Commit d80ee832 by Alan Mishchenko

Version abc81027

parent d2b735f7
......@@ -129,7 +129,7 @@ alias chnewrs "st; haig_start; resyn2rs; haig_use"
alias stdsd "r test/6in.blif; st; ps; u; bdd; dsd -g; st; ps"
alias trec "rec_start; r c.blif; st; rec_add; rec_use"
alias trec4 "rec_start -K 4; r i10.blif; st; rec_add; rec_use"
alias bmc2 "frames -i -F 10; orpos; iprove"
alias bmcf "frames -i -F 10; orpos; iprove"
alias pjsolve "scl; dc2; fr; dc2; ic; ic -t; if -a; cs tacas/005_care.aig; mfs; lp; st; ic"
......
......@@ -431,6 +431,7 @@ void Aig_ManSetRegNum( Aig_Man_t * p, int nRegs )
p->nRegs = nRegs;
p->nTruePis = Aig_ManPiNum(p) - nRegs;
p->nTruePos = Aig_ManPoNum(p) - nRegs;
Aig_ManSetPioNumbers( p );
}
/**Function*************************************************************
......
......@@ -122,6 +122,7 @@ Vec_Int_t * Cnf_DataCollectPiSatNums( Cnf_Dat_t * pCnf, Aig_Man_t * p )
Cnf_Dat_t * Cnf_DataAlloc( Aig_Man_t * pAig, int nVars, int nClauses, int nLiterals )
{
Cnf_Dat_t * pCnf;
int i;
pCnf = ALLOC( Cnf_Dat_t, 1 );
memset( pCnf, 0, sizeof(Cnf_Dat_t) );
pCnf->pMan = pAig;
......@@ -132,7 +133,9 @@ Cnf_Dat_t * Cnf_DataAlloc( Aig_Man_t * pAig, int nVars, int nClauses, int nLiter
pCnf->pClauses[0] = ALLOC( int, nLiterals );
pCnf->pClauses[nClauses] = pCnf->pClauses[0] + nLiterals;
pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(pAig) );
memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(pAig) );
// memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(pAig) );
for ( i = 0; i < Aig_ManObjNumMax(pAig); i++ )
pCnf->pVarNums[i] = -1;
return pCnf;
}
......@@ -196,7 +199,7 @@ void Cnf_DataLift( Cnf_Dat_t * p, int nVarsPlus )
Aig_Obj_t * pObj;
int v;
Aig_ManForEachObj( p->pMan, pObj, v )
if ( p->pVarNums[pObj->Id] )
if ( p->pVarNums[pObj->Id] >= 0 )
p->pVarNums[pObj->Id] += nVarsPlus;
for ( v = 0; v < p->nLiterals; v++ )
p->pClauses[0][v] += 2*nVarsPlus;
......
......@@ -216,7 +216,9 @@ Cnf_Dat_t * Cnf_ManWriteCnf( Cnf_Man_t * p, Vec_Ptr_t * vMapped, int nOutputs )
// create room for variable numbers
pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(p->pManAig) );
memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p->pManAig) );
// memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p->pManAig) );
for ( i = 0; i < Aig_ManObjNumMax(p->pManAig); i++ )
pCnf->pVarNums[i] = -1;
// assign variables to the last (nOutputs) POs
Number = 1;
if ( nOutputs )
......@@ -365,7 +367,9 @@ Cnf_Dat_t * Cnf_DeriveSimple( Aig_Man_t * p, int nOutputs )
// create room for variable numbers
pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(p) );
memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p) );
// memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p) );
for ( i = 0; i < Aig_ManObjNumMax(p); i++ )
pCnf->pVarNums[i] = -1;
// assign variables to the last (nOutputs) POs
Number = 1;
if ( nOutputs )
......@@ -485,7 +489,9 @@ Cnf_Dat_t * Cnf_DeriveSimpleForRetiming( Aig_Man_t * p )
// create room for variable numbers
pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(p) );
memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p) );
// memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p) );
for ( i = 0; i < Aig_ManObjNumMax(p); i++ )
pCnf->pVarNums[i] = -1;
// assign variables to the last (nOutputs) POs
Number = 1;
Aig_ManForEachPo( p, pObj, i )
......
......@@ -80,6 +80,7 @@ static inline Aig_Obj_t * Saig_ObjLiToLo( Aig_Man_t * p, Aig_Obj_t * pObj ) {
/*=== saigBmc.c ==========================================================*/
extern int Saig_ManBmcSimple( Aig_Man_t * pAig, int nFrames, int nSizeMax, int nBTLimit, int fRewrite, int fVerbose, int * piFrame );
extern void Saig_BmcPerform( Aig_Man_t * pAig, int nFramesMax, int nNodesMax, int nConfMaxOne, int nConfMaxAll, int fVerbose );
/*=== saigCone.c ==========================================================*/
extern void Saig_ManPrintCones( Aig_Man_t * p );
/*=== saigDup.c ==========================================================*/
......
......@@ -28,100 +28,102 @@
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static inline Aig_Obj_t * Saig_ObjFrame( Aig_Obj_t ** ppMap, int nFrames, Aig_Obj_t * pObj, int i ) { return ppMap[nFrames*pObj->Id + i]; }
static inline void Saig_ObjSetFrame( Aig_Obj_t ** ppMap, int nFrames, Aig_Obj_t * pObj, int i, Aig_Obj_t * pNode ) { ppMap[nFrames*pObj->Id + i] = pNode; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create timeframes of the manager for BMC.]
Synopsis [Creates SAT solver for BMC.]
