/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
#include "espresso.h"

ABC_NAMESPACE_IMPL_START


void set_pair(PLA)
pPLA PLA;
{
    set_pair1(PLA, TRUE);
}

void set_pair1(PLA, adjust_labels)
pPLA PLA;
bool adjust_labels;
{
    int i, var, *paired, newvar;
    int old_num_vars, old_num_binary_vars, old_size, old_mv_start;
    int *new_part_size, new_num_vars, new_num_binary_vars, new_mv_start;
    ppair pair = PLA->pair;
    char scratch[1000], **oldlabel, *var1, *var1bar, *var2, *var2bar;

    if (adjust_labels)
    makeup_labels(PLA);

    /* Check the pair structure for valid entries and see which binary
    variables are left unpaired
    */
    paired = ALLOC(bool, cube.num_binary_vars);
    for(var = 0; var < cube.num_binary_vars; var++)
    paired[var] = FALSE;
    for(i = 0; i < pair->cnt; i++)
    if ((pair->var1[i] > 0 && pair->var1[i] <= cube.num_binary_vars) &&
         (pair->var2[i] > 0 && pair->var2[i] <= cube.num_binary_vars)) {
        paired[pair->var1[i]-1] = TRUE;
        paired[pair->var2[i]-1] = TRUE;
    } else
        fatal("can only pair binary-valued variables");

    PLA->F = delvar(pairvar(PLA->F, pair), paired);
    PLA->R = delvar(pairvar(PLA->R, pair), paired);
    PLA->D = delvar(pairvar(PLA->D, pair), paired);

    /* Now painfully adjust the cube size */
    old_size = cube.size;
    old_num_vars = cube.num_vars;
    old_num_binary_vars = cube.num_binary_vars;
    old_mv_start = cube.first_part[cube.num_binary_vars];
    /* Create the new cube.part_size vector and setup the cube structure */
    new_num_binary_vars = 0;
    for(var = 0; var < old_num_binary_vars; var++)
    new_num_binary_vars += (paired[var] == FALSE);
    new_num_vars = new_num_binary_vars + pair->cnt;
    new_num_vars += old_num_vars - old_num_binary_vars;
    new_part_size = ALLOC(int, new_num_vars);
    for(var = 0; var < pair->cnt; var++)
    new_part_size[new_num_binary_vars + var] = 4;
    for(var = 0; var < old_num_vars - old_num_binary_vars; var++)
    new_part_size[new_num_binary_vars + pair->cnt + var] =
        cube.part_size[old_num_binary_vars + var];
    setdown_cube();
    FREE(cube.part_size);
    cube.num_vars = new_num_vars;
    cube.num_binary_vars = new_num_binary_vars;
    cube.part_size = new_part_size;
    cube_setup();

    /* hack with the labels to get them correct */
    if (adjust_labels) {
    oldlabel = PLA->label;
    PLA->label = ALLOC(char *, cube.size);
    for(var = 0; var < pair->cnt; var++) {
        newvar = cube.num_binary_vars*2 + var*4;
        var1 = oldlabel[ (pair->var1[var]-1) * 2 + 1];
        var2 = oldlabel[ (pair->var2[var]-1) * 2 + 1];
        var1bar = oldlabel[ (pair->var1[var]-1) * 2];
        var2bar = oldlabel[ (pair->var2[var]-1) * 2];
        (void) sprintf(scratch, "%s+%s", var1bar, var2bar);
        PLA->label[newvar] = util_strsav(scratch);
        (void) sprintf(scratch, "%s+%s", var1bar, var2);
        PLA->label[newvar+1] = util_strsav(scratch);
        (void) sprintf(scratch, "%s+%s", var1, var2bar);
        PLA->label[newvar+2] = util_strsav(scratch);
        (void) sprintf(scratch, "%s+%s", var1, var2);
        PLA->label[newvar+3] = util_strsav(scratch);
    }
    /* Copy the old labels for the unpaired binary vars */
    i = 0;
    for(var = 0; var < old_num_binary_vars; var++) {
        if (paired[var] == FALSE) {
        PLA->label[2*i] = oldlabel[2*var];
        PLA->label[2*i+1] = oldlabel[2*var+1];
        oldlabel[2*var] = oldlabel[2*var+1] = (char *) NULL;
        i++;
        }
    }
    /* Copy the old labels for the remaining unpaired vars */
    new_mv_start = cube.num_binary_vars*2 + pair->cnt*4;
    for(i = old_mv_start; i < old_size; i++) {
        PLA->label[new_mv_start + i - old_mv_start] = oldlabel[i];
        oldlabel[i] = (char *) NULL;
    }
    /* free remaining entries in oldlabel */
    for(i = 0; i < old_size; i++)
        if (oldlabel[i] != (char *) NULL)
        FREE(oldlabel[i]);
    FREE(oldlabel);
    }

