Commit d1fa7f7a by Alan Mishchenko

Proof-logging in the updated solver.

parent 565fefec
......@@ -28,10 +28,11 @@ ABC_NAMESPACE_IMPL_START
/*
Proof is represented as a vector of integers.
The first entry is -1.
The clause is represented as an offset in this array.
One clause's entry is <size><label><ant1><ant2>...<antN>
A resolution record is represented by a handle (an offset in this array).
A resolution record entry is <size><label><ant1><ant2>...<antN>
Label is initialized to 0.
Root clauses are 1-based. They are marked by prepending bit 1;
Root clauses are given by their handles.
They are marked by bitshifting by 2 bits up and setting the LSB to 1
*/
/*
......@@ -59,11 +60,11 @@ static inline cla Proof_NodeHandle (Vec_Int_t* p, satset* c) { return satse
static inline int Proof_NodeCheck (Vec_Int_t* p, satset* c) { return satset_check( (veci*)p, c ); }
static inline int Proof_NodeSize (int nEnts) { return sizeof(satset)/4 + nEnts; }
#define Proof_ForeachNode( p, pNode, hNode ) \
satset_foreach_entry( ((veci*)p), pNode, hNode, 1 )
#define Proof_ForeachNodeVec( pVec, p, pNode, i ) \
#define Proof_ForeachNode( p, pNode, h ) \
for ( h = 1; (h < Vec_IntSize(p)) && ((pNode) = Proof_NodeRead(p, h)); h += Proof_NodeSize(pNode->nEnts) )
#define Proof_ForeachNodeVec( pVec, p, pNode, i ) \
for ( i = 0; (i < Vec_IntSize(pVec)) && ((pNode) = Proof_NodeRead(p, Vec_IntEntry(pVec,i))); i++ )
#define Proof_NodeForeachFanin( p, pNode, pFanin, i ) \
#define Proof_NodeForeachFanin( p, pNode, pFanin, i ) \
for ( i = 0; (i < (int)pNode->nEnts) && (((pFanin) = (pNode->pEnts[i] & 1) ? NULL : Proof_NodeRead(p, pNode->pEnts[i] >> 2)), 1); i++ )
#define Proof_NodeForeachLeaf( pLeaves, pNode, pLeaf, i ) \
for ( i = 0; (i < (int)pNode->nEnts) && (((pLeaf) = (pNode->pEnts[i] & 1) ? Proof_NodeRead(pLeaves, pNode->pEnts[i] >> 2) : NULL), 1); i++ )
......@@ -139,7 +140,7 @@ void Proof_CollectUsed_iter( Vec_Int_t * p, satset * pNode, Vec_Int_t * vUsed, V
while ( Vec_IntSize(vStack) )
{
hNode = Vec_IntPop( vStack );
if ( hNode & 1 ) // extrated second time
if ( hNode & 1 ) // extracted second time
{
Vec_IntPush( vUsed, hNode >> 1 );
continue;
......@@ -171,6 +172,8 @@ void Proof_CollectUsed_iter( Vec_Int_t * p, satset * pNode, Vec_Int_t * vUsed, V
Vec_Int_t * Proof_CollectUsedIter( Vec_Int_t * vProof, Vec_Int_t * vRoots, int hRoot )
{
Vec_Int_t * vUsed, * vStack;
int clk = clock();
int i, Entry, iPrev = 0;
assert( (hRoot > 0) ^ (vRoots != NULL) );
vUsed = Vec_IntAlloc( 1000 );
vStack = Vec_IntAlloc( 1000 );
......@@ -184,6 +187,30 @@ Vec_Int_t * Proof_CollectUsedIter( Vec_Int_t * vProof, Vec_Int_t * vRoots, int h
Proof_CollectUsed_iter( vProof, pNode, vUsed, vStack );
}
Vec_IntFree( vStack );
Abc_PrintTime( 1, "Iterative clause collection time", clock() - clk );
/*
// verify topological order
iPrev = 0;
Vec_IntForEachEntry( vUsed, Entry, i )
{
printf( "%d ", Entry - iPrev );
iPrev = Entry;
}
*/
clk = clock();
// Vec_IntSort( vUsed, 0 );
Abc_Sort( Vec_IntArray(vUsed), Vec_IntSize(vUsed) );
Abc_PrintTime( 1, "Postprocessing with sorting time", clock() - clk );
// verify topological order
iPrev = 0;
Vec_IntForEachEntry( vUsed, Entry, i )
{
if ( iPrev >= Entry )
printf( "Out of topological order!!!\n" );
assert( iPrev < Entry );
iPrev = Entry;
}
return vUsed;
}
......@@ -224,10 +251,9 @@ void Proof_CollectUsed_rec( Vec_Int_t * p, satset * pNode, Vec_Int_t * vUsed )
