin = i;
        }
        if ( ValueMin == 0 )
            break;
    }
    if ( pVarMin )
        *pVarMin = VarMin;
    return ValueMin;
}


/**Function*************************************************************

  Synopsis    [Find the best cofactoring variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 )
{
    int i, iBestVar, nSuppSizeCur0, nSuppSizeCur1, nSuppSizeCur, nSuppSizeMin;
    if ( Kit_TruthIsConst0(pTruth, nVars) || Kit_TruthIsConst1(pTruth, nVars) )
        return -1;
    // iterate through variables
    iBestVar = -1;
    nSuppSizeMin = KIT_INFINITY;
    for ( i = 0; i < nVars; i++ )
    {
        // cofactor the functiona and get support sizes
        Kit_TruthCofactor0New( pCof0, pTruth, nVars, i );
        Kit_TruthCofactor1New( pCof1, pTruth, nVars, i );
        nSuppSizeCur0 = Kit_TruthSupportSize( pCof0, nVars );
        nSuppSizeCur1 = Kit_TruthSupportSize( pCof1, nVars );
        nSuppSizeCur  = nSuppSizeCur0 + nSuppSizeCur1;
        // compare this variable with other variables
        if ( nSuppSizeMin > nSuppSizeCur ) 
        {
            nSuppSizeMin = nSuppSizeCur;
            iBestVar = i;
        }
    }
    assert( iBestVar != -1 );
    // cofactor w.r.t. this variable
    Kit_TruthCofactor0New( pCof0, pTruth, nVars, iBestVar );
    Kit_TruthCofactor1New( pCof1, pTruth, nVars, iBestVar );
    return iBestVar;
}


/**Function*************************************************************

  Synopsis    [Counts the number of 1's in each cofactor.]

  Description [The resulting numbers are stored in the array of ints, 
  whose length is 2*nVars. The number of 1's is counted in a different
  space than the original function. For example, if the function depends 
  on k variables, the cofactors are assumed to depend on k-1 variables.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, int * pStore )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Counter;
    memset( pStore, 0, sizeof(int) * 2 * nVars );
    if ( nVars <= 5 )
    {
        if ( nVars > 0 )
        {
            pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 );
            pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA );
        }
        if ( nVars > 1 )
        {
            pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 );
            pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC );
        }
        if ( nVars > 2 )
        {
            pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F );
            pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 );
        }
        if ( nVars > 3 )
        {
            pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF );
            pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 );
        }
        if ( nVars > 4 )
        {
            pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF );
            pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 );
        }
        return;
    }
    // nVars >= 6
    // count 1's for all other variables
    for ( k = 0; k < nWords; k++ )
    {
        Counter = Kit_WordCountOnes( pTruth[k] );
        for ( i = 5; i < nVars; i++ )
            if ( k & (1 << (i-5)) )
                pStore[2*i+1] += Counter;
            else
                pStore[2*i+0] += Counter;
    }
    // count 1's for the first five variables
    for ( k = 0; k < nWords/2; k++ )
    {
        pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) <<  1) );
        pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >>  1) );
        pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) <<  2) );
        pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >>  2) );
        pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) <<  4) );
        pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >>  4) );
        pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) <<  8) );
        pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >>  8) );
        pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) );
        pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) );
        pTruth += 2;
    }
}

/**Function*************************************************************

  Synopsis    [Counts the number of 1's in each negative cofactor.]