    /* the paired variables should not be sparse (cf. mv_reduce/raise_in)*/
    for(var = 0; var < pair->cnt; var++)
    cube.sparse[cube.num_binary_vars + var] = 0;
    FREE(paired);
}

pcover pairvar(A, pair)
pcover A;
ppair pair;
{
    register pcube last, p;
    register int val, p1, p2, b1, b0;
    int insert_col, pairnum;

    insert_col = cube.first_part[cube.num_vars - 1];

    /* stretch the cover matrix to make room for the paired variables */
    A = sf_delcol(A, insert_col, -4*pair->cnt);

    /* compute the paired values */
    foreach_set(A, last, p) {
    for(pairnum = 0; pairnum < pair->cnt; pairnum++) {
        p1 = cube.first_part[pair->var1[pairnum] - 1];
        p2 = cube.first_part[pair->var2[pairnum] - 1];
        b1 = is_in_set(p, p2+1);
        b0 = is_in_set(p, p2);
        val = insert_col + pairnum * 4;
        if (/* a0 */ is_in_set(p, p1)) {
        if (b0)
            set_insert(p, val + 3);
        if (b1)
            set_insert(p, val + 2);
        }
        if (/* a1 */ is_in_set(p, p1+1)) {
        if (b0)
            set_insert(p, val + 1);
        if (b1)
            set_insert(p, val);
        }
    }
    }
    return A;
}


/* delvar -- delete variables from A, minimize the number of column shifts */
pcover delvar(A, paired)
pcover A;
bool paired[];
{
    bool run;
    int first_run = 0; // Suppress "might be used uninitialized"
    int run_length, var, offset = 0;

    run = FALSE; run_length = 0;
    for(var = 0; var < cube.num_binary_vars; var++)
    if (paired[var])
        if (run)
        run_length += cube.part_size[var];
        else {
        run = TRUE;
        first_run = cube.first_part[var];
        run_length = cube.part_size[var];
        }
    else
        if (run) {
        A = sf_delcol(A, first_run-offset, run_length);
        run = FALSE;
        offset += run_length;
        }
    if (run)
    A = sf_delcol(A, first_run-offset, run_length);
    return A;
}

/*
    find_optimal_pairing -- find which binary variables should be paired
    to maximally reduce the number of terms

    This is essentially the technique outlined by T. Sasao in the
    Trans. on Comp., Oct 1984.  We estimate the cost of pairing each
    pair individually using 1 of 4 strategies: (1) algebraic division
    of F by the pair (exactly T. Sasao technique); (2) strong division
    of F by the paired variables (using REDUCE/EXPAND/ IRREDUNDANT from
    espresso); (3) full minimization using espresso; (4) exact
    minimization.  These are in order of both increasing accuracy and
    increasing difficulty (!)

    Once the n squared pairs have been evaluated, T. Sasao proposes a
    graph covering of nodes by disjoint edges.  For now, I solve this
    problem exhaustively (complexity = (n-1)*(n-3)*...*3*1 for n
    variables when n is even).  Note that solving this problem exactly
    is the same as evaluating the cost function for all possible
    pairings.

                   n       pairs

                 1, 2           1
                 3, 4           3
                 5, 6          15
                 7, 8         105
                 9,10         945
                11,12      10,395
                13,14     135,135
                15,16   2,027,025
                17,18  34,459,425
                19,20 654,729,075
*/
void find_optimal_pairing(PLA, strategy)
pPLA PLA;
int strategy;
{
    int i, j, **cost_array;

    cost_array = find_pairing_cost(PLA, strategy);

    if (summary) {
    printf("    ");
    for(i = 0; i < cube.num_binary_vars; i++)
        printf("%3d ", i+1);
    printf("\n");
    for(i = 0; i < cube.num_binary_vars; i++) {
        printf("%3d ", i+1);
        for(j = 0; j < cube.num_binary_vars; j++)
        printf("%3d ", cost_array[i][j]);
        printf("\n");
    }
    }

    if (cube.num_binary_vars <= 14) {
    PLA->pair = pair_best_cost(cost_array);
    } else {
    (void) greedy_best_cost(cost_array, &(PLA->pair));
    }
    printf("# ");
    print_pair(PLA->pair);
    
    for(i = 0; i < cube.num_binary_vars; i++)
    FREE(cost_array[i]);
    FREE(cost_array);

    set_pair(PLA);
    EXEC_S(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO  ",PLA->F);
}

int **find_pairing_cost(PLA, strategy)
pPLA PLA;
int strategy;
{
    int var1, var2, **cost_array;
    int i, j;
    int xnum_binary_vars = 0, xnum_vars = 0, *xpart_size = NULL, cost = 0; // Suppress "might be used uninitialized"
    pcover T;
    pcover Fsave = NULL, Dsave = NULL, Rsave = NULL; // Suppress "might be used uninitialized"
    pset mask;
/*    char *s;*/

    /* data is returned in the cost array */
    cost_array = ALLOC(int *, cube.num_binary_vars);
    for(i = 0; i < cube.num_binary_vars; i++)
    cost_array[i] = ALLOC(int, cube.num_binary_vars);
    for(i = 0; i < cube.num_binary_vars; i++)
    for(j = 0; j < cube.num_binary_vars; j++)
        cost_array[i][j] = 0;

    /* Setup the pair structure for pairing variables together */
    PLA->pair = pair_new(1);
    PLA->pair->cnt = 1;

    for(var1 = 0; var1 < cube.num_binary_vars-1; var1++) {
    for(var2 = var1+1; var2 < cube.num_binary_vars; var2++) {
        /* if anything but simple strategy, perform setup */
        if (strategy > 0) {
        /* save the original covers */
        Fsave = sf_save(PLA->F);
        Dsave = sf_save(PLA->D);
        Rsave = sf_save(PLA->R);

        /* save the original cube structure */
        xnum_binary_vars = cube.num_binary_vars;
        xnum_vars = cube.num_vars;
        xpart_size = ALLOC(int, cube.num_vars);
        for(i = 0; i < cube.num_vars; i++)
            xpart_size[i] = cube.part_size[i];

        /* pair two variables together */
        PLA->pair->var1[0] = var1 + 1;
        PLA->pair->var2[0] = var2 + 1;
        set_pair1(PLA, /* adjust_labels */ FALSE);
        }


        /* decide how to best estimate worth of this pairing */
        switch(strategy) {
        case 3:
            /*s = "exact minimization";*/
            PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1);
            cost = Fsave->count - PLA->F->count;
            break;
        case 2:
            /*s = "full minimization";*/
            PLA->F = espresso(PLA->F, PLA->D, PLA->R);
            cost = Fsave->count - PLA->F->count;
            break;
        case 1:
            /*s = "strong division";*/
            PLA->F = reduce(PLA->F, PLA->D);
            PLA->F = expand(PLA->F, PLA->R, FALSE);
            PLA->F = irredundant(PLA->F, PLA->D);
            cost = Fsave->count - PLA->F->count;
            break;
        case 0:
            /*s = "weak division";*/
            mask = new_cube();
            set_or(mask, cube.var_mask[var1], cube.var_mask[var2]);
            T = dist_merge(sf_save(PLA->F), mask);
            cost = PLA->F->count - T->count;
            sf_free(T);
            set_free(mask);
        }

        cost_array[var1][var2] = cost;

        if (strategy > 0) {
        /* restore the original cube structure -- free the new ones */
        setdown_cube();
        FREE(cube.part_size);
        cube.num_binary_vars = xnum_binary_vars;
        cube.num_vars = xnum_vars;
        cube.part_size = xpart_size;
        cube_setup();

        /* restore the original cover(s) -- free the new ones */
        sf_free(PLA->F);
        sf_free(PLA->D);
        sf_free(PLA->R);
        PLA->F = Fsave;
        PLA->D = Dsave;
        PLA->R = Rsave;
        }
    }
    }

    pair_free(PLA->pair);
    PLA->pair = NULL;
    return cost_array;
}

static int best_cost;
static int **cost_array;
static ppair best_pair;
static pset best_phase;
static pPLA global_PLA;
static pcover best_F, best_D, best_R;
static int pair_minim_strategy;


void print_pair(pair)
ppair pair;
{
    int i;

    printf("pair is");
    for(i = 0; i < pair->cnt; i++)
    printf (" (%d %d)", pair->var1[i], pair->var2[i]);
    printf("\n");
}


int greedy_best_cost(cost_array_local, pair_p)
int **cost_array_local;
ppair *pair_p;
{
    int i, j;
    int besti = 0, bestj = 0;
    int maxcost, total_cost;
    pset cand;
    ppair pair;

    pair = pair_new(cube.num_binary_vars);
    cand = set_full(cube.num_binary_vars);
    total_cost = 0;

    while (set_ord(cand) >= 2) {
    maxcost = -1;
    for(i = 0; i < cube.num_binary_vars; i++) {
        if (is_in_set(cand, i)) {
        for(j = i+1; j < cube.num_binary_vars; j++) {
            if (is_in_set(cand, j)) {
            if (cost_array_local[i][j] > maxcost) {
                maxcost = cost_array_local[i][j];
                besti = i;
                bestj = j;
            }
            }
        }
        }
    }
    pair->var1[pair->cnt] = besti+1;
    pair->var2[pair->cnt] = bestj+1;
    pair->cnt++;
    set_remove(cand, besti);
    set_remove(cand, bestj);
    total_cost += maxcost;
    }
    set_free(cand);
    *pair_p = pair;
    return total_cost;
}


ppair pair_best_cost(cost_array_local)
int **cost_array_local;
{
    ppair pair;
    pset candidate;

    best_cost = -1;
    best_pair = NULL;
    cost_array = cost_array_local;

    pair = pair_new(cube.num_binary_vars);
    candidate = set_full(cube.num_binary_vars);
    generate_all_pairs(pair, cube.num_binary_vars, candidate, find_best_cost);
    pair_free(pair);
    set_free(candidate);
    return best_pair;
}


void find_best_cost(pair)
register ppair pair;
{
    register int i, cost;

    cost = 0;
    for(i = 0; i < pair->cnt; i++)
    cost += cost_array[pair->var1[i]-1][pair->var2[i]-1];
    if (cost > best_cost) {
    best_cost = cost;
    best_pair = pair_save(pair, pair->cnt);
    }
    if ((debug & MINCOV) && trace) {
    printf("cost is %d ", cost);
    print_pair(pair);
    }
}

/*
    pair_all: brute-force approach to try all possible pairings

    pair_strategy is:
    2) for espresso
    3) for minimize_exact
    4) for phase assignment
*/

void pair_all(PLA, pair_strategy)
pPLA PLA;
int pair_strategy;
{
    ppair pair;
    pset candidate;

    global_PLA = PLA;
    pair_minim_strategy = pair_strategy;
    best_cost = PLA->F->count + 1;
    best_pair = NULL;
    best_phase = NULL;
    best_F = best_D = best_R = NULL;
    pair = pair_new(cube.num_binary_vars);
    candidate = set_fill(set_new(cube.num_binary_vars), cube.num_binary_vars);

    generate_all_pairs(pair, cube.num_binary_vars, candidate, minimize_pair);

    pair_free(pair);
    set_free(candidate);

    PLA->pair = best_pair;
    PLA->phase = best_phase;
/* not really necessary
    if (phase != NULL)
    (void) set_phase(PLA->phase);
*/
    set_pair(PLA);
    printf("# ");
    print_pair(PLA->pair);

    sf_free(PLA->F);
    sf_free(PLA->D);
    sf_free(PLA->R);
    PLA->F = best_F;
    PLA->D = best_D;
    PLA->R = best_R;
}


/*
 *  minimize_pair -- called as each pair is generated
 */
void minimize_pair(pair)
ppair pair;
{
    pcover Fsave, Dsave, Rsave;
    int i, xnum_binary_vars, xnum_vars, *xpart_size;

    /* save the original covers */
    Fsave = sf_save(global_PLA->F);
    Dsave = sf_save(global_PLA->D);
    Rsave = sf_save(global_PLA->R);

    /* save the original cube structure */
    xnum_binary_vars = cube.num_binary_vars;
    xnum_vars = cube.num_vars;
    xpart_size = ALLOC(int, cube.num_vars);
    for(i = 0; i < cube.num_vars; i++)
    xpart_size[i] = cube.part_size[i];

    /* setup the paired variables */
    global_PLA->pair = pair;
    set_pair1(global_PLA, /* adjust_labels */ FALSE);

    /* call the minimizer */
    if (summary)
    print_pair(pair);
    switch(pair_minim_strategy) {
    case 2:
        EXEC_S(phase_assignment(global_PLA,0), "OPO       ", global_PLA->F);
        if (summary)
        printf("# phase is %s\n", pc1(global_PLA->phase));
        break;
    case 1:
        EXEC_S(global_PLA->F = minimize_exact(global_PLA->F, global_PLA->D,
        global_PLA->R, 1), "EXACT     ", global_PLA->F);
        break;
    case 0:
        EXEC_S(global_PLA->F = espresso(global_PLA->F, global_PLA->D,
        global_PLA->R), "ESPRESSO  ", global_PLA->F);
        break;
    default:
        break;
    }

    /* see if we have a new best solution */
    if (global_PLA->F->count < best_cost) {
    best_cost = global_PLA->F->count;
    best_pair = pair_save(pair, pair->cnt);
    best_phase = global_PLA->phase!=NULL?set_save(global_PLA->phase):NULL;
    if (best_F != NULL) sf_free(best_F);
    if (best_D != NULL) sf_free(best_D);
    if (best_R != NULL) sf_free(best_R);
    best_F = sf_save(global_PLA->F);
    best_D = sf_save(global_PLA->D);
    best_R = sf_save(global_PLA->R);
    }

    /* restore the original cube structure -- free the new ones */
    setdown_cube();
    FREE(cube.part_size);
    cube.num_binary_vars = xnum_binary_vars;
    cube.num_vars = xnum_vars;
    cube.part_size = xpart_size;
    cube_setup();

    /* restore the original cover(s) -- free the new ones */
    sf_free(global_PLA->F);
    sf_free(global_PLA->D);
    sf_free(global_PLA->R);
    global_PLA->F = Fsave;
    global_PLA->D = Dsave;
    global_PLA->R = Rsave;
    global_PLA->pair = NULL;
    global_PLA->phase = NULL;
}

void generate_all_pairs(pair, n, candidate, action)
ppair pair;
int n;
pset candidate;
int (*action)();
{
    int i, j;
    pset recur_candidate;
    ppair recur_pair;

    if (set_ord(candidate) < 2) {
    (*action)(pair);
    return;
    }

    recur_pair = pair_save(pair, n);
    recur_candidate = set_save(candidate);

    /* Find first variable still in the candidate set */
    for(i = 0; i < n; i++)
    if (is_in_set(candidate, i))
        break;

    /* Try all pairs of i with other variables */
    for(j = i+1; j < n; j++)
    if (is_in_set(candidate, j)) {
        /* pair (i j) -- remove from candidate set for future pairings */
        set_remove(recur_candidate, i);
        set_remove(recur_candidate, j);

        /* add to the pair array */
        recur_pair->var1[recur_pair->cnt] = i+1;
        recur_pair->var2[recur_pair->cnt] = j+1;
        recur_pair->cnt++;

        /* recur looking for the end ... */
        generate_all_pairs(recur_pair, n, recur_candidate, action);

        /* now break this pair, and restore candidate set */
        recur_pair->cnt--;
        set_insert(recur_candidate, i);
        set_insert(recur_candidate, j);
    }

    /* if odd, generate all pairs which do NOT include i */
    if ((set_ord(candidate) % 2) == 1) {
    set_remove(recur_candidate, i);
    generate_all_pairs(recur_pair, n, recur_candidate, action);
    }

    pair_free(recur_pair);
    set_free(recur_candidate);
}

ppair pair_new(n)
register int n;
{
    register ppair pair1;

    pair1 = ALLOC(pair_t, 1);
    pair1->cnt = 0;
    pair1->var1 = ALLOC(int, n);
    pair1->var2 = ALLOC(int, n);
    return pair1;
}


ppair pair_save(pair, n)
register ppair pair;
register int n;
{
    register int k;
    register ppair pair1;

    pair1 = pair_new(n);
    pair1->cnt = pair->cnt;
    for(k = 0; k < pair->cnt; k++) {
    pair1->var1[k] = pair->var1[k];
    pair1->var2[k] = pair->var2[k];
    }
    return pair1;
}


void pair_free(pair)
register ppair pair;
{
    FREE(pair->var1);
    FREE(pair->var2);
    FREE(pair);
}
ABC_NAMESPACE_IMPL_END