***********************************************************************/
Vec_Int_t * Proof_CollectUsedRec( Vec_Int_t * vProof, Vec_Int_t * vRoots, int hRoot )
{
Vec_Int_t * vUsed, * vStack;
Vec_Int_t * vUsed;
assert( (hRoot > 0) ^ (vRoots != NULL) );
vUsed = Vec_IntAlloc( 1000 );
vStack = Vec_IntAlloc( 1000 );
if ( hRoot )
Proof_CollectUsed_rec( vProof, Proof_NodeRead(vProof, hRoot), vUsed );
else
......@@ -237,7 +263,6 @@ Vec_Int_t * Proof_CollectUsedRec( Vec_Int_t * vProof, Vec_Int_t * vRoots, int hR
Proof_ForeachNodeVec( vRoots, vProof, pNode, i )
Proof_CollectUsed_rec( vProof, pNode, vUsed );
}
Vec_IntFree( vStack );
return vUsed;
}
......@@ -333,6 +358,7 @@ void Proof_Check( Vec_Int_t * vClauses, Vec_Int_t * vProof, int hRoot )
int i, k, Counter = 0, clk = clock();
// collect visited clauses
vUsed = Proof_CollectUsedRec( vProof, NULL, hRoot );
// vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
Proof_CleanCollected( vProof, vUsed );
// perform resolution steps
vTemp = Vec_IntAlloc( 1000 );
......@@ -366,104 +392,79 @@ void Proof_Check( Vec_Int_t * vClauses, Vec_Int_t * vProof, int hRoot )
Vec_IntFree( vUsed );
}
/**Function*************************************************************
Synopsis [Recursively visits useful proof nodes.]
Synopsis [Reduces the proof to contain only roots and their children.]
Description []
Description [The result is updated proof and updated roots.]
SideEffects []
SeeAlso []
***********************************************************************/
int Sat_ProofReduceOne( Vec_Int_t * p, satset * pNode, int * pnSize, Vec_Int_t * vStack )
void Sat_ProofReduce( Vec_Int_t * vProof, Vec_Int_t * vRoots )
{
satset * pNext;
int i, NodeId;
if ( pNode->Id )
return pNode->Id;
// start with node
pNode->Id = 1;
Vec_IntPush( vStack, Proof_NodeHandle(p, pNode) );
// perform DFS search
while ( Vec_IntSize(vStack) )
Vec_Int_t * vUsed;
satset * pNode, * pFanin;
int i, k, nSize = 1;
// collect visited nodes
vUsed = Proof_CollectUsedIter( vProof, vRoots, 0 );
// relabel nodes to use smaller space
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
{
NodeId = Vec_IntPop( vStack );
if ( NodeId & 1 ) // extrated second time
{
pNode = Proof_NodeRead( p, NodeId ^ 1 );
pNode->Id = *pnSize;
*pnSize += Proof_NodeSize(pNode->nEnts);
// update fanins
Proof_NodeForeachFanin( p, pNode, pNext, i )
if ( pNext )
pNode->pEnts[i] = pNext->Id;
continue;
}
// extracted first time
// add second time
Vec_IntPush( vStack, NodeId ^ 1 );
// add its anticedents
pNode = Proof_NodeRead( p, NodeId );
Proof_NodeForeachFanin( p, pNode, pNext, i )
if ( pNext && !pNext->Id )
{
pNext->Id = 1;
Vec_IntPush( vStack, Proof_NodeHandle(p, pNode) ); // add first time
}
pNode->Id = nSize;
nSize += Proof_NodeSize(pNode->nEnts);
Proof_NodeForeachFanin( vProof, pNode, pFanin, k )
if ( pFanin )
pNode->pEnts[i] = (pFanin->Id << 2) | (pNode->pEnts[i] & 2);
}
// compact the nodes
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
{
memmove( Vec_IntArray(vProof) + pNode->Id, pNode, Proof_NodeSize(pNode->nEnts) );
pNode->Id = 0;
}
return pNode->Id;
// report the result
printf( "The proof was reduced from %d to %d (by %6.2f %%)\n",
Vec_IntSize(vProof), nSize, 100.0 * (Vec_IntSize(vProof) - nSize) / Vec_IntSize(vProof) );
Vec_IntShrink( vProof, nSize );
}
/**Function*************************************************************
Synopsis [Reduces the proof to contain only roots and their children.]