  Description [The resulting numbers are stored in the array of ints, 
  whose length is nVars. The number of 1's is counted in a different
  space than the original function. For example, if the function depends 
  on k variables, the cofactors are assumed to depend on k-1 variables.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCountOnesInCofs0( unsigned * pTruth, int nVars, int * pStore )
{
    int nWords = Kit_TruthWordNum( nVars );
    int i, k, Counter;
    memset( pStore, 0, sizeof(int) * nVars );
    if ( nVars <= 5 )
    {
        if ( nVars > 0 )
            pStore[0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 );
        if ( nVars > 1 )
            pStore[1] = Kit_WordCountOnes( pTruth[0] & 0x33333333 );
        if ( nVars > 2 )
            pStore[2] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F );
        if ( nVars > 3 )
            pStore[3] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF );
        if ( nVars > 4 )
            pStore[4] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF );
        return;
    }
    // nVars >= 6
    // count 1's for all other variables
    for ( k = 0; k < nWords; k++ )
    {
        Counter = Kit_WordCountOnes( pTruth[k] );
        for ( i = 5; i < nVars; i++ )
            if ( (k & (1 << (i-5))) == 0 )
                pStore[i] += Counter;
    }
    // count 1's for the first five variables
    for ( k = 0; k < nWords/2; k++ )
    {
        pStore[0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) <<  1) );
        pStore[1] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) <<  2) );
        pStore[2] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) <<  4) );
        pStore[3] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) <<  8) );
        pStore[4] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) );
        pTruth += 2;
    }
}

/**Function*************************************************************

  Synopsis    [Counts the number of 1's in each cofactor.]

  Description [Verifies the above procedure.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, int * pStore, unsigned * pAux )
{
    int i;
    for ( i = 0; i < nVars; i++ )
    {
        Kit_TruthCofactor0New( pAux, pTruth, nVars, i );
        pStore[2*i+0] = Kit_TruthCountOnes( pAux, nVars ) / 2;
        Kit_TruthCofactor1New( pAux, pTruth, nVars, i );
        pStore[2*i+1] = Kit_TruthCountOnes( pAux, nVars ) / 2;
    }
}

/**Function*************************************************************

  Synopsis    [Canonicize the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Kit_TruthHash( unsigned * pIn, int nWords )
{
    // The 1,024 smallest prime numbers used to compute the hash value
    // http://www.math.utah.edu/~alfeld/math/primelist.html
    static int HashPrimes[1024] = { 2, 3, 5, 
    7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 
    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 
    193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 
    293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 
    521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 
    641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 
    757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 
    881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 
    1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 
    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 
    1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 
    1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 
    1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 
    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 
    1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 
    1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 
    1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 
    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 
    2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 
    2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 
    2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 
    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 
    2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 
    2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 
    2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 
    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 
    2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 
    3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 
    3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 
    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 
    3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 
    3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 
    3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 
    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 
    3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 
    3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 
    4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 
    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 
    4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 
    4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 
    4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 
    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 
    4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 
    4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 
    5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 
    5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 
    5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 
    5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 
    5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 
    5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 
    5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 
    5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 
    6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 
    6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 
    6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 
    6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 
    6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 
    6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 
    6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 
    6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 
    6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 
    7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 
    7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 
    7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 
    7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 
    7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 
    7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 
    7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 
    8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 
    8147, 8161 };
    int i;
    unsigned uHashKey;
    assert( nWords <= 1024 );
    uHashKey = 0;
    for ( i = 0; i < nWords; i++ )
        uHashKey ^= HashPrimes[i] * pIn[i];
    return uHashKey;
}

 
/**Function*************************************************************

  Synopsis    [Canonicize the truth table.]

  Description [Returns the phase. ]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm )
{
    int pStore[32];
    unsigned * pIn = pInOut, * pOut = pAux, * pTemp;
    int nWords = Kit_TruthWordNum( nVars );
    int i, Temp, fChange, Counter, nOnes;//, k, j, w, Limit;
    unsigned uCanonPhase;

    // canonicize output
    uCanonPhase = 0;

    nOnes = Kit_TruthCountOnes(pIn, nVars);
    //if(pIn[0] & 1)
    if ( (nOnes > nWords * 16) )//|| ((nOnes == nWords * 16) && (pIn[0] & 1)) )
    {
        uCanonPhase |= (1 << nVars);
        Kit_TruthNot( pIn, pIn, nVars );
    }