Description [The resulting manager is combinational. The only PO is
the output of the last frame.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManFramesBmcLast( Aig_Man_t * pAig, int nFrames, Aig_Obj_t *** pppMap )
sat_solver * Saig_AbsCreateSolver( Cnf_Dat_t * pCnf, int nFrames )
{
Aig_Man_t * pFrames;
Aig_Obj_t ** ppMap;
Aig_Obj_t * pObj, * pObjLi, * pObjLo, * pResult;
int i, f;
assert( Saig_ManRegNum(pAig) > 0 );
// start the mapping
ppMap = *pppMap = CALLOC( Aig_Obj_t *, Aig_ManObjNumMax(pAig) * nFrames );
// start the manager
pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
// create variables for register outputs
Saig_ManForEachLo( pAig, pObj, i )
sat_solver * pSat;
Vec_Int_t * vPoLits;
Aig_Obj_t * pObjPo, * pObjLi, * pObjLo;
int f, i, Lit, Lits[2], iVarOld, iVarNew;
// start array of output literals
vPoLits = Vec_IntAlloc( nFrames * Saig_ManPoNum(pCnf->pMan) );
// create the SAT solver
pSat = sat_solver_new();
sat_solver_store_alloc( pSat );
sat_solver_setnvars( pSat, pCnf->nVars * nFrames );
// add clauses for the timeframes
for ( f = 0; f < nFrames; f++ )
{
for ( i = 0; i < pCnf->nClauses; i++ )
{
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
{
// pObj->pData = Aig_ManConst0( pFrames );
pObj->pData = Aig_ObjCreatePi( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, pObj, 0, pObj->pData );
printf( "The BMC problem is trivially UNSAT.\n" );
sat_solver_delete( pSat );
Vec_IntFree( vPoLits );
return NULL;
}
// add timeframes
pResult = Aig_ManConst0(pFrames);
}
// remember output literal
Saig_ManForEachPo( pCnf->pMan, pObjPo, i )
Vec_IntPush( vPoLits, toLit(pCnf->pVarNums[pObjPo->Id]) );
// lift CNF to the next frame
Cnf_DataLift( pCnf, pCnf->nVars );
}
// put CNF back to the original level
Cnf_DataLift( pCnf, - pCnf->nVars * nFrames );
// add auxiliary clauses (output, connectors, initial)
// add output clause
if ( !sat_solver_addclause( pSat, Vec_IntArray(vPoLits), Vec_IntArray(vPoLits) + Vec_IntSize(vPoLits) ) )
assert( 0 );
Vec_IntFree( vPoLits );
// add connecting clauses
for ( f = 0; f < nFrames; f++ )
{
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, Aig_ManConst1(pAig), f, Aig_ManConst1(pAig)->pData );
// create PI nodes for this frame
Saig_ManForEachPi( pAig, pObj, i )
// connect to the previous timeframe
if ( f > 0 )
{
pObj->pData = Aig_ObjCreatePi( pFrames );
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
}
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
Saig_ManForEachLiLo( pCnf->pMan, pObjLi, pObjLo, i )
{
pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
iVarOld = pCnf->pVarNums[pObjLi->Id] - pCnf->nVars;
iVarNew = pCnf->pVarNums[pObjLo->Id];
// add clauses connecting existing variables
Lits[0] = toLitCond( iVarOld, 0 );
Lits[1] = toLitCond( iVarNew, 1 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
Lits[0] = toLitCond( iVarOld, 1 );
Lits[1] = toLitCond( iVarNew, 0 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
}
// OR the POs
Saig_ManForEachPo( pAig, pObj, i )
pResult = Aig_Or( pFrames, pResult, Aig_ObjChild0Copy(pObj) );
// create POs for this frame
if ( f == nFrames - 1 )
{
// Saig_ManForEachPo( pAig, pObj, i )
// {
// pObj->pData = Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
// Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
// }
break;
}
// save register inputs
Saig_ManForEachLi( pAig, pObj, i )
{
pObj->pData = Aig_ObjChild0Copy(pObj);
Saig_ObjSetFrame( ppMap, nFrames, pObj, f, pObj->pData );
// lift CNF to the next frame
Cnf_DataLift( pCnf, pCnf->nVars );
}
// transfer to register outputs
Saig_ManForEachLiLo( pAig, pObjLi, pObjLo, i )
// put CNF back to the original level
Cnf_DataLift( pCnf, - pCnf->nVars * nFrames );
// add unit clauses
Saig_ManForEachLo( pCnf->pMan, pObjLo, i )
{
pObjLo->pData = pObjLi->pData;
Saig_ObjSetFrame( ppMap, nFrames, pObjLo, f, pObjLo->pData );
}
assert( pCnf->pVarNums[pObjLo->Id] >= 0 );
Lit = toLitCond( pCnf->pVarNums[pObjLo->Id], 1 );
if ( !sat_solver_addclause( pSat, &Lit, &Lit+1 ) )
assert( 0 );
}
Aig_ObjCreatePo( pFrames, pResult );
Aig_ManCleanup( pFrames );
// remove mapping for the nodes that are no longer there
for ( i = 0; i < Aig_ManObjNumMax(pAig) * nFrames; i++ )
if ( ppMap[i] && Aig_ObjIsNone( Aig_Regular(ppMap[i]) ) )
ppMap[i] = NULL;
return pFrames;
sat_solver_store_mark_roots( pSat );
return pSat;
}
/**Function*************************************************************
Synopsis [Finds the set of variables involved in the UNSAT core.]
Synopsis [Finds the set of clauses involved in the UNSAT core.]
Description []
......@@ -130,88 +132,40 @@ Aig_Man_t * Saig_ManFramesBmcLast( Aig_Man_t * pAig, int nFrames, Aig_Obj_t ***
SeeAlso []
***********************************************************************/
int * Saig_ManFindUnsatVariables( Cnf_Dat_t * pCnf, int nRegs, int nConfMax, int fVerbose )
Vec_Int_t * Saig_AbsSolverUnsatCore( sat_solver * pSat, int nConfMax, int fVerbose )
{
Vec_Int_t * vCore;
void * pSatCnf;
Intp_Man_t * pManProof;
Aig_Obj_t * pObj;
sat_solver * pSat;
Vec_Int_t * vCore;
int * pClause1, * pClause2, * pLit, * pVars, iClause, nVars;
int i, Lit, RetValue;
// create the SAT solver
pSat = sat_solver_new();
sat_solver_store_alloc( pSat );
sat_solver_setnvars( pSat, pCnf->nVars );
for ( i = 0; i < pCnf->nClauses; i++ )
{
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
{
printf( "The BMC problem is trivially UNSAT.\n" );
sat_solver_delete( pSat );
return NULL;
}
}
Aig_ManForEachPi( pCnf->pMan, pObj, i )
{
if ( i == nRegs )
break;
assert( pCnf->pVarNums[pObj->Id] >= 0 );
Lit = toLitCond( pCnf->pVarNums[pObj->Id], 1 );
if ( !sat_solver_addclause( pSat, &Lit, &Lit+1 ) )
assert( 0 );
}
sat_solver_store_mark_roots( pSat );
int RetValue;
// solve the problem
RetValue = sat_solver_solve( pSat, NULL, NULL, (sint64)nConfMax, (sint64)0, (sint64)0, (sint64)0 );
if ( RetValue == l_Undef )
{
printf( "Conflict limit is reached.\n" );
sat_solver_delete( pSat );
return NULL;
}
if ( RetValue == l_True )
{
printf( "The BMC problem is SAT.\n" );
sat_solver_delete( pSat );
return NULL;
}
if ( fVerbose )
printf( "SAT solver returned UNSAT after %d conflicts.\n", pSat->stats.conflicts );
assert( RetValue == l_False );
pSatCnf = sat_solver_store_release( pSat );
sat_solver_delete( pSat );
// derive the UNSAT core
pManProof = Intp_ManAlloc();
vCore = Intp_ManUnsatCore( pManProof, pSatCnf, fVerbose );
Intp_ManFree( pManProof );
Sto_ManFree( pSatCnf );
// derive the set of variables on which the core depends
// collect the variable numbers
nVars = 0;
pVars = ALLOC( int, pCnf->nVars );
memset( pVars, 0, sizeof(int) * pCnf->nVars );
Vec_IntForEachEntry( vCore, iClause, i )
{
pClause1 = pCnf->pClauses[iClause];
pClause2 = pCnf->pClauses[iClause+1];
for ( pLit = pClause1; pLit < pClause2; pLit++ )
{
if ( pVars[ (*pLit) >> 1 ] == 0 )
nVars++;
pVars[ (*pLit) >> 1 ] = 1;
if ( fVerbose )
printf( "%s%d ", ((*pLit) & 1)? "-" : "+", (*pLit) >> 1 );
}
if ( fVerbose )
printf( "\n" );
}
Vec_IntFree( vCore );
return pVars;
return vCore;
}
/**Function*************************************************************
Synopsis [Labels nodes with the given CNF variable.]
