/**CFile****************************************************************

  FileName    [giaNf.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Scalable AIG package.]

  Synopsis    [Standard-cell mapper.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: giaNf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include <float.h>
#include "gia.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "base/main/main.h"
#include "misc/vec/vecMem.h"
#include "misc/vec/vecWec.h"
#include "opt/dau/dau.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define NF_LEAF_MAX  6
#define NF_CUT_MAX  32
#define NF_NO_LEAF  31
#define NF_NO_FUNC  0x3FFFFFF
#define NF_INFINITY FLT_MAX

typedef struct Nf_Cut_t_ Nf_Cut_t; 
struct Nf_Cut_t_
{
    word            Sign;           // signature
    int             Delay;          // delay
    float           Flow;           // flow
    unsigned        iFunc   : 26;   // function (NF_NO_FUNC)
    unsigned        Useless :  1;   // function
    unsigned        nLeaves :  5;   // leaf number (NF_NO_LEAF)
    int             pLeaves[NF_LEAF_MAX+1]; // leaves
};
typedef struct Pf_Mat_t_ Pf_Mat_t; 
struct Pf_Mat_t_
{
    unsigned        fCompl  :  8;   // complemented
    unsigned        Phase   :  6;   // match phase
    unsigned        Perm    : 18;   // match permutation
};
typedef struct Nf_Mat_t_ Nf_Mat_t; 
struct Nf_Mat_t_
{
    unsigned        Gate    : 20;   // gate
    unsigned        CutH    : 10;   // cut handle
    unsigned        fCompl  :  1;   // complemented
    unsigned        fBest   :  1;   // best cut
    int             Conf;           // input literals
    float           D;              // delay
    float           A;              // area 
};
typedef struct Nf_Obj_t_ Nf_Obj_t; 
struct Nf_Obj_t_
{
    Nf_Mat_t        M[2][2];         // del/area (2x)
};
typedef struct Nf_Man_t_ Nf_Man_t; 
struct Nf_Man_t_
{
    // user data
    Gia_Man_t *     pGia;           // derived manager
    Jf_Par_t *      pPars;          // parameters
    // matching
    Vec_Mem_t *     vTtMem;         // truth tables
    Vec_Wec_t *     vTt2Match;      // matches for truth tables
    Mio_Cell_t *    pCells;         // library gates
    int             nCells;         // library gate count
    // cut data
    Nf_Obj_t *      pNfObjs;        // best cuts
    Vec_Ptr_t       vPages;         // cut memory
    Vec_Int_t       vCutSets;       // cut offsets
    Vec_Int_t       vMapRefs;       // mapping refs   (2x)
    Vec_Flt_t       vFlowRefs;      // flow refs      (2x)
    Vec_Flt_t       vRequired;      // required times (2x)
    Vec_Flt_t       vCutFlows;      // temporary cut area
    Vec_Int_t       vCutDelays;     // temporary cut delay
    Vec_Int_t       vBackup;        // backup literals
    Vec_Int_t       vBackup2;       // backup literals
    int             iCur;           // current position
    int             Iter;           // mapping iterations
    int             fUseEla;        // use exact area
    int             nInvs;          // the inverter count
    float           InvDelay;       // inverter delay
    float           InvArea;        // inverter area 
    // statistics
    abctime         clkStart;       // starting time
    double          CutCount[6];    // cut counts
    int             nCutUseAll;     // objects with useful cuts
};

static inline int         Pf_Mat2Int( Pf_Mat_t Mat )                                { union { int x; Pf_Mat_t y; } v; v.y = Mat; return v.x;           }
static inline Pf_Mat_t    Pf_Int2Mat( int Int )                                     { union { int x; Pf_Mat_t y; } v; v.x = Int; return v.y;           }

static inline Nf_Obj_t *  Nf_ManObj( Nf_Man_t * p, int i )                          { return p->pNfObjs + i;                                           }
static inline Mio_Cell_t* Nf_ManCell( Nf_Man_t * p, int i )                         { return p->pCells + i;                                            }
static inline int *       Nf_ManCutSet( Nf_Man_t * p, int i )                       { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF);  }
static inline int         Nf_ObjCutSetId( Nf_Man_t * p, int i )                     { return Vec_IntEntry( &p->vCutSets, i );                          }
static inline int *       Nf_ObjCutSet( Nf_Man_t * p, int i )                       { return Nf_ManCutSet(p, Nf_ObjCutSetId(p, i));                    }
static inline int         Nf_ObjHasCuts( Nf_Man_t * p, int i )                      { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0);                 }
static inline int *       Nf_ObjCutBest( Nf_Man_t * p, int i )                      { return NULL;                                                     } 
static inline int         Nf_ObjCutUseless( Nf_Man_t * p, int TruthId )             { return (int)(TruthId >= Vec_WecSize(p->vTt2Match));              } 

static inline float       Nf_ObjCutFlow( Nf_Man_t * p, int i )                      { return Vec_FltEntry(&p->vCutFlows, i);                           } 
static inline int         Nf_ObjCutDelay( Nf_Man_t * p, int i )                     { return Vec_IntEntry(&p->vCutDelays, i);                          } 
static inline void        Nf_ObjSetCutFlow( Nf_Man_t * p, int i, float a )          { Vec_FltWriteEntry(&p->vCutFlows, i, a);                          } 
static inline void        Nf_ObjSetCutDelay( Nf_Man_t * p, int i, int d )           { Vec_IntWriteEntry(&p->vCutDelays, i, d);                         } 

static inline int         Nf_ObjMapRefNum( Nf_Man_t * p, int i, int c )             { return Vec_IntEntry(&p->vMapRefs, Abc_Var2Lit(i,c));             }
static inline int         Nf_ObjMapRefInc( Nf_Man_t * p, int i, int c )             { return (*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c)))++;       }
static inline int         Nf_ObjMapRefDec( Nf_Man_t * p, int i, int c )             { return --(*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c)));       }
static inline float       Nf_ObjFlowRefs( Nf_Man_t * p, int i, int c )              { return Vec_FltEntry(&p->vFlowRefs, Abc_Var2Lit(i,c));            }
static inline float       Nf_ObjRequired( Nf_Man_t * p, int i, int c )              { return Vec_FltEntry(&p->vRequired, Abc_Var2Lit(i,c));            }
static inline void        Nf_ObjSetRequired(Nf_Man_t * p,int i, int c, float f)     { Vec_FltWriteEntry(&p->vRequired, Abc_Var2Lit(i,c), f);           }
static inline void        Nf_ObjUpdateRequired(Nf_Man_t * p,int i, int c, float f)  { if (Nf_ObjRequired(p, i, c) > f) Nf_ObjSetRequired(p, i, c, f);  }

static inline Nf_Mat_t *  Nf_ObjMatchD( Nf_Man_t * p, int i, int c )                { return &Nf_ManObj(p, i)->M[c][0];                                }
static inline Nf_Mat_t *  Nf_ObjMatchA( Nf_Man_t * p, int i, int c )                { return &Nf_ManObj(p, i)->M[c][1];                                }

static inline Nf_Mat_t *  Nf_ObjMatchBest( Nf_Man_t * p, int i, int c )             
{
    Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c);
    Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c);
    assert( pD->fBest != pA->fBest );
    assert( Nf_ObjMapRefNum(p, i, c) > 0 );
    if ( pA->fBest )
        return pA;
    if ( pD->fBest )
        return pD;
    return NULL;
}

static inline int         Nf_CutSize( int * pCut )                                  { return pCut[0] & NF_NO_LEAF;                                     }
static inline int         Nf_CutFunc( int * pCut )                                  { return ((unsigned)pCut[0] >> 5);                                 }
static inline int *       Nf_CutLeaves( int * pCut )                                { return pCut + 1;                                                 }
static inline int         Nf_CutSetBoth( int n, int f )                             { return n | (f << 5);                                             }
static inline int         Nf_CutIsTriv( int * pCut, int i )                         { return Nf_CutSize(pCut) == 1 && pCut[1] == i;                    } 
static inline int         Nf_CutHandle( int * pCutSet, int * pCut )                 { assert( pCut > pCutSet ); return pCut - pCutSet;                 } 
static inline int *       Nf_CutFromHandle( int * pCutSet, int h )                  { assert( h > 0 ); return pCutSet + h;                             }
static inline int         Nf_CutConfLit( int Conf, int i )                          { return 15 & (Conf >> (i << 2));                                  }
static inline int         Nf_CutConfVar( int Conf, int i )                          { return Abc_Lit2Var( Nf_CutConfLit(Conf, i) );                    }
static inline int         Nf_CutConfC( int Conf, int i )                            { return Abc_LitIsCompl( Nf_CutConfLit(Conf, i) );                 }

#define Nf_SetForEachCut( pList, pCut, i )         for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Nf_CutSize(pCut) + 1 )
#define Nf_CutForEachLit( pCut, Conf, iLit, i )    for ( i = 0; i < Nf_CutSize(pCut) && (iLit = Abc_Lit2LitV(Nf_CutLeaves(pCut), Nf_CutConfLit(Conf, i))); i++ )
#define Nf_CutForEachVar( pCut, Conf, iVar, c, i ) for ( i = 0; i < Nf_CutSize(pCut) && (iVar = Nf_CutLeaves(pCut)[Nf_CutConfVar(Conf, i)]) && ((c = Nf_CutConfC(Conf, i)), 1); i++ )