    // collect the minterm counts
    Kit_TruthCountOnesInCofs( pIn, nVars, pStore );
/*
    Kit_TruthCountOnesInCofsSlow( pIn, nVars, pStore2, pAux );
    for ( i = 0; i < 2*nVars; i++ )
    {
        assert( pStore[i] == pStore2[i] );
    }
*/
    // canonicize phase
    for ( i = 0; i < nVars; i++ )
    {
        if ( pStore[2*i+0] >= pStore[2*i+1] )
            continue;
        uCanonPhase |= (1 << i);
        Temp = pStore[2*i+0];
        pStore[2*i+0] = pStore[2*i+1];
        pStore[2*i+1] = Temp;
        Kit_TruthChangePhase( pIn, nVars, i );
    }

//    Kit_PrintHexadecimal( stdout, pIn, nVars );
//    printf( "\n" );

    // permute
    Counter = 0;
    do {
        fChange = 0;
        for ( i = 0; i < nVars-1; i++ )
        {
            if ( pStore[2*i] >= pStore[2*(i+1)] )
                continue;
            Counter++;
            fChange = 1;

            Temp = pCanonPerm[i];
            pCanonPerm[i] = pCanonPerm[i+1];
            pCanonPerm[i+1] = Temp;

            Temp = pStore[2*i];
            pStore[2*i] = pStore[2*(i+1)];
            pStore[2*(i+1)] = Temp;

            Temp = pStore[2*i+1];
            pStore[2*i+1] = pStore[2*(i+1)+1];
            pStore[2*(i+1)+1] = Temp;

            // if the polarity of variables is different, swap them
            if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) )
            {
                uCanonPhase ^= (1 << i);
                uCanonPhase ^= (1 << (i+1));
            }

            Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
            pTemp = pIn; pIn = pOut; pOut = pTemp;
        }
    } while ( fChange );


/*
    Extra_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " );
    for ( i = 0; i < nVars; i++ )
        printf( "%d=%d/%d  ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] );
    printf( "  C = %d\n", Counter );
    Extra_PrintHexadecimal( stdout, pIn, nVars );
    printf( "\n" );
*/

/*
    // process symmetric variable groups
    uSymms = 0;
    for ( i = 0; i < nVars-1; i++ )
    {
        if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric
            continue;
        if ( pStore[2*i] != pStore[2*i+1] )
            continue;
        if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) )
            continue;
        if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) )
            Kit_TruthChangePhase( pIn, nVars, i+1 );
    }
*/

/*
    // process symmetric variable groups
    uSymms = 0;
    for ( i = 0; i < nVars-1; i++ )
    {
        if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric
            continue;
        // i and i+1 can be symmetric
        // find the end of this group
        for ( k = i+1; k < nVars; k++ )
            if ( pStore[2*i] != pStore[2*k] ) 
                break;
        Limit = k;
        assert( i < Limit-1 );
        // go through the variables in this group
        for ( j = i + 1; j < Limit; j++ )
        {
            // check symmetry
            if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) )
            {
                uSymms |= (1 << j);
                continue;
            }
            // they are phase-unknown
            if ( pStore[2*i] == pStore[2*i+1] ) 
            {
                if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) )
                {
                    Kit_TruthChangePhase( pIn, nVars, j );
                    uCanonPhase ^= (1 << j);
                    uSymms |= (1 << j);
                    continue;
                }
            }

            // they are not symmetric - move j as far as it goes in the group
            for ( k = j; k < Limit-1; k++ )
            {
                Counter++;

                Temp = pCanonPerm[k];
                pCanonPerm[k] = pCanonPerm[k+1];
                pCanonPerm[k+1] = Temp;

                assert( pStore[2*k] == pStore[2*(k+1)] );
                Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k );
                pTemp = pIn; pIn = pOut; pOut = pTemp;
            }
            Limit--;
            j--;
        }
        i = Limit - 1;
    }
*/

    // swap if it was moved an even number of times
    if ( Counter & 1 )
        Kit_TruthCopy( pOut, pIn, nVars );
    return uCanonPhase;
}

 
/**Function*************************************************************

  Synopsis    [Fast counting minterms in the cofactors of a function.]

