Commit e6e6a3cf by Alan Mishchenko

Changes to the matching procedure.

parent ff4c674d
......@@ -903,8 +903,8 @@ void Abc_Init( Abc_Frame_t * pAbc )
}
*/
{
// extern void If_CluTest();
// If_CluTest();
extern void If_CluTest();
If_CluTest();
}
}
......@@ -13252,7 +13252,7 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->fCutMin = 1;
}
if ( pPars->fEnableCheck07 + pPars->fEnableCheck08 + pPars->fEnableCheck10 > 1 )
if ( pPars->fEnableCheck07 + pPars->fEnableCheck08 + pPars->fEnableCheck10 + (pPars->pLutStruct != NULL) > 1 )
{
Abc_Print( -1, "Only one additional check can be performed at the same time.\n" );
return 1;
......@@ -13287,6 +13287,16 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->pFuncCell = If_CutPerformCheck10;
pPars->fCutMin = 1;
}
if ( pPars->pLutStruct )
{
if ( pPars->nLutSize < 6 || pPars->nLutSize > 11 )
{
Abc_Print( -1, "This feature only works for {6,7,8,9,10,11}-LUTs.\n" );
return 1;
}
pPars->pFuncCell = If_CutPerformCheck16;
pPars->fCutMin = 1;
}
// enable truth table computation if cut minimization is selected
if ( pPars->fCutMin )
......@@ -13303,7 +13313,7 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->fUsePerm = 1;
pPars->pLutLib = NULL;
}
/*
// modify for LUT structures
if ( pPars->pLutStruct )
{
......@@ -13317,7 +13327,7 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->fUsePerm = 1;
pPars->pLutLib = NULL;
}
*/
// complain if truth tables are requested but the cut size is too large
if ( pPars->fTruth && pPars->nLutSize > IF_MAX_FUNC_LUTSIZE )
{
......
......@@ -121,7 +121,7 @@ struct If_Par_t_
float * pTimesReq; // required times
int (* pFuncCost) (If_Cut_t *); // procedure to compute the user's cost of a cut
int (* pFuncUser) (If_Man_t *, If_Obj_t *, If_Cut_t *); // procedure called for each cut when cut computation is finished
int (* pFuncCell) (unsigned *, int, int); // procedure called for cut functions
int (* pFuncCell) (unsigned *, int, int, char *); // procedure called for cut functions
void * pReoMan; // reordering manager
};
......@@ -184,7 +184,10 @@ struct If_Man_t_
If_Set_t * pFreeList; // the list of free cutsets
int nSmallSupp; // the small support
int nCutsTotal;
int nCutsUseless;
int nCutsUseless[32];
int nCutsCount[32];
int nCutsCountAll;
int nCutsUselessAll;
// timing manager
Tim_Man_t * pManTim;
Vec_Int_t * vCoAttrs; // CO attributes 0=optimize; 1=keep; 2=relax
......@@ -413,9 +416,10 @@ extern float If_CutPowerRef( If_Man_t * p, If_Cut_t * pCut, If_Obj_t *
extern float If_CutPowerDerefed( If_Man_t * p, If_Cut_t * pCut, If_Obj_t * pRoot );
extern float If_CutPowerRefed( If_Man_t * p, If_Cut_t * pCut, If_Obj_t * pRoot );
/*=== ifDec.c =============================================================*/
extern int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves );
extern int If_CutPerformCheck08( unsigned * pTruth, int nVars, int nLeaves );
extern int If_CutPerformCheck10( unsigned * pTruth, int nVars, int nLeaves );
extern int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves, char * pStr );
extern int If_CutPerformCheck08( unsigned * pTruth, int nVars, int nLeaves, char * pStr );
extern int If_CutPerformCheck10( unsigned * pTruth, int nVars, int nLeaves, char * pStr );
extern int If_CutPerformCheck16( unsigned * pTruth, int nVars, int nLeaves, char * pStr );
extern float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay );
/*=== ifLib.c =============================================================*/
extern If_Lib_t * If_LutLibRead( char * FileName );
......
......@@ -685,7 +685,7 @@ void If_CutSort( If_Man_t * p, If_Set_t * pCutSet, If_Cut_t * pCut )
return;
}
if ( (p->pPars->fUseBat || p->pPars->fEnableCheck07 || p->pPars->fEnableCheck08 || p->pPars->fEnableCheck10) && !pCut->fUseless )
if ( (p->pPars->fUseBat || p->pPars->fEnableCheck07 || p->pPars->fEnableCheck08 || p->pPars->fEnableCheck10 || p->pPars->pLutStruct) && !pCut->fUseless )
{
If_Cut_t * pFirst = pCutSet->ppCuts[0];
if ( pFirst->fUseless || If_ManSortCompare(p, pFirst, pCut) == 1 )
......