Synopsis [Performs proof-based abstraction using BMC of the given depth.]
Description []
......@@ -220,15 +174,44 @@ int * Saig_ManFindUnsatVariables( Cnf_Dat_t * pCnf, int nRegs, int nConfMax, int
SeeAlso []
***********************************************************************/
void Saig_ManMarkIntoPresentVars_rec( Aig_Obj_t * pObj, Cnf_Dat_t * pCnf, int iVar )
Vec_Int_t * Saig_AbsCollectRegisters( Cnf_Dat_t * pCnf, int nFrames, Vec_Int_t * vCore )
{
int iVarThis = pCnf->pVarNums[pObj->Id];
if ( iVarThis >= 0 && iVarThis != iVar )
return;
assert( Aig_ObjIsNode(pObj) );
Saig_ManMarkIntoPresentVars_rec( Aig_ObjFanin0(pObj), pCnf, iVar );
Saig_ManMarkIntoPresentVars_rec( Aig_ObjFanin1(pObj), pCnf, iVar );
pCnf->pVarNums[pObj->Id] = iVar;
Aig_Obj_t * pObj;
Vec_Int_t * vFlops;
int * pVars, * pFlops;
int i, iClause, iReg, * piLit;
// mark register variables
pVars = ALLOC( int, pCnf->nVars );
for ( i = 0; i < pCnf->nVars; i++ )
pVars[i] = -1;
Saig_ManForEachLi( pCnf->pMan, pObj, i )
pVars[ pCnf->pVarNums[pObj->Id] ] = i;
Saig_ManForEachLo( pCnf->pMan, pObj, i )
pVars[ pCnf->pVarNums[pObj->Id] ] = i;
// mark used registers
pFlops = CALLOC( int, Aig_ManRegNum(pCnf->pMan) );
Vec_IntForEachEntry( vCore, iClause, i )
{
// skip auxiliary clauses
if ( iClause >= pCnf->nClauses * nFrames )
continue;
// consider the clause
iClause = iClause % pCnf->nClauses;
for ( piLit = pCnf->pClauses[iClause]; piLit < pCnf->pClauses[iClause+1]; piLit++ )
{
iReg = pVars[ lit_var(*piLit) ];
if ( iReg >= 0 )
pFlops[iReg] = 1;
}
}
// collect registers
vFlops = Vec_IntAlloc( Aig_ManRegNum(pCnf->pMan) );
for ( i = 0; i < Aig_ManRegNum(pCnf->pMan); i++ )
if ( pFlops[i] )
Vec_IntPush( vFlops, i );
free( pFlops );
free( pVars );
return vFlops;
}
/**Function*************************************************************
......@@ -244,65 +227,32 @@ void Saig_ManMarkIntoPresentVars_rec( Aig_Obj_t * pObj, Cnf_Dat_t * pCnf, int iV
***********************************************************************/
Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax, int fVerbose )
{
Aig_Man_t * pResult;
Cnf_Dat_t * pCnf;
sat_solver * pSat;
Vec_Int_t * vCore;
Vec_Int_t * vFlops;
Aig_Man_t * pFrames, * pResult;
Aig_Obj_t ** ppAigToFrames;
Aig_Obj_t * pObj, * pObjFrame;
int f, i, * pUnsatCoreVars, clk = clock();
assert( Saig_ManPoNum(p) == 1 );
int clk = clock();
assert( Aig_ManRegNum(p) > 0 );
Aig_ManSetPioNumbers( p );
if ( fVerbose )
printf( "Performing proof-based abstraction with %d frames and %d max conflicts.\n", nFrames, nConfMax );
// create the timeframes
pFrames = Saig_ManFramesBmcLast( p, nFrames, &ppAigToFrames );
printf( "AIG nodes = %d. Frames = %d.\n", Aig_ManNodeNum(p), Aig_ManNodeNum(pFrames) );
// convert them into CNF
// pCnf = Cnf_Derive( pFrames, 0 );
pCnf = Cnf_DeriveSimple( pFrames, 0 );
// collect CNF variables involved in UNSAT core
pUnsatCoreVars = Saig_ManFindUnsatVariables( pCnf, Saig_ManRegNum(p), nConfMax, 0 );
if ( pUnsatCoreVars == NULL )
// create CNF for the AIG
pCnf = Cnf_DeriveSimple( p, Aig_ManPoNum(p) );
// create SAT solver for the unrolled AIG
pSat = Saig_AbsCreateSolver( pCnf, nFrames );
// compute UNSAT core
vCore = Saig_AbsSolverUnsatCore( pSat, nConfMax, fVerbose );
sat_solver_delete( pSat );
if ( vCore == NULL )
{
Aig_ManStop( pFrames );
Cnf_DataFree( pCnf );
return NULL;
}
if ( fVerbose )
{
int Counter = 0;
for ( i = 0; i < pCnf->nVars; i++ )
Counter += pUnsatCoreVars[i];
printf( "The number of variables in the UNSAT core is %d (out of %d).\n", Counter, pCnf->nVars );
}
// map other nodes into existing CNF variables
Aig_ManForEachNode( pFrames, pObj, i )
if ( pCnf->pVarNums[pObj->Id] >= 0 )
Saig_ManMarkIntoPresentVars_rec( pObj, pCnf, pCnf->pVarNums[pObj->Id] );
// collect relevant registers
for ( f = 0; f < nFrames; f++ )
{
Saig_ManForEachLo( p, pObj, i )
{
pObjFrame = Saig_ObjFrame( ppAigToFrames, nFrames, pObj, f );
if ( pObjFrame == NULL )
continue;
pObjFrame = Aig_Regular(pObjFrame);
if ( Aig_ObjIsConst1( pObjFrame ) )
continue;
assert( pCnf->pVarNums[pObjFrame->Id] >= 0 );
if ( pUnsatCoreVars[ pCnf->pVarNums[pObjFrame->Id] ] )
pObj->fMarkA = 1;
}
}
// collect the flops
vFlops = Vec_IntAlloc( 1000 );
Saig_ManForEachLo( p, pObj, i )
if ( pObj->fMarkA )
{
pObj->fMarkA = 0;
Vec_IntPush( vFlops, i );
}
// collect registers
vFlops = Saig_AbsCollectRegisters( pCnf, nFrames, vCore );
Cnf_DataFree( pCnf );
Vec_IntFree( vCore );
if ( fVerbose )
{
printf( "The number of relevant registers is %d (out of %d).\n", Vec_IntSize(vFlops), Aig_ManRegNum(p) );
......@@ -310,14 +260,8 @@ Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax,
}
// create the resulting AIG
pResult = Saig_ManAbstraction( p, vFlops );
// cleanup
Aig_ManStop( pFrames );
Cnf_DataFree( pCnf );
free( ppAigToFrames );
free( pUnsatCoreVars );
Vec_IntFree( vFlops );
return pResult;
}
......