  Description [Returns the total number of minterms in the function.
  The resulting array (pRes) contains the number of minterms in 0-cofactor
  w.r.t. each variables. The additional array (pBytes) is used for internal 
  storage. It should have the size equal to the number of truth table bytes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_TruthCountMinterms( unsigned * pTruth, int nVars, int * pRes, int * pBytesInit )
{
    // the number of 1s if every byte as well as in the 0-cofactors w.r.t. three variables
    static unsigned Table[256] = {
        0x00000000, 0x01010101, 0x01010001, 0x02020102, 0x01000101, 0x02010202, 0x02010102, 0x03020203,
        0x01000001, 0x02010102, 0x02010002, 0x03020103, 0x02000102, 0x03010203, 0x03010103, 0x04020204,
        0x00010101, 0x01020202, 0x01020102, 0x02030203, 0x01010202, 0x02020303, 0x02020203, 0x03030304,
        0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x02010203, 0x03020304, 0x03020204, 0x04030305,
        0x00010001, 0x01020102, 0x01020002, 0x02030103, 0x01010102, 0x02020203, 0x02020103, 0x03030204,
        0x01010002, 0x02020103, 0x02020003, 0x03030104, 0x02010103, 0x03020204, 0x03020104, 0x04030205,
        0x00020102, 0x01030203, 0x01030103, 0x02040204, 0x01020203, 0x02030304, 0x02030204, 0x03040305,
        0x01020103, 0x02030204, 0x02030104, 0x03040205, 0x02020204, 0x03030305, 0x03030205, 0x04040306,
        0x00000101, 0x01010202, 0x01010102, 0x02020203, 0x01000202, 0x02010303, 0x02010203, 0x03020304,
        0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x02000203, 0x03010304, 0x03010204, 0x04020305,
        0x00010202, 0x01020303, 0x01020203, 0x02030304, 0x01010303, 0x02020404, 0x02020304, 0x03030405,
        0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x02010304, 0x03020405, 0x03020305, 0x04030406,
        0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305,
        0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306,
        0x00020203, 0x01030304, 0x01030204, 0x02040305, 0x01020304, 0x02030405, 0x02030305, 0x03040406,
        0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x02020305, 0x03030406, 0x03030306, 0x04040407,
        0x00000001, 0x01010102, 0x01010002, 0x02020103, 0x01000102, 0x02010203, 0x02010103, 0x03020204,
        0x01000002, 0x02010103, 0x02010003, 0x03020104, 0x02000103, 0x03010204, 0x03010104, 0x04020205,
        0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305,
        0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306,
        0x00010002, 0x01020103, 0x01020003, 0x02030104, 0x01010103, 0x02020204, 0x02020104, 0x03030205,
        0x01010003, 0x02020104, 0x02020004, 0x03030105, 0x02010104, 0x03020205, 0x03020105, 0x04030206,
        0x00020103, 0x01030204, 0x01030104, 0x02040205, 0x01020204, 0x02030305, 0x02030205, 0x03040306,
        0x01020104, 0x02030205, 0x02030105, 0x03040206, 0x02020205, 0x03030306, 0x03030206, 0x04040307,
        0x00000102, 0x01010203, 0x01010103, 0x02020204, 0x01000203, 0x02010304, 0x02010204, 0x03020305,
        0x01000103, 0x02010204, 0x02010104, 0x03020205, 0x02000204, 0x03010305, 0x03010205, 0x04020306,
        0x00010203, 0x01020304, 0x01020204, 0x02030305, 0x01010304, 0x02020405, 0x02020305, 0x03030406,
        0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x02010305, 0x03020406, 0x03020306, 0x04030407,
        0x00010103, 0x01020204, 0x01020104, 0x02030205, 0x01010204, 0x02020305, 0x02020205, 0x03030306,
        0x01010104, 0x02020205, 0x02020105, 0x03030206, 0x02010205, 0x03020306, 0x03020206, 0x04030307,
        0x00020204, 0x01030305, 0x01030205, 0x02040306, 0x01020305, 0x02030406, 0x02030306, 0x03040407,
        0x01020205, 0x02030306, 0x02030206, 0x03040307, 0x02020306, 0x03030407, 0x03030307, 0x04040408
    };
    unsigned uSum;
    unsigned char * pTruthC, * pLimit;
    int * pBytes = pBytesInit;
    int i, iVar, Step, nWords, nBytes, nTotal;

    assert( nVars <= 20 );