......@@ -673,9 +673,9 @@ int If_Dec7PickBestMux( word t[2], word c0r[2], word c1r[2] )
SeeAlso []
***********************************************************************/
int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves )
int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves, char * pStr )
{
int fDerive = 1;
int fDerive = 0;
if ( nLeaves < 6 )
return 1;
if ( nLeaves == 6 )
......@@ -685,7 +685,10 @@ int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves )
return 1;
z = If_Dec6Perform( t, fDerive );
if ( fDerive && z )
{
// If_DecPrintConfig( z );
If_Dec6Verify( t, z );
}
return z != 0;
}
if ( nLeaves == 7 )
......@@ -698,8 +701,6 @@ int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves )
z = If_Dec7Perform( t, fDerive );
if ( fDerive && z )
If_Dec7Verify( t, z );
return z != 0;
}
assert( 0 );
......
......@@ -478,7 +478,7 @@ printf( "\n" );
SeeAlso []
***********************************************************************/
int If_CutPerformCheck08( unsigned * pTruth, int nVars, int nLeaves )
int If_CutPerformCheck08( unsigned * pTruth, int nVars, int nLeaves, char * pStr )
{
int nSupp, fDerive = 0;
word z[2] = {0}, pF[16];
......
......@@ -477,7 +477,7 @@ printf( "\n" );
SeeAlso []
***********************************************************************/
int If_CutPerformCheck10( unsigned * pTruth, int nVars, int nLeaves )
int If_CutPerformCheck10( unsigned * pTruth, int nVars, int nLeaves, char * pStr )
{
int nSupp, fDerive = 0;
word z[2] = {0}, pF[16];
......
/**CFile****************************************************************
FileName [ifDec10f.c]
FileName [ifDec16.c]
SystemName [ABC: Logic synthesis and verification system.]
......@@ -14,7 +14,7 @@
Date [Ver. 1.0. Started - November 21, 2006.]
Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
Revision [$Id: ifDec16.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
***********************************************************************/
......@@ -36,7 +36,7 @@ struct If_Grp_t_
{
char nVars;
char nMyu;
char pVars[6];
char pVars[CLU_VAR_MAX];
};
// the bit count for the first 256 integer numbers
......@@ -67,36 +67,33 @@ static word Truth6[6] = {
0xFFFF0000FFFF0000,
0xFFFFFFFF00000000
};
static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX];
static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX] = {{0}};
extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
// group representation (MSB <-> LSB)
// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
// if nCofs > 2, v0 is the shared variable
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
void If_CluInitTruthTables()
{
int i, k;
assert( CLU_VAR_MAX <= 16 );
for ( i = 0; i < 6; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = Truth6[i];
for ( i = 6; i < CLU_VAR_MAX; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0;
}
// variable permutation for large functions
static inline int If_CluWordNum( int nVars )
{
return nVars <= 6 ? 1 : 1 << (nVars-6);
}
static inline void If_CluClear( word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pIn[w] = 0;
}
static inline void If_CluFill( word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pIn[w] = ~0;
}
static inline void If_CluCopy( word * pOut, word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
......@@ -111,6 +108,42 @@ static inline int If_CluEqual( word * pOut, word * pIn, int nVars )
return 0;
return 1;
}
static inline void If_CluAnd( word * pRes, word * pIn1, word * pIn2, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pRes[w] = pIn1[w] & pIn2[w];
}
static inline void If_CluSharp( word * pRes, word * pIn1, word * pIn2, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pRes[w] = pIn1[w] & ~pIn2[w];
}
static inline void If_CluOr( word * pRes, word * pIn1, word * pIn2, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pRes[w] = pIn1[w] | pIn2[w];
}
static inline word If_CluAdjust( word t, int nVars )
{
assert( nVars >= 0 && nVars < 6 );
t &= (1 << (1 << nVars)) - 1;
if ( nVars == 0 )
t |= t << (1<<nVars++);
if ( nVars == 1 )
t |= t << (1<<nVars++);
if ( nVars == 2 )
t |= t << (1<<nVars++);
if ( nVars == 3 )
t |= t << (1<<nVars++);
if ( nVars == 4 )
t |= t << (1<<nVars++);
if ( nVars == 5 )
t |= t << (1<<nVars++);
return t;
}
static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars )
{
int i, k, nWords = If_CluWordNum( nVars );
......@@ -148,43 +181,132 @@ static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nV
}
}
void If_CluPrintGroup( If_Grp_t * g )
{