////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Sort inputs by delay.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Nf_StoCreateGateAdd( Nf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId )
{
    Vec_Int_t * vArray;
    Pf_Mat_t Mat = Pf_Int2Mat(0);
    int i, GateId, Entry, fCompl = (int)(uTruth & 1);
    word uFunc = fCompl ? ~uTruth : uTruth;
    int iFunc = Vec_MemHashInsert( pMan->vTtMem, &uFunc );
    if ( iFunc == Vec_WecSize(pMan->vTt2Match) )
        Vec_WecPushLevel( pMan->vTt2Match );
    vArray = Vec_WecEntry( pMan->vTt2Match, iFunc );
    Mat.fCompl = fCompl;
    assert( nFans < 7 );
    for ( i = 0; i < nFans; i++ )
    {
        Mat.Perm  |= (unsigned)(Abc_Lit2Var(pFans[i]) << (3*i));
        Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << i);
    }
    if ( pMan->pPars->fPinPerm ) // use pin-permutation (slower but good for delay when pin-delays differ)
    {
        Vec_IntPush( vArray, CellId );
        Vec_IntPush( vArray, Pf_Mat2Int(Mat) );
        return;
    }
    // check if the same one exists
    Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
        if ( GateId == CellId && Pf_Int2Mat(Entry).Phase == Mat.Phase )
            break;
    if ( i == Vec_IntSize(vArray) )
    {
        Vec_IntPush( vArray, CellId );
        Vec_IntPush( vArray, Pf_Mat2Int(Mat) );
    }
}
void Nf_StoCreateGateMaches( Nf_Man_t * pMan, Mio_Cell_t * pCell, int ** pComp, int ** pPerm, int * pnPerms )
{
    int Perm[NF_LEAF_MAX], * Perm1, * Perm2;
    int nPerms = pnPerms[pCell->nFanins];
    int nMints = (1 << pCell->nFanins);
    word tCur, tTemp1, tTemp2;
    int i, p, c;
    for ( i = 0; i < (int)pCell->nFanins; i++ )
        Perm[i] = Abc_Var2Lit( i, 0 );
    tCur = tTemp1 = pCell->uTruth;
    for ( p = 0; p < nPerms; p++ )
    {
        tTemp2 = tCur;
        for ( c = 0; c < nMints; c++ )
        {
            Nf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id );
            // update
            tCur  = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] );
            Perm1 = Perm + pComp[pCell->nFanins][c];
            *Perm1 = Abc_LitNot( *Perm1 );
        }
        assert( tTemp2 == tCur );
        // update
        tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] );
        Perm1 = Perm + pPerm[pCell->nFanins][p];
        Perm2 = Perm1 + 1;
        ABC_SWAP( int, *Perm1, *Perm2 );
    }
    assert( tTemp1 == tCur );
}
void Nf_StoDeriveMatches( Nf_Man_t * p, int fVerbose )
{
//    abctime clk = Abc_Clock();
    int * pComp[7];
    int * pPerm[7];
    int nPerms[7], i;
    for ( i = 2; i <= 6; i++ )
        pComp[i] = Extra_GreyCodeSchedule( i );
    for ( i = 2; i <= 6; i++ )
        pPerm[i] = Extra_PermSchedule( i );
    for ( i = 2; i <= 6; i++ )
        nPerms[i] = Extra_Factorial( i );
    p->pCells = Mio_CollectRootsNewDefault( 6, &p->nCells, fVerbose );
    for ( i = 4; i < p->nCells; i++ )
        Nf_StoCreateGateMaches( p, p->pCells + i, pComp, pPerm, nPerms );
    for ( i = 2; i <= 6; i++ )
        ABC_FREE( pComp[i] );
    for ( i = 2; i <= 6; i++ )
        ABC_FREE( pPerm[i] );
//    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
void Nf_StoPrintOne( Nf_Man_t * p, int Count, int t, int i, int GateId, Pf_Mat_t Mat )
{
    Mio_Cell_t * pC = p->pCells + GateId;
    word * pTruth = Vec_MemReadEntry(p->vTtMem, t);
    int k, nSuppSize = Abc_TtSupportSize(pTruth, 6);
    printf( "%6d : ", Count );
    printf( "%6d : ", t );
    printf( "%6d : ", i );
    printf( "Gate %16s  ",   pC->pName );
    printf( "Area =%8.2f  ", pC->Area );
    printf( "In = %d   ",    pC->nFanins );
    if ( Mat.fCompl )
        printf( " compl " );
    else
        printf( "       " );
    for ( k = 0; k < (int)pC->nFanins; k++ )
    {
        int fComplF = (Mat.Phase >> k) & 1;
        int iFanin  = (Mat.Perm >> (3*k)) & 7;
        printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') );
    }
    printf( "  " );
    Dau_DsdPrintFromTruth( pTruth, nSuppSize );
}
void Nf_StoPrint( Nf_Man_t * p, int fVerbose )
{
    int t, i, GateId, Entry, Count = 0;
    for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ )
    {
        Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t );
        Vec_IntForEachEntryDouble( vArr, GateId, Entry, i )
        {
            Count++;
            if ( !fVerbose )
                continue;
            //if ( t < 10 )
            //    Nf_StoPrintOne( p, Count, t, i/2, GateId, Pf_Int2Mat(Entry) );
        }
    }
    printf( "Gates = %d.  Truths = %d.  Matches = %d.\n", 
        p->nCells, Vec_MemEntryNum(p->vTtMem), Count );
}



/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Nf_Man_t * Nf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
    extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs );
    Vec_Int_t * vFlowRefs;
    Nf_Man_t * p;
    int i, Entry;
    assert( pPars->nCutNum > 1  && pPars->nCutNum <= NF_CUT_MAX );
    assert( pPars->nLutSize > 1 && pPars->nLutSize <= NF_LEAF_MAX );
    ABC_FREE( pGia->pRefs );
    Vec_IntFreeP( &pGia->vCellMapping );
    if ( Gia_ManHasChoices(pGia) )
        Gia_ManSetPhase(pGia);
    // create
    p = ABC_CALLOC( Nf_Man_t, 1 );
    p->clkStart = Abc_Clock();
    p->pGia     = pGia;
    p->pPars    = pPars;
    p->pNfObjs  = ABC_CALLOC( Nf_Obj_t, Gia_ManObjNum(pGia) );
    p->iCur     = 2;
    // other
    Vec_PtrGrow( &p->vPages, 256 );                                    // cut memory
    Vec_IntFill( &p->vMapRefs,  2*Gia_ManObjNum(pGia), 0 );            // mapping refs   (2x)
    Vec_FltFill( &p->vFlowRefs, 2*Gia_ManObjNum(pGia), 0 );            // flow refs      (2x)
    Vec_FltFill( &p->vRequired, 2*Gia_ManObjNum(pGia), NF_INFINITY );  // required times (2x)
    Vec_IntFill( &p->vCutSets,  Gia_ManObjNum(pGia), 0 );              // cut offsets
    Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 );              // cut area
    Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 );              // cut delay
    Vec_IntGrow( &p->vBackup, 1000 );
    Vec_IntGrow( &p->vBackup2, 1000 );
    // references
    vFlowRefs = Vec_IntAlloc(0);
    Mf_ManSetFlowRefs( pGia, vFlowRefs );
    Vec_IntForEachEntry( vFlowRefs, Entry, i )
    {
        Vec_FltWriteEntry( &p->vFlowRefs, 2*i,   /*0.5* */Entry );
        Vec_FltWriteEntry( &p->vFlowRefs, 2*i+1, /*0.5* */Entry );
    }
    Vec_IntFree(vFlowRefs);
    // matching
    p->vTtMem    = Vec_MemAllocForTT( 6, 0 );          
    p->vTt2Match = Vec_WecAlloc( 1000 ); 
    Vec_WecPushLevel( p->vTt2Match );
    Vec_WecPushLevel( p->vTt2Match );
    assert( Vec_WecSize(p->vTt2Match) == Vec_MemEntryNum(p->vTtMem) );
    Nf_StoDeriveMatches( p, 0 );//pPars->fVerbose );
    p->InvDelay = p->pCells[3].Delays[0];
    p->InvArea  = p->pCells[3].Area;
    Nf_ObjMatchD(p, 0, 0)->Gate = 0;
    Nf_ObjMatchD(p, 0, 1)->Gate = 1;
    // prepare cuts
    return p;
}
void Nf_StoDelete( Nf_Man_t * p )
{
    Vec_PtrFreeData( &p->vPages );
    ABC_FREE( p->vPages.pArray );
    ABC_FREE( p->vMapRefs.pArray );
    ABC_FREE( p->vFlowRefs.pArray );
    ABC_FREE( p->vRequired.pArray );
    ABC_FREE( p->vCutSets.pArray );
    ABC_FREE( p->vCutFlows.pArray );
    ABC_FREE( p->vCutDelays.pArray );
    ABC_FREE( p->vBackup.pArray );
    ABC_FREE( p->vBackup2.pArray );
    ABC_FREE( p->pNfObjs );
    // matching
    Vec_WecFree( p->vTt2Match );
    Vec_MemHashFree( p->vTtMem );
    Vec_MemFree( p->vTtMem );
    ABC_FREE( p->pCells );
    ABC_FREE( p );
}




/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Nf_CutComputeTruth6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, int fCompl0, int fCompl1, Nf_Cut_t * pCutR, int fIsXor )
{
//    extern int Nf_ManTruthCanonicize( word * t, int nVars );
    int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
    word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
    word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
    if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
    if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
    t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
    t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
    t =  fIsXor ? t0 ^ t1 : t0 & t1;
    if ( (fCompl = (int)(t & 1)) ) t = ~t;
    pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
    assert( (int)(t & 1) == 0 );
    truthId        = Vec_MemHashInsert(p->vTtMem, &t);
    pCutR->iFunc   = Abc_Var2Lit( truthId, fCompl );
    pCutR->Useless = Nf_ObjCutUseless( p, truthId );
    assert( (int)pCutR->nLeaves <= nOldSupp );
    return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Nf_CutComputeTruthMux6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Nf_Cut_t * pCutR )
{
    int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
    word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
    word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
    word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
    if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
    if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
    if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
    t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
    t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
    tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
    t = (tC & t1) | (~tC & t0);
    if ( (fCompl = (int)(t & 1)) ) t = ~t;
    pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
    assert( (int)(t & 1) == 0 );
    truthId        = Vec_MemHashInsert(p->vTtMem, &t);
    pCutR->iFunc   = Abc_Var2Lit( truthId, fCompl );
    pCutR->Useless = Nf_ObjCutUseless( p, truthId );
    assert( (int)pCutR->nLeaves <= nOldSupp );
    return (int)pCutR->nLeaves < nOldSupp;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Nf_CutCountBits( word i )
{
    i = i - ((i >> 1) & 0x5555555555555555);
    i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
    i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
    return (i*(0x0101010101010101))>>56;
}
static inline word Nf_CutGetSign( int * pLeaves, int nLeaves )
{
    word Sign = 0; int i; 
    for ( i = 0; i < nLeaves; i++ )
        Sign |= ((word)1) << (pLeaves[i] & 0x3F);
    return Sign;
}
static inline int Nf_CutCreateUnit( Nf_Cut_t * p, int i )
{
    p->Delay      = 0;
    p->Flow       = 0;
    p->iFunc      = 2;
    p->nLeaves    = 1;
    p->pLeaves[0] = i;
    p->Sign       = ((word)1) << (i & 0x3F);
    return 1;
}
static inline void Nf_Cutprintf( Nf_Man_t * p, Nf_Cut_t * pCut )
{
    int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); 
    printf( "%d  {", pCut->nLeaves );
    for ( i = 0; i < (int)pCut->nLeaves; i++ )
        printf( " %*d", nDigits, pCut->pLeaves[i] );
    for ( ; i < (int)p->pPars->nLutSize; i++ )
        printf( " %*s", nDigits, " " );
    printf( "  }   Useless = %d. D = %4d  A = %9.4f  F = %6d  ", 
        pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc );
    if ( p->vTtMem )
        Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
    else
        printf( "\n" );
}
static inline int Nf_ManPrepareCuts( Nf_Cut_t * pCuts, Nf_Man_t * p, int iObj, int fAddUnit )
{
    if ( Nf_ObjHasCuts(p, iObj) )
    {
        Nf_Cut_t * pMfCut = pCuts;
        int i, * pCut, * pList = Nf_ObjCutSet(p, iObj);
        Nf_SetForEachCut( pList, pCut, i )
        {
            pMfCut->Delay   = 0;
            pMfCut->Flow    = 0;
            pMfCut->iFunc   = Nf_CutFunc( pCut );
            pMfCut->nLeaves = Nf_CutSize( pCut );
            pMfCut->Sign    = Nf_CutGetSign( pCut+1, Nf_CutSize(pCut) );
            pMfCut->Useless = Nf_ObjCutUseless( p, Abc_Lit2Var(pMfCut->iFunc) );
            memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Nf_CutSize(pCut) );
            pMfCut++;
        }
        if ( fAddUnit && pCuts->nLeaves > 1 )
            return pList[0] + Nf_CutCreateUnit( pMfCut, iObj );
        return pList[0];
    }
    return Nf_CutCreateUnit( pCuts, iObj );
}
static inline int Nf_ManSaveCuts( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts, int fUseful )
{
    int i, * pPlace, iCur, nInts = 1, nCutsNew = 0;
    for ( i = 0; i < nCuts; i++ )
        if ( !fUseful || !pCuts[i]->Useless )
            nInts += pCuts[i]->nLeaves + 1, nCutsNew++;
    if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
        p->iCur = ((p->iCur >> 16) + 1) << 16;
    if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
        Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) );
    iCur = p->iCur; p->iCur += nInts;
    pPlace = Nf_ManCutSet( p, iCur );
    *pPlace++ = nCutsNew;
    for ( i = 0; i < nCuts; i++ )
        if ( !fUseful || !pCuts[i]->Useless )
        {
            *pPlace++ = Nf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc );
            memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
            pPlace += pCuts[i]->nLeaves;
        }
    return iCur;
}
static inline int Nf_ManCountUseful( Nf_Cut_t ** pCuts, int nCuts )
{
    int i, Count = 0;
    for ( i = 0; i < nCuts; i++ )
        Count += !pCuts[i]->Useless;
    return Count;
}
static inline int Nf_ManCountMatches( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts )
{
    int i, Count = 0;
    for ( i = 0; i < nCuts; i++ )
        if ( !pCuts[i]->Useless )
            Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2;
    return Count;
}

/**Function*************************************************************

  Synopsis    [Check correctness of cuts.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Nf_CutCheck( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
    int nSizeB = pBase->nLeaves;
    int nSizeC = pCut->nLeaves;
    int i, * pB = pBase->pLeaves;
    int k, * pC = pCut->pLeaves;
    for ( i = 0; i < nSizeC; i++ )
    {
        for ( k = 0; k < nSizeB; k++ )
            if ( pC[i] == pB[k] )
                break;
        if ( k == nSizeB )
            return 0;
    }
    return 1;
}
static inline int Nf_SetCheckArray( Nf_Cut_t ** ppCuts, int nCuts )
{
    Nf_Cut_t * pCut0, * pCut1; 
    int i, k, m, n, Value;
    assert( nCuts > 0 );
    for ( i = 0; i < nCuts; i++ )
    {
        pCut0 = ppCuts[i];
        assert( pCut0->nLeaves <= NF_LEAF_MAX );
        assert( pCut0->Sign == Nf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
        // check duplicates
        for ( m = 0; m < (int)pCut0->nLeaves; m++ )
        for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
            assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
        // check pairs
        for ( k = 0; k < nCuts; k++ )
        {
            pCut1 = ppCuts[k];
            if ( pCut0 == pCut1 )
                continue;
            // check containments
            Value = Nf_CutCheck( pCut0, pCut1 );
            assert( Value == 0 );
        }
    }
    return 1;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Nf_CutMergeOrder( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut, int nLutSize )
{ 
    int nSize0   = pCut0->nLeaves;
    int nSize1   = pCut1->nLeaves;
    int i, * pC0 = pCut0->pLeaves;
    int k, * pC1 = pCut1->pLeaves;
    int c, * pC  = pCut->pLeaves;
    // the case of the largest cut sizes
    if ( nSize0 == nLutSize && nSize1 == nLutSize )
    {
        for ( i = 0; i < nSize0; i++ )
        {
            if ( pC0[i] != pC1[i] )  return 0;
            pC[i] = pC0[i];
        }
        pCut->nLeaves = nLutSize;
        pCut->iFunc = NF_NO_FUNC;
        pCut->Sign = pCut0->Sign | pCut1->Sign;
        return 1;
    }
    // compare two cuts with different numbers
    i = k = c = 0;
    if ( nSize0 == 0 ) goto FlushCut1;
    if ( nSize1 == 0 ) goto FlushCut0;
    while ( 1 )
    {
        if ( c == nLutSize ) return 0;
        if ( pC0[i] < pC1[k] )
        {
            pC[c++] = pC0[i++];
            if ( i >= nSize0 ) goto FlushCut1;
        }
        else if ( pC0[i] > pC1[k] )
        {
            pC[c++] = pC1[k++];
            if ( k >= nSize1 ) goto FlushCut0;
        }
        else
        {
            pC[c++] = pC0[i++]; k++;
            if ( i >= nSize0 ) goto FlushCut1;
            if ( k >= nSize1 ) goto FlushCut0;
        }
    }

FlushCut0:
    if ( c + nSize0 > nLutSize + i ) return 0;
    while ( i < nSize0 )
        pC[c++] = pC0[i++];
    pCut->nLeaves = c;
    pCut->iFunc = NF_NO_FUNC;
    pCut->Sign = pCut0->Sign | pCut1->Sign;
    return 1;

FlushCut1:
    if ( c + nSize1 > nLutSize + k ) return 0;
    while ( k < nSize1 )
        pC[c++] = pC1[k++];
    pCut->nLeaves = c;
    pCut->iFunc = NF_NO_FUNC;
    pCut->Sign = pCut0->Sign | pCut1->Sign;
    return 1;
}
static inline int Nf_CutMergeOrderMux( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut2, Nf_Cut_t * pCut, int nLutSize )
{ 
    int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
    int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
    int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
    int xMin, c = 0, * pC  = pCut->pLeaves;
    while ( 1 )
    {
        x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
        x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
        x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
        xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
        if ( xMin == ABC_INFINITY ) break;
        if ( c == nLutSize ) return 0;
        pC[c++] = xMin;
        if (x0 == xMin) i0++;
        if (x1 == xMin) i1++;
        if (x2 == xMin) i2++;
    }
    pCut->nLeaves = c;
    pCut->iFunc = NF_NO_FUNC;
    pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
    return 1;
}
static inline int Nf_SetCutIsContainedOrder( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
    int i, nSizeB = pBase->nLeaves;
    int k, nSizeC = pCut->nLeaves;
    if ( nSizeB == nSizeC )
    {
        for ( i = 0; i < nSizeB; i++ )
            if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
                return 0;
        return 1;
    }
    assert( nSizeB > nSizeC ); 
    if ( nSizeC == 0 )
        return 1;
    for ( i = k = 0; i < nSizeB; i++ )
    {
        if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
            return 0;
        if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
        {
            if ( ++k == nSizeC )
                return 1;
        }
    }
    return 0;
}
static inline int Nf_SetLastCutIsContained( Nf_Cut_t ** pCuts, int nCuts )
{
    int i;
    for ( i = 0; i < nCuts; i++ )
        if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Nf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
            return 1;
    return 0;
}
static inline int Nf_SetLastCutContainsArea( Nf_Cut_t ** pCuts, int nCuts )
{
    int i, k, fChanges = 0;
    for ( i = 0; i < nCuts; i++ )
        if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Nf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
            pCuts[i]->nLeaves = NF_NO_LEAF, fChanges = 1;
    if ( !fChanges )
        return nCuts;
    for ( i = k = 0; i <= nCuts; i++ )
    {
        if ( pCuts[i]->nLeaves == NF_NO_LEAF )
            continue;
        if ( k < i )
            ABC_SWAP( Nf_Cut_t *, pCuts[k], pCuts[i] );
        k++;
    }
    return k - 1;
}
static inline int Nf_CutCompareArea( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1 )
{
    if ( pCut0->Useless < pCut1->Useless )  return -1;
    if ( pCut0->Useless > pCut1->Useless )  return  1;
    if ( pCut0->Flow    < pCut1->Flow    )  return -1;
    if ( pCut0->Flow    > pCut1->Flow    )  return  1;
    if ( pCut0->Delay   < pCut1->Delay   )  return -1;
    if ( pCut0->Delay   > pCut1->Delay   )  return  1;
    if ( pCut0->nLeaves < pCut1->nLeaves )  return -1;
    if ( pCut0->nLeaves > pCut1->nLeaves )  return  1;
    return 0;
}
static inline void Nf_SetSortByArea( Nf_Cut_t ** pCuts, int nCuts )
{
    int i;
    for ( i = nCuts; i > 0; i-- )
    {
        if ( Nf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
            return;
        ABC_SWAP( Nf_Cut_t *, pCuts[i - 1], pCuts[i] );
    }
}
static inline int Nf_SetAddCut( Nf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
    if ( nCuts == 0 )
        return 1;
    nCuts = Nf_SetLastCutContainsArea(pCuts, nCuts);
    Nf_SetSortByArea( pCuts, nCuts );
    return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Nf_CutArea( Nf_Man_t * p, int nLeaves )
{
    if ( nLeaves < 2 )
        return 0;
    return nLeaves + p->pPars->nAreaTuner;
}
static inline void Nf_CutParams( Nf_Man_t * p, Nf_Cut_t * pCut, float FlowRefs )
{
    int i, nLeaves = pCut->nLeaves; 
    assert( nLeaves <= p->pPars->nLutSize );
    pCut->Delay = 0;
    pCut->Flow  = 0;
    for ( i = 0; i < nLeaves; i++ )
    {
        pCut->Delay = Abc_MaxInt( pCut->Delay, Nf_ObjCutDelay(p, pCut->pLeaves[i]) );
        pCut->Flow += Nf_ObjCutFlow(p, pCut->pLeaves[i]);
    }
    pCut->Delay += (int)(nLeaves > 1);
    pCut->Flow = (pCut->Flow + Nf_CutArea(p, nLeaves)) / FlowRefs;
}
void Nf_ObjMergeOrder( Nf_Man_t * p, int iObj )
{
    Nf_Cut_t pCuts0[NF_CUT_MAX], pCuts1[NF_CUT_MAX], pCuts[NF_CUT_MAX], * pCutsR[NF_CUT_MAX];
    Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
    //Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
    float dFlowRefs  = Nf_ObjFlowRefs(p, iObj, 0) + Nf_ObjFlowRefs(p, iObj, 1);
    int nLutSize = p->pPars->nLutSize;
    int nCutNum  = p->pPars->nCutNum;
    int nCuts0   = Nf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
    int nCuts1   = Nf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
    int fComp0   = Gia_ObjFaninC0(pObj);
    int fComp1   = Gia_ObjFaninC1(pObj);
    int iSibl    = Gia_ObjSibl(p->pGia, iObj);
    Nf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
    int i, nCutsUse, nCutsR = 0;
    assert( !Gia_ObjIsBuf(pObj) );
    for ( i = 0; i < nCutNum; i++ )
        pCutsR[i] = pCuts + i;
    if ( iSibl )
    {
        Nf_Cut_t pCuts2[NF_CUT_MAX];
        Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
        int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
        int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, iSibl, 0);
        Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
        for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
        {
            *pCutsR[nCutsR] = *pCut2;
            pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
            Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
            nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
        }
    }
    if ( Gia_ObjIsMuxId(p->pGia, iObj) )
    {
        Nf_Cut_t pCuts2[NF_CUT_MAX];
        int nCuts2  = Nf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
        int fComp2  = Gia_ObjFaninC2(p->pGia, pObj);
        Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
        p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
        for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
        for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
        for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
        {
            if ( Nf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
                continue;
            p->CutCount[1]++; 
            if ( !Nf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
                continue;
            if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
                continue;
            p->CutCount[2]++;
            if ( Nf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
                pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
            Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
            nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
        }
    }
    else
    {
        int fIsXor = Gia_ObjIsXor(pObj);
        p->CutCount[0] += nCuts0 * nCuts1;
        for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
        for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
        {
            if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Nf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
                continue;
            p->CutCount[1]++; 
            if ( !Nf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
                continue;
            if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
                continue;
            p->CutCount[2]++;
            if ( Nf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
                pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
            Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
            nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
        }
    }
    // debug printout
    if ( 0 )
//    if ( iObj % 10000 == 0 )
//    if ( iObj == 1090 )
    {
        printf( "*** Obj = %d  Useful = %d\n", iObj, Nf_ManCountUseful(pCutsR, nCutsR) );
        for ( i = 0; i < nCutsR; i++ )
            Nf_Cutprintf( p, pCutsR[i] );
        printf( "\n" );
    } 
    // verify
    assert( nCutsR > 0 && nCutsR < nCutNum );
//    assert( Nf_SetCheckArray(pCutsR, nCutsR) );
    // store the cutset
    Nf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow );
    Nf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay );
    *Vec_IntEntryP(&p->vCutSets, iObj) = Nf_ManSaveCuts(p, pCutsR, nCutsR, 0);
    p->CutCount[3] += nCutsR;
    nCutsUse = Nf_ManCountUseful(pCutsR, nCutsR);
    p->CutCount[4] += nCutsUse;
    p->nCutUseAll  += nCutsUse == nCutsR;
    p->CutCount[5] += Nf_ManCountMatches(p, pCutsR, nCutsR);
}
void Nf_ManComputeCuts( Nf_Man_t * p )
{
    Gia_Obj_t * pObj; int i, iFanin;
    Gia_ManForEachAnd( p->pGia, pObj, i )
        if ( Gia_ObjIsBuf(pObj) )
        {
            iFanin = Gia_ObjFaninId0(pObj, i);
            Nf_ObjSetCutFlow( p, i,  Nf_ObjCutFlow(p, iFanin) );
            Nf_ObjSetCutDelay( p, i, Nf_ObjCutDelay(p, iFanin) );
        }
        else
            Nf_ObjMergeOrder( p, i );
}




/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Nf_ManPrintStats( Nf_Man_t * p, char * pTitle )
{
    if ( !p->pPars->fVerbose )
        return;
    printf( "%s :  ", pTitle );
    printf( "Delay =%8.2f  ",  p->pPars->MapDelay );
    printf( "Area =%12.2f  ",  p->pPars->MapArea );
    printf( "Gate =%6d  ",    (int)p->pPars->Area );
    printf( "Inv =%6d  ",     (int)p->nInvs );
    printf( "Edge =%7d  ",    (int)p->pPars->Edge );
    Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
    fflush( stdout );
}
void Nf_ManPrintInit( Nf_Man_t * p )
{
    int nChoices;
    if ( !p->pPars->fVerbose )
        return;
    printf( "LutSize = %d  ", p->pPars->nLutSize );
    printf( "CutNum = %d  ",  p->pPars->nCutNum );
    printf( "Iter = %d  ",    p->pPars->nRounds );//+ p->pPars->nRoundsEla );
    printf( "Coarse = %d   ", p->pPars->fCoarsen );
    printf( "Cells = %d  ",   p->nCells );
    printf( "Funcs = %d  ",   Vec_MemEntryNum(p->vTtMem) );
    printf( "Matches = %d  ", Vec_WecSizeSize(p->vTt2Match)/2 );
    nChoices = Gia_ManChoiceNum( p->pGia );
    if ( nChoices )
    printf( "Choices = %d  ", nChoices );
    printf( "\n" );
    printf( "Computing cuts...\r" );
    fflush( stdout );
}
void Nf_ManPrintQuit( Nf_Man_t * p )
{
    float MemGia   = Gia_ManMemory(p->pGia) / (1<<20);
    float MemMan   =(1.0 * sizeof(Nf_Obj_t) + 8.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20);
    float MemCuts  = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
    float MemTt    = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
    if ( p->CutCount[0] == 0 )
        p->CutCount[0] = 1;
    if ( !p->pPars->fVerbose )
        return;
    printf( "CutPair = %.0f  ",         p->CutCount[0] );
    printf( "Merge = %.0f (%.1f)  ",    p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) );
    printf( "Eval = %.0f (%.1f)  ",     p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) );
    printf( "Cut = %.0f (%.1f)  ",      p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) );
    printf( "Use = %.0f (%.1f)  ",      p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) );
    printf( "Mat = %.0f (%.1f)  ",      p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) );
//    printf( "Equ = %d (%.2f %%)  ",     p->nCutUseAll,  100.0*p->nCutUseAll /p->CutCount[0] );
    printf( "\n" );
    printf( "Gia = %.2f MB  ",          MemGia );
    printf( "Man = %.2f MB  ",          MemMan ); 
    printf( "Cut = %.2f MB   ",         MemCuts );
    printf( "TT = %.2f MB  ",           MemTt ); 
    printf( "Total = %.2f MB   ",       MemGia + MemMan + MemCuts + MemTt ); 
//    printf( "\n" );
    Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
    fflush( stdout );
}


/**Function*************************************************************

  Synopsis    [Technology mappping.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Nf_MatchDeref2_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
    int k, iVar, fCompl, * pCut;
    float Area = 0;
    if ( pM->fCompl )
    {
        assert( Nf_ObjMapRefNum(p, i, !c) > 0 );
        if ( !Nf_ObjMapRefDec(p, i, !c) )
            Area += Nf_MatchDeref2_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c) );
        return Area + p->InvArea;
    }
    if ( Nf_ObjCutSetId(p, i) == 0 )
        return 0;
    pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
    Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
    {
        assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 );
        if ( !Nf_ObjMapRefDec(p, iVar, fCompl) )
            Area += Nf_MatchDeref2_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl) );
    }
    return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef2_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, Vec_Int_t * vBackup )
{
    int k, iVar, fCompl, * pCut;
    float Area = 0;
    if ( pM->fCompl )
    {
        if ( vBackup )
            Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) );
        assert( Nf_ObjMapRefNum(p, i, !c) >= 0 );
        if ( !Nf_ObjMapRefInc(p, i, !c) )
            Area += Nf_MatchRef2_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c), vBackup );
        return Area + p->InvArea;
    }
    if ( Nf_ObjCutSetId(p, i) == 0 )
        return 0;
    pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
    Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
    {
        if ( vBackup )
            Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) );
        assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 );
        if ( !Nf_ObjMapRefInc(p, iVar, fCompl) )
            Area += Nf_MatchRef2_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl), vBackup );
    }
    return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef2Area( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
    float Area;  int iLit, k; 
    Vec_IntClear( &p->vBackup );
    Area = Nf_MatchRef2_rec( p, i, c, pM, &p->vBackup );
    Vec_IntForEachEntry( &p->vBackup, iLit, k )
    {
        assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 );
        Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) );
    }
    return Area;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Nf_ManCutMatchPrint( Nf_Man_t * p, int iObj, int fCompl, Nf_Mat_t * pM )
{
    Mio_Cell_t * pCell;
    int i, * pCut;
    printf( "%5d %d : ", iObj, fCompl );
    if ( pM->CutH == 0 )
    {
        printf( "Unassigned\n" );
        return;
    }
    pCell = Nf_ManCell( p, pM->Gate );
    pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
    printf( "D = %8.2f  ", pM->D );
    printf( "A = %8.2f  ", pM->A );
    printf( "C = %d ", pM->fCompl );
//    printf( "B = %d ", pM->fBest );
    printf( "  " );
    printf( "Cut = {" );
    for ( i = 0; i < (int)pCell->nFanins; i++ )
        printf( "%5d ", Nf_CutLeaves(pCut)[i] );
    for ( ; i < 6; i++ )
        printf( "      " );
    printf( "}  " );
    printf( "%12s  ", pCell->pName );
    printf( "%d  ", pCell->nFanins );
    printf( "{" );
    for ( i = 0; i < (int)pCell->nFanins; i++ )
        printf( "%7.2f ", pCell->Delays[i] );
    for ( ; i < 6; i++ )
        printf( "        " );
    printf( " }  " );
    for ( i = 0; i < (int)pCell->nFanins; i++ )
        printf( "%2d ", Nf_CutConfLit(pM->Conf, i) );
    for ( ; i < 6; i++ )
        printf( "   " );
    Dau_DsdPrintFromTruth( &pCell->uTruth, pCell->nFanins );
}
void Nf_ManCutMatchOne( Nf_Man_t * p, int iObj, int * pCut, int * pCutSet )
{
    Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
    int * pFans      = Nf_CutLeaves(pCut);
    int nFans        = Nf_CutSize(pCut);
    int iFuncLit     = Nf_CutFunc(pCut);
    int fComplExt    = Abc_LitIsCompl(iFuncLit);
    float Epsilon    = p->pPars->Epsilon;
    Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
    int i, k, c, Info, Offset, iFanin, fComplF;
    float ArrivalD, ArrivalA;
    Nf_Mat_t * pD, * pA;
    // assign fanins matches
    Nf_Obj_t * pBestF[NF_LEAF_MAX];
    for ( i = 0; i < nFans; i++ )
        pBestF[i] = Nf_ManObj( p, pFans[i] );
    // special cases
    if ( nFans == 0 )
    {
        int Const = (iFuncLit == 1);
        assert( iFuncLit == 0 || iFuncLit == 1 );
        for ( c = 0; c < 2; c++ )
        { 
            pD = Nf_ObjMatchD( p, iObj, c );
            pA = Nf_ObjMatchA( p, iObj, c );
            pD->D = pA->D = 0;
            pD->A = pA->A = p->pCells[c ^ Const].Area;
            pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut);
            pD->Gate = pA->Gate = c ^ Const;
            pD->Conf = pA->Conf = 0;
        }
        return;
    }
    if ( nFans == 1 )
    {
        int Const = (iFuncLit == 3);
        assert( iFuncLit == 2 || iFuncLit == 3 );
        for ( c = 0; c < 2; c++ )
        { 
            pD = Nf_ObjMatchD( p, iObj, c );
            pA = Nf_ObjMatchA( p, iObj, c );
            pD->D = pA->D = pBestF[0]->M[c ^ !Const][0].D + p->pCells[2 + (c ^ Const)].Delays[0];
            pD->A = pA->A = pBestF[0]->M[c ^ !Const][0].A + p->pCells[2 + (c ^ Const)].Area;
            pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut);
            pD->Gate = pA->Gate = 2 + (c ^ Const);
            pD->Conf = pA->Conf = 0;
        }
        return;
    }
    // consider matches of this function
    Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
    {
        Pf_Mat_t Mat   = Pf_Int2Mat(Offset);
        Mio_Cell_t* pC = Nf_ManCell( p, Info );
        int fCompl     = Mat.fCompl ^ fComplExt;
        float Required = Nf_ObjRequired( p, iObj, fCompl );
        Nf_Mat_t * pD  = &pBest->M[fCompl][0];
        Nf_Mat_t * pA  = &pBest->M[fCompl][1];
        float Area = pC->Area, Delay = 0;
        assert( nFans == (int)pC->nFanins );
        //char * pInfo   = Vec_StrEntryP( p->vMemStore, Offset );
//        for ( k = 0; k < nFans; k++ )
//            pInfo[k] = (char)Abc_Var2Lit( (Mat.Perm >> (3*k)) & 7, (Mat.Phase >> k) & 1 );
        for ( k = 0; k < nFans; k++ )
        {
//            iFanin    = Abc_Lit2Var((int)pInfo[k]);
//            fComplF   = Abc_LitIsCompl((int)pInfo[k]);
            iFanin    = (Mat.Perm >> (3*k)) & 7;
            fComplF   = (Mat.Phase >> k) & 1;
            ArrivalD  = pBestF[k]->M[fComplF][0].D;
            ArrivalA  = pBestF[k]->M[fComplF][1].D;
            if ( ArrivalA + pC->Delays[iFanin] < Required + Epsilon && Required != NF_INFINITY )
            {
                Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
                Area += pBestF[k]->M[fComplF][1].A;
            }
            else 
            {
//                    assert( ArrivalD + pC->Delays[iFanin] < Required + Epsilon );
                if ( pD->D < NF_INFINITY && pA->D < NF_INFINITY && ArrivalD + pC->Delays[iFanin] >= Required + Epsilon )
                    break;
                Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
                Area += pBestF[k]->M[fComplF][0].A;
            }
        }
        if ( k < nFans )
            continue;
        // select best match
        if ( pD->D > Delay )//+ Epsilon )
        {
            pD->D = Delay;
            pD->A = Area;
            pD->CutH = Nf_CutHandle(pCutSet, pCut);
            pD->Gate = pC->Id;
            pD->Conf = 0;
            for ( k = 0; k < nFans; k++ )
//                    pD->Conf |= ((int)pInfo[k] << (k << 2));
//                pD->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
                pD->Conf |= (Abc_Var2Lit(k, (Mat.Phase >> k) & 1) << (((Mat.Perm >> (3*k)) & 7) << 2));
        }
        if ( pA->A > Area )//+ Epsilon )
        {
            pA->D = Delay;
            pA->A = Area;
            pA->CutH = Nf_CutHandle(pCutSet, pCut);
            pA->Gate = pC->Id;
            pA->Conf = 0;
            for ( k = 0; k < nFans; k++ )
//                    pA->Conf |= ((int)pInfo[k] << (k << 2));
//                pA->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
                pA->Conf |= (Abc_Var2Lit(k, (Mat.Phase >> k) & 1) << (((Mat.Perm >> (3*k)) & 7) << 2));
        }
    }
/*
    Nf_ManCutMatchPrint( p, iObj, 0, &pBest->M[0][0] );
    Nf_ManCutMatchPrint( p, iObj, 0, &pBest->M[0][1] );
    Nf_ManCutMatchPrint( p, iObj, 1, &pBest->M[1][0] );
    Nf_ManCutMatchPrint( p, iObj, 1, &pBest->M[1][1] );
*/
}
static inline void Nf_ObjPrepareCi( Nf_Man_t * p, int iObj, float Time )
{
    Nf_Mat_t * pD0 = Nf_ObjMatchD( p, iObj, 0 );
    Nf_Mat_t * pA0 = Nf_ObjMatchA( p, iObj, 0 );
    Nf_Mat_t * pD = Nf_ObjMatchD( p, iObj, 1 );
    Nf_Mat_t * pA = Nf_ObjMatchA( p, iObj, 1 );
    pD0->D = pA0->D = pD->D = pA->D = Time;
    pD->fCompl = 1;
    pD->D += p->InvDelay;
    pD->A = p->InvArea;
    pA->fCompl = 1;
    pA->D += p->InvDelay;
    pA->A = p->InvArea;
    Nf_ObjMatchD( p, iObj, 0 )->fBest = 1;
    Nf_ObjMatchD( p, iObj, 1 )->fBest = 1;
}
static inline void Nf_ObjPrepareBuf( Nf_Man_t * p, Gia_Obj_t * pObj )
{
    // get fanin info
    int iObj = Gia_ObjId( p->pGia, pObj );
    int iFanin = Gia_ObjFaninId0( pObj, iObj );
    Nf_Mat_t * pDf = Nf_ObjMatchD( p, iFanin, Gia_ObjFaninC0(pObj) );
    //Nf_Mat_t * pAf = Nf_ObjMatchA( p, iFanin, Gia_ObjFaninC0(pObj) );
    // set the direct phase
    Nf_Mat_t * pDp = Nf_ObjMatchD( p, iObj, 0 );
    Nf_Mat_t * pAp = Nf_ObjMatchA( p, iObj, 0 );
    Nf_Mat_t * pDn = Nf_ObjMatchD( p, iObj, 1 );
    Nf_Mat_t * pAn = Nf_ObjMatchA( p, iObj, 1 );
    assert( Gia_ObjIsBuf(pObj) );
    memset( Nf_ManObj(p, iObj), 0, sizeof(Nf_Obj_t) );
    // set the direct phase
    pDp->D = pAp->D = pDf->D;
    pDp->A = pAp->A = pDf->A; // do not pass flow???
    pDp->fBest = 1;
    // set the inverted phase
    pDn->D = pAn->D = pDf->D + p->InvDelay;
    pDn->A = pAn->A = pDf->A + p->InvArea;
    pDn->fCompl = pAn->fCompl = 1;
    pDn->fBest = 1;
}
static inline float Nf_CutRequired( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet )
{
    Mio_Cell_t * pCell = Nf_ManCell( p, pM->Gate );
    int * pCut   = Nf_CutFromHandle( pCutSet, pM->CutH );
    int * pFans  = Nf_CutLeaves(pCut);
    int i, nFans = Nf_CutSize(pCut);
    float Arrival = 0, Required = 0;
    for ( i = 0; i < nFans; i++ )
    {
        int iLit   = Nf_CutConfLit( pM->Conf, i );
        int iFanin = pFans[ Abc_Lit2Var(iLit) ];
        int fCompl = Abc_LitIsCompl( iLit );
        float Arr  = Nf_ManObj(p, iFanin)->M[fCompl][0].D + pCell->Delays[i];
        float Req  = Nf_ObjRequired(p, iFanin, fCompl);
        Arrival = Abc_MaxInt( Arrival, Arr );
        if ( Req < NF_INFINITY )
            Required = Abc_MaxInt( Required, Req + pCell->Delays[i] );
    }
    return Abc_MaxFloat( Required + 2*p->InvDelay, Arrival ); 
}
static inline void Nf_ObjComputeRequired( Nf_Man_t * p, int iObj )
{
    Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
    int c, * pCutSet = Nf_ObjCutSet( p, iObj );
    for ( c = 0; c < 2; c++ )
        if ( Nf_ObjRequired(p, iObj, c) == NF_INFINITY )
            Nf_ObjSetRequired( p, iObj, c, Nf_CutRequired(p, &pBest->M[c][0], pCutSet) );
}
void Nf_ManCutMatch( Nf_Man_t * p, int iObj )
{
    Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
    Nf_Mat_t * pDp = &pBest->M[0][0];
    Nf_Mat_t * pDn = &pBest->M[1][0];
    Nf_Mat_t * pAp = &pBest->M[0][1];
    Nf_Mat_t * pAn = &pBest->M[1][1];
    float FlowRefP = Nf_ObjFlowRefs(p, iObj, 0);
    float FlowRefN = Nf_ObjFlowRefs(p, iObj, 1);
    float Epsilon  = p->pPars->Epsilon;
    int i, Index, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
    float ValueBeg[2] = {0}, ValueEnd[2] = {0}, Required[2] = {0};
    if ( p->Iter )
    {
        Nf_ObjComputeRequired( p, iObj );
        Required[0] = Nf_ObjRequired( p, iObj, 0 );
        Required[1] = Nf_ObjRequired( p, iObj, 1 );
    }
    if ( p->fUseEla && Nf_ObjMapRefNum(p, iObj, 0) > 0 )
        ValueBeg[0] = Nf_MatchDeref2_rec( p, iObj, 0, Nf_ObjMatchBest(p, iObj, 0) );
    if ( p->fUseEla && Nf_ObjMapRefNum(p, iObj, 1) > 0 )
        ValueBeg[1] = Nf_MatchDeref2_rec( p, iObj, 1, Nf_ObjMatchBest(p, iObj, 1) );
    memset( pBest, 0, sizeof(Nf_Obj_t) );
    pDp->D = pDp->A = NF_INFINITY;
    pDn->D = pDn->A = NF_INFINITY;
    pAp->D = pAp->A = NF_INFINITY;
    pAn->D = pAn->A = NF_INFINITY;
    Nf_SetForEachCut( pCutSet, pCut, i )
    {
        if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
            continue;
        assert( !Nf_CutIsTriv(pCut, iObj) );
        assert( Nf_CutSize(pCut) <= p->pPars->nLutSize );
        assert( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) );
        Nf_ManCutMatchOne( p, iObj, pCut, pCutSet );
    }