    // clear storage
    memset( pRes, 0, sizeof(int) * nVars );

    // count the number of one's in 0-cofactors of the first three variables
    nTotal = uSum = 0;
    nWords = Kit_TruthWordNum( nVars );
    nBytes = nWords * 4;
    pTruthC = (unsigned char *)pTruth;
    pLimit = pTruthC + nBytes;
    for ( ; pTruthC < pLimit; pTruthC++ )
    {
        uSum += Table[*pTruthC];
        *pBytes++ = (Table[*pTruthC] & 0xff);
        if ( (uSum & 0xff) > 246 )
        {
            nTotal += (uSum & 0xff);
            pRes[0] += ((uSum >>  8) & 0xff);
            pRes[2] += ((uSum >> 16) & 0xff);
            pRes[3] += ((uSum >> 24) & 0xff);
            uSum = 0;
        }
    }
    if ( uSum )
    {
        nTotal += (uSum & 0xff);
        pRes[0] += ((uSum >>  8) & 0xff);
        pRes[1] += ((uSum >> 16) & 0xff);
        pRes[2] += ((uSum >> 24) & 0xff);
    }

    // count all other variables
    for ( iVar = 3, Step = 1; Step < nBytes; Step *= 2, iVar++ )
        for ( i = 0; i < nBytes; i += Step + Step )
        {
            pRes[iVar] += pBytesInit[i];
            pBytesInit[i] += pBytesInit[i+Step];
        }
    assert( pBytesInit[0] == nTotal );
    assert( iVar == nVars );

    for ( i = 0; i < nVars; i++ )
        assert( pRes[i] == Kit_TruthCofactor0Count(pTruth, nVars, i) );
    return nTotal;
}

/**Function*************************************************************

  Synopsis    [Prints the hex unsigned into a file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars )
{
    int nDigits, Digit, k;
    // write the number into the file
    nDigits = (1 << nVars) / 4;
    for ( k = nDigits - 1; k >= 0; k-- )
    {
        Digit = ((Sign[k/8] >> ((k%8) * 4)) & 15);
        if ( Digit < 10 )
            fprintf( pFile, "%d", Digit );
        else
            fprintf( pFile, "%c", 'a' + Digit-10 );
    }
//    fprintf( pFile, "\n" );
}

/**Function*************************************************************

  Synopsis    [Fast counting minterms for the functions.]

  Description [Returns 0 if the function is a constant.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthCountMintermsPrecomp()
{
    int bit_count[256] = {
      0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
      1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
      1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
      2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
      1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
      2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
      2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
      3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
    };
    unsigned i, uWord;
    for ( i = 0; i < 256; i++ )
    {
        if ( i % 8 == 0 )
            printf( "\n" );
        uWord  =  bit_count[i];
        uWord |= (bit_count[i & 0x55] <<  8);
        uWord |= (bit_count[i & 0x33] << 16);
        uWord |= (bit_count[i & 0x0f] << 24);
        printf( "0x" );
        Kit_PrintHexadecimal( stdout, &uWord, 5 );
        printf( ", " );
    }
}

/**Function*************************************************************

  Synopsis    [Dumps truth table into a file.]

  Description [Generates script file for reading into ABC.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile )
{
    static char pFileName[100];
    FILE * pFile;
    sprintf( pFileName, "tt\\s%04d", nFile );
    pFile = fopen( pFileName, "w" );
    fprintf( pFile, "rt " );
    Kit_PrintHexadecimal( pFile, pTruth, nVars );
    fprintf( pFile, "; bdd; sop; ps\n" );
    fclose( pFile );
    return pFileName;
}


/**Function*************************************************************

  Synopsis    [Dumps truth table into a file.]