Synopsis [Collects nodes belonging to the UNSAT core.]
Description [The result is updated proof and updated roots.]
Description [The result is the array of root clause indexes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Sat_ProofReduce( Vec_Int_t * p, Vec_Int_t * vRoots )
Vec_Int_t * Sat_ProofCollectCore( Vec_Int_t * vClauses, Vec_Int_t * vProof, Vec_Int_t * vUsed )
{
int i, nSize = 1;
int * pBeg, * pEnd, * pNew;
Vec_Int_t * vStack;
satset * pNode;
// mark used nodes
vStack = Vec_IntAlloc( 1000 );
Proof_ForeachNodeVec( vRoots, p, pNode, i )
vRoots->pArray[i] = Sat_ProofReduceOne( p, pNode, &nSize, vStack );
Vec_IntFree( vStack );
// compact proof
pNew = Vec_IntArray(p) + 1;
Proof_ForeachNode( p, pNode, i )
Vec_Int_t * vCore;
satset * pNode, * pFanin;
int i, k, clk = clock();
vCore = Vec_IntAlloc( 1000 );
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
{
if ( !pNode->Id )
continue;
assert( pNew - Vec_IntArray(p) == pNode->Id );
pNode->Id = 0;
pBeg = (int *)pNode;
pEnd = pBeg + Proof_NodeSize(pNode->nEnts);
while ( pBeg < pEnd )
*pNew++ = *pBeg++;
Proof_NodeForeachLeaf( vClauses, pNode, pFanin, k )
if ( pFanin && !pFanin->mark )
{
pFanin->mark = 1;
Vec_IntPush( vCore, Proof_NodeHandle(vClauses, pFanin) );
}
}
// report the result
printf( "The proof was reduced from %d to %d (by %6.2f %%)\n",
Vec_IntSize(p), nSize, 100.0 * (Vec_IntSize(p) - nSize) / Vec_IntSize(p) );
assert( pNew - Vec_IntArray(p) == nSize );
Vec_IntShrink( p, nSize );
// clean core clauses
Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
pNode->mark = 0;
return vCore;
}
/**Function*************************************************************
Synopsis [Computes UNSAT core.]
......@@ -475,31 +476,14 @@ void Sat_ProofReduce( Vec_Int_t * p, Vec_Int_t * vRoots )
SeeAlso []
***********************************************************************/
Vec_Int_t * Sat_ProofCore( Vec_Int_t * vProof, Vec_Int_t * vRoots )
Vec_Int_t * Sat_ProofCore( Vec_Int_t * vClauses, Vec_Int_t * vProof, int hNode )
{
Vec_Int_t * vCore, * vUsed;
satset * pNode, * pFanin;
int i, k, clk = clock();;
// collect visited clauses
vUsed = Proof_CollectUsedIter( vProof, vRoots, 0 );
vUsed = Proof_CollectUsedIter( vProof, NULL, hNode );
// collect core clauses
vCore = Vec_IntAlloc( 1000 );
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
{
pNode->Id = 0;
Proof_NodeForeachLeaf( vRoots, pNode, pFanin, k )
if ( pFanin && !pFanin->mark )
{
pFanin->mark = 1;
Vec_IntPush( vCore, Proof_NodeHandle(vRoots, pFanin) );
}
}
// clean core clauses
Proof_ForeachNodeVec( vCore, vRoots, pNode, i )
pNode->mark = 0;
vCore = Sat_ProofCollectCore( vClauses, vProof, vUsed );
Vec_IntFree( vUsed );
printf( "Collected %d core clauses. ", Vec_IntSize(vCore) );
Abc_PrintTime( 1, "Time", clock() - clk );
return vCore;
}
......@@ -514,20 +498,23 @@ Vec_Int_t * Sat_ProofCore( Vec_Int_t * vProof, Vec_Int_t * vRoots )
SeeAlso []
***********************************************************************/
Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int hRoot, Vec_Int_t * vGlobVars )
Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int hNode, Vec_Int_t * vGlobVars )
{
Vec_Int_t * vUsed, * vCore, * vVarMap;
Vec_Int_t * vUsedNums, * vCoreNums;
Vec_Int_t * vUsed, * vCore, * vCoreNums, * vVarMap;
satset * pNode, * pFanin;
Aig_Man_t * pAig;
Aig_Obj_t * pObj;
int i, k, iVar, Entry;
// collect core clauses
vCore = Sat_ProofCore( vProof, vClauses );
// collect visited clauses
vUsed = Proof_CollectUsedRec( vProof, NULL, hRoot );
Proof_CleanCollected( vProof, vUsed );
// collect visited nodes
vUsed = Proof_CollectUsedIter( vProof, NULL, hNode );
// collect core clauses (cleans vUsed and vCore)
vCore = Sat_ProofCollectCore( vClauses, vProof, vUsed );
// map variables into their global numbers
vVarMap = Vec_IntStartFull( Vec_IntFindMax(vGlobVars) + 1 );