......@@ -21,6 +21,7 @@
#include "saig.h"
#include "cnf.h"
#include "satStore.h"
#include "ssw.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
......@@ -33,9 +34,9 @@ struct Saig_Bmc_t_
{
// parameters
int nFramesMax; // the max number of timeframes to consider
int nNodesMax; // the max number of nodes to add
int nConfMaxOne; // the max number of conflicts at a target
int nConfMaxAll; // the max number of conflicts for all targets
int nNodesMax; // the max number of nodes to add
int fVerbose; // enables verbose output
// AIG managers
Aig_Man_t * pAig; // the user's AIG manager
......@@ -46,11 +47,14 @@ struct Saig_Bmc_t_
Vec_Ptr_t * vAig2Frm; // mapping of AIG nodees into Frames nodes
// SAT solver
sat_solver * pSat; // SAT solver
Vec_Int_t * vObj2Var; // mapping of frames objects in CNF variables
int nSatVars; // the number of used SAT variables
Vec_Int_t * vObj2Var; // mapping of frames objects in CNF variables
// subproblems
Vec_Ptr_t * vTargets; // targets to be solved in this interval
int iFramelast; // last frame
int iFrameLast; // last frame
int iOutputLast; // last output
int iFrameFail; // failed frame
int iOutputFail; // failed output
};
static inline int Saig_BmcSatNum( Saig_Bmc_t * p, Aig_Obj_t * pObj ) { return Vec_IntGetEntry( p->vObj2Var, pObj->Id ); }
......@@ -77,7 +81,7 @@ static inline Aig_Obj_t * Saig_BmcObjChild1( Saig_Bmc_t * p, Aig_Obj_t * pObj, i
SeeAlso []
***********************************************************************/
Saig_Bmc_t * Saig_BmcManStart( Aig_Man_t * pAig, int nConfMaxOne, int nConfMaxAll, int nNodesMax, int fVerbose )
Saig_Bmc_t * Saig_BmcManStart( Aig_Man_t * pAig, int nFramesMax, int nNodesMax, int nConfMaxOne, int nConfMaxAll, int fVerbose )
{
Saig_Bmc_t * p;
Aig_Obj_t * pObj;
......@@ -86,10 +90,10 @@ Saig_Bmc_t * Saig_BmcManStart( Aig_Man_t * pAig, int nConfMaxOne, int nConfMaxAl
p = (Saig_Bmc_t *)malloc( sizeof(Saig_Bmc_t) );
memset( p, 0, sizeof(Saig_Bmc_t) );
// set parameters
p->nFramesMax = 1000000;
p->nFramesMax = nFramesMax;
p->nNodesMax = nNodesMax;
p->nConfMaxOne = nConfMaxOne;
p->nConfMaxAll = nConfMaxAll;
p->nNodesMax = nNodesMax;
p->fVerbose = fVerbose;
p->pAig = pAig;
p->nObjs = Aig_ManObjNumMax(pAig);
......@@ -103,15 +107,17 @@ Saig_Bmc_t * Saig_BmcManStart( Aig_Man_t * pAig, int nConfMaxOne, int nConfMaxAl
Saig_ManForEachLo( pAig, pObj, i )
Saig_BmcObjSetFrame( p, pObj, 0, Aig_ManConst0(p->pFrm) );
// create SAT solver
p->nSatVars = 1;
p->pSat = sat_solver_new();
sat_solver_setnvars( p->pSat, 2000 );
p->nSatVars = 1;
Lit = toLit( p->nSatVars );
sat_solver_addclause( p->pSat, &Lit, &Lit + 1 );
Saig_BmcSetSatNum( p, Aig_ManConst1(p->pFrm), p->nSatVars++ );
// other data structures
p->vTargets = Vec_PtrAlloc( 0 );
p->vVisited = Vec_PtrAlloc( 0 );
p->iOutputFail = -1;
p->iFrameFail = -1;
return p;
}
......@@ -174,15 +180,15 @@ Aig_Obj_t * Saig_BmcIntervalExplore_rec( Saig_Bmc_t * p, Aig_Obj_t * pObj, int i
p1 = Saig_BmcObjChild1( p, pObj, i );
if ( p0 == Aig_Not(p1) )
pRes = Aig_Not(pConst1);
pRes = Aig_ManConst0(p->pFrm);
else if ( Aig_Regular(p0) == pConst1 )
pRes = (p0 == pConst1) ? p1 : Aig_Not(pConst1);
pRes = (p0 == pConst1) ? p1 : Aig_ManConst0(p->pFrm);
else if ( Aig_Regular(p1) == pConst1 )
pRes = (p1 == pConst1) ? p0 : Aig_Not(pConst1);
pRes = (p1 == pConst1) ? p0 : Aig_ManConst0(p->pFrm);
else
pRes = AIG_VISITED;
if ( pRes != pConst1 && pRes != Aig_Not(pConst1) )
if ( pRes != AIG_VISITED && !Aig_ObjIsConst1(Aig_Regular(pRes)) )
pRes = AIG_VISITED;
}
Saig_BmcObjSetFrame( p, pObj, i, pRes );
......@@ -222,6 +228,7 @@ Aig_Obj_t * Saig_BmcIntervalConstruct_rec( Saig_Bmc_t * p, Aig_Obj_t * pObj, int
Saig_BmcIntervalConstruct_rec( p, Aig_ObjFanin1(pObj), i );
pRes = Aig_And( p->pFrm, Saig_BmcObjChild0(p, pObj, i), Saig_BmcObjChild1(p, pObj, i) );
}
assert( pRes != AIG_VISITED );
Saig_BmcObjSetFrame( p, pObj, i, pRes );
return pRes;
}
......@@ -239,23 +246,30 @@ Aig_Obj_t * Saig_BmcIntervalConstruct_rec( Saig_Bmc_t * p, Aig_Obj_t * pObj, int
***********************************************************************/
void Saig_BmcInterval( Saig_Bmc_t * p )
{
Aig_Obj_t * pTarget, * pObj;
int i, nNodes = Aig_ManNodeNum( p->pFrm );
Aig_Obj_t * pTarget;
// Aig_Obj_t * pObj;
// int i;
int nNodes = Aig_ManObjNum( p->pFrm );
Vec_PtrClear( p->vTargets );
for ( ; p->iFramelast < p->nFramesMax; p->iFramelast++, p->iOutputLast = 0 )
for ( ; p->iFrameLast < p->nFramesMax; p->iFrameLast++, p->iOutputLast = 0 )
{
if ( p->iOutputLast == 0 )
{
Saig_BmcObjSetFrame( p, Aig_ManConst1(p->pAig), p->iFramelast, Aig_ManConst1(p->pFrm) );
Saig_ManForEachPi( p->pAig, pObj, i )
Saig_BmcObjSetFrame( p, pObj, p->iFramelast, Aig_ObjCreatePi(p->pFrm) );
Saig_BmcObjSetFrame( p, Aig_ManConst1(p->pAig), p->iFrameLast, Aig_ManConst1(p->pFrm) );
// Saig_ManForEachPi( p->pAig, pObj, i )
// Saig_BmcObjSetFrame( p, pObj, p->iFrameLast, Aig_ObjCreatePi(p->pFrm) );
}