int i;
printf( "Vars = %d ", g->nVars );
printf( "Myu = %d ", g->nMyu );
for ( i = 0; i < g->nVars; i++ )
printf( "%d ", g->pVars[i] );
printf( "\n" );
}
void If_CluPrintConfig( int nVars, If_Grp_t * g, If_Grp_t * r, word BStruth, word * pFStruth )
{
assert( r->nVars == nVars - g->nVars + 1 + (g->nMyu > 2) );
If_CluPrintGroup( g );
if ( g->nVars < 6 )
BStruth = If_CluAdjust( BStruth, g->nVars );
Kit_DsdPrintFromTruth( (unsigned *)&BStruth, g->nVars );
printf( "\n" );
If_CluPrintGroup( r );
if ( r->nVars < 6 )
pFStruth[0] = If_CluAdjust( pFStruth[0], r->nVars );
Kit_DsdPrintFromTruth( (unsigned *)pFStruth, r->nVars );
printf( "\n" );
}
void If_CluInitTruthTables()
{
int i, k;
assert( CLU_VAR_MAX <= 16 );
for ( i = 0; i < 6; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = Truth6[i];
for ( i = 6; i < CLU_VAR_MAX; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = ((k >> (i-6)) & 1) ? ~0 : 0;
// Extra_PrintHex( stdout, TruthAll[6], 8 ); printf( "\n" );
// Extra_PrintHex( stdout, TruthAll[7], 8 ); printf( "\n" );
}
// verification
static void If_CluComposeLut( int nVars, If_Grp_t * g, word * t, word f[6][CLU_WRD_MAX], word * r )
{
word c[CLU_WRD_MAX];
int m, v;
If_CluClear( r, nVars );
for ( m = 0; m < (1<<g->nVars); m++ )
{
if ( !((t[m >> 6] >> (m & 63)) & 1) )
continue;
If_CluFill( c, nVars );
for ( v = 0; v < g->nVars; v++ )
if ( (m >> v) & 1 )
If_CluAnd( c, c, f[v], nVars );
else
If_CluSharp( c, c, f[v], nVars );
If_CluOr( r, r, c, nVars );
}
}
void If_CluVerify( word * pF, int nVars, If_Grp_t * g, If_Grp_t * r, word BStruth, word * pFStruth )
{
word pTTFans[6][CLU_WRD_MAX], pTTWire[CLU_WRD_MAX], pTTRes[CLU_WRD_MAX];
int i;
assert( g->nVars <= 6 && r->nVars <= 6 );
if ( TruthAll[0][0] == 0 )
If_CluInitTruthTables();
for ( i = 0; i < g->nVars; i++ )
If_CluCopy( pTTFans[i], TruthAll[g->pVars[i]], nVars );
If_CluComposeLut( nVars, g, &BStruth, pTTFans, pTTWire );
for ( i = 0; i < r->nVars; i++ )
if ( r->pVars[i] == nVars )
If_CluCopy( pTTFans[i], pTTWire, nVars );
else
If_CluCopy( pTTFans[i], TruthAll[r->pVars[i]], nVars );
If_CluComposeLut( nVars, r, pFStruth, pTTFans, pTTRes );
if ( !If_CluEqual(pTTRes, pF, nVars) )
{
printf( "\n" );
If_CluPrintConfig( nVars, g, r, BStruth, pFStruth );
Kit_DsdPrintFromTruth( (unsigned*)pTTRes, nVars ); printf( "\n" );
Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)pF, nVars ); printf( "\n" );
printf( "Verification FAILED!\n" );
}
// else
// printf( "Verification succeed!\n" );
}
// moves one var (v) to the given position (p)
void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
{
word pG[CLU_WRD_MAX], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
if ( Var2Pla[v] <= p )
while ( Var2Pla[v] < p )
{
while ( Var2Pla[v] < p )
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
else
while ( Var2Pla[v] > p )
{
while ( Var2Pla[v] > p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
......@@ -199,64 +321,86 @@ void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t
If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[g->nVars - 1 - v], nVars - 1 - v );
}
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word * pCofs[2] )
// reverses the variable order
void If_CluReverseOrder( word * pF, int nVars, int * V2P, int * P2V )
{
word iCofs[64], iCof;
int i, c, w, nMints = (1 << nBSsize), nCofs;
assert( nBSsize < nVars );
assert( nBSsize >= 3 && nBSsize <= 6 );
int v;
for ( v = 0; v < nVars; v++ )
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[0], nVars - 1 - v );
}
if ( nVars - nBSsize >= 6 )
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word pCofs[3][CLU_WRD_MAX/4] )
{
word iCofs[128], iCof, Result = 0;
word * pCofA, * pCofB;
int nMints = (1 << nBSsize);
int i, c, w, nCofs;
assert( nBSsize >= 2 && nBSsize <= 7 && nBSsize < nVars );
if ( nVars - nBSsize < 6 )
{
word * pCofA, * pCofB;
int nWords = (1 << (nVars - nBSsize - 6));
assert( nWords * nMints == If_CluWordNum(nVars) );
int nShift = (1 << (nVars - nBSsize));
word Mask = ((((word)1) << nShift) - 1);
for ( nCofs = i = 0; i < nMints; i++ )
{
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
for ( c = 0; c < nCofs; c++ )
{
pCofA = pF + i * nWords;
pCofB = pF + iCofs[c] * nWords;
for ( w = 0; w < nWords; w++ )
if ( pCofA[w] != pCofB[w] )
break;
if ( w == nWords )
if ( iCof == iCofs[c] )
break;
}
if ( c == nCofs )
iCofs[nCofs++] = i;
iCofs[nCofs++] = iCof;
if ( pCofs && iCof != iCofs[0] )
Result |= (((word)1) << i);
if ( nCofs == 5 )
break;
}
if ( nCofs == 2 && pCofs )
if ( nCofs <= 2 && pCofs )
{
for ( c = 0; c < nCofs; c++ )
{
word * pCofA = pF + iCofs[c] * nWords;
for ( w = 0; w < nWords; w++ )
pCofs[c][w] = pCofA[w];
}
assert( nBSsize <= 6 );
pCofs[0][0] = iCofs[0];
pCofs[1][0] = (nCofs == 2) ? iCofs[1] : iCofs[0];
pCofs[2][0] = Result;
}
}
else
{
int nShift = (1 << (nVars - nBSsize));
word Mask = ((((word)1) << nShift) - 1);
int nWords = If_CluWordNum( nVars - nBSsize );
assert( nWords * nMints == If_CluWordNum(nVars) );
for ( nCofs = i = 0; i < nMints; i++ )
{
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
pCofA = pF + i * nWords;
for ( c = 0; c < nCofs; c++ )
if ( iCof == iCofs[c] )
{
pCofB = pF + iCofs[c] * nWords;
for ( w = 0; w < nWords; w++ )
if ( pCofA[w] != pCofB[w] )
break;
if ( w == nWords )
break;
}
if ( c == nCofs )
iCofs[nCofs++] = iCof;
iCofs[nCofs++] = i;
if ( pCofs )
{
assert( nBSsize <= 6 );
pCofB = pF + iCofs[0] * nWords;
for ( w = 0; w < nWords; w++ )
if ( pCofA[w] != pCofB[w] )
break;
if ( w != nWords )
Result |= (((word)1) << i);
}
if ( nCofs == 5 )
break;
}
if ( nCofs <= 2 && pCofs )
{
If_CluCopy( pCofs[0], pF + iCofs[0] * nWords, nVars - nBSsize );
If_CluCopy( pCofs[1], pF + ((nCofs == 2) ? iCofs[1] : iCofs[0]) * nWords, nVars - nBSsize );
pCofs[2][0] = Result;
}
}
assert( nCofs >= 2 && nCofs <= 5 );
assert( nCofs >= 1 && nCofs <= 5 );
return nCofs;
}
......@@ -272,7 +416,6 @@ void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1
pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
}
return;
}
else
{
......@@ -288,70 +431,227 @@ void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1
pCof0 += 2*Step;
pCof1 += 2*Step;
}
return;
}
}
// derives non-disjoint decomposition (assumes the shared var in pG->pVars[pG->nVars-1]
word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * pG )
// returns 1 if we have special case of cofactors; otherwise, returns 0
int If_CluDetectSpecialCaseCofs( word * pF, int nVars, int iVar )
{
/*
word Truth, Truth0, Truth1;
word Cof[2][CLU_WRD_MAX], Cof0[2][CLU_WRD_MAX], Cof1[2][CLU_WRD_MAX];
int i, nFSvars, nFSHalfBits, nBSHalfBits;
assert( pG->nVars >= 3 && pG->nVar <= 6 );
assert( pG->nMyu == 3 || pG->nMyu == 4 );
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, pG );
If_CluCofactors( pF, nVars, nVars - 1, Cof[0], Cof[1] );
assert( 2 >= If_Dec6CofCount2(c0) );
assert( 2 >= If_Dec6CofCount2(c1) );
assert( 2 >= If_CluCountCofs( Cof[0], nVars - 1, pG->nVars - 1, 0 ) );
assert( 2 >= If_CluCountCofs( Cof[1], nVars - 1, pG->nVars - 1, 0 ) );
word Cof0, Cof1;
int State[6] = {0};
int i, nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
{
Cof0 = (pF[i] & ~Truth6[iVar]);
Cof1 = ((pF[i] & Truth6[iVar]) >> Shift);
if ( Cof0 == 0 )
State[0]++;
else if ( Cof0 == ~Truth6[iVar] )
State[1]++;
else if ( Cof1 == 0 )
State[2]++;
else if ( Cof1 == ~Truth6[iVar] )
State[3]++;
else if ( Cof0 == ~Cof1 )
State[4]++;
else if ( Cof0 == Cof1 )
State[5]++;
}
}
else
{
int k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
{
Cof0 = pF[i];
Cof1 = pF[Step+i];
if ( Cof0 == 0 )
State[0]++;
else if ( Cof0 == ~Truth6[iVar] )
State[1]++;
else if ( Cof1 == 0 )
State[2]++;
else if ( Cof1 == ~Truth6[iVar] )
State[3]++;
else if ( Cof0 == ~Cof1 )
State[4]++;
else if ( Cof0 == Cof1 )
State[5]++;
}
pF += 2*Step;
}
nWords /= 2;
}
assert( State[5] != nWords );
for ( i = 0; i < 5; i++ )
{
assert( State[i] <= nWords );
if ( State[i] == nWords )
return i;
}
return -1;
}
Truth0 = If_CluExtract2Cofs( Cof[0], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
Truth1 = If_CluExtract2Cofs( Cof[1], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
// returns 1 if we have special case of cofactors; otherwise, returns 0
If_Grp_t If_CluDecUsingCofs( word * pTruth, int nVars, int nLutLeaf )
{
If_Grp_t G = {0};
word pF2[CLU_WRD_MAX], * pF = pF2;
int Var2Pla[CLU_VAR_MAX+2], Pla2Var[CLU_VAR_MAX+2];
int V2P[CLU_VAR_MAX+2], P2V[CLU_VAR_MAX+2];
int nVarsNeeded = nVars - nLutLeaf;
int v, i, k, iVar, State;
//Kit_DsdPrintFromTruth( (unsigned*)pTruth, nVars ); printf( "\n" );
// create local copy
If_CluCopy( pF, pTruth, nVars );
for ( k = 0; k < nVars; k++ )
Var2Pla[k] = Pla2Var[k] = k;
// find decomposable vars
for ( i = 0; i < nVarsNeeded; i++ )
{
for ( v = nVars - 1; v >= 0; v-- )
{
State = If_CluDetectSpecialCaseCofs( pF, nVars, v );
if ( State == -1 )
continue;
// update the variable place
iVar = Pla2Var[v];
while ( Var2Pla[iVar] < nVars - 1 )
{
int iPlace0 = Var2Pla[iVar];
int iPlace1 = Var2Pla[iVar]+1;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
}
// move this variable to the top
for ( k = 0; k < nVars; k++ )
V2P[k] = P2V[k] = k;
//Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" );
If_CluMoveVar( pF, nVars, V2P, P2V, v, nVars - 1 );
//Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" );
// choose cofactor to follow
iVar = nVars - 1;
if ( State == 0 || State == 1 ) // need cof1
{
if ( iVar < 6 )
pF[0] = (pF[0] & Truth6[iVar]) | ((pF[0] & Truth6[iVar]) >> (1 << iVar));
else
pF += If_CluWordNum( nVars ) / 2;
}
else // need cof0
{
if ( iVar < 6 )
pF[0] = (pF[0] & ~Truth6[iVar]) | ((pF[0] & ~Truth6[iVar]) << (1 << iVar));
}
// update the variable count
nVars--;
break;
}
if ( v == -1 )
return G;
}
// create the resulting group
G.nVars = nLutLeaf;
G.nMyu = 2;
for ( v = 0; v < G.nVars; v++ )
G.pVars[v] = Pla2Var[v];
return G;
}
nFSHalfBits = (1 << (nVars - pG->nVars - 1));
nBSHalfBits = (1 << (pG->nVars - 1))
Truth = ((Truth0 && ((1 << nBSHalfBits) - 1)) << nBSHalfBits) | (Truth0 && ((1 << nBSHalfBits) - 1))
// deriving decomposition
word If_CluDeriveDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * r )
{
word pCofs[3][CLU_WRD_MAX/4];
int i, RetValue, nFSset = nVars - g->nVars;
RetValue = If_CluCountCofs( pF, nVars, g->nVars, 0, pCofs );
// assert( RetValue == 2 );
for ( i = 0; i < 4; i++ )
z |= (((word)Pla2Var[i+2]) << (16 + 4*i));
z |= ((word)((Cof0[1] << 4) | Cof0[0]) << 32);
z |= ((word)((Cof1[1] << 4) | Cof1[0]) << 40);
for ( i = 0; i < 2; i++ )
z |= (((word)Pla2Var[i]) << (48 + 4*i));
z |= (((word)7) << (48 + 4*i++));
z |= (((word)Pla2Var[5]) << (48 + 4*i++));
assert( i == 4 );
return z;
*/
return 0;
if ( nFSset < 6 )
pF[0] = (pCofs[1][0] << (1 << nFSset)) | pCofs[0][0];
else
{
If_CluCopy( pF, pCofs[0], nFSset );
If_CluCopy( pF + If_CluWordNum(nFSset), pCofs[1], nFSset );
}
// create the resulting group
if ( r )
{
r->nVars = nFSset + 1;
r->nMyu = 0;
for ( i = 0; i < nFSset; i++ )
r->pVars[i] = P2V[i];
r->pVars[nFSset] = nVars;
}
return pCofs[2][0];
}
word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * r )
{
word pCofs[2][CLU_WRD_MAX];
word Truth0, Truth1, Truth;
int i, nFSset = nVars - g->nVars, nFSset1 = nFSset + 1;
If_CluCofactors( pF, nVars, nVars - 1, pCofs[0], pCofs[1] );
// Extra_PrintHex( stdout, (unsigned *)pCofs[0], nVars ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)pCofs[1], nVars ); printf( "\n" );
g->nVars--;
Truth0 = If_CluDeriveDisjoint( pCofs[0], nVars - 1, V2P, P2V, g, NULL );
Truth1 = If_CluDeriveDisjoint( pCofs[1], nVars - 1, V2P, P2V, g, NULL );
Truth = (Truth1 << (1 << g->nVars)) | Truth0;
g->nVars++;
if ( nFSset1 < 6 )
pF[0] = (pCofs[1][0] << (1 << nFSset1)) | pCofs[0][0];
else
{
If_CluCopy( pF, pCofs[0], nFSset1 );
If_CluCopy( pF + If_CluWordNum(nFSset1), pCofs[1], nFSset1 );
}
// Extra_PrintHex( stdout, (unsigned *)&Truth0, 6 ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)&Truth1, 6 ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)&pCofs[0][0], 6 ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)&pCofs[1][0], 6 ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)&Truth, 6 ); printf( "\n" );
// Extra_PrintHex( stdout, (unsigned *)&pF[0], 6 ); printf( "\n" );
// create the resulting group
r->nVars = nFSset + 2;
r->nMyu = 0;
for ( i = 0; i < nFSset; i++ )
r->pVars[i] = P2V[i];
r->pVars[nFSset] = nVars;
r->pVars[nFSset+1] = g->pVars[g->nVars - 1];
return Truth;
}
// check non-disjoint decomposition
int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
int If_CluCheckNonDisjointGroup( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
{
int v, i, nCofsBest2;
if ( (g->nMyu == 3 || g->nMyu == 4) )
{
word pCof0[CLU_WRD_MAX];
word pCof1[CLU_WRD_MAX];
word pCofs[2][CLU_WRD_MAX];
// try cofactoring w.r.t. each variable
for ( v = 0; v < g->nVars; v++ )
{
If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCof0, pCof1 );
nCofsBest2 = If_CluCountCofs( pCof0, nVars, g->nVars, 0, NULL );
If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCofs[0], pCofs[1] );
nCofsBest2 = If_CluCountCofs( pCofs[0], nVars, g->nVars, 0, NULL );
if ( nCofsBest2 > 2 )
continue;
nCofsBest2 = If_CluCountCofs( pCof1, nVars, g->nVars, 0, NULL );
nCofsBest2 = If_CluCountCofs( pCofs[1], nVars, g->nVars, 0, NULL );
if ( nCofsBest2 > 2 )
continue;
// found good shared variable - move to the end
......@@ -364,25 +664,15 @@ int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t
return 0;
}
void If_CluPrintGroup( If_Grp_t * g )
{
int i;
for ( i = 0; i < g->nVars; i++ )
printf( "%d ", g->pVars[i] );
printf( "\n" );
printf( "Cofs = %d", g->nMyu );
printf( "\n" );
printf( "Vars = %d", g->nVars );
printf( "\n" );
}
// finds a good var group (cof count < 6; vars are MSBs)
If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
{
int fVerbose = 0;
int nRounds = 2;//nBSsize;
If_Grp_t G = {0}, * g = &G;
int i, r, v, nCofs, VarBest, nCofsBest2;
assert( nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX );
assert( nVars > nBSsize && nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX );
assert( nBSsize >= 3 && nBSsize <= 6 );
// start with the default group
g->nVars = nBSsize;
......@@ -392,33 +682,39 @@ If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int *
// check if good enough
if ( g->nMyu == 2 )
return G;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
if ( !fDisjoint && If_CluCheckNonDisjointGroup( pF, nVars, V2P, P2V, g ) )
return G;
printf( "Iter %d ", -1 );
If_CluPrintGroup( g );
if ( fVerbose )
{
printf( "Iter %2d ", -1 );
If_CluPrintGroup( g );
}
// try to find better group
for ( r = 0; r < nBSsize; r++ )
for ( r = 0; r < nRounds; r++ )
{
// find the best var to add
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
if ( nBSsize < nVars-1 )
{
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
if ( nCofsBest2 >= nCofs )
// find the best var to add
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
if ( nCofsBest2 >= nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
assert( nCofs == nCofsBest2 );
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
assert( nCofs == nCofsBest2 );
// find the best var to remove
VarBest = P2V[nVars-1-nBSsize];
......@@ -447,16 +743,20 @@ If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int *
g->pVars[i] = P2V[nVars-nBSsize+i];
}
printf( "Iter %d ", r );
If_CluPrintGroup( g );
if ( fVerbose )
{
printf( "Iter %2d ", r );
If_CluPrintGroup( g );
}
// check if good enough
if ( g->nMyu == 2 )
return G;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
if ( !fDisjoint && If_CluCheckNonDisjointGroup( pF, nVars, V2P, P2V, g ) )
return G;
}
assert( r == nBSsize );
assert( r == nRounds );
g->nVars = 0;
return G;
}
......@@ -467,7 +767,7 @@ void If_CluCheckGroup( word * pTruth, int nVars, If_Grp_t * g )
{
word pF[CLU_WRD_MAX];
int v, nCofs, V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
assert( g->nVars >= 3 && g->nVars <= 6 ); // vars
assert( g->nVars >= 2 && g->nVars <= 6 ); // vars
assert( g->nMyu >= 2 && g->nMyu <= 4 ); // cofs
// create permutation
for ( v = 0; v < nVars; v++ )
......@@ -500,10 +800,10 @@ void If_CluCheckPerm( word * pTruth, word * pF, int nVars, int * V2P, int * P2V
for ( i = 0; i < nVars; i++ )
If_CluMoveVar( pF, nVars, V2P, P2V, i, i );
if ( If_CluEqual( pTruth, pF, nVars ) )
printf( "Permutation successful\n" );
else
if ( !If_CluEqual( pTruth, pF, nVars ) )
printf( "Permutation FAILED.\n" );
// else
// printf( "Permutation successful\n" );
}
......@@ -550,32 +850,92 @@ static inline int If_CluSupport( word * t, int nVars )
// returns the best group found
If_Grp_t If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
{
int V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
word pF[CLU_WRD_MAX];
If_Grp_t G1 = {0};
If_Grp_t G1 = {0}, R = {0};
word Truth, pF[CLU_WRD_MAX];//, pG[CLU_WRD_MAX];
int V2P[CLU_VAR_MAX+2], P2V[CLU_VAR_MAX+2];
int i, nSupp;
assert( nVars <= CLU_VAR_MAX );
assert( nVars <= nLutLeaf + nLutRoot - 1 );
/*
{
int pCanonPerm[32];
short pStore[32];
unsigned uCanonPhase;
If_CluCopy( pF, pTruth, nVars );
uCanonPhase = Kit_TruthSemiCanonicize( pF, pG, nVars, pCanonPerm, pStore );
G1.nVars = 1;
return G1;
}
*/
// check minnimum base
If_CluCopy( pF, pTruth, nVars );
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
// check support
nSupp = If_CluSupport( pF, nVars );
//Extra_PrintBinary( stdout, &nSupp, 16 ); printf( "\n" );
if ( !nSupp || !If_CluSuppIsMinBase(nSupp) )
return G1;
// perform testing
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
// check permutation
If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V );
// detect easy cofs
G1 = If_CluDecUsingCofs( pTruth, nVars, nLutLeaf );
if ( G1.nVars == 0 )
return G1;
{
// perform testing
G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
// If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V );
if ( G1.nVars == 0 )
{
// perform testing with a smaller set
if ( nVars < nLutLeaf + nLutRoot - 2 )
{
nLutLeaf--;
G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
nLutLeaf++;
}
if ( G1.nVars == 0 )
{
// perform testing with a different order
If_CluReverseOrder( pF, nVars, V2P, P2V );
G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
// check permutation
// If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V );
if ( G1.nVars == 0 )
{
/*
if ( nVars == 6 )
{
Extra_PrintHex( stdout, (unsigned *)pF, nVars ); printf( " " );
Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" );
if ( !If_CutPerformCheck07( (unsigned *)pF, 6, 6, NULL ) )
printf( "no\n" );
}
*/
return G1;
}
}
}
}
// perform checking
If_CluCheckGroup( pTruth, nVars, &G1 );
// derive
if ( 0 )
{
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, &G1 );
if ( G1.nMyu == 2 )
Truth = If_CluDeriveDisjoint( pF, nVars, V2P, P2V, &G1, &R );
else
Truth = If_CluDeriveNonDisjoint( pF, nVars, V2P, P2V, &G1, &R );
// perform checking
if ( 0 )
{
If_CluCheckGroup( pTruth, nVars, &G1 );
If_CluVerify( pTruth, nVars, &G1, &R, Truth, pF );
}
}
return G1;
}
......@@ -600,7 +960,7 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
int nLeaves = If_CutLeaveNum(pCut);
int i, nLutLeaf, nLutRoot;
// mark the cut as user cut
pCut->fUser = 1;
// pCut->fUser = 1;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
......@@ -616,7 +976,7 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
printf( "Root size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return ABC_INFINITY;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
......@@ -627,7 +987,7 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
// remember the delays
If_CutForEachLeaf( p, pCut, pLeaf, i )
Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
Delays[i] = If_ObjCutBest(pLeaf)->Delay;
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
......@@ -639,7 +999,6 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
G1.pVars[i] = i;
}
G1.nVars = nLeaves;
pCut->Cost = 1;
return 1.0 + If_CluDelayMax( &G1, Delays );
}
......@@ -647,6 +1006,7 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
G1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
if ( G1.nVars == 0 )
return ABC_INFINITY;
// compute the delay
Delays[nLeaves] = If_CluDelayMax( &G1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
if ( G2.nVars )
......@@ -661,7 +1021,7 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
assert( G1.nMyu >= 2 && G1.nMyu <= 4 );
if ( G1.nMyu > 2 )
fUsed[G1.pVars[G1.nVars-1]] = 0;
assert( G2.nMyu >= 2 && G2.nMyu <= 4 );
assert( !G2.nVars || (G2.nMyu >= 2 && G2.nMyu <= 4) );
if ( G2.nMyu > 2 )
fUsed[G2.pVars[G2.nVars-1]] = 0;
......@@ -681,17 +1041,87 @@ float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float Wi
return 1.0 + If_CluDelayMax( &G3, Delays );
}
/**Function*************************************************************
Synopsis [Performs additional check.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int If_CutPerformCheck16( unsigned * pTruth, int nVars, int nLeaves, char * pStr )
{
If_Grp_t G1 = {0}, G2 = {0}, G3 = {0};
int nLutLeaf, nLutRoot;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
printf( "Wrong LUT struct (%s)\n", pStr );
return 0;
}
nLutLeaf = pStr[0] - '0';
if ( nLutLeaf < 3 || nLutLeaf > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
return 0;
}
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Root size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return 0;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
{
printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", nLeaves, nLutLeaf, nLutRoot );
return 0;
}
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
return 1;
// derive the first group
G1 = If_CluCheck( (word *)pTruth, nLeaves, nLutLeaf, nLutRoot );
if ( G1.nVars == 0 )
{
// printf( "-%d ", nLeaves );
return 0;
}
// printf( "+%d ", nLeaves );
return 1;
}
// testing procedure
void If_CluTest()
{
// word t = 0xff00f0f0ccccaaaa;
word t = 0xfedcba9876543210;
int nLeaves = 6;
// word t = 0xfedcba9876543210;
// word t = 0xec64000000000000;
// word t = 0x0100200000000001;
// word t2[4] = { 0x0000800080008000, 0x8000000000008000, 0x8000000080008000, 0x0000000080008000 };
// word t = 0x07770FFF07770FFF;
// word t = 0x002000D000D00020;
// word t = 0x000F000E000F000F;
word t = 0xF7FFF7F7F7F7F7F7;
int nVars = 6;
int nLutLeaf = 4;
int nLutRoot = 4;
If_Grp_t G;
G = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
return;
If_CutPerformCheck07( (unsigned *)&t, 6, 6, NULL );
// return;
Kit_DsdPrintFromTruth( (unsigned*)&t, nVars ); printf( "\n" );
G = If_CluCheck( &t, nVars, nLutLeaf, nLutRoot );
If_CluPrintGroup( &G );
}
......
......@@ -127,8 +127,15 @@ void If_ManRestart( If_Man_t * p )
***********************************************************************/
void If_ManStop( If_Man_t * p )
{
if ( p->nCutsUseless && p->pPars->fVerbose )
Abc_Print( 1, "Useless cuts = %7d (out of %7d) (%6.2f %%)\n", p->nCutsUseless, p->nCutsTotal, 100.0*p->nCutsUseless/(p->nCutsTotal+1) );
// if ( p->nCutsUselessAll && p->pPars->fVerbose )
if ( p->nCutsUselessAll )
{
int i;
for ( i = 0; i <= 16; i++ )
if ( p->nCutsUseless[i] )
Abc_Print( 1, "Useless cuts %2d = %7d (out of %7d) (%6.2f %%)\n", i, p->nCutsUseless[i], p->nCutsCount[i], 100.0*p->nCutsUseless[i]/(p->nCutsCount[i]+1) );
Abc_Print( 1, "Useless cuts all = %7d (out of %7d) (%6.2f %%)\n", p->nCutsUselessAll, p->nCutsCountAll, 100.0*p->nCutsUselessAll/(p->nCutsCountAll+1) );
}
// Abc_PrintTime( 1, "Truth", p->timeTruth );
// Abc_Print( 1, "Small support = %d.\n", p->nSmallSupp );
Vec_IntFreeP( &p->vCoAttrs );
......
......@@ -153,9 +153,10 @@ void If_ObjPerformMappingAnd( If_Man_t * p, If_Obj_t * pObj, int Mode, int fPrep
if ( pCut->nLeaves > 0 )
{
// recompute the parameters of the best cut
if ( p->pPars->pLutStruct )
pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
else if ( p->pPars->fDelayOpt )
/// if ( p->pPars->pLutStruct )
/// pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
// else if ( p->pPars->fDelayOpt )
if ( p->pPars->fDelayOpt )
pCut->Delay = If_CutDelaySopCost( p, pCut );
else
pCut->Delay = If_CutDelay( p, pObj, pCut );
......@@ -205,9 +206,12 @@ void If_ObjPerformMappingAnd( If_Man_t * p, If_Obj_t * pObj, int Mode, int fPrep
pCut->fUseless = 0;
if ( p->pPars->pFuncCell && RetValue < 2 )
{
assert( pCut->nLimit >= 4 && pCut->nLimit <= 10 );
pCut->fUseless = !p->pPars->pFuncCell( If_CutTruth(pCut), pCut->nLimit, pCut->nLeaves );
p->nCutsUseless += pCut->fUseless;
assert( pCut->nLimit >= 4 && pCut->nLimit <= 16 );
pCut->fUseless = !p->pPars->pFuncCell( If_CutTruth(pCut), pCut->nLimit, pCut->nLeaves, p->pPars->pLutStruct );
p->nCutsUselessAll += pCut->fUseless;
p->nCutsUseless[pCut->nLeaves] += pCut->fUseless;
p->nCutsCountAll++;
p->nCutsCount[pCut->nLeaves]++;
}
}
......@@ -217,9 +221,10 @@ void If_ObjPerformMappingAnd( If_Man_t * p, If_Obj_t * pObj, int Mode, int fPrep
if ( pCut->Cost == IF_COST_MAX )
continue;
// check if the cut satisfies the required times
if ( p->pPars->pLutStruct )
pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
else if ( p->pPars->fDelayOpt )
/// if ( p->pPars->pLutStruct )
/// pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
// else if ( p->pPars->fDelayOpt )
if ( p->pPars->fDelayOpt )
pCut->Delay = If_CutDelaySopCost( p, pCut );
else
pCut->Delay = If_CutDelay( p, pObj, pCut );
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment