/**CFile**************************************************************** FileName [abcLutmin.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Network and node package.] Synopsis [Minimization of the number of LUTs.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: abcLutmin.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "src/base/abc/abc.h" #include "src/misc/extra/extraBdd.h" ABC_NAMESPACE_IMPL_START /* Implememented here is the algorithm for minimal-LUT decomposition described in the paper: T. Sasao et al. "On the number of LUTs to implement logic functions", To appear in Proc. IWLS'09. */ //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Check if a LUT can absort a fanin.] Description [The fanins are (c, d0, d1).] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjCheckAbsorb( Abc_Obj_t * pObj, Abc_Obj_t * pPivot, int nLutSize, Vec_Ptr_t * vFanins ) { Abc_Obj_t * pFanin; int i; assert( Abc_ObjIsNode(pObj) && Abc_ObjIsNode(pPivot) ); // add fanins of the node Vec_PtrClear( vFanins ); Abc_ObjForEachFanin( pObj, pFanin, i ) if ( pFanin != pPivot ) Vec_PtrPush( vFanins, pFanin ); // add fanins of the fanin Abc_ObjForEachFanin( pPivot, pFanin, i ) { Vec_PtrPushUnique( vFanins, pFanin ); if ( Vec_PtrSize(vFanins) > nLutSize ) return 0; } return 1; } /**Function************************************************************* Synopsis [Check how many times a LUT can absorb a fanin.] Description [The fanins are (c, d0, d1).] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkCheckAbsorb( Abc_Ntk_t * pNtk, int nLutSize ) { Vec_Int_t * vCounts; Vec_Ptr_t * vFanins; Abc_Obj_t * pObj, * pFanin; int i, k, Counter = 0, Counter2 = 0, clk = clock(); vCounts = Vec_IntStart( Abc_NtkObjNumMax(pNtk) ); vFanins = Vec_PtrAlloc( 100 ); Abc_NtkForEachNode( pNtk, pObj, i ) Abc_ObjForEachFanin( pObj, pFanin, k ) if ( Abc_ObjIsNode(pFanin) && Abc_ObjCheckAbsorb( pObj, pFanin, nLutSize, vFanins ) ) { Vec_IntAddToEntry( vCounts, Abc_ObjId(pFanin), 1 ); Counter++; } Vec_PtrFree( vFanins ); Abc_NtkForEachNode( pNtk, pObj, i ) if ( Vec_IntEntry(vCounts, Abc_ObjId(pObj)) == Abc_ObjFanoutNum(pObj) ) { // printf( "%d ", Abc_ObjId(pObj) ); Counter2++; } printf( "Absorted = %6d. (%6.2f %%) Fully = %6d. (%6.2f %%) ", Counter, 100.0 * Counter / Abc_NtkNodeNum(pNtk), Counter2, 100.0 * Counter2 / Abc_NtkNodeNum(pNtk) ); Abc_PrintTime( 1, "Time", clock() - clk ); } /**Function************************************************************* Synopsis [Implements 2:1 MUX using one 3-LUT.] Description [The fanins are (c, d0, d1).] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddMux21( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] ) { DdManager * dd = (DdManager *)pNtkNew->pManFunc; Abc_Obj_t * pNode; DdNode * bSpin, * bCof0, * bCof1; pNode = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNode, pFanins[0] ); Abc_ObjAddFanin( pNode, pFanins[1] ); Abc_ObjAddFanin( pNode, pFanins[2] ); bSpin = Cudd_bddIthVar(dd, 0); bCof0 = Cudd_bddIthVar(dd, 1); bCof1 = Cudd_bddIthVar(dd, 2); pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNode->pData ); return pNode; } /**Function************************************************************* Synopsis [Implements 4:1 MUX using one 6-LUT.] Description [The fanins are (c0, c1, d00, d01, d10, d11).] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddMux411( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] ) { DdManager * dd = (DdManager *)pNtkNew->pManFunc; Abc_Obj_t * pNode; DdNode * bSpin, * bCof0, * bCof1; pNode = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNode, pFanins[0] ); Abc_ObjAddFanin( pNode, pFanins[1] ); Abc_ObjAddFanin( pNode, pFanins[2] ); Abc_ObjAddFanin( pNode, pFanins[3] ); Abc_ObjAddFanin( pNode, pFanins[4] ); Abc_ObjAddFanin( pNode, pFanins[5] ); bSpin = Cudd_bddIthVar(dd, 1); bCof0 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 ); bCof1 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 5), Cudd_bddIthVar(dd, 4) ); Cudd_Ref( bCof1 ); bSpin = Cudd_bddIthVar(dd, 0); pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNode->pData ); Cudd_RecursiveDeref( dd, bCof0 ); Cudd_RecursiveDeref( dd, bCof1 ); return pNode; } /**Function************************************************************* Synopsis [Implementes 4:1 MUX using two 4-LUTs.] Description [The fanins are (c0, c1, d00, d01, d10, d11).] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddMux412( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] ) { DdManager * dd = (DdManager *)pNtkNew->pManFunc; Abc_Obj_t * pNodeBot, * pNodeTop; DdNode * bSpin, * bCof0, * bCof1; // bottom node pNodeBot = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNodeBot, pFanins[0] ); Abc_ObjAddFanin( pNodeBot, pFanins[1] ); Abc_ObjAddFanin( pNodeBot, pFanins[2] ); Abc_ObjAddFanin( pNodeBot, pFanins[3] ); bSpin = Cudd_bddIthVar(dd, 0); bCof0 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 ); bCof1 = Cudd_bddIthVar(dd, 1); pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeBot->pData ); Cudd_RecursiveDeref( dd, bCof0 ); // top node pNodeTop = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNodeTop, pFanins[0] ); Abc_ObjAddFanin( pNodeTop, pNodeBot ); Abc_ObjAddFanin( pNodeTop, pFanins[4] ); Abc_ObjAddFanin( pNodeTop, pFanins[5] ); bSpin = Cudd_bddIthVar(dd, 0); bCof0 = Cudd_bddIthVar(dd, 1); bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof1 ); pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeTop->pData ); Cudd_RecursiveDeref( dd, bCof1 ); return pNodeTop; } /**Function************************************************************* Synopsis [Implementes 4:1 MUX using two 4-LUTs.] Description [The fanins are (c0, c1, d00, d01, d10, d11).] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddMux412a( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] ) { DdManager * dd = (DdManager *)pNtkNew->pManFunc; Abc_Obj_t * pNodeBot, * pNodeTop; DdNode * bSpin, * bCof0, * bCof1; // bottom node pNodeBot = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNodeBot, pFanins[1] ); Abc_ObjAddFanin( pNodeBot, pFanins[2] ); Abc_ObjAddFanin( pNodeBot, pFanins[3] ); bSpin = Cudd_bddIthVar(dd, 0); bCof0 = Cudd_bddIthVar(dd, 1); bCof1 = Cudd_bddIthVar(dd, 2); pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeBot->pData ); // top node pNodeTop = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNodeTop, pFanins[0] ); Abc_ObjAddFanin( pNodeTop, pFanins[1] ); Abc_ObjAddFanin( pNodeTop, pNodeBot ); Abc_ObjAddFanin( pNodeTop, pFanins[4] ); Abc_ObjAddFanin( pNodeTop, pFanins[5] ); bSpin = Cudd_bddIthVar(dd, 0); bCof0 = Cudd_bddIthVar(dd, 2); bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 4), Cudd_bddIthVar(dd, 3) ); Cudd_Ref( bCof1 ); pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeTop->pData ); Cudd_RecursiveDeref( dd, bCof1 ); return pNodeTop; } /**Function************************************************************* Synopsis [Implements 4:1 MUX using three 2:1 MUXes.] Description [The fanins are (c0, c1, d00, d01, d10, d11).] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddMux413( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] ) { Abc_Obj_t * pNodesBot[3], * pNodesTop[3]; // left bottom pNodesBot[0] = pFanins[1]; pNodesBot[1] = pFanins[2]; pNodesBot[2] = pFanins[3]; pNodesTop[1] = Abc_NtkBddMux21( pNtkNew, pNodesBot ); // right bottom pNodesBot[0] = pFanins[1]; pNodesBot[1] = pFanins[4]; pNodesBot[2] = pFanins[5]; pNodesTop[2] = Abc_NtkBddMux21( pNtkNew, pNodesBot ); // top node pNodesTop[0] = pFanins[0]; return Abc_NtkBddMux21( pNtkNew, pNodesTop ); } /**Function************************************************************* Synopsis [Finds unique cofactors of the function on the given level.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Abc_NtkBddCofactors_rec( DdManager * dd, DdNode * bNode, int iCof, int iLevel, int nLevels ) { DdNode * bNode0, * bNode1; if ( Cudd_IsConstant(bNode) || iLevel == nLevels ) return bNode; if ( Cudd_ReadPerm( dd, Cudd_NodeReadIndex(bNode) ) > iLevel ) { bNode0 = bNode; bNode1 = bNode; } else if ( Cudd_IsComplement(bNode) ) { bNode0 = Cudd_Not(cuddE(Cudd_Regular(bNode))); bNode1 = Cudd_Not(cuddT(Cudd_Regular(bNode))); } else { bNode0 = cuddE(bNode); bNode1 = cuddT(bNode); } if ( (iCof >> (nLevels-1-iLevel)) & 1 ) return Abc_NtkBddCofactors_rec( dd, bNode1, iCof, iLevel + 1, nLevels ); return Abc_NtkBddCofactors_rec( dd, bNode0, iCof, iLevel + 1, nLevels ); } /**Function************************************************************* Synopsis [Finds unique cofactors of the function on the given level.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Abc_NtkBddCofactors( DdManager * dd, DdNode * bNode, int Level ) { Vec_Ptr_t * vCofs; int i, nCofs = (1<<Level); assert( Level > 0 && Level < 10 ); vCofs = Vec_PtrAlloc( 8 ); for ( i = 0; i < nCofs; i++ ) Vec_PtrPush( vCofs, Abc_NtkBddCofactors_rec( dd, bNode, i, 0, Level ) ); return vCofs; } /**Function************************************************************* Synopsis [Comparison procedure for two integers.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int Vec_PtrSortCompare( void ** pp1, void ** pp2 ) { if ( *pp1 < *pp2 ) return -1; if ( *pp1 > *pp2 ) return 1; return 0; } /**Function************************************************************* Synopsis [Converts the node to MUXes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkCreateCofLut( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bCof, Abc_Obj_t * pNode, int Level ) { int fVerbose = 0; DdNode * bFuncNew; Abc_Obj_t * pNodeNew; int i; assert( Abc_ObjFaninNum(pNode) > Level ); // create a new node pNodeNew = Abc_NtkCreateNode( pNtkNew ); // add the fanins in the order, in which they appear in the reordered manager for ( i = Level; i < Abc_ObjFaninNum(pNode); i++ ) Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy ); if ( fVerbose ) { Extra_bddPrint( dd, bCof ); printf( "\n" ); printf( "\n" ); } // transfer the function bFuncNew = Extra_bddMove( dd, bCof, -Level ); Cudd_Ref( bFuncNew ); if ( fVerbose ) { Extra_bddPrint( dd, bFuncNew ); printf( "\n" ); printf( "\n" ); } pNodeNew->pData = Extra_TransferLevelByLevel( dd, (DdManager *)pNtkNew->pManFunc, bFuncNew ); Cudd_Ref( (DdNode *)pNodeNew->pData ); //Extra_bddPrint( pNtkNew->pManFunc, pNodeNew->pData ); //printf( "\n" ); //printf( "\n" ); Cudd_RecursiveDeref( dd, bFuncNew ); return pNodeNew; } /**Function************************************************************* Synopsis [Performs one step of Ashenhurst-Curtis decomposition.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddCurtis( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, Vec_Ptr_t * vCofs, Vec_Ptr_t * vUniq ) { DdManager * ddOld = (DdManager *)pNode->pNtk->pManFunc; DdManager * ddNew = (DdManager *)pNtkNew->pManFunc; DdNode * bCof, * bUniq, * bMint, * bTemp, * bFunc, * bBits[10], ** pbCodeVars; Abc_Obj_t * pNodeNew = NULL, * pNodeBS[10]; int nLutSize = Abc_Base2Log( Vec_PtrSize(vCofs) ); int nBits = Abc_Base2Log( Vec_PtrSize(vUniq) ); int b, c, u, i; assert( nBits + 2 <= nLutSize ); assert( nLutSize < Abc_ObjFaninNum(pNode) ); // start BDDs for the decompoosed blocks for ( b = 0; b < nBits; b++ ) bBits[b] = Cudd_ReadLogicZero(ddNew), Cudd_Ref( bBits[b] ); // add each bound set minterm to one of the blccks Vec_PtrForEachEntry( DdNode *, vCofs, bCof, c ) { Vec_PtrForEachEntry( DdNode *, vUniq, bUniq, u ) if ( bUniq == bCof ) break; assert( u < Vec_PtrSize(vUniq) ); for ( b = 0; b < nBits; b++ ) { if ( ((u >> b) & 1) == 0 ) continue; bMint = Extra_bddBitsToCube( ddNew, c, nLutSize, ddNew->vars, 1 ); Cudd_Ref( bMint ); bBits[b] = Cudd_bddOr( ddNew, bTemp = bBits[b], bMint ); Cudd_Ref( bBits[b] ); Cudd_RecursiveDeref( ddNew, bTemp ); Cudd_RecursiveDeref( ddNew, bMint ); } } // create bound set nodes for ( b = 0; b < nBits; b++ ) { pNodeBS[b] = Abc_NtkCreateNode( pNtkNew ); for ( i = 0; i < nLutSize; i++ ) Abc_ObjAddFanin( pNodeBS[b], Abc_ObjFanin(pNode, i)->pCopy ); pNodeBS[b]->pData = bBits[b]; // takes ref } // create composition node pNodeNew = Abc_NtkCreateNode( pNtkNew ); // add free set variables first for ( i = nLutSize; i < Abc_ObjFaninNum(pNode); i++ ) Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy ); // add code bit variables next for ( b = 0; b < nBits; b++ ) Abc_ObjAddFanin( pNodeNew, pNodeBS[b] ); // derive function of the composition node bFunc = Cudd_ReadLogicZero(ddNew); Cudd_Ref( bFunc ); pbCodeVars = ddNew->vars + Abc_ObjFaninNum(pNode) - nLutSize; Vec_PtrForEachEntry( DdNode *, vUniq, bUniq, u ) { bUniq = Extra_bddMove( ddOld, bUniq, -nLutSize ); Cudd_Ref( bUniq ); bUniq = Extra_TransferLevelByLevel( ddOld, ddNew, bTemp = bUniq ); Cudd_Ref( bUniq ); Cudd_RecursiveDeref( ddOld, bTemp ); bMint = Extra_bddBitsToCube( ddNew, u, nBits, pbCodeVars, 0 ); Cudd_Ref( bMint ); bMint = Cudd_bddAnd( ddNew, bTemp = bMint, bUniq ); Cudd_Ref( bMint ); Cudd_RecursiveDeref( ddNew, bTemp ); Cudd_RecursiveDeref( ddNew, bUniq ); bFunc = Cudd_bddOr( ddNew, bTemp = bFunc, bMint ); Cudd_Ref( bFunc ); Cudd_RecursiveDeref( ddNew, bTemp ); Cudd_RecursiveDeref( ddNew, bMint ); } pNodeNew->pData = bFunc; // takes ref return pNodeNew; } /**Function************************************************************* Synopsis [Tries to decompose using cofactoring into two LUTs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddFindCofactor( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize ) { Abc_Obj_t * pNodeBot, * pNodeTop; DdManager * ddOld = (DdManager *)pNode->pNtk->pManFunc; DdManager * ddNew = (DdManager *)pNtkNew->pManFunc; DdNode * bCof0 = NULL, * bCof1 = NULL, * bSupp, * bTemp, * bVar; DdNode * bCof0n, * bCof1n; int i, iCof, iFreeVar, fCof1Smaller = -1; assert( Abc_ObjFaninNum(pNode) == nLutSize + 1 ); for ( iCof = 0; iCof < Abc_ObjFaninNum(pNode); iCof++ ) { bVar = Cudd_bddIthVar( ddOld, iCof ); bCof0 = Cudd_Cofactor( ddOld, (DdNode *)pNode->pData, Cudd_Not(bVar) ); Cudd_Ref( bCof0 ); bCof1 = Cudd_Cofactor( ddOld, (DdNode *)pNode->pData, bVar ); Cudd_Ref( bCof1 ); if ( Cudd_SupportSize( ddOld, bCof0 ) <= nLutSize - 2 ) { fCof1Smaller = 0; break; } if ( Cudd_SupportSize( ddOld, bCof1 ) <= nLutSize - 2 ) { fCof1Smaller = 1; break; } Cudd_RecursiveDeref( ddOld, bCof0 ); Cudd_RecursiveDeref( ddOld, bCof1 ); } if ( iCof == Abc_ObjFaninNum(pNode) ) return NULL; // find unused variable bSupp = Cudd_Support( ddOld, fCof1Smaller? bCof1 : bCof0 ); Cudd_Ref( bSupp ); iFreeVar = -1; for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ ) { assert( i == Cudd_ReadPerm(ddOld, i) ); if ( i == iCof ) continue; for ( bTemp = bSupp; !Cudd_IsConstant(bTemp); bTemp = cuddT(bTemp) ) if ( i == (int)Cudd_NodeReadIndex(bTemp) ) break; if ( Cudd_IsConstant(bTemp) ) { iFreeVar = i; break; } } assert( iFreeVar != iCof && iFreeVar < Abc_ObjFaninNum(pNode) ); Cudd_RecursiveDeref( ddOld, bSupp ); // transfer the cofactors bCof0n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof0 ); Cudd_Ref( bCof0n ); bCof1n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof1 ); Cudd_Ref( bCof1n ); Cudd_RecursiveDeref( ddOld, bCof0 ); Cudd_RecursiveDeref( ddOld, bCof1 ); // create bottom node pNodeBot = Abc_NtkCreateNode( pNtkNew ); for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ ) Abc_ObjAddFanin( pNodeBot, Abc_ObjFanin(pNode, i)->pCopy ); pNodeBot->pData = fCof1Smaller? bCof0n : bCof1n; // create top node pNodeTop = Abc_NtkCreateNode( pNtkNew ); for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ ) if ( i == iFreeVar ) Abc_ObjAddFanin( pNodeTop, pNodeBot ); else Abc_ObjAddFanin( pNodeTop, Abc_ObjFanin(pNode, i)->pCopy ); // derive the new function pNodeTop->pData = Cudd_bddIte( ddNew, Cudd_bddIthVar(ddNew, iCof), fCof1Smaller? bCof1n : Cudd_bddIthVar(ddNew, iFreeVar), fCof1Smaller? Cudd_bddIthVar(ddNew, iFreeVar) : bCof0n ); Cudd_Ref( (DdNode *)pNodeTop->pData ); Cudd_RecursiveDeref( ddNew, fCof1Smaller? bCof1n : bCof0n ); return pNodeTop; } /**Function************************************************************* Synopsis [Decompose the function once.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NtkBddDecompose( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize, int fVerbose ) { Vec_Ptr_t * vCofs, * vUniq; DdManager * dd = (DdManager *)pNode->pNtk->pManFunc; DdNode * bCof; Abc_Obj_t * pNodeNew = NULL; Abc_Obj_t * pCofs[20]; int i; assert( Abc_ObjFaninNum(pNode) > nLutSize ); // try to decompose with two LUTs (the best case for Supp = LutSize + 1) if ( Abc_ObjFaninNum(pNode) == nLutSize + 1 ) { pNodeNew = Abc_NtkBddFindCofactor( pNtkNew, pNode, nLutSize ); if ( pNodeNew != NULL ) { if ( fVerbose ) printf( "Decomposing %d-input node %d using MUX.\n", Abc_ObjFaninNum(pNode), Abc_ObjId(pNode) ); return pNodeNew; } } // cofactor w.r.t. the bound set variables vCofs = Abc_NtkBddCofactors( dd, (DdNode *)pNode->pData, nLutSize ); vUniq = Vec_PtrDup( vCofs ); Vec_PtrUniqify( vUniq, (int (*)())Vec_PtrSortCompare ); // only perform decomposition with it is support reduring with two less vars if( Vec_PtrSize(vUniq) > (1 << (nLutSize-2)) ) { Vec_PtrFree( vCofs ); vCofs = Abc_NtkBddCofactors( dd, (DdNode *)pNode->pData, 2 ); if ( fVerbose ) printf( "Decomposing %d-input node %d using cofactoring with %d cofactors.\n", Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vCofs) ); // implement the cofactors pCofs[0] = Abc_ObjFanin(pNode, 0)->pCopy; pCofs[1] = Abc_ObjFanin(pNode, 1)->pCopy; Vec_PtrForEachEntry( DdNode *, vCofs, bCof, i ) pCofs[2+i] = Abc_NtkCreateCofLut( pNtkNew, dd, bCof, pNode, 2 ); if ( nLutSize == 4 ) pNodeNew = Abc_NtkBddMux412( pNtkNew, pCofs ); else if ( nLutSize == 5 ) pNodeNew = Abc_NtkBddMux412a( pNtkNew, pCofs ); else if ( nLutSize == 6 ) pNodeNew = Abc_NtkBddMux411( pNtkNew, pCofs ); else assert( 0 ); } // alternative decompose using MUX-decomposition else { if ( fVerbose ) printf( "Decomposing %d-input node %d using Curtis with %d unique columns.\n", Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vUniq) ); pNodeNew = Abc_NtkBddCurtis( pNtkNew, pNode, vCofs, vUniq ); } Vec_PtrFree( vCofs ); Vec_PtrFree( vUniq ); return pNodeNew; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkLutminConstruct( Abc_Ntk_t * pNtkClp, Abc_Ntk_t * pNtkDec, int nLutSize, int fVerbose ) { Vec_Ptr_t * vNodes; Abc_Obj_t * pNode, * pFanin; int i, k; vNodes = Abc_NtkDfs( pNtkClp, 0 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i ) { if ( Abc_ObjFaninNum(pNode) <= nLutSize ) { pNode->pCopy = Abc_NtkDupObj( pNtkDec, pNode, 0 ); Abc_ObjForEachFanin( pNode, pFanin, k ) Abc_ObjAddFanin( pNode->pCopy, pFanin->pCopy ); } else pNode->pCopy = Abc_NtkBddDecompose( pNtkDec, pNode, nLutSize, fVerbose ); } Vec_PtrFree( vNodes ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkLutminInt( Abc_Ntk_t * pNtk, int nLutSize, int fVerbose ) { extern void Abc_NtkBddReorder( Abc_Ntk_t * pNtk, int fVerbose ); Abc_Ntk_t * pNtkDec; // minimize BDDs // Abc_NtkBddReorder( pNtk, fVerbose ); Abc_NtkBddReorder( pNtk, 0 ); // decompose one output at a time pNtkDec = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD ); // make sure the new manager has enough inputs Cudd_bddIthVar( (DdManager *)pNtkDec->pManFunc, Abc_NtkGetFaninMax(pNtk) ); // put the results into the new network (save new CO drivers in old CO drivers) Abc_NtkLutminConstruct( pNtk, pNtkDec, nLutSize, fVerbose ); // finalize the new network Abc_NtkFinalize( pNtk, pNtkDec ); // make the network minimum base Abc_NtkMinimumBase( pNtkDec ); return pNtkDec; } /**Function************************************************************* Synopsis [Performs minimum-LUT decomposition of the network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkLutmin( Abc_Ntk_t * pNtkInit, int nLutSize, int fVerbose ) { extern int Abc_NtkFraigSweep( Abc_Ntk_t * pNtk, int fUseInv, int fExdc, int fVerbose, int fVeryVerbose ); Abc_Ntk_t * pNtkNew, * pTemp; int i; if ( nLutSize < 4 ) { printf( "The LUT count (%d) should be at least 4.\n", nLutSize ); return NULL; } if ( nLutSize > 6 ) { printf( "The LUT count (%d) should not exceed 6.\n", nLutSize ); return NULL; } // create internal representation if ( Abc_NtkIsStrash(pNtkInit) ) pNtkNew = Abc_NtkDup( pNtkInit ); else pNtkNew = Abc_NtkStrash( pNtkInit, 0, 1, 0 ); // collapse the network pNtkNew = Abc_NtkCollapse( pTemp = pNtkNew, 10000, 0, 1, 0 ); Abc_NtkDelete( pTemp ); if ( pNtkNew == NULL ) return NULL; // convert it to BDD if ( !Abc_NtkIsBddLogic(pNtkNew) ) Abc_NtkToBdd( pNtkNew ); // iterate decomposition for ( i = 0; Abc_NtkGetFaninMax(pNtkNew) > nLutSize; i++ ) { if ( fVerbose ) printf( "*** Iteration %d:\n", i+1 ); if ( fVerbose ) printf( "Decomposing network with %d nodes and %d max fanin count for K = %d.\n", Abc_NtkNodeNum(pNtkNew), Abc_NtkGetFaninMax(pNtkNew), nLutSize ); pNtkNew = Abc_NtkLutminInt( pTemp = pNtkNew, nLutSize, fVerbose ); Abc_NtkDelete( pTemp ); } // fix the problem with complemented and duplicated CO edges Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 ); // merge functionally equivalent nodes Abc_NtkFraigSweep( pNtkNew, 1, 0, 0, 0 ); // make sure everything is okay if ( !Abc_NtkCheck( pNtkNew ) ) { printf( "Abc_NtkLutmin: The network check has failed.\n" ); return 0; } return pNtkNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END