/*
    if ( 18687 == iObj )
    {
        printf( "Obj %6d (%f %f):\n", iObj, Required[0], Required[1] );
        Nf_ManCutMatchPrint( p, iObj, 0, &pBest->M[0][0] );
        Nf_ManCutMatchPrint( p, iObj, 0, &pBest->M[0][1] );
        Nf_ManCutMatchPrint( p, iObj, 1, &pBest->M[1][0] );
        Nf_ManCutMatchPrint( p, iObj, 1, &pBest->M[1][1] );
        printf( "\n" );
    }
*/

    // divide by ref count
    pDp->A /= FlowRefP;
    pAp->A /= FlowRefP;
    pDn->A /= FlowRefN;
    pAn->A /= FlowRefN;

    // add the inverters
    //assert( pDp->D < NF_INFINITY || pDn->D < NF_INFINITY );
    if ( pDp->D > pDn->D + p->InvDelay + Epsilon )
    {
        *pDp = *pDn;
        pDp->D += p->InvDelay;
        pDp->A += p->InvArea;
        pDp->fCompl = 1;
        if ( pAp->D == NF_INFINITY )
            *pAp = *pDp;
        //printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 1 );
    }
    else if ( pDn->D > pDp->D + p->InvDelay + Epsilon )
    {
        *pDn = *pDp;
        pDn->D += p->InvDelay;
        pDn->A += p->InvArea;
        pDn->fCompl = 1;
        if ( pAn->D == NF_INFINITY )
            *pAn = *pDn;
        //printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 0 );
    }
    //assert( pAp->A < NF_INFINITY || pAn->A < NF_INFINITY );
    // try replacing pos with neg
    if ( pAp->D == NF_INFINITY || (pAp->A > pAn->A + p->InvArea + Epsilon && pAn->D + p->InvDelay + Epsilon < Required[1]) )
    {
        assert( p->Iter > 0 );
        *pAp = *pAn;
        pAp->D += p->InvDelay;
        pAp->A += p->InvArea;
        pAp->fCompl = 1;
        if ( pDp->D == NF_INFINITY )
            *pDp = *pAp;
        //printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 1 );
    }
    // try replacing neg with pos
    else if ( pAn->D == NF_INFINITY || (pAn->A > pAp->A + p->InvArea + Epsilon && pAp->D + p->InvDelay + Epsilon < Required[0]) )
    {
        assert( p->Iter > 0 );
        *pAn = *pAp;
        pAn->D += p->InvDelay;
        pAn->A += p->InvArea;
        pAn->fCompl = 1;
        if ( pDn->D == NF_INFINITY )
            *pDn = *pAn;
        //printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 0 );
    }

    if ( pDp->D == NF_INFINITY )
        printf( "Object %d has pDp unassigned.\n", iObj );
    if ( pDn->D == NF_INFINITY )
        printf( "Object %d has pDn unassigned.\n", iObj );
    if ( pAp->D == NF_INFINITY )
        printf( "Object %d has pAp unassigned.\n", iObj );
    if ( pAn->D == NF_INFINITY )
        printf( "Object %d has pAn unassigned.\n", iObj );

    pDp->A = Abc_MinFloat( pDp->A, NF_INFINITY/1000000 );
    pDn->A = Abc_MinFloat( pDn->A, NF_INFINITY/1000000 );
    pAp->A = Abc_MinFloat( pAp->A, NF_INFINITY/1000000 );  
    pAn->A = Abc_MinFloat( pAn->A, NF_INFINITY/1000000 );
    
    assert( pDp->D < NF_INFINITY );
    assert( pDn->D < NF_INFINITY );
    assert( pAp->D < NF_INFINITY );
    assert( pAn->D < NF_INFINITY );

    assert( pDp->A < NF_INFINITY );
    assert( pDn->A < NF_INFINITY );
    assert( pAp->A < NF_INFINITY );
    assert( pAn->A < NF_INFINITY );

    //printf( "%16f  %16f   %16f  %16f\n", pDp->A, pDn->A, pAp->A, pAn->A );
//    assert ( pDp->A < 1000 );

    if ( p->fUseEla )
    {
        // set the first good cut
        Index = (pAp->D != NF_INFINITY && pAp->D < Nf_ObjRequired(p, iObj, 0) + Epsilon);
        assert( !pDp->fBest && !pAp->fBest );
        pBest->M[0][Index].fBest = 1;
        assert( pDp->fBest != pAp->fBest );
        // set the second good cut
        Index = (pAn->D != NF_INFINITY && pAn->D < Nf_ObjRequired(p, iObj, 1) + Epsilon);
        assert( !pDn->fBest && !pAn->fBest );
        pBest->M[1][Index].fBest = 1;
        assert( pDn->fBest != pAn->fBest );
        // reference if needed
        if ( Nf_ObjMapRefNum(p, iObj, 0) > 0 )
            ValueEnd[0] = Nf_MatchRef2_rec( p, iObj, 0, Nf_ObjMatchBest(p, iObj, 0), NULL );
        if ( Nf_ObjMapRefNum(p, iObj, 1) > 0 )
            ValueEnd[1] = Nf_MatchRef2_rec( p, iObj, 1, Nf_ObjMatchBest(p, iObj, 1), NULL );
//        assert( ValueBeg[0] > ValueEnd[0] - Epsilon );
//        assert( ValueBeg[1] > ValueEnd[1] - Epsilon );
    }
}
void Nf_ManComputeMapping( Nf_Man_t * p )
{
    Gia_Obj_t * pObj; int i;
    Gia_ManForEachAnd( p->pGia, pObj, i )
        if ( Gia_ObjIsBuf(pObj) )
            Nf_ObjPrepareBuf( p, pObj );
        else
            Nf_ManCutMatch( p, i );
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Nf_ManSetMapRefsGate( Nf_Man_t * p, int iObj, float Required, Nf_Mat_t * pM )
{
    int k, iVar, fCompl;
    Mio_Cell_t * pCell = Nf_ManCell( p, pM->Gate );
    int * pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
    Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
    {
        Nf_ObjMapRefInc( p, iVar, fCompl );
        Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] );
    }
    assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
    // update global stats
    p->pPars->MapArea += pCell->Area;
    p->pPars->Edge += Nf_CutSize(pCut);
    p->pPars->Area++;
    // update status of the gate
    assert( pM->fBest == 0 );
    pM->fBest = 1;
}
int Nf_ManSetMapRefs( Nf_Man_t * p )
{
    float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
    float * pFlowRefs = Vec_FltArray( &p->vFlowRefs );
    int * pMapRefs = Vec_IntArray( &p->vMapRefs );
    float Epsilon = p->pPars->Epsilon;
    int nLits = 2*Gia_ManObjNum(p->pGia);
    int i, c, Id, nRefs[2];
    Nf_Mat_t * pD, * pA, * pM;
    Nf_Mat_t * pDs[2], * pAs[2], * pMs[2];
    Gia_Obj_t * pObj;
    float Required = 0, Requireds[2];
    // check references
    assert( !p->fUseEla );
    memset( pMapRefs, 0, sizeof(int) * nLits );
    Vec_FltFill( &p->vRequired, nLits, NF_INFINITY );
//    for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
//        assert( !Nf_ObjMapRefNum(p, i, 0) && !Nf_ObjMapRefNum(p, i, 1) );
    // compute delay
    p->pPars->MapDelay = 0;
    Gia_ManForEachCo( p->pGia, pObj, i )
    {
        Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
        if ( Required == NF_INFINITY )
        {
            Nf_ManCutMatchPrint( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) ) );
        }
        p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required );
    }
    // check delay target
    if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio )
        p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
    if ( p->pPars->MapDelayTarget != -1 )
    {
        if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon )
            p->pPars->MapDelay = p->pPars->MapDelayTarget;
        else if ( p->pPars->nRelaxRatio == 0 )
            Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay );
    }
    // set required times
    Gia_ManForEachCo( p->pGia, pObj, i )
    {
        Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
        Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay;
        // if external required time can be achieved, use it
        if ( p->pGia->vOutReqs && Vec_FltEntry(p->pGia->vOutReqs, i) > 0 && Required <= Vec_FltEntry(p->pGia->vOutReqs, i) )
            Required = Vec_FltEntry(p->pGia->vOutReqs, i);
        // if external required cannot be achieved, set the earliest possible arrival time
//        else if ( p->pGia->vOutReqs && Vec_FltEntry(p->pGia->vOutReqs, i) > 0 && Required > Vec_FltEntry(p->pGia->vOutReqs, i) )
//            ptTime->Rise = ptTime->Fall = ptTime->Worst = Required;
        // otherwise, set the global required time
        Nf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required );
        Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
    }
    // compute area and edges
    p->nInvs = 0;
    p->pPars->MapArea = 0; 
    p->pPars->Area = p->pPars->Edge = 0;
    Gia_ManForEachAndReverse( p->pGia, pObj, i )
    {
        if ( Gia_ObjIsBuf(pObj) )
        {
            if ( Nf_ObjMapRefNum(p, i, 1) )
            {
                Nf_ObjMapRefInc( p, i, 0 );
                Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelay );
                p->pPars->MapArea += p->InvArea;
                p->pPars->Edge++;
                p->pPars->Area++;
                p->nInvs++;
            }
            Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) );
            Nf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj));
            continue;
        }
        // skip if this node is not used
        for ( c = 0; c < 2; c++ )
        {
            nRefs[c] = Nf_ObjMapRefNum(p, i, c);

            //if ( Nf_ObjMatchD( p, i, c )->fCompl )
            //    printf( "Match D of node %d has inv in phase %d.\n", i, c );
            //if ( Nf_ObjMatchA( p, i, c )->fCompl )
            //    printf( "Match A of node %d has inv in phase %d.\n", i, c );
        }
        if ( !nRefs[0] && !nRefs[1] )
            continue;

        // consider two cases
        if ( nRefs[0] && nRefs[1] )
        {
            // find best matches for both phases
            for ( c = 0; c < 2; c++ )
            {
                Requireds[c] = Nf_ObjRequired( p, i, c );
                //assert( Requireds[c] < NF_INFINITY );
                pDs[c] = Nf_ObjMatchD( p, i, c );
                pAs[c] = Nf_ObjMatchA( p, i, c );
                pMs[c] = (pAs[c]->D < Requireds[c] + Epsilon) ? pAs[c] : pDs[c];
            }
            // swap complemented matches
            if ( pMs[0]->fCompl && pMs[1]->fCompl )
            {
                pMs[0]->fCompl = pMs[1]->fCompl = 0;
                ABC_SWAP( Nf_Mat_t *, pMs[0], pMs[1] );
            }
            // check if intervers are involved
            if ( !pMs[0]->fCompl && !pMs[1]->fCompl )
            {
                // no inverters
                for ( c = 0; c < 2; c++ )
                    Nf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] );
            }
            else 
            {
                // one interver
                assert( !pMs[0]->fCompl || !pMs[1]->fCompl );
                c = pMs[1]->fCompl;
                assert( pMs[c]->fCompl && !pMs[!c]->fCompl );
                //printf( "Using inverter at node %d in phase %d\n", i, c );

                // update this phase phase
                pM = pMs[c];
                pM->fBest = 1;
                Required = Requireds[c];

                // update opposite phase
                Nf_ObjMapRefInc( p, i, !c );
                Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );

                // select oppositve phase
                Required = Nf_ObjRequired( p, i, !c );
                //assert( Required < NF_INFINITY );
                pD = Nf_ObjMatchD( p, i, !c );
                pA = Nf_ObjMatchA( p, i, !c );
                pM = (pA->D < Required + Epsilon) ? pA : pD;
                assert( !pM->fCompl );

                // account for the inverter
                p->pPars->MapArea += p->InvArea;
                p->pPars->Edge++;
                p->pPars->Area++;
                p->nInvs++;

                // create gate
                Nf_ManSetMapRefsGate( p, i, Required, pM );
            }
        }
        else
        {
            c = (int)(nRefs[1] > 0);
            assert( nRefs[c] && !nRefs[!c] );
            // consider this phase
            Required = Nf_ObjRequired( p, i, c );
            //assert( Required < NF_INFINITY );
            pD = Nf_ObjMatchD( p, i, c );
            pA = Nf_ObjMatchA( p, i, c );
            pM = (pA->D < Required + Epsilon) ? pA : pD;

            if ( pM->fCompl ) // use inverter
            {
                p->nInvs++;
                //printf( "Using inverter at node %d in phase %d\n", i, c );
                pM->fBest = 1;
                // update opposite phase
                Nf_ObjMapRefInc( p, i, !c );
                Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );
                // select oppositve phase
                Required = Nf_ObjRequired( p, i, !c );
                //assert( Required < NF_INFINITY );
                pD = Nf_ObjMatchD( p, i, !c );
                pA = Nf_ObjMatchA( p, i, !c );
                pM = (pA->D < Required + Epsilon) ? pA : pD;
                assert( !pM->fCompl );

                // account for the inverter
                p->pPars->MapArea += p->InvArea;
                p->pPars->Edge++;
                p->pPars->Area++;
            }

            // create gate
            Nf_ManSetMapRefsGate( p, i, Required, pM );
        }


        // the result of this:
        // - only one phase can be implemented as inverter of the other phase
        // - required times are propagated correctly
        // - references are set correctly
    }
    Gia_ManForEachCiId( p->pGia, Id, i )
        if ( Nf_ObjMapRefNum(p, Id, 1) )
        {
            Nf_ObjMapRefInc( p, Id, 0 );
            Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay );
            p->pPars->MapArea += p->InvArea;
            p->pPars->Edge++;
            p->pPars->Area++;
            p->nInvs++;
        }
    // blend references
    for ( i = 0; i < nLits; i++ )
//        pFlowRefs[i] = Abc_MaxFloat(1.0, pMapRefs[i]);
        pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]));
//        pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
//    memset( pMapRefs, 0, sizeof(int) * nLits );
    return p->pPars->Area;
}
Gia_Man_t * Nf_ManDeriveMapping( Nf_Man_t * p )
{
    Vec_Int_t * vMapping;
    Nf_Mat_t * pM;
    int i, k, c, Id, iLit, * pCut;
    assert( p->pGia->vCellMapping == NULL );
    vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
    Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 );
    // create CI inverters
    Gia_ManForEachCiId( p->pGia, Id, i )
    if ( Nf_ObjMapRefNum(p, Id, 1) )
        Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 );
    // create internal nodes
    Gia_ManForEachAndId( p->pGia, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i);
        if ( Gia_ObjIsBuf(pObj) )
        {
            if ( Nf_ObjMapRefNum(p, i, 1) )
                Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 );
            Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 );
            continue;
        }
        for ( c = 0; c < 2; c++ )
        if ( Nf_ObjMapRefNum(p, i, c) )
        {
    //        printf( "Using %d %d\n", i, c );
            pM = Nf_ObjMatchBest( p, i, c );
            // remember inverter
            if ( pM->fCompl )
            {
                Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 );
                continue;
            }
    //        Nf_ManCutMatchPrint( p, i, c, pM );
            pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
            // create mapping
            Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) );
            Vec_IntPush( vMapping, Nf_CutSize(pCut) );
            Nf_CutForEachLit( pCut, pM->Conf, iLit, k )
                Vec_IntPush( vMapping, iLit );
            Vec_IntPush( vMapping, pM->Gate );
        }
    }
//    assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
    p->pGia->vCellMapping = vMapping;
    return p->pGia;
}
void Nf_ManUpdateStats( Nf_Man_t * p )
{
    Nf_Mat_t * pM;
    Gia_Obj_t * pObj;
    Mio_Cell_t * pCell;
    int i, c, Id, * pCut;
    p->pPars->MapDelay = 0;
    Gia_ManForEachCo( p->pGia, pObj, i )
    {
        float Delay = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
        p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Delay );
    }
    p->pPars->MapArea = 0; 
    p->pPars->Area = p->pPars->Edge = 0;
    Gia_ManForEachAndId( p->pGia, i )
    for ( c = 0; c < 2; c++ )
    if ( Nf_ObjMapRefNum(p, i, c) )
    {
        pM = Nf_ObjMatchBest( p, i, c );
        pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
        pCell = Nf_ManCell( p, pM->Gate );
        assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
        p->pPars->MapArea += pCell->Area;
        p->pPars->Edge += Nf_CutSize(pCut);
        p->pPars->Area++;
    }
    Gia_ManForEachCiId( p->pGia, Id, i )
        if ( Nf_ObjMapRefNum(p, Id, 1) )
        {
            p->pPars->MapArea += p->InvArea;
            p->pPars->Edge++;
            p->pPars->Area++;
        }
}

/**Function*************************************************************

  Synopsis    [Technology mappping.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/

/*
static inline Nf_Mat_t *  Nf_ObjMatchBestReq( Nf_Man_t * p, int i, int c, float r ) 
{ 
    Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c);
    Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c);
    assert( !pD->fBest && !pA->fBest );
    assert( Nf_ObjMapRefNum(p, i, c) == 0 );
    if ( pA->D < r + p->pPars->Epsilon )
        return pA;
    return pD;
}
float Nf_MatchDeref_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
    int k, iVar, fCompl, * pCut;
    float Area = 0;
    int Value = pM->fBest;
    pM->fBest = 0;
    if ( pM->fCompl )
    {
        assert( Nf_ObjMapRefNum(p, i, !c) > 0 );
        if ( !Nf_ObjMapRefDec(p, i, !c) )
            Area += Nf_MatchDeref_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c) );
        return Area + p->InvArea;
    }
    if ( Nf_ObjCutSetId(p, i) == 0 )
        return 0;
    assert( Value == 1 );
    pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
    Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
    {
        assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 );
        if ( !Nf_ObjMapRefDec(p, iVar, fCompl) )
            Area += Nf_MatchDeref_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl) );
    }
    return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, float Required, Vec_Int_t * vBackup )
{
    int k, iVar, fCompl, * pCut;
    float ReqFanin, Area = 0;
    assert( pM->fBest == 0 );
    if ( vBackup == NULL )
        pM->fBest = 1;
    if ( pM->fCompl )
    {
        ReqFanin = Required - p->InvDelay;
        if ( vBackup )
            Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) );
        assert( Nf_ObjMapRefNum(p, i, !c) >= 0 );
        if ( !Nf_ObjMapRefInc(p, i, !c) )
            Area += Nf_MatchRef_rec( p, i, !c, Nf_ObjMatchBestReq(p, i, !c, ReqFanin), ReqFanin, vBackup );
        return Area + p->InvArea;
    }
    if ( Nf_ObjCutSetId(p, i) == 0 )
        return 0;
    pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
    Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
    {
        ReqFanin = Required - Nf_ManCell(p, pM->Gate)->Delays[k];
        if ( vBackup )
            Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) );
        assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 );
        if ( !Nf_ObjMapRefInc(p, iVar, fCompl) )
            Area += Nf_MatchRef_rec( p, iVar, fCompl, Nf_ObjMatchBestReq(p, iVar, fCompl, ReqFanin), ReqFanin, vBackup );
    }
    return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRefArea( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, float Required )
{
    float Area;  int iLit, k; 
    Vec_IntClear( &p->vBackup );
    Area = Nf_MatchRef_rec( p, i, c, pM, Required, &p->vBackup );
    Vec_IntForEachEntry( &p->vBackup, iLit, k )
    {
        assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 );
        Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) );
    }
    return Area;
}
void Nf_ManElaBestMatchOne( Nf_Man_t * p, int iObj, int c, int * pCut, int * pCutSet, Nf_Mat_t * pRes, float Required )
{
    Nf_Mat_t Mb, * pMb = &Mb;
    Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
    int * pFans      = Nf_CutLeaves(pCut);
    int nFans        = Nf_CutSize(pCut);
    int iFuncLit     = Nf_CutFunc(pCut);
    int fComplExt    = Abc_LitIsCompl(iFuncLit);
    float Epsilon    = p->pPars->Epsilon;
    Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
    int i, k, Info, Offset, iFanin, fComplF;
    float ArrivalD, ArrivalA;
    // assign fanins matches
    Nf_Obj_t * pBestF[NF_LEAF_MAX];
    for ( i = 0; i < nFans; i++ )
        pBestF[i] = Nf_ManObj( p, pFans[i] );
    // special cases
    if ( nFans < 2 )
    {
        *pRes = *Nf_ObjMatchBestReq( p, iObj, c, Required );
        return;
    }
    // consider matches of this function
    memset( pMb, 0, sizeof(Nf_Mat_t) );
    pMb->D = pMb->A = NF_INFINITY;
    Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
    {
        Mio_Cell_t* pC = Nf_ManCell( p, Info >> 8 );
        int Type       = (Info >> 4) & 15;
        int fCompl     = (Info & 1) ^ fComplExt;
        char * pInfo   = Vec_StrEntryP( p->vMemStore, Offset );
        Nf_Mat_t * pD  = &pBest->M[fCompl][0];
        Nf_Mat_t * pA  = &pBest->M[fCompl][1];
        assert( nFans == (int)pC->nFanins );
        if ( fCompl != c )
            continue;
        if ( Type == NF_PRIME )
        {
            float Delay = 0;
            for ( k = 0; k < nFans; k++ )
            {
                iFanin    = Abc_Lit2Var((int)pInfo[k]);
                fComplF   = Abc_LitIsCompl((int)pInfo[k]);
                ArrivalD  = pBestF[k]->M[fComplF][0].D;
                ArrivalA  = pBestF[k]->M[fComplF][1].D;
                if ( ArrivalA + pC->Delays[iFanin] < Required + Epsilon && Required != NF_INFINITY )
                    Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
                else 
                    Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
                if ( Delay > Required + Epsilon )
                    break;
            }
            if ( k < nFans )
                continue;
            // create match
            pMb->D = Delay;
            pMb->A = -1;
            pMb->CutH = Nf_CutHandle(pCutSet, pCut);
            pMb->Gate = pC->Id;
            pMb->Conf = 0;
            for ( k = 0; k < nFans; k++ )
//             pD->Conf |= ((int)pInfo[k] << (k << 2));
                pMb->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
            // compute area
            pMb->A = Nf_MatchRefArea( p, iObj, c, pMb, Required );
            // compare
            if ( pRes->A > pMb->A + Epsilon || (pRes->A == pMb->A && pRes->D > pMb->D + Epsilon) )
                *pRes = *pMb;
        }
    }
}
void Nf_ManElaBestMatch( Nf_Man_t * p, int iObj, int c, Nf_Mat_t * pRes, float Required )
{
    int k, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
    memset( pRes, 0, sizeof(Nf_Mat_t) );
    pRes->D = pRes->A = NF_INFINITY;
    Nf_SetForEachCut( pCutSet, pCut, k )
    {
        if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
            continue;
        Nf_ManElaBestMatchOne( p, iObj, c, pCut, pCutSet, pRes, Required );
    }
}
// the best match is stored in pA provided that it satisfies pA->D < req
// area is never compared
void Nf_ManComputeMappingEla( Nf_Man_t * p )
{
    Gia_Obj_t * pObj;
    Mio_Cell_t * pCell;
    Nf_Mat_t Mb, * pMb = &Mb, * pM;
    float Epsilon = p->pPars->Epsilon;
    float AreaBef, AreaAft, Required, MapArea;
    int nLits = 2*Gia_ManObjNum(p->pGia);
    int i, c, iVar, Id, fCompl, k, * pCut;
    Vec_FltFill( &p->vRequired, nLits, NF_INFINITY );
    // compute delay
    p->pPars->MapDelay = 0;
    Gia_ManForEachCo( p->pGia, pObj, i )
    {
        Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
        p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required );
    }
    // check delay target
    if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio )
        p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
    if ( p->pPars->MapDelayTarget != -1 )
    {
        if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon )
            p->pPars->MapDelay = p->pPars->MapDelayTarget;
        else if ( p->pPars->nRelaxRatio == 0 )
            Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay );
    }
    // set required times
    Gia_ManForEachCo( p->pGia, pObj, i )
    {
        Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
        Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay;
        Nf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required );
        Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
    }
    // compute area and edges
    MapArea = p->pPars->MapArea;
    p->pPars->MapArea = 0; 
    p->pPars->Area = p->pPars->Edge = 0;
    Gia_ManForEachAndReverseId( p->pGia, i )
    for ( c = 0; c < 2; c++ )
    if ( Nf_ObjMapRefNum(p, i, c) )
    {
        pM = Nf_ObjMatchBest( p, i, c );
        Required = Nf_ObjRequired( p, i, c );
        assert( pM->D < Required + Epsilon );
        // try different cuts at this node and find best match
        Vec_IntClear( &p->vBackup2 );
        AreaBef = Nf_MatchDeref_rec( p, i, c, pM );
        Nf_ManElaBestMatch( p, i, c, pMb, Required );
        AreaAft = Nf_MatchRef_rec( p, i, c, pMb, Required, NULL );
        assert( pMb->A == AreaAft );
        assert( AreaBef + Epsilon > AreaAft );
        MapArea += AreaAft - AreaBef;
//        printf( "%8.2f %8.2f\n", AreaBef, AreaAft );
        // set match
        assert( pMb->D < Required + Epsilon );
        assert( pMb->fBest == 0 );
        *Nf_ObjMatchA(p, i, c) = *pMb;
        assert( Nf_ObjMatchA(p, i, c) == Nf_ObjMatchBest( p, i, c ) );
        // count status
        pCell = Nf_ManCell( p, pMb->Gate );
        pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pMb->CutH );
        Nf_CutForEachVar( pCut, pMb->Conf, iVar, fCompl, k )
            Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] );
        p->pPars->MapArea += pCell->Area;
        p->pPars->Edge += Nf_CutSize(pCut);
        p->pPars->Area++;
    }
    Gia_ManForEachCiId( p->pGia, Id, i )
        if ( Nf_ObjMapRefNum(p, Id, 1) )
        {
            Nf_ObjMapRefInc( p, Id, 0 );
            Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay );
            p->pPars->MapArea += p->InvArea;
            p->pPars->Edge++;
            p->pPars->Area++;
        }
//    Nf_ManUpdateStats( p );
    if ( !(MapArea < p->pPars->MapArea + Epsilon && MapArea + Epsilon > p->pPars->MapArea) )
        printf( "Mismatch:  Estimated = %.2f  Real = %.2f\n", MapArea, p->pPars->MapArea );
//    assert( MapArea < p->pPars->MapArea + Epsilon && MapArea + Epsilon > p->pPars->MapArea );
    Nf_ManPrintStats( p, "Ela  " );
}
*/

/**Function*************************************************************

  Synopsis    [Technology mappping.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Nf_ManSetDefaultPars( Jf_Par_t * pPars )
{
    memset( pPars, 0, sizeof(Jf_Par_t) );
    pPars->nLutSize     =  6;
    pPars->nCutNum      = 16;
    pPars->nProcNum     =  0;
    pPars->nRounds      =  3;
    pPars->nRoundsEla   =  3;
    pPars->nRelaxRatio  =  0;
    pPars->nCoarseLimit =  3;
    pPars->nAreaTuner   =  1;
    pPars->nVerbLimit   =  5;
    pPars->DelayTarget  = -1;
    pPars->fAreaOnly    =  0;
    pPars->fPinPerm     =  0;
    pPars->fOptEdge     =  1; 
    pPars->fCoarsen     =  0;
    pPars->fCutMin      =  1;
    pPars->fGenCnf      =  0;
    pPars->fPureAig     =  0;
    pPars->fVerbose     =  0;
    pPars->fVeryVerbose =  0;
    pPars->nLutSizeMax  =  NF_LEAF_MAX;
    pPars->nCutNumMax   =  NF_CUT_MAX;
    pPars->MapDelayTarget = -1;
    pPars->Epsilon      = (float)0.01;
}
Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
    Gia_Man_t * pNew = NULL, * pCls;
    Nf_Man_t * p; int i, Id;
    if ( Gia_ManHasChoices(pGia) )
        pPars->fCoarsen = 0; 
    pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
    p = Nf_StoCreate( pCls, pPars );
//    if ( pPars->fVeryVerbose )
//        Nf_StoPrint( p, pPars->fVeryVerbose );
    if ( pPars->fVerbose && pPars->fCoarsen )
    {
        printf( "Initial " );  Gia_ManPrintMuxStats( pGia );  printf( "\n" );
        printf( "Derived " );  Gia_ManPrintMuxStats( pCls );  printf( "\n" );
    }
    Nf_ManPrintInit( p );
    Nf_ManComputeCuts( p );
    Nf_ManPrintQuit( p );
    Gia_ManForEachCiId( p->pGia, Id, i )
        Nf_ObjPrepareCi( p, Id, p->pGia->vInArrs ? Vec_FltEntry(p->pGia->vInArrs, i) : 0.0 );
    for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
    {
        Nf_ManComputeMapping( p );
        Nf_ManSetMapRefs( p );
        Nf_ManPrintStats( p, p->Iter ? "Area " : "Delay" );
    }
/*
    p->fUseEla = 1;
    for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
    {
        Nf_ManComputeMapping( p );
        Nf_ManUpdateStats( p );
        Nf_ManPrintStats( p, "Ela  " );
    }
*/
    pNew = Nf_ManDeriveMapping( p );
//    Gia_ManMappingVerify( pNew );
    Nf_StoDelete( p );
    if ( pCls != pGia )
        Gia_ManStop( pCls );
    if ( pNew == NULL )
        return Gia_ManDup( pGia );
    return pNew;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END