  Description [Generates script file for reading into ABC.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthPrintProfile_int( unsigned * pTruth, int nVars )
{
    int Mints[20];
    int Mints0[20];
    int Mints1[20];
    int Unique1[20];
    int Total2[20][20];
    int Unique2[20][20];
    int Common2[20][20];
    int nWords = Kit_TruthWordNum( nVars );
    int * pBytes    = ABC_ALLOC( int, nWords * 4 );
    unsigned * pIn  = ABC_ALLOC( unsigned, nWords );
    unsigned * pOut = ABC_ALLOC( unsigned, nWords );
    unsigned * pCof00 = ABC_ALLOC( unsigned, nWords );
    unsigned * pCof01 = ABC_ALLOC( unsigned, nWords );
    unsigned * pCof10 = ABC_ALLOC( unsigned, nWords );
    unsigned * pCof11 = ABC_ALLOC( unsigned, nWords );
    unsigned * pTemp;
    int nTotalMints, nTotalMints0, nTotalMints1;
    int v, u, i, iVar, nMints1;
    int Cof00, Cof01, Cof10, Cof11;
    int Coz00, Coz01, Coz10, Coz11;
    assert( nVars <= 20 );
    assert( nVars >=  6 );

    nTotalMints = Kit_TruthCountMinterms( pTruth, nVars, Mints, pBytes );
    for ( v = 0; v < nVars; v++ )
        Unique1[v] = Kit_TruthBooleanDiffCount( pTruth, nVars, v );

    for ( v = 0; v < nVars; v++ )
    for ( u = 0; u < nVars; u++ )
        Total2[v][u] = Unique2[v][u] = Common2[v][u] = -1;

    nMints1 = (1<<(nVars-2));
    for ( v = 0; v < nVars; v++ )
    {
        // move this var to be the first
        Kit_TruthCopy( pIn, pTruth, nVars );
//        Extra_PrintBinary( stdout, pIn, (1<<nVars) ); printf( "\n" );
        for ( i = v; i < nVars - 1; i++ )
        {
            Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
            pTemp = pIn; pIn = pOut; pOut = pTemp;
        }
//        Extra_PrintBinary( stdout, pIn, (1<<nVars) ); printf( "\n" );
//        printf( "\n" );


        // count minterms in both cofactor
        nTotalMints0 = Kit_TruthCountMinterms( pIn,          nVars-1, Mints0, pBytes );
        nTotalMints1 = Kit_TruthCountMinterms( pIn+nWords/2, nVars-1, Mints1, pBytes );
        assert( nTotalMints == nTotalMints0 + nTotalMints1 );
/*
        for ( u = 0; u < nVars-1; u++ )
            printf( "%2d ", Mints0[u] );
        printf( "\n" );

        for ( u = 0; u < nVars-1; u++ )
            printf( "%2d ", Mints1[u] );
        printf( "\n" );
*/
        for ( u = 0; u < nVars-1; u++ )
        {
            if ( u < v )
                iVar = u;
            else 
                iVar = u + 1;
            assert( v != iVar );
            // get minter counts in the cofactors
            Cof00 =              Mints0[u]; Coz00 = nMints1 - Cof00;              
            Cof01 = nTotalMints0-Mints0[u]; Coz01 = nMints1 - Cof01;
            Cof10 =              Mints1[u]; Coz10 = nMints1 - Cof10;
            Cof11 = nTotalMints1-Mints1[u]; Coz11 = nMints1 - Cof11;

            assert( Cof00 >= 0 && Cof00 <= nMints1 );
            assert( Cof01 >= 0 && Cof01 <= nMints1 );
            assert( Cof10 >= 0 && Cof10 <= nMints1 );
            assert( Cof11 >= 0 && Cof11 <= nMints1 );

            assert( Coz00 >= 0 && Coz00 <= nMints1 );
            assert( Coz01 >= 0 && Coz01 <= nMints1 );
            assert( Coz10 >= 0 && Coz10 <= nMints1 );
            assert( Coz11 >= 0 && Coz11 <= nMints1 );

            Common2[v][iVar] = Common2[iVar][v] = Cof00 * Coz11 + Coz00 * Cof11 + Cof01 * Coz10 + Coz01 * Cof10;

            Total2[v][iVar] = Total2[iVar][v] = 
                Cof00 * Coz01 + Coz00 * Cof01 + 
                Cof00 * Coz10 + Coz00 * Cof10 + 
                Cof00 * Coz11 + Coz00 * Cof11 + 
                Cof01 * Coz10 + Coz01 * Cof10 + 
                Cof01 * Coz11 + Coz01 * Cof11 + 
                Cof10 * Coz11 + Coz10 * Cof11 ;

            
            Kit_TruthCofactor0New( pCof00, pIn,          nVars-1, u );
            Kit_TruthCofactor1New( pCof01, pIn,          nVars-1, u );
            Kit_TruthCofactor0New( pCof10, pIn+nWords/2, nVars-1, u );
            Kit_TruthCofactor1New( pCof11, pIn+nWords/2, nVars-1, u );

            Unique2[v][iVar] = Unique2[iVar][v] = 
                Kit_TruthXorCount( pCof00, pCof01, nVars-1 ) +
                Kit_TruthXorCount( pCof00, pCof10, nVars-1 ) +
                Kit_TruthXorCount( pCof00, pCof11, nVars-1 ) +
                Kit_TruthXorCount( pCof01, pCof10, nVars-1 ) +
                Kit_TruthXorCount( pCof01, pCof11, nVars-1 ) +
                Kit_TruthXorCount( pCof10, pCof11, nVars-1 );
        }
    }

    printf( "\n" );
    printf( " V: " );
    for ( v = 0; v < nVars; v++ )
        printf( "%8c  ", v+'a' );
    printf( "\n" );

    printf( " M: " );
    for ( v = 0; v < nVars; v++ )
        printf( "%8d  ", Mints[v] );
    printf( "\n" );

    printf( " U: " );
    for ( v = 0; v < nVars; v++ )
        printf( "%8d  ", Unique1[v] );
    printf( "\n" );
    printf( "\n" );

    printf( "Unique:\n" );
    for ( i = 0; i < nVars; i++ )
    {
    printf( " %2d ", i );
    for ( v = 0; v < nVars; v++ )
        printf( "%8d  ", Unique2[i][v] );
    printf( "\n" );
    }

    printf( "Common:\n" );
    for ( i = 0; i < nVars; i++ )
    {
    printf( " %2d ", i );
    for ( v = 0; v < nVars; v++ )
        printf( "%8d  ", Common2[i][v] );
    printf( "\n" );
    }

    printf( "Total:\n" );
    for ( i = 0; i < nVars; i++ )
    {
    printf( " %2d ", i );
    for ( v = 0; v < nVars; v++ )
        printf( "%8d  ", Total2[i][v] );
    printf( "\n" );
    }

    ABC_FREE( pIn );
    ABC_FREE( pOut );
    ABC_FREE( pCof00 );
    ABC_FREE( pCof01 );
    ABC_FREE( pCof10 );
    ABC_FREE( pCof11 );
    ABC_FREE( pBytes );
}

/**Function*************************************************************

  Synopsis    [Dumps truth table into a file.]

  Description [Generates script file for reading into ABC.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_TruthPrintProfile( unsigned * pTruth, int nVars )
{
    unsigned uTruth[2];
    if ( nVars >= 6 )
    {
        Kit_TruthPrintProfile_int( pTruth, nVars );
        return;
    }
    assert( nVars >= 2 );
    uTruth[0] = pTruth[0];
    uTruth[1] = pTruth[0];
    Kit_TruthPrintProfile( uTruth, 6 );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END