Vec_IntForEachEntry( vGlobVars, Entry, i )
Vec_IntWriteEntry( vVarMap, Entry, i );
// start the AIG
pAig = Aig_ManStart( 10000 );
......@@ -535,11 +522,6 @@ Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int
for ( i = 0; i < Vec_IntSize(vGlobVars); i++ )
Aig_ObjCreatePi( pAig );
// map variables into their global numbers
vVarMap = Vec_IntStartFull( Vec_IntFindMax(vGlobVars) + 1 );
Vec_IntForEachEntry( vGlobVars, Entry, i )
Vec_IntWriteEntry( vVarMap, Entry, i );
// copy the numbers out and derive interpol for clause
vCoreNums = Vec_IntAlloc( Vec_IntSize(vCore) );
Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
......@@ -547,7 +529,7 @@ Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int
if ( pNode->partA )
{
pObj = Aig_ManConst0( pAig );
satset_foreach_var( pNode, iVar, k )
satset_foreach_var( pNode, iVar, k, 0 )
if ( iVar < Vec_IntSize(vVarMap) && Vec_IntEntry(vVarMap, iVar) >= 0 )
pObj = Aig_Or( pAig, pObj, Aig_IthVar(pAig, iVar) );
}
......@@ -560,24 +542,23 @@ Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int
Vec_IntFree( vVarMap );
// copy the numbers out and derive interpol for resolvents
vUsedNums = Vec_IntAlloc( Vec_IntSize(vUsed) );
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
{
assert( pNode->nEnts > 1 );
Proof_NodeForeachFaninRoot( vProof, vClauses, pNode, pFanin, k )
{
if ( k == 0 )
pObj = Aig_ObjFromLit(pAig, pFanin->Id);
pObj = Aig_ObjFromLit( pAig, pFanin->Id );
else if ( pNode->pEnts[k] & 2 ) // variable of A
pObj = Aig_Or( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
else
pObj = Aig_And( pAig, pObj, Aig_ObjFromLit(pAig, pFanin->Id) );
}
// remember the interpolant
Vec_IntPush( vUsedNums, pNode->Id );
pNode->Id = Aig_ObjToLit(pObj);
}
// save the result
assert( Proof_NodeHandle(vProof, pNode) == hNode );
Aig_ObjCreatePo( pAig, pObj );
Aig_ManCleanup( pAig );
......@@ -585,23 +566,14 @@ Aig_Man_t * Sat_ProofInterpolant( Vec_Int_t * vClauses, Vec_Int_t * vProof, int
Proof_ForeachNodeVec( vCore, vClauses, pNode, i )
pNode->Id = Vec_IntEntry( vCoreNums, i );
Proof_ForeachNodeVec( vUsed, vProof, pNode, i )
pNode->Id = Vec_IntEntry( vUsedNums, i );
pNode->Id = 0;
// cleanup
Vec_IntFree( vCore );
Vec_IntFree( vUsed );
Vec_IntFree( vCoreNums );
Vec_IntFree( vUsedNums );
return pAig;
}
/*
Sat_ProofTest(
&s->clauses, // clauses
&s->proof_clas, // proof clauses
NULL, // proof roots
veci_begin(&s->claProofs)[clause_read(s, s->iLearntLast)->Id)], // one root
&s->glob_vars ); // global variables (for interpolation)
*/
/**Function*************************************************************
......@@ -621,36 +593,30 @@ void Sat_ProofTest( veci * pClauses, veci * pProof, veci * pRoots, int hRoot )
Vec_Int_t * vRoots = (Vec_Int_t *)pRoots;
Vec_Int_t * vUsed, * vCore;
// int i, Entry;
/*
// collect visited clauses
vUsed = Proof_CollectUsedRec( vProof, NULL, hRoot );
Proof_CleanCollected( vProof, vUsed );
printf( "Found %d useful resolution nodes.\n", Vec_IntSize(vUsed) );
Vec_IntFree( vUsed );
*/
// collect visited clauses
vUsed = Proof_CollectUsedIter( vProof, NULL, hRoot );
Proof_CleanCollected( vProof, vUsed );
printf( "Found %d useful resolution nodes.\n", Vec_IntSize(vUsed) );
Vec_IntFree( vUsed );
vCore = Sat_ProofCore( vProof, vClauses );
vCore = Sat_ProofCore( vClauses, vProof, hRoot );
Vec_IntFree( vCore );
// Vec_IntForEachEntry( vUsed, Entry, i )
// printf( "%d ", Entry );
// printf( "\n" );
/*
printf( "Found %d useful resolution nodes.\n", Vec_IntSize(vUsed) );
Vec_IntFree( vUsed );
vUsed = Proof_CollectAll( vProof );
printf( "Found %d total resolution nodes.\n", Vec_IntSize(vUsed) );
Vec_IntFree( vUsed );
Proof_Check( vClauses, vProof, hRoot );
*/
Proof_Check( vClauses, vProof, hRoot );
}
////////////////////////////////////////////////////////////////////////
......
......@@ -600,9 +600,7 @@ static int solver2_analyze_final(sat_solver2* s, satset* conf, int skip_first)
return -1;
proof_chain_start( s, conf );
assert( veci_size(&s->tagged) == 0 );
for ( i = skip_first; i < (int)conf->nEnts; i++ )
{
x = lit_var(conf->pEnts[i]);
satset_foreach_var( conf, x, i, skip_first ){
if ( var_level(s,x) )
var_set_tag(s, x, 1);
else
......@@ -616,13 +614,12 @@ static int solver2_analyze_final(sat_solver2* s, satset* conf, int skip_first)
satset* c = clause_read(s, var_reason(s,x));
if (c){
proof_chain_resolve( s, c, x );
for (j = 1; j < (int)c->nEnts; j++) {
x = lit_var(c->pEnts[j]);
satset_foreach_var( c, x, j, 1 ){
if ( var_level(s,x) )
var_set_tag(s, x, 1);
else
proof_chain_resolve( s, NULL, x );
}
}
}else {
assert( var_level(s,x) );
veci_push(&s->conf_final,lit_neg(s->trail[i]));
......@@ -656,8 +653,7 @@ static int solver2_lit_removable_rec(sat_solver2* s, int v)
return 0;
}
for ( i = 1; i < (int)c->nEnts; i++ ){
x = lit_var(c->pEnts[i]);
satset_foreach_var( c, x, i, 1 ){
if (var_tag(s,x) & 1)
solver2_lit_removable_rec(s, x);
else{
......@@ -704,8 +700,7 @@ static int solver2_lit_removable(sat_solver2* s, int x)
}
x >>= 1;
c = clause_read(s, var_reason(s,x));
for (i = 1; i < (int)c->nEnts; i++){
x = lit_var(c->pEnts[i]);
satset_foreach_var( c, x, i, 1 ){
if (var_tag(s,x) || !var_level(s,x))
continue;
if (!var_reason(s,x) || !var_lev_mark(s,x)){
......@@ -740,8 +735,7 @@ static void solver2_logging_order(sat_solver2* s, int x)
c = clause_read(s, var_reason(s,x));
// if ( !c )
// printf( "solver2_logging_order(): Error in conflict analysis!!!\n" );
for (i = 1; i < (int)c->nEnts; i++){
x = lit_var(c->pEnts[i]);
satset_foreach_var( c, x, i, 1 ){
if ( !var_level(s,x) || (var_tag(s,x) & 1) )
continue;
veci_push(&s->stack, x << 1);
......@@ -757,11 +751,9 @@ static void solver2_logging_order_rec(sat_solver2* s, int x)
if ( (var_tag(s,x) & 8) )
return;
c = clause_read(s, var_reason(s,x));
for (i = 1; i < (int)c->nEnts; i++){
y = lit_var(c->pEnts[i]);
satset_foreach_var( c, y, i, 1 )
if ( var_level(s,y) && (var_tag(s,y) & 1) == 0 )
solver2_logging_order_rec(s, y);
}
var_add_tag(s, x, 8);
veci_push(&s->min_step_order, x);
}
......@@ -769,7 +761,7 @@ static void solver2_logging_order_rec(sat_solver2* s, int x)
static int solver2_analyze(sat_solver2* s, satset* c, veci* learnt)
{
int cnt = 0;
lit p = lit_Undef;
lit p = 0;
int x, ind = s->qtail-1;
int proof_id = 0;
lit* lits,* vars, i, j, k;
......@@ -784,8 +776,7 @@ static int solver2_analyze(sat_solver2* s, satset* c, veci* learnt)
assert(c != 0);
if (c->learnt)
act_clause_bump(s,c);
for ( j = (int)(p != lit_Undef); j < (int)c->nEnts; j++){
x = lit_var(c->pEnts[j]);
satset_foreach_var( c, x, j, (int)(p > 0) ){
assert(x >= 0 && x < s->size);
if ( var_tag(s, x) )
continue;
......@@ -822,7 +813,7 @@ static int solver2_analyze(sat_solver2* s, satset* c, veci* learnt)
// simplify (full)
veci_resize(&s->min_lit_order, 0);
for (i = j = 1; i < veci_size(learnt); i++){
// if (!solver2_lit_removable( s,lit_var(lits[i])) )
// if (!solver2_lit_removable( s,lit_var(lits[i])))
if (!solver2_lit_removable_rec(s,lit_var(lits[i]))) // changed to vars!!!