for ( ; p->iOutputLast < Saig_ManPoNum(p->pAig); p->iOutputLast++ )
{
if ( Aig_ManNodeNum(p->pFrm) >= nNodes + p->nNodesMax )
if ( Aig_ManObjNum(p->pFrm) >= nNodes + p->nNodesMax )
return;
Saig_BmcIntervalExplore_rec( p, Aig_ManPo(p->pAig, p->iOutputLast), p->nFramesMax );
pTarget = Saig_BmcIntervalConstruct_rec( p, Aig_ManPo(p->pAig, p->iOutputLast), p->nFramesMax );
Saig_BmcIntervalExplore_rec( p, Aig_ManPo(p->pAig, p->iOutputLast), p->iFrameLast );
pTarget = Saig_BmcIntervalConstruct_rec( p, Aig_ManPo(p->pAig, p->iOutputLast), p->iFrameLast );
/////////
// if ( Aig_ObjIsConst1(Aig_Regular(pTarget)) )
// continue;
Vec_PtrPush( p->vTargets, pTarget );
}
}
......@@ -281,6 +295,7 @@ Aig_Obj_t * Saig_BmcIntervalToAig_rec( Saig_Bmc_t * p, Aig_Man_t * pNew, Aig_Obj
return pObj->pData = Aig_ObjCreatePi(pNew);
Saig_BmcIntervalToAig_rec( p, pNew, Aig_ObjFanin0(pObj) );
Saig_BmcIntervalToAig_rec( p, pNew, Aig_ObjFanin1(pObj) );
assert( pObj->pData == NULL );
return pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
}
......@@ -300,13 +315,18 @@ Aig_Man_t * Saig_BmcIntervalToAig( Saig_Bmc_t * p )
Aig_Man_t * pNew;
Aig_Obj_t * pObj, * pObjNew;
int i;
Aig_ManForEachObj( p->pFrm, pObj, i )
assert( pObj->pData == NULL );
pNew = Aig_ManStart( p->nNodesMax );
Aig_ManConst1(p->pFrm)->pData = Aig_ManConst1(pNew);
Vec_PtrClear( p->vVisited );
Vec_PtrPush( p->vVisited, Aig_ManConst1(p->pFrm) );
Vec_PtrForEachEntry( p->vTargets, pObj, i )
{
// assert( !Aig_ObjIsConst1(Aig_Regular(pObj)) );
pObjNew = Saig_BmcIntervalToAig_rec( p, pNew, Aig_Regular(pObj) );
assert( !Aig_IsComplement(pObjNew) );
Aig_ObjCreatePo( pNew, pObjNew );
}
return pNew;
......@@ -329,11 +349,13 @@ void Saig_BmcLoadCnf( Saig_Bmc_t * p, Cnf_Dat_t * pCnf )
int i, Lits[2], VarNumOld, VarNumNew;
Vec_PtrForEachEntry( p->vVisited, pObj, i )
{
// get the new variable of this node
pObjNew = pObj->pData;
pObj->pData = NULL;
VarNumNew = pCnf->pVarNums[ pObjNew->Id ];
if ( VarNumNew == -1 )
continue;
// get the old variable of this node
VarNumOld = Saig_BmcSatNum( p, pObj );
if ( VarNumOld == 0 )
{
......@@ -369,11 +391,88 @@ void Saig_BmcLoadCnf( Saig_Bmc_t * p, Cnf_Dat_t * pCnf )
SeeAlso []
***********************************************************************/
void Saig_BmcDeriveFailed( Saig_Bmc_t * p, int iTargetFail )
{
int k;
p->iOutputFail = p->iOutputLast;
p->iFrameFail = p->iFrameLast;
for ( k = Vec_PtrSize(p->vTargets); k > iTargetFail; k-- )
{
if ( p->iOutputFail == 0 )
{
p->iOutputFail = Saig_ManPoNum(p->pAig);
p->iFrameFail--;
}
p->iOutputFail--;
}
}
/**Function*************************************************************
Synopsis [Solves targets with the given resource limit.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ssw_Cex_t * Saig_BmcGenerateCounterExample( Saig_Bmc_t * p )
{
Ssw_Cex_t * pCex;
Aig_Obj_t * pObj, * pObjFrm;
int i, f, iVarNum;
// start the counter-example
pCex = Ssw_SmlAllocCounterExample( Aig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), p->iFrameFail+1 );
pCex->iFrame = p->iFrameFail;
pCex->iPo = p->iOutputFail;
// copy the bit data
for ( f = 0; f <= p->iFrameFail; f++ )
{
Saig_ManForEachPi( p->pAig, pObj, i )
{
pObjFrm = Saig_BmcObjFrame( p, pObj, f );
if ( pObjFrm == NULL )
continue;
iVarNum = Saig_BmcSatNum( p, pObjFrm );
if ( iVarNum == 0 )
continue;
if ( sat_solver_var_value( p->pSat, iVarNum ) )
Aig_InfoSetBit( pCex->pData, pCex->nRegs + Saig_ManPiNum(p->pAig) * f + i );
}
}
// verify the counter example
if ( !Ssw_SmlRunCounterExample( p->pAig, pCex ) )
{
printf( "Saig_BmcGenerateCounterExample(): Counter-example is invalid.\n" );
Ssw_SmlFreeCounterExample( pCex );
pCex = NULL;
}
return pCex;
}
/**Function*************************************************************
Synopsis [Solves targets with the given resource limit.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Saig_BmcSolveTargets( Saig_Bmc_t * p )
{
Aig_Obj_t * pObj;
int i, VarNum, Lit, RetValue;
assert( Vec_PtrSize(p->vTargets) > 0 );
if ( p->pSat->qtail != p->pSat->qhead )
{
RetValue = sat_solver_simplify(p->pSat);
assert( RetValue != 0 );
}
Vec_PtrForEachEntry( p->vTargets, pObj, i )
{
if ( p->pSat->stats.conflicts > p->nConfMaxAll )
......@@ -386,6 +485,8 @@ int Saig_BmcSolveTargets( Saig_Bmc_t * p )
if ( RetValue == l_Undef ) // undecided
return l_Undef;
// generate counter-example
Saig_BmcDeriveFailed( p, i );
p->pAig->pSeqModel = Saig_BmcGenerateCounterExample( p );
return l_True;
}
return l_False;
......@@ -393,6 +494,28 @@ int Saig_BmcSolveTargets( Saig_Bmc_t * p )
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Saig_BmcAddTargetsAsPos( Saig_Bmc_t * p )
{
Aig_Obj_t * pObj;
int i;
Vec_PtrForEachEntry( p->vTargets, pObj, i )
Aig_ObjCreatePo( p->pFrm, pObj );
Aig_ManPrintStats( p->pFrm );
Aig_ManCleanup( p->pFrm );
Aig_ManPrintStats( p->pFrm );
}
/**Function*************************************************************
Synopsis [Performs BMC with the given parameters.]
Description []
......@@ -402,17 +525,27 @@ int Saig_BmcSolveTargets( Saig_Bmc_t * p )
SeeAlso []
***********************************************************************/
void Saig_BmcPerform( Aig_Man_t * pAig, int nConfMaxOne, int nConfMaxAll, int nNodesMax, int fVerbose )
void Saig_BmcPerform( Aig_Man_t * pAig, int nFramesMax, int nNodesMax, int nConfMaxOne, int nConfMaxAll, int fVerbose )
{
Saig_Bmc_t * p;
Aig_Man_t * pNew;
Cnf_Dat_t * pCnf;
int RetValue, clk = clock();
p = Saig_BmcManStart( pAig, nConfMaxOne, nConfMaxAll, nNodesMax, fVerbose );
while ( 1 )
int Iter, RetValue, clk = clock(), clk2;
p = Saig_BmcManStart( pAig, nFramesMax, nNodesMax, nConfMaxOne, nConfMaxAll, fVerbose );
if ( fVerbose )
{
printf( "AIG: PI/PO/Reg = %d/%d/%d. Node = %6d. Lev = %5d.\n",
Saig_ManPiNum(pAig), Saig_ManPoNum(pAig), Saig_ManRegNum(pAig),
Aig_ManNodeNum(pAig), Aig_ManLevelNum(pAig) );
printf( "Params: FramesMax = %d. NodesDelta = %d. ConfMaxOne = %d. ConfMaxAll = %d.\n",
nFramesMax, nNodesMax, nConfMaxOne, nConfMaxAll );
}
for ( Iter = 0; ; Iter++ )
{
// add new logic slice to frames
clk2 = clock();
// add new logic interval to frames
Saig_BmcInterval( p );
// Saig_BmcAddTargetsAsPos( p );
if ( Vec_PtrSize(p->vTargets) == 0 )
break;
// convert logic slice into new AIG
......@@ -427,20 +560,30 @@ void Saig_BmcPerform( Aig_Man_t * pAig, int nConfMaxOne, int nConfMaxAll, int nN
Aig_ManStop( pNew );
// solve the targets
RetValue = Saig_BmcSolveTargets( p );
if ( fVerbose )
{
printf( "%3d : F = %3d. O = %3d. And = %7d. Var = %7d. Conf = %7d. ",
Iter, p->iFrameLast, p->iOutputLast, Aig_ManNodeNum(p->pFrm), p->nSatVars, (int)p->pSat->stats.conflicts );
PRT( "Time", clock() - clk2 );
}
if ( RetValue != l_False )
break;
}
if ( RetValue == l_True )
printf( "BMC failed for output %d in frame %d. ", p->iOutputLast, p->iFramelast );
printf( "Output %d was asserted in frame %d (use \"write_counter\" to dump a witness). ",
p->iOutputFail, p->iFrameFail );
else // if ( RetValue == l_False || RetValue == l_Undef )
printf( "BMC completed for %d timeframes. ", p->iFramelast );
printf( "No output was asserted in %d frames. ", p->iFrameLast );
PRT( "Time", clock() - clk );
if ( p->iFramelast >= p->nFramesMax )
if ( RetValue != l_True )
{
if ( p->iFrameLast >= p->nFramesMax )
printf( "Reached limit on the number of timeframes (%d).\n", p->nFramesMax );
else if ( p->pSat->stats.conflicts > p->nConfMaxAll )
printf( "Reached global conflict limit (%d).\n", p->nConfMaxAll );
else
printf( "Reached local conflict limit (%d).\n", p->nConfMaxOne );
}
Saig_BmcManStop( p );
}
......
......@@ -108,12 +108,11 @@ Aig_Man_t * Saig_ManAbstraction( Aig_Man_t * pAig, Vec_Int_t * vFlops )
pObj->fMarkA = 0;
pObj->pData = Aig_ObjCreatePi( pAigNew );
}
// add internal nodes of this frame
// add internal nodes
Aig_ManForEachNode( pAig, pObj, i )
pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// create POs
Aig_ManForEachPo( pAig, pObj, i )
if ( !pObj->fMarkA )
Saig_ManForEachPo( pAig, pObj, i )
Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );
// create LIs
Aig_ManForEachPo( pAig, pObj, i )
......@@ -122,8 +121,8 @@ Aig_Man_t * Saig_ManAbstraction( Aig_Man_t * pAig, Vec_Int_t * vFlops )
pObj->fMarkA = 0;
Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );
}
Aig_ManCleanup( pAigNew );
Aig_ManSetRegNum( pAigNew, Vec_IntSize(vFlops) );
Aig_ManSeqCleanup( pAigNew );
return pAigNew;
}
......
......@@ -212,10 +212,13 @@ static int Abc_CommandProve ( Abc_Frame_t * pAbc, int argc, char ** arg
static int Abc_CommandIProve ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandDebug ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmc ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmc2 ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmcInter ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandIndcut ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandEnlarge ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandInduction ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandPBAbstraction ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTraceStart ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTraceCheck ( Abc_Frame_t * pAbc, int argc, char ** argv );
......@@ -480,10 +483,12 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Verification", "iprove", Abc_CommandIProve, 1 );
Cmd_CommandAdd( pAbc, "Verification", "debug", Abc_CommandDebug, 0 );
Cmd_CommandAdd( pAbc, "Verification", "bmc", Abc_CommandBmc, 0 );
Cmd_CommandAdd( pAbc, "Verification", "bmc2", Abc_CommandBmc2, 0 );
Cmd_CommandAdd( pAbc, "Verification", "int", Abc_CommandBmcInter, 0 );
Cmd_CommandAdd( pAbc, "Verification", "indcut", Abc_CommandIndcut, 0 );
Cmd_CommandAdd( pAbc, "Verification", "enlarge", Abc_CommandEnlarge, 1 );
Cmd_CommandAdd( pAbc, "Verification", "ind", Abc_CommandInduction, 0 );
Cmd_CommandAdd( pAbc, "Verification", "abs", Abc_CommandPBAbstraction, 0 );
Cmd_CommandAdd( pAbc, "ABC8", "*r", Abc_CommandAbc8Read, 0 );
......@@ -7936,7 +7941,7 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
*/
/*
pNtkRes = Abc_NtkDarTestNtk( pNtk );
if ( pNtkRes == NULL )
{
......@@ -7945,9 +7950,9 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
}
// replace the current network
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
*/
Abc_NtkDarTest( pNtk );
// Abc_NtkDarTest( pNtk );
return 0;
usage:
......@@ -16072,11 +16077,13 @@ int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv )
int nFrames;
int nSizeMax;
int nBTLimit;
int nBTLimitAll;
int nNodeDelta;
int fRewrite;
int fNewAlgo;
int fVerbose;
extern int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nBTLimit, int fRewrite, int fNewAlgo, int fVerbose );
extern int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nNodeDelta, int nBTLimit, int nBTLimitAll, int fRewrite, int fNewAlgo, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
......@@ -16086,11 +16093,13 @@ int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv )
nFrames = 20;
nSizeMax = 100000;
nBTLimit = 10000;
nBTLimitAll = 10000000;
nNodeDelta = 1000;
fRewrite = 0;
fNewAlgo = 1;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "FNCravh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "FNCGDrvh" ) ) != EOF )
{
switch ( c )
{
......@@ -16127,6 +16136,28 @@ int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv )
if ( nBTLimit < 0 )
goto usage;
break;
case 'G':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-G\" should be followed by an integer.\n" );
goto usage;
}
nBTLimitAll = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nBTLimitAll < 0 )
goto usage;
break;
case 'D':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-D\" should be followed by an integer.\n" );
goto usage;
}
nNodeDelta = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nNodeDelta < 0 )
goto usage;
break;
case 'r':
fRewrite ^= 1;
break;
......@@ -16157,17 +16188,169 @@ int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv )
fprintf( stdout, "Does not work for combinational networks.\n" );
return 0;
}
Abc_NtkDarBmc( pNtk, nFrames, nSizeMax, nBTLimit, fRewrite, fNewAlgo, fVerbose );
Abc_NtkDarBmc( pNtk, nFrames, nSizeMax, nNodeDelta, nBTLimit, nBTLimitAll, fRewrite, fNewAlgo, fVerbose );
return 0;
usage:
fprintf( pErr, "usage: bmc [-FNC num] [-ravh]\n" );
fprintf( pErr, "\t perform bounded model checking\n" );
// fprintf( pErr, "usage: bmc [-FNCGD num] [-ravh]\n" );
fprintf( pErr, "usage: bmc [-FNC num] [-rvh]\n" );
fprintf( pErr, "\t performs bounded model checking with static unrolling\n" );
fprintf( pErr, "\t-F num : the number of time frames [default = %d]\n", nFrames );
fprintf( pErr, "\t-N num : the max number of nodes in the frames [default = %d]\n", nSizeMax );
fprintf( pErr, "\t-C num : the max number of conflicts at a node [default = %d]\n", nBTLimit );
// fprintf( pErr, "\t-G num : the max number of conflicts globally [default = %d]\n", nBTLimitAll );
// fprintf( pErr, "\t-D num : the delta in the number of nodes [default = %d]\n", nNodeDelta );
fprintf( pErr, "\t-r : toggle the use of rewriting [default = %s]\n", fRewrite? "yes": "no" );
fprintf( pErr, "\t-a : toggle SAT sweeping and SAT solving [default = %s]\n", fNewAlgo? "SAT solving": "SAT sweeping" );
// fprintf( pErr, "\t-a : toggle SAT sweeping and SAT solving [default = %s]\n", fNewAlgo? "SAT solving": "SAT sweeping" );
fprintf( pErr, "\t-v : toggle verbose output [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandBmc2( Abc_Frame_t * pAbc, int argc, char ** argv )
{
FILE * pOut, * pErr;
Abc_Ntk_t * pNtk;
int c;
int nFrames;
int nSizeMax;
int nBTLimit;
int nBTLimitAll;
int nNodeDelta;
int fRewrite;
int fNewAlgo;
int fVerbose;
extern int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nNodeDelta, int nBTLimit, int nBTLimitAll, int fRewrite, int fNewAlgo, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
// set defaults
nFrames = 1000;
nSizeMax = 200000;
nBTLimit = 10000;
nBTLimitAll = 10000000;
nNodeDelta = 1000;
fRewrite = 0;
fNewAlgo = 0;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "FNCGDrvh" ) ) != EOF )
{
switch ( c )
{
case 'F':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-F\" should be followed by an integer.\n" );
goto usage;
}
nFrames = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nFrames < 0 )
goto usage;
break;
case 'N':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-N\" should be followed by an integer.\n" );
goto usage;
}
nSizeMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nSizeMax < 0 )
goto usage;
break;
case 'C':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-C\" should be followed by an integer.\n" );
goto usage;
}
nBTLimit = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nBTLimit < 0 )
goto usage;
break;
case 'G':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-G\" should be followed by an integer.\n" );
goto usage;
}
nBTLimitAll = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nBTLimitAll < 0 )
goto usage;
break;
case 'D':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-D\" should be followed by an integer.\n" );
goto usage;
}
nNodeDelta = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nNodeDelta < 0 )
goto usage;
break;
case 'r':
fRewrite ^= 1;
break;
case 'a':
fNewAlgo ^= 1;
break;
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
if ( pNtk == NULL )
{
fprintf( pErr, "Empty network.\n" );
return 1;
}
if ( !Abc_NtkIsStrash(pNtk) )
{
fprintf( stdout, "Currently only works for structurally hashed circuits.\n" );
return 0;
}
if ( Abc_NtkLatchNum(pNtk) == 0 )
{
fprintf( stdout, "Does not work for combinational networks.\n" );
return 0;
}
Abc_NtkDarBmc( pNtk, nFrames, nSizeMax, nNodeDelta, nBTLimit, nBTLimitAll, fRewrite, fNewAlgo, fVerbose );
return 0;
usage:
// fprintf( pErr, "usage: bmc2 [-FNCGD num] [-ravh]\n" );
fprintf( pErr, "usage: bmc2 [-FCGD num] [-vh]\n" );
fprintf( pErr, "\t performs bounded model checking with dynamic unrolling\n" );
fprintf( pErr, "\t-F num : the max number of time frames [default = %d]\n", nFrames );
// fprintf( pErr, "\t-N num : the max number of nodes in the frames [default = %d]\n", nSizeMax );
fprintf( pErr, "\t-C num : the max number of conflicts at a node [default = %d]\n", nBTLimit );
fprintf( pErr, "\t-G num : the max number of conflicts globally [default = %d]\n", nBTLimitAll );
fprintf( pErr, "\t-D num : the delta in the number of nodes [default = %d]\n", nNodeDelta );
// fprintf( pErr, "\t-r : toggle the use of rewriting [default = %s]\n", fRewrite? "yes": "no" );
// fprintf( pErr, "\t-a : toggle SAT sweeping and SAT solving [default = %s]\n", fNewAlgo? "SAT solving": "SAT sweeping" );
fprintf( pErr, "\t-v : toggle verbose output [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
......@@ -16616,7 +16799,7 @@ int Abc_CommandInduction( Abc_Frame_t * pAbc, int argc, char ** argv )
int nConfMax;
int fVerbose;
int c;
extern void Abc_NtkDarLocalize( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose );
extern void Abc_NtkDarInduction( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
......@@ -16684,7 +16867,7 @@ int Abc_CommandInduction( Abc_Frame_t * pAbc, int argc, char ** argv )
}
// modify the current network
Abc_NtkDarLocalize( pNtk, nFramesMax, nConfMax, fVerbose );
Abc_NtkDarInduction( pNtk, nFramesMax, nConfMax, fVerbose );
return 0;
usage:
fprintf( pErr, "usage: ind [-FC num] [-vh]\n" );
......@@ -16696,6 +16879,107 @@ usage:
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandPBAbstraction( Abc_Frame_t * pAbc, int argc, char ** argv )
{
FILE * pOut, * pErr;
Abc_Ntk_t * pNtk, * pNtkRes;
int nFramesMax;
int nConfMax;
int fVerbose;
int c;
extern Abc_Ntk_t * Abc_NtkDarPBAbstraction( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
// set defaults
nFramesMax = 10;
nConfMax = 10000;
fVerbose = 1;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "FCvh" ) ) != EOF )
{
switch ( c )
{
case 'F':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-F\" should be followed by an integer.\n" );
goto usage;
}
nFramesMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nFramesMax < 0 )
goto usage;
break;
case 'C':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-C\" should be followed by an integer.\n" );
goto usage;
}
nConfMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nConfMax < 0 )
goto usage;
break;
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
if ( pNtk == NULL )
{
fprintf( pErr, "Empty network.\n" );
return 1;
}
if ( Abc_NtkIsComb(pNtk) )
{
fprintf( pErr, "The network is combinational.\n" );
return 0;
}
if ( !Abc_NtkIsStrash(pNtk) )
{
fprintf( stdout, "Currently only works for structurally hashed circuits.\n" );
return 0;
}
// modify the current network
pNtkRes = Abc_NtkDarPBAbstraction( pNtk, nFramesMax, nConfMax, fVerbose );
if ( pNtkRes == NULL )
{
fprintf( pErr, "Target enlargement has failed.\n" );
return 1;
}
// replace the current network
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
return 0;
usage:
fprintf( pErr, "usage: abs [-FC num] [-vh]\n" );
fprintf( pErr, "\t proof-based abstraction from UNSAT core of the BMC instance\n" );
fprintf( pErr, "\t-F num : the max number of timeframes [default = %d]\n", nFramesMax );
fprintf( pErr, "\t-C num : the max number of conflicts by SAT solver [default = %d]\n", nConfMax );
fprintf( pErr, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
......
......@@ -1462,7 +1462,7 @@ Abc_Ntk_t * Abc_NtkDarLcorrNew( Abc_Ntk_t * pNtk, int nVarsMax, int nConfMax, in
SeeAlso []
***********************************************************************/
int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nBTLimit, int fRewrite, int fNewAlgo, int fVerbose )
int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nNodeDelta, int nBTLimit, int nBTLimitAll, int fRewrite, int fNewAlgo, int fVerbose )
{
Aig_Man_t * pMan;
int status, RetValue = -1, clk = clock();
......@@ -1511,6 +1511,7 @@ int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nBTLimit, in
RetValue = 1;
}
*/
/*
int iFrame;
RetValue = Ssw_BmcDynamic( pMan, nFrames, nBTLimit, fVerbose, &iFrame );
FREE( pNtk->pModel );
......@@ -1525,6 +1526,11 @@ int Abc_NtkDarBmc( Abc_Ntk_t * pNtk, int nFrames, int nSizeMax, int nBTLimit, in
Fra_Cex_t * pCex = pNtk->pSeqModel;
printf( "Output %d was asserted in frame %d (use \"write_counter\" to dump a witness). ", pCex->iPo, pCex->iFrame );
}
*/
Saig_BmcPerform( pMan, nFrames, nNodeDelta, nBTLimit, nBTLimitAll, fVerbose );
FREE( pNtk->pModel );
FREE( pNtk->pSeqModel );
pNtk->pSeqModel = pMan->pSeqModel; pMan->pSeqModel = NULL;
}
PRT( "Time", clock() - clk );
// verify counter-example
......@@ -1667,7 +1673,7 @@ int Abc_NtkDarProve( Abc_Ntk_t * pNtk, Fra_Sec_t * pSecPar )
}
if ( pSecPar->fTryBmc )
{
RetValue = Abc_NtkDarBmc( pNtk, 20, 100000, 2000, 0, 1, 0 );
RetValue = Abc_NtkDarBmc( pNtk, 20, 100000, -1, 2000, -1, 0, 1, 0 );
if ( RetValue == 0 )
{
printf( "Networks are not equivalent.\n" );
......@@ -2132,9 +2138,10 @@ Abc_Ntk_t * Abc_NtkDarEnlarge( Abc_Ntk_t * pNtk, int nFrames, int fVerbose )
Aig_ManStop( pMan );
return pNtkAig;
}
/**Function*************************************************************
Synopsis [Performs targe enlargement.]
Synopsis [Performs induction for property only.]
Description []
......@@ -2143,7 +2150,7 @@ Abc_Ntk_t * Abc_NtkDarEnlarge( Abc_Ntk_t * pNtk, int nFrames, int fVerbose )
SeeAlso []
***********************************************************************/
void Abc_NtkDarLocalize( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose )
void Abc_NtkDarInduction( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose )
{
Aig_Man_t * pMan, * pTemp;
int clkTotal = clock();
......@@ -2173,6 +2180,41 @@ PRT( "Time", clock() - clkTotal );
/**Function*************************************************************
Synopsis [Performs proof-based abstraction.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkDarPBAbstraction( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose )
{
Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax, int fVerbose );
Abc_Ntk_t * pNtkAig;
Aig_Man_t * pMan, * pTemp;
assert( Abc_NtkIsStrash(pNtk) );
pMan = Abc_NtkToDar( pNtk, 0, 1 );
if ( pMan == NULL )
return NULL;
Aig_ManSetRegNum( pMan, pMan->nRegs );
pMan = Saig_ManProofAbstraction( pTemp = pMan, nFramesMax, nConfMax, fVerbose );
Aig_ManStop( pTemp );
if ( pMan == NULL )
return NULL;
pNtkAig = Abc_NtkFromAigPhase( pMan );
pNtkAig->pName = Extra_UtilStrsav(pNtk->pName);
pNtkAig->pSpec = Extra_UtilStrsav(pNtk->pSpec);
Aig_ManStop( pMan );
return pNtkAig;
}
/**Function*************************************************************
Synopsis [Interplates two networks.]
Description []
......@@ -2683,8 +2725,10 @@ Abc_Ntk_t * Abc_NtkDarTestNtk( Abc_Ntk_t * pNtk )
return NULL;
Aig_ManSetRegNum( pMan, pMan->nRegs );
pMan = Saig_ManProofAbstraction( pTemp = pMan, 10, 1000, 1 );
pMan = Saig_ManProofAbstraction( pTemp = pMan, 5, 10000, 1 );
Aig_ManStop( pTemp );
if ( pMan == NULL )
return NULL;
pNtkAig = Abc_NtkFromAigPhase( pMan );
pNtkAig->pName = Extra_UtilStrsav(pNtk->pName);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment