/**CFile***********************************************************************

  FileName    [cuddHarwell.c]

  PackageName [cudd]

  Synopsis    [Function to read a matrix in Harwell format.]

  Description [External procedures included in this module:
        <ul>
        <li> Cudd_addHarwell()
        </ul>
    ]

  Author      [Fabio Somenzi]

  Copyright   [This file was created at the University of Colorado at
  Boulder.  The University of Colorado at Boulder makes no warranty
  about the suitability of this software for any purpose.  It is
  presented on an AS IS basis.]

******************************************************************************/

#include "util_hack.h"
#include "cuddInt.h"

/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddHarwell.c,v 1.1.1.1 2003/02/24 22:23:52 wjiang Exp $";
#endif

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/


/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/


/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis    [Reads in a matrix in the format of the Harwell-Boeing
  benchmark suite.]

  Description [Reads in a matrix in the format of the Harwell-Boeing
  benchmark suite. The variables are ordered as follows:
  <blockquote>
  x\[0\] y\[0\] x\[1\] y\[1\] ...
  </blockquote>
  0 is the most significant bit.  On input, nx and ny hold the numbers
  of row and column variables already in existence. On output, they
  hold the numbers of row and column variables actually used by the
  matrix.  m and n are set to the numbers of rows and columns of the
  matrix.  Their values on input are immaterial.  Returns 1 on
  success; 0 otherwise. The ADD for the sparse matrix is returned in
  E, and its reference count is > 0.]

  SideEffects [None]

  SeeAlso     [Cudd_addRead Cudd_bddRead]

******************************************************************************/
int
Cudd_addHarwell(
  FILE * fp /* pointer to the input file */,
  DdManager * dd /* DD manager */,
  DdNode ** E /* characteristic function of the graph */,
  DdNode *** x /* array of row variables */,
  DdNode *** y /* array of column variables */,
  DdNode *** xn /* array of complemented row variables */,
  DdNode *** yn_ /* array of complemented column variables */,
  int * nx /* number or row variables */,
  int * ny /* number or column variables */,
  int * m /* number of rows */,
  int * n /* number of columns */,
  int  bx /* first index of row variables */,
  int  sx /* step of row variables */,
  int  by /* first index of column variables */,
  int  sy /* step of column variables */,
  int  pr /* verbosity level */)
{
    DdNode *one, *zero;
    DdNode *w;
    DdNode *cubex, *cubey, *minterm1;
    int u, v, err, i, j, nv;
    double val;
    DdNode **lx, **ly, **lxn, **lyn;    /* local copies of x, y, xn, yn_ */
    int lnx, lny;            /* local copies of nx and ny */
    char title[73], key[9], mxtype[4], rhstyp[4];
    int totcrd, ptrcrd, indcrd, valcrd, rhscrd,
        nrow, ncol, nnzero, neltvl,
    nrhs, nrhsix;
    int *colptr, *rowind;
#if 0
    int nguess, nexact;
    int    *rhsptr, *rhsind;
#endif

    if (*nx < 0 || *ny < 0) return(0);

    one = DD_ONE(dd);
    zero = DD_ZERO(dd);

    /* Read the header */
    err = fscanf(fp, "%72c %8c", title, key);
    if (err == EOF) {
    return(0);
    } else if (err != 2) {
        return(0);
    }
    title[72] = (char) 0;
    key[8] = (char) 0;

    err = fscanf(fp, "%d %d %d %d %d", &totcrd, &ptrcrd, &indcrd,
    &valcrd, &rhscrd);
    if (err == EOF) {
    return(0);
    } else if (err != 5) {
        return(0);
    }

    err = fscanf(fp, "%3s %d %d %d %d", mxtype, &nrow, &ncol,
    &nnzero, &neltvl);
    if (err == EOF) {
    return(0);
    } else if (err != 5) {
        return(0);
    }

    /* Skip FORTRAN formats */
    if (rhscrd == 0) {
    err = fscanf(fp, "%*s %*s %*s \n");
    } else {
    err = fscanf(fp, "%*s %*s %*s %*s \n");
    }
    if (err == EOF) {
    return(0);
    } else if (err != 0) {
        return(0);
    }

    /* Print out some stuff if requested to be verbose */
    if (pr>0) {
    (void) fprintf(dd->out,"%s: type %s, %d rows, %d columns, %d entries\n", key,
    mxtype, nrow, ncol, nnzero);
    if (pr>1) (void) fprintf(dd->out,"%s\n", title);
    }

    /* Check matrix type */
    if (mxtype[0] != 'R' || mxtype[1] != 'U' || mxtype[2] != 'A') {
    (void) fprintf(dd->err,"%s: Illegal matrix type: %s\n",
               key, mxtype);
    return(0);
    }
    if (neltvl != 0) return(0);

    /* Read optional 5-th line */
    if (rhscrd != 0) {
    err = fscanf(fp, "%3c %d %d", rhstyp, &nrhs, &nrhsix);
    if (err == EOF) {
        return(0);
    } else if (err != 3) {
        return(0);
    }
    rhstyp[3] = (char) 0;
    if (rhstyp[0] != 'F') {
        (void) fprintf(dd->err,
        "%s: Sparse right-hand side not yet supported\n", key);
        return(0);
    }
    if (pr>0) (void) fprintf(dd->out,"%d right-hand side(s)\n", nrhs);
    } else {
    nrhs = 0;
    }

    /* Compute the number of variables */

    /* row and column numbers start from 0 */
    u = nrow - 1;
    for (i=0; u > 0; i++) {
    u >>= 1;
    }
    lnx = i;
    if (nrhs == 0) {
    v = ncol - 1;
    } else {
    v = 2* (ddMax(ncol, nrhs) - 1);
    }
    for (i=0; v > 0; i++) {
    v >>= 1;
    }
    lny = i;

    /* Allocate or reallocate arrays for variables as needed */
    if (*nx == 0) {
    if (lnx > 0) {
        *x = lx = ALLOC(DdNode *,lnx);
        if (lx == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
        }
        *xn = lxn =  ALLOC(DdNode *,lnx);
        if (lxn == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
        }
    } else {
        *x = *xn = NULL;
    }
    } else if (lnx > *nx) {
    *x = lx = REALLOC(DdNode *, *x, lnx);
    if (lx == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    *xn = lxn =  REALLOC(DdNode *, *xn, lnx);
    if (lxn == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    } else {
    lx = *x;
    lxn = *xn;
    }
    if (*ny == 0) {
    if (lny >0) {
        *y = ly = ALLOC(DdNode *,lny);
        if (ly == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
        }
        *yn_ = lyn = ALLOC(DdNode *,lny);
        if (lyn == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
        }
    } else {
        *y = *yn_ = NULL;
    }
    } else if (lny > *ny) {
    *y = ly = REALLOC(DdNode *, *y, lny);
    if (ly == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    *yn_ = lyn = REALLOC(DdNode *, *yn_, lny);
    if (lyn == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    } else {
    ly = *y;
    lyn = *yn_;
    }

    /* Create new variables as needed */
    for (i= *nx,nv=bx+(*nx)*sx; i < lnx; i++,nv+=sx) {
    do {
        dd->reordered = 0;
        lx[i] = cuddUniqueInter(dd, nv, one, zero);
    } while (dd->reordered == 1);
    if (lx[i] == NULL) return(0);
        cuddRef(lx[i]);
    do {
        dd->reordered = 0;
        lxn[i] = cuddUniqueInter(dd, nv, zero, one);
    } while (dd->reordered == 1);
    if (lxn[i] == NULL) return(0);
        cuddRef(lxn[i]);
    }
    for (i= *ny,nv=by+(*ny)*sy; i < lny; i++,nv+=sy) {
    do {
        dd->reordered = 0;
        ly[i] = cuddUniqueInter(dd, nv, one, zero);
    } while (dd->reordered == 1);
    if (ly[i] == NULL) return(0);
    cuddRef(ly[i]);
    do {
        dd->reordered = 0;
        lyn[i] = cuddUniqueInter(dd, nv, zero, one);
    } while (dd->reordered == 1);
    if (lyn[i] == NULL) return(0);
    cuddRef(lyn[i]);
    }

    /* Update matrix parameters */
    *nx = lnx;
    *ny = lny;
    *m = nrow;
    if (nrhs == 0) {
    *n = ncol;
    } else {
    *n = (1 << (lny - 1)) + nrhs;
    }
    
    /* Read structure data */
    colptr = ALLOC(int, ncol+1);
    if (colptr == NULL) {
    dd->errorCode = CUDD_MEMORY_OUT;
    return(0);
    }
    rowind = ALLOC(int, nnzero);
    if (rowind == NULL) {
    dd->errorCode = CUDD_MEMORY_OUT;
    return(0);
    }

    for (i=0; i<ncol+1; i++) {
    err = fscanf(fp, " %d ", &u);
    if (err == EOF){ 
        FREE(colptr);
        FREE(rowind);
        return(0);
    } else if (err != 1) {
        FREE(colptr);
        FREE(rowind);
        return(0);
    }
    colptr[i] = u - 1;
    }
    if (colptr[0] != 0) {
    (void) fprintf(dd->err,"%s: Unexpected colptr[0] (%d)\n",
               key,colptr[0]);
    FREE(colptr);
    FREE(rowind);
    return(0);
    }
    for (i=0; i<nnzero; i++) {
    err = fscanf(fp, " %d ", &u);
    if (err == EOF){ 
        FREE(colptr);
        FREE(rowind);
        return(0);
    } else if (err != 1) {
        FREE(colptr);
        FREE(rowind);
        return(0);
    }
    rowind[i] = u - 1;
    }

    *E = zero; cuddRef(*E);

    for (j=0; j<ncol; j++) {
    v = j;
    cubey = one; cuddRef(cubey);
    for (nv = lny - 1; nv>=0; nv--) {
        if (v & 1) {
        w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);
        } else {
        w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);
        }
        if (w == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        FREE(colptr);
        FREE(rowind);
        return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, cubey);
        cubey = w;
        v >>= 1;
    }
    for (i=colptr[j]; i<colptr[j+1]; i++) {
        u = rowind[i];
        err = fscanf(fp, " %lf ", &val);
        if (err == EOF || err != 1){ 
        Cudd_RecursiveDeref(dd, cubey);
        FREE(colptr);
        FREE(rowind);
        return(0);
        }
        /* Create new Constant node if necessary */
        cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);
        if (cubex == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        FREE(colptr);
        FREE(rowind);
        return(0);
        }
        cuddRef(cubex);

        for (nv = lnx - 1; nv>=0; nv--) {
        if (u & 1) {
            w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);
        } else { 
            w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);
        }
        if (w == NULL) {
            Cudd_RecursiveDeref(dd, cubey);
            Cudd_RecursiveDeref(dd, cubex);
            FREE(colptr);
            FREE(rowind);
            return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, cubex);
        cubex = w;
        u >>= 1;
        }
        minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);
        if (minterm1 == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        Cudd_RecursiveDeref(dd, cubex);
        FREE(colptr);
        FREE(rowind);
        return(0);
        }
        cuddRef(minterm1);
        Cudd_RecursiveDeref(dd, cubex);
        w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);
        if (w == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        FREE(colptr);
        FREE(rowind);
        return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, minterm1);
        Cudd_RecursiveDeref(dd, *E);
        *E = w;
    }
    Cudd_RecursiveDeref(dd, cubey);
    }
    FREE(colptr);
    FREE(rowind);

    /* Read right-hand sides */
    for (j=0; j<nrhs; j++) {
    v = j + (1<< (lny-1));
    cubey = one; cuddRef(cubey);
    for (nv = lny - 1; nv>=0; nv--) {
        if (v & 1) {
        w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);
        } else {
        w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);
        }
        if (w == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, cubey);
        cubey = w;
        v >>= 1;
    }
    for (i=0; i<nrow; i++) {
        u = i;
        err = fscanf(fp, " %lf ", &val);
        if (err == EOF || err != 1){ 
        Cudd_RecursiveDeref(dd, cubey);
        return(0);
        }
        /* Create new Constant node if necessary */
        if (val == (double) 0.0) continue;
        cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);
        if (cubex == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        return(0);
        }
        cuddRef(cubex);

        for (nv = lnx - 1; nv>=0; nv--) {
        if (u & 1) {
           w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);
        } else { 
            w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);
        }
        if (w == NULL) {
            Cudd_RecursiveDeref(dd, cubey);
            Cudd_RecursiveDeref(dd, cubex);
            return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, cubex);
        cubex = w;
        u >>= 1;
        }
        minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);
        if (minterm1 == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        Cudd_RecursiveDeref(dd, cubex);
        return(0);
        }
        cuddRef(minterm1);
        Cudd_RecursiveDeref(dd, cubex);
        w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);
        if (w == NULL) {
        Cudd_RecursiveDeref(dd, cubey);
        return(0);
        }
        cuddRef(w);
        Cudd_RecursiveDeref(dd, minterm1);
        Cudd_RecursiveDeref(dd, *E);
        *E = w;
    }
    Cudd_RecursiveDeref(dd, cubey);
    }

    return(1);

} /* end of Cudd_addHarwell */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/