lits[j++] = lits[i];
}
......@@ -834,20 +825,17 @@ static int solver2_analyze(sat_solver2* s, satset* c, veci* learnt)
veci_resize(&s->min_step_order, 0);
vars = veci_begin(&s->min_lit_order);
for (i = 0; i < veci_size(&s->min_lit_order); i++)
// solver2_logging_order( s, vars[i] );
solver2_logging_order_rec( s, vars[i] );
// solver2_logging_order(s, vars[i]);
solver2_logging_order_rec(s, vars[i]);
// add them in the reverse order
vars = veci_begin(&s->min_step_order);
for (i = veci_size(&s->min_step_order); i > 0; ) { i--;
c = clause_read(s, var_reason(s,vars[i]));
proof_chain_resolve( s, c, vars[i] );
for ( k = 1; k < (int)c->nEnts; k++ )
{
x = lit_var(c->pEnts[k]);
satset_foreach_var(c, x, k, 1)
if ( var_level(s,x) == 0 )
proof_chain_resolve( s, NULL, x );
}
}
proof_id = proof_chain_stop( s );
}
......@@ -940,13 +928,11 @@ satset* solver2_propagate(sat_solver2* s)
// Did not find watch -- clause is unit under assignment:
if (s->fProofLogging && solver2_dlevel(s) == 0){
int k, proof_id, Cid, Var = lit_var(lits[0]);
int k, x, proof_id, Cid, Var = lit_var(lits[0]);
int fLitIsFalse = (var_value(s, Var) == !lit_sign(lits[0]));
// Log production of top-level unit clause:
proof_chain_start( s, c );
for ( k = 1; k < (int)c->nEnts; k++ )
{
int x = lit_var(c->pEnts[k]);
satset_foreach_var( c, x, k, 1 ){
assert( var_level(s, x) == 0 );
proof_chain_resolve( s, NULL, x );
}
......@@ -1007,12 +993,11 @@ static void clause_remove(sat_solver2* s, satset* c)
static lbool clause_simplify(sat_solver2* s, satset* c)
{
int i;
int i, x;
assert(solver2_dlevel(s) == 0);
for (i = 0; i < (int)c->nEnts; i++){
if (var_value(s, lit_var(c->pEnts[i])) == lit_sign(c->pEnts[i]))
satset_foreach_var( c, x, i, 0 )
if (var_value(s, x) == lit_sign(c->pEnts[i]))
return l_True;
}
return l_False;
}
......
......@@ -176,13 +176,10 @@ static inline void satset_print (satset * c) {
printf( "}\n" );
}
#define satset_foreach_entry( p, c, h, s ) \
#define satset_foreach_entry( p, c, h, s ) \
for ( h = s; (h < veci_size(p)) && (((c) = satset_read(p, h)), 1); h += satset_size(c->nEnts) )
#define satset_foreach_var( p, var, i ) \
for ( i = 0; (i < (int)(p)->nEnts) && ((var) = lit_var((p)->pEnts[i])); i++ )
#define satset_foreach_lit( p, lit, i ) \
for ( i = 0; (i < (int)(p)->nEnts) && ((lit) = (p)->pEnts[i]); i++ )
#define satset_foreach_var( p, var, i, start ) \
for ( i = start; (i < (int)(p)->nEnts) && ((var) = lit_var((p)->pEnts[i])); i++ )
//=================================================================================================
// Public APIs:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment