Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
abc
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
abc
Commits
c88a2421
Commit
c88a2421
authored
Dec 03, 2016
by
Alan Mishchenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
New SAT-based optimization package.
parent
1bf289c7
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
437 additions
and
123 deletions
+437
-123
src/opt/sbd/sbdCore.c
+414
-120
src/opt/sbd/sbdWin.c
+23
-3
No files found.
src/opt/sbd/sbdCore.c
View file @
c88a2421
...
@@ -44,6 +44,13 @@ struct Sbd_Man_t_
...
@@ -44,6 +44,13 @@ struct Sbd_Man_t_
Vec_Int_t
*
vLits
;
// temporary
Vec_Int_t
*
vLits
;
// temporary
int
nConsts
;
// constants
int
nConsts
;
// constants
int
nChanges
;
// changes
int
nChanges
;
// changes
abctime
timeWin
;
abctime
timeCnf
;
abctime
timeSat
;
abctime
timeCov
;
abctime
timeEnu
;
abctime
timeOther
;
abctime
timeTotal
;
// target node
// target node
int
Pivot
;
// target node
int
Pivot
;
// target node
Vec_Int_t
*
vTfo
;
// TFO (excludes node, includes roots) - precomputed
Vec_Int_t
*
vTfo
;
// TFO (excludes node, includes roots) - precomputed
...
@@ -176,6 +183,7 @@ Sbd_Man_t * Sbd_ManStart( Gia_Man_t * pGia, Sbd_Par_t * pPars )
...
@@ -176,6 +183,7 @@ Sbd_Man_t * Sbd_ManStart( Gia_Man_t * pGia, Sbd_Par_t * pPars )
{
{
int
i
,
w
,
Id
;
int
i
,
w
,
Id
;
Sbd_Man_t
*
p
=
ABC_CALLOC
(
Sbd_Man_t
,
1
);
Sbd_Man_t
*
p
=
ABC_CALLOC
(
Sbd_Man_t
,
1
);
p
->
timeTotal
=
Abc_Clock
();
p
->
pPars
=
pPars
;
p
->
pPars
=
pPars
;
p
->
pGia
=
pGia
;
p
->
pGia
=
pGia
;
p
->
vTfos
=
Sbd_ManWindowRoots
(
pGia
,
pPars
->
nTfoLevels
,
pPars
->
nTfoFanMax
);
p
->
vTfos
=
Sbd_ManWindowRoots
(
pGia
,
pPars
->
nTfoLevels
,
pPars
->
nTfoFanMax
);
...
@@ -207,7 +215,7 @@ Sbd_Man_t * Sbd_ManStart( Gia_Man_t * pGia, Sbd_Par_t * pPars )
...
@@ -207,7 +215,7 @@ Sbd_Man_t * Sbd_ManStart( Gia_Man_t * pGia, Sbd_Par_t * pPars )
Gia_ManRandom
(
1
);
Gia_ManRandom
(
1
);
Gia_ManForEachCiId
(
pGia
,
Id
,
i
)
Gia_ManForEachCiId
(
pGia
,
Id
,
i
)
for
(
w
=
0
;
w
<
p
->
pPars
->
nWords
;
w
++
)
for
(
w
=
0
;
w
<
p
->
pPars
->
nWords
;
w
++
)
Sbd_ObjSim0
(
p
,
Id
)[
w
]
=
Gia_ManRandomW
(
0
);
Sbd_ObjSim0
(
p
,
Id
)[
w
]
=
Gia_ManRandomW
(
0
);
return
p
;
return
p
;
}
}
void
Sbd_ManStop
(
Sbd_Man_t
*
p
)
void
Sbd_ManStop
(
Sbd_Man_t
*
p
)
...
@@ -272,15 +280,16 @@ void Sbd_ManPropagateControlOne( Sbd_Man_t * p, int Node )
...
@@ -272,15 +280,16 @@ void Sbd_ManPropagateControlOne( Sbd_Man_t * p, int Node )
word
Sim0
=
Gia_ObjFaninC0
(
pNode
)
?
~
pSims0
[
w
]
:
pSims0
[
w
];
word
Sim0
=
Gia_ObjFaninC0
(
pNode
)
?
~
pSims0
[
w
]
:
pSims0
[
w
];
word
Sim1
=
Gia_ObjFaninC1
(
pNode
)
?
~
pSims1
[
w
]
:
pSims1
[
w
];
word
Sim1
=
Gia_ObjFaninC1
(
pNode
)
?
~
pSims1
[
w
]
:
pSims1
[
w
];
pCtrl0
[
w
]
|=
pCtrl
[
w
]
&
(
pSims
[
w
]
|
Sim1
|
(
~
Sim0
&
~
Sim1
));
pCtrl0
[
w
]
|=
pCtrl
[
w
]
;
//
& (pSims[w] | Sim1 | (~Sim0 & ~Sim1));
pCtrl1
[
w
]
|=
pCtrl
[
w
]
&
(
pSims
[
w
]
|
Sim0
);
pCtrl1
[
w
]
|=
pCtrl
[
w
]
;
// & (pSims[w] | Sim0 | (~Sim0 & ~Sim1)
);
pDtrl0
[
w
]
|=
pDtrl
[
w
]
&
(
pSims
[
w
]
|
Sim1
);
pDtrl0
[
w
]
|=
pDtrl
[
w
]
;
// & (pSims[w] | Sim1 | (~Sim0 & ~Sim1)
);
pDtrl1
[
w
]
|=
pDtrl
[
w
]
&
(
pSims
[
w
]
|
Sim0
|
(
~
Sim0
&
~
Sim1
));
pDtrl1
[
w
]
|=
pDtrl
[
w
]
;
//
& (pSims[w] | Sim0 | (~Sim0 & ~Sim1));
}
}
}
}
void
Sbd_ManPropagateControl
(
Sbd_Man_t
*
p
,
int
Pivot
)
void
Sbd_ManPropagateControl
(
Sbd_Man_t
*
p
,
int
Pivot
)
{
{
abctime
clk
=
Abc_Clock
();
int
i
,
Node
;
int
i
,
Node
;
Abc_TtCopy
(
Sbd_ObjSim3
(
p
,
Pivot
),
Sbd_ObjSim2
(
p
,
Pivot
),
p
->
pPars
->
nWords
,
0
);
Abc_TtCopy
(
Sbd_ObjSim3
(
p
,
Pivot
),
Sbd_ObjSim2
(
p
,
Pivot
),
p
->
pPars
->
nWords
,
0
);
// clean controlability
// clean controlability
...
@@ -294,11 +303,13 @@ void Sbd_ManPropagateControl( Sbd_Man_t * p, int Pivot )
...
@@ -294,11 +303,13 @@ void Sbd_ManPropagateControl( Sbd_Man_t * p, int Pivot )
for
(
i
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
i
>=
0
&&
((
Node
=
Vec_IntEntry
(
p
->
vWinObjs
,
i
)),
1
);
i
--
)
for
(
i
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
i
>=
0
&&
((
Node
=
Vec_IntEntry
(
p
->
vWinObjs
,
i
)),
1
);
i
--
)
if
(
Gia_ObjIsAnd
(
Gia_ManObj
(
p
->
pGia
,
Node
))
)
if
(
Gia_ObjIsAnd
(
Gia_ManObj
(
p
->
pGia
,
Node
))
)
Sbd_ManPropagateControlOne
(
p
,
Node
);
Sbd_ManPropagateControlOne
(
p
,
Node
);
p
->
timeWin
+=
Abc_Clock
()
-
clk
;
}
}
void
Sbd_ManUpdateOrder
(
Sbd_Man_t
*
p
,
int
Pivot
)
void
Sbd_ManUpdateOrder
(
Sbd_Man_t
*
p
,
int
Pivot
)
{
{
int
i
,
k
,
Node
;
int
i
,
k
,
Node
;
Vec_Int_t
*
vLevel
;
Vec_Int_t
*
vLevel
;
int
nTimeValidDivs
=
0
;
// collect divisors by logic level
// collect divisors by logic level
int
LevelMax
=
Vec_IntEntry
(
p
->
vLutLevs
,
Pivot
);
int
LevelMax
=
Vec_IntEntry
(
p
->
vLutLevs
,
Pivot
);
Vec_WecClear
(
p
->
vDivLevels
);
Vec_WecClear
(
p
->
vDivLevels
);
...
@@ -316,10 +327,13 @@ void Sbd_ManUpdateOrder( Sbd_Man_t * p, int Pivot )
...
@@ -316,10 +327,13 @@ void Sbd_ManUpdateOrder( Sbd_Man_t * p, int Pivot )
Vec_IntWriteEntry
(
p
->
vObj2Var
,
Node
,
Vec_IntSize
(
p
->
vWinObjs
)
);
Vec_IntWriteEntry
(
p
->
vObj2Var
,
Node
,
Vec_IntSize
(
p
->
vWinObjs
)
);
Vec_IntPush
(
p
->
vWinObjs
,
Node
);
Vec_IntPush
(
p
->
vWinObjs
,
Node
);
}
}
//
detect useful divisors
//
remember divisor cutoff
if
(
i
==
LevelMax
-
2
)
if
(
i
==
LevelMax
-
2
)
Vec_IntFill
(
p
->
vDivValues
,
Vec_IntSize
(
p
->
vWinObjs
),
0
);
nTimeValidDivs
=
Vec_IntSize
(
p
->
vWinObjs
);
}
}
assert
(
nTimeValidDivs
>
0
);
Vec_IntFill
(
p
->
vDivValues
,
Abc_MinInt
(
63
,
nTimeValidDivs
),
0
);
//printf( "%d ", Abc_MinInt(63, nTimeValidDivs) );
}
}
void
Sbd_ManWindowSim_rec
(
Sbd_Man_t
*
p
,
int
NodeInit
)
void
Sbd_ManWindowSim_rec
(
Sbd_Man_t
*
p
,
int
NodeInit
)
{
{
...
@@ -378,14 +392,16 @@ void Sbd_ManWindowSim_rec( Sbd_Man_t * p, int NodeInit )
...
@@ -378,14 +392,16 @@ void Sbd_ManWindowSim_rec( Sbd_Man_t * p, int NodeInit )
}
}
int
Sbd_ManWindow
(
Sbd_Man_t
*
p
,
int
Pivot
)
int
Sbd_ManWindow
(
Sbd_Man_t
*
p
,
int
Pivot
)
{
{
abctime
clk
=
Abc_Clock
();
int
i
,
Node
;
int
i
,
Node
;
// assign pivot and TFO (assume siminfo is assigned at the PIs)
// assign pivot and TFO (assume siminfo is assigned at the PIs)
p
->
Pivot
=
Pivot
;
p
->
Pivot
=
Pivot
;
p
->
vTfo
=
Vec_WecEntry
(
p
->
vTfos
,
Pivot
);
p
->
vTfo
=
Vec_WecEntry
(
p
->
vTfos
,
Pivot
);
//
simulate TFI con
e
//
add constant nod
e
Vec_IntClear
(
p
->
vWinObjs
);
Vec_IntClear
(
p
->
vWinObjs
);
Vec_IntWriteEntry
(
p
->
vObj2Var
,
0
,
Vec_IntSize
(
p
->
vWinObjs
)
);
Vec_IntWriteEntry
(
p
->
vObj2Var
,
0
,
Vec_IntSize
(
p
->
vWinObjs
)
);
Vec_IntPush
(
p
->
vWinObjs
,
0
);
Vec_IntPush
(
p
->
vWinObjs
,
0
);
// simulate TFI cone
Gia_ManIncrementTravId
(
p
->
pGia
);
Gia_ManIncrementTravId
(
p
->
pGia
);
Gia_ObjSetTravIdCurrentId
(
p
->
pGia
,
0
);
Gia_ObjSetTravIdCurrentId
(
p
->
pGia
,
0
);
Sbd_ManWindowSim_rec
(
p
,
Pivot
);
Sbd_ManWindowSim_rec
(
p
,
Pivot
);
...
@@ -419,11 +435,10 @@ int Sbd_ManWindow( Sbd_Man_t * p, int Pivot )
...
@@ -419,11 +435,10 @@ int Sbd_ManWindow( Sbd_Man_t * p, int Pivot )
Vec_IntForEachEntry
(
p
->
vTfo
,
Node
,
i
)
Vec_IntForEachEntry
(
p
->
vTfo
,
Node
,
i
)
if
(
Abc_LitIsCompl
(
Node
)
)
// root
if
(
Abc_LitIsCompl
(
Node
)
)
// root
Abc_TtOrXor
(
Sbd_ObjSim2
(
p
,
Pivot
),
Sbd_ObjSim0
(
p
,
Abc_Lit2Var
(
Node
)),
Sbd_ObjSim1
(
p
,
Abc_Lit2Var
(
Node
)),
p
->
pPars
->
nWords
);
Abc_TtOrXor
(
Sbd_ObjSim2
(
p
,
Pivot
),
Sbd_ObjSim0
(
p
,
Abc_Lit2Var
(
Node
)),
Sbd_ObjSim1
(
p
,
Abc_Lit2Var
(
Node
)),
p
->
pPars
->
nWords
);
p
->
timeWin
+=
Abc_Clock
()
-
clk
;
// propagate controlability to fanins for the TFI nodes starting from the pivot
// propagate controlability to fanins for the TFI nodes starting from the pivot
Sbd_ManPropagateControl
(
p
,
Pivot
);
Sbd_ManPropagateControl
(
p
,
Pivot
);
// return 1 if window is too large
assert
(
Vec_IntSize
(
p
->
vDivValues
)
<
64
);
if
(
p
->
pPars
->
fVerbose
&&
Vec_IntSize
(
p
->
vDivValues
)
>=
64
)
printf
(
"Window is too large.
\n
"
);
return
(
int
)(
Vec_IntSize
(
p
->
vDivValues
)
>=
64
);
return
(
int
)(
Vec_IntSize
(
p
->
vDivValues
)
>=
64
);
}
}
...
@@ -441,15 +456,17 @@ int Sbd_ManWindow( Sbd_Man_t * p, int Pivot )
...
@@ -441,15 +456,17 @@ int Sbd_ManWindow( Sbd_Man_t * p, int Pivot )
int
Sbd_ManCheckConst
(
Sbd_Man_t
*
p
,
int
Pivot
)
int
Sbd_ManCheckConst
(
Sbd_Man_t
*
p
,
int
Pivot
)
{
{
extern
void
Sbd_ManPrintObj
(
Sbd_Man_t
*
p
,
int
Pivot
);
extern
void
Sbd_ManPrintObj
(
Sbd_Man_t
*
p
,
int
Pivot
);
int
nMintCount
=
1
6
;
int
nMintCount
=
1
;
Vec_Ptr_t
*
vSims
;
Vec_Ptr_t
*
vSims
;
word
*
pSims
=
Sbd_ObjSim0
(
p
,
Pivot
);
word
*
pSims
=
Sbd_ObjSim0
(
p
,
Pivot
);
word
*
pCtrl
=
Sbd_ObjSim2
(
p
,
Pivot
);
word
*
pCtrl
=
Sbd_ObjSim2
(
p
,
Pivot
);
int
PivotVar
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
int
PivotVar
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
int
RetValue
,
i
,
iObj
,
Ind
,
fFindOnset
,
nCares
[
2
]
=
{
0
};
int
RetValue
,
i
,
iObj
,
Ind
,
fFindOnset
,
nCares
[
2
]
=
{
0
};
abctime
clk
=
Abc_Clock
();
extern
int
Sbd_ManCollectConstants
(
sat_solver
*
pSat
,
int
nCareMints
[
2
],
int
PivotVar
,
word
*
pVarSims
[],
Vec_Int_t
*
vInds
);
extern
int
Sbd_ManCollectConstants
(
sat_solver
*
pSat
,
int
nCareMints
[
2
],
int
PivotVar
,
word
*
pVarSims
[],
Vec_Int_t
*
vInds
);
extern
sat_solver
*
Sbd_ManSatSolver
(
sat_solver
*
pSat
,
Gia_Man_t
*
p
,
Vec_Int_t
*
vMirrors
,
int
Pivot
,
Vec_Int_t
*
vWinObjs
,
Vec_Int_t
*
vObj2Var
,
Vec_Int_t
*
vTfo
,
Vec_Int_t
*
vRoots
);
extern
sat_solver
*
Sbd_ManSatSolver
(
sat_solver
*
pSat
,
Gia_Man_t
*
p
,
Vec_Int_t
*
vMirrors
,
int
Pivot
,
Vec_Int_t
*
vWinObjs
,
Vec_Int_t
*
vObj2Var
,
Vec_Int_t
*
vTfo
,
Vec_Int_t
*
vRoots
);
p
->
pSat
=
Sbd_ManSatSolver
(
p
->
pSat
,
p
->
pGia
,
p
->
vMirrors
,
Pivot
,
p
->
vWinObjs
,
p
->
vObj2Var
,
p
->
vTfo
,
p
->
vRoots
);
p
->
pSat
=
Sbd_ManSatSolver
(
p
->
pSat
,
p
->
pGia
,
p
->
vMirrors
,
Pivot
,
p
->
vWinObjs
,
p
->
vObj2Var
,
p
->
vTfo
,
p
->
vRoots
);
p
->
timeCnf
+=
Abc_Clock
()
-
clk
;
//return -1;
//return -1;
//Sbd_ManPrintObj( p, Pivot );
//Sbd_ManPrintObj( p, Pivot );
...
@@ -508,6 +525,7 @@ int Sbd_ManCheckConst( Sbd_Man_t * p, int Pivot )
...
@@ -508,6 +525,7 @@ int Sbd_ManCheckConst( Sbd_Man_t * p, int Pivot )
{
{
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Found stuck-at-%d node %d.
\n
"
,
RetValue
,
Pivot
);
printf
(
"Found stuck-at-%d node %d.
\n
"
,
RetValue
,
Pivot
);
Vec_IntWriteEntry
(
p
->
vLutLevs
,
Pivot
,
0
);
p
->
nConsts
++
;
p
->
nConsts
++
;
return
RetValue
;
return
RetValue
;
}
}
...
@@ -726,24 +744,156 @@ void Sbd_ManPrintObj( Sbd_Man_t * p, int Pivot )
...
@@ -726,24 +744,156 @@ void Sbd_ManPrintObj( Sbd_Man_t * p, int Pivot )
}
}
}
}
void
Sbd_ManMatrPrint
(
word
Cover
[
64
],
int
nCol
,
int
nRows
)
{
int
i
,
k
;
for
(
i
=
0
;
i
<=
nCol
;
i
++
)
{
printf
(
"%2d : "
,
i
);
for
(
k
=
0
;
k
<
nRows
;
k
++
)
for
(
k
=
0
;
k
<
nRows
;
k
++
)
printf
(
"%d"
,
(
int
)((
Cover
[
i
]
>>
k
)
&
1
)
);
printf
(
"
\n
"
);
}
printf
(
"
\n
"
);
}
static
inline
void
Sbd_ManCoverReverseOrder
(
word
Cover
[
64
]
)
{
int
i
;
for
(
i
=
0
;
i
<
32
;
i
++
)
{
word
Cube
=
Cover
[
i
];
Cover
[
i
]
=
Cover
[
63
-
i
];
Cover
[
63
-
i
]
=
Cube
;
}
}
static
inline
int
Sbd_ManAddCube1
(
word
Cover
[
64
],
int
nRows
,
word
Cube
)
{
int
n
,
m
;
if
(
0
)
{
printf
(
"Adding cube: "
);
for
(
n
=
0
;
n
<
64
;
n
++
)
printf
(
"%d"
,
(
int
)((
Cube
>>
n
)
&
1
)
);
printf
(
"
\n
"
);
}
// do not add contained Cube
assert
(
nRows
<=
64
);
for
(
n
=
0
;
n
<
nRows
;
n
++
)
if
(
(
Cover
[
n
]
&
Cube
)
==
Cover
[
n
]
)
// Cube is contained
return
nRows
;
// remove rows contained by Cube
for
(
n
=
m
=
0
;
n
<
nRows
;
n
++
)
if
(
(
Cover
[
n
]
&
Cube
)
!=
Cube
)
// Cover[n] is not contained
Cover
[
m
++
]
=
Cover
[
n
];
if
(
m
<
64
)
Cover
[
m
++
]
=
Cube
;
for
(
n
=
m
;
n
<
nRows
;
n
++
)
Cover
[
n
]
=
0
;
nRows
=
m
;
return
nRows
;
}
static
inline
int
Sbd_ManAddCube2
(
word
Cover
[
2
][
64
],
int
nRows
,
word
Cube
[
2
]
)
{
int
n
,
m
;
// do not add contained Cube
assert
(
nRows
<=
64
);
for
(
n
=
0
;
n
<
nRows
;
n
++
)
if
(
(
Cover
[
0
][
n
]
&
Cube
[
0
])
==
Cover
[
0
][
n
]
&&
(
Cover
[
1
][
n
]
&
Cube
[
1
])
==
Cover
[
1
][
n
]
)
// Cube is contained
return
nRows
;
// remove rows contained by Cube
for
(
n
=
m
=
0
;
n
<
nRows
;
n
++
)
if
(
(
Cover
[
0
][
n
]
&
Cube
[
0
])
!=
Cube
[
0
]
||
(
Cover
[
1
][
n
]
&
Cube
[
1
])
!=
Cube
[
1
]
)
// Cover[n] is not contained
{
Cover
[
0
][
m
]
=
Cover
[
0
][
n
];
Cover
[
1
][
m
]
=
Cover
[
1
][
n
];
m
++
;
}
if
(
m
<
64
)
{
Cover
[
0
][
m
]
=
Cube
[
0
];
Cover
[
1
][
m
]
=
Cube
[
1
];
m
++
;
}
for
(
n
=
m
;
n
<
nRows
;
n
++
)
Cover
[
0
][
n
]
=
Cover
[
1
][
n
]
=
0
;
nRows
=
m
;
return
nRows
;
}
static
inline
int
Sbd_ManFindCands
(
Sbd_Man_t
*
p
,
word
Cover
[
64
],
int
nDivs
)
{
int
c0
,
c1
,
c2
,
c3
;
word
Target
=
Cover
[
nDivs
];
Vec_IntClear
(
p
->
vDivVars
);
for
(
c0
=
0
;
c0
<
nDivs
;
c0
++
)
if
(
Cover
[
c0
]
==
Target
)
{
Vec_IntPush
(
p
->
vDivVars
,
c0
);
return
1
;
}
for
(
c0
=
0
;
c0
<
nDivs
;
c0
++
)
for
(
c1
=
c0
+
1
;
c1
<
nDivs
;
c1
++
)
if
(
(
Cover
[
c0
]
|
Cover
[
c1
])
==
Target
)
{
Vec_IntPush
(
p
->
vDivVars
,
c0
);
Vec_IntPush
(
p
->
vDivVars
,
c1
);
return
1
;
}
for
(
c0
=
0
;
c0
<
nDivs
;
c0
++
)
for
(
c1
=
c0
+
1
;
c1
<
nDivs
;
c1
++
)
for
(
c2
=
c1
+
1
;
c2
<
nDivs
;
c2
++
)
if
(
(
Cover
[
c0
]
|
Cover
[
c1
]
|
Cover
[
c2
])
==
Target
)
{
Vec_IntPush
(
p
->
vDivVars
,
c0
);
Vec_IntPush
(
p
->
vDivVars
,
c1
);
Vec_IntPush
(
p
->
vDivVars
,
c2
);
return
1
;
}
for
(
c0
=
0
;
c0
<
nDivs
;
c0
++
)
for
(
c1
=
c0
+
1
;
c1
<
nDivs
;
c1
++
)
for
(
c2
=
c1
+
1
;
c2
<
nDivs
;
c2
++
)
for
(
c3
=
c2
+
1
;
c3
<
nDivs
;
c3
++
)
{
if
(
(
Cover
[
c0
]
|
Cover
[
c1
]
|
Cover
[
c2
]
|
Cover
[
c3
])
==
Target
)
{
Vec_IntPush
(
p
->
vDivVars
,
c0
);
Vec_IntPush
(
p
->
vDivVars
,
c1
);
Vec_IntPush
(
p
->
vDivVars
,
c2
);
Vec_IntPush
(
p
->
vDivVars
,
c3
);
return
1
;
}
}
return
0
;
}
int
Sbd_ManExplore
(
Sbd_Man_t
*
p
,
int
Pivot
,
word
*
pTruth
)
int
Sbd_ManExplore
(
Sbd_Man_t
*
p
,
int
Pivot
,
word
*
pTruth
)
{
{
int
fVerbose
=
0
;
int
fVerbose
=
0
;
abctime
clk
,
clkSat
=
0
,
clkEnu
=
0
,
clkAll
=
Abc_Clock
();
int
nIters
,
nItersMax
=
32
;
extern
word
Sbd_ManSolve
(
sat_solver
*
pSat
,
int
PivotVar
,
int
FreeVar
,
Vec_Int_t
*
vDivVars
,
Vec_Int_t
*
vValues
,
Vec_Int_t
*
vTemp
);
extern
word
Sbd_ManSolve
(
sat_solver
*
pSat
,
int
PivotVar
,
int
FreeVar
,
Vec_Int_t
*
vDivVars
,
Vec_Int_t
*
vValues
,
Vec_Int_t
*
vTemp
);
word
MatrS
[
64
]
=
{
0
},
MatrC
[
2
][
64
]
=
{{
0
}},
Cubes
[
2
][
2
][
64
]
=
{{{
0
}}},
Cover
[
64
]
=
{
0
},
Cube
,
Cube
0
,
Cube1
,
Target
;
word
MatrS
[
64
]
=
{
0
},
MatrC
[
2
][
64
]
=
{{
0
}},
Cubes
[
2
][
2
][
64
]
=
{{{
0
}}},
Cover
[
64
]
=
{
0
},
Cube
,
Cube
New
[
2
]
;
int
c0
=
0
,
c1
=
0
,
c2
=
0
,
c3
=
0
,
i
,
k
,
n
,
Index
,
nCubes
[
2
]
=
{
0
},
nRows
=
0
;
int
i
,
k
,
n
,
Index
,
nCubes
[
2
]
=
{
0
},
nRows
=
0
,
nRowsOld
;
int
nDivs
=
Vec_IntSize
(
p
->
vDivValues
);
int
PivotVar
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
int
PivotVar
=
Vec_IntEntry
(
p
->
vObj2Var
,
Pivot
);
int
FreeVar
=
Vec_IntSize
(
p
->
vWinObjs
)
+
Vec_IntSize
(
p
->
vTfo
)
+
Vec_IntSize
(
p
->
vRoots
);
int
FreeVar
=
Vec_IntSize
(
p
->
vWinObjs
)
+
Vec_IntSize
(
p
->
vTfo
)
+
Vec_IntSize
(
p
->
vRoots
);
int
RetValue
=
0
;
int
RetValue
=
0
;
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Node %d. Useful divisors = %d.
\n
"
,
Pivot
,
nDivs
);
if
(
fVerbose
)
if
(
fVerbose
)
Sbd_ManPrintObj
(
p
,
Pivot
);
Sbd_ManPrintObj
(
p
,
Pivot
);
// collect bit-matrices
// collect bit-matrices
for
(
i
=
0
;
i
<
Vec_IntSize
(
p
->
vDivValues
)
;
i
++
)
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
{
{
MatrS
[
63
-
i
]
=
*
Sbd_ObjSim0
(
p
,
Vec_IntEntry
(
p
->
vWinObjs
,
i
)
);
MatrS
[
63
-
i
]
=
*
Sbd_ObjSim0
(
p
,
Vec_IntEntry
(
p
->
vWinObjs
,
i
)
);
MatrC
[
0
][
63
-
i
]
=
*
Sbd_ObjSim2
(
p
,
Vec_IntEntry
(
p
->
vWinObjs
,
i
)
);
MatrC
[
0
][
63
-
i
]
=
*
Sbd_ObjSim2
(
p
,
Vec_IntEntry
(
p
->
vWinObjs
,
i
)
);
...
@@ -762,34 +912,26 @@ int Sbd_ManExplore( Sbd_Man_t * p, int Pivot, word * pTruth )
...
@@ -762,34 +912,26 @@ int Sbd_ManExplore( Sbd_Man_t * p, int Pivot, word * pTruth )
// collect cubes
// collect cubes
for
(
i
=
0
;
i
<
64
;
i
++
)
for
(
i
=
0
;
i
<
64
;
i
++
)
{
{
assert
(
Abc_TtGetBit
(
&
MatrC
[
0
][
i
],
Vec_IntSize
(
p
->
vDivValues
))
==
Abc_TtGetBit
(
&
MatrC
[
1
][
i
],
Vec_IntSize
(
p
->
vDivValues
)
)
);
assert
(
Abc_TtGetBit
(
&
MatrC
[
0
][
i
],
nDivs
)
==
Abc_TtGetBit
(
&
MatrC
[
1
][
i
],
nDivs
)
);
if
(
!
Abc_TtGetBit
(
&
MatrC
[
0
][
i
],
Vec_IntSize
(
p
->
vDivValues
)
)
)
if
(
!
Abc_TtGetBit
(
&
MatrC
[
0
][
i
],
nDivs
)
)
continue
;
continue
;
Index
=
Abc_TtGetBit
(
&
MatrS
[
i
],
Vec_IntSize
(
p
->
vDivValues
)
);
// Index==0 offset; Index==1 onset
Index
=
Abc_TtGetBit
(
&
MatrS
[
i
],
nDivs
);
// Index==0 offset; Index==1 onset
for
(
n
=
0
;
n
<
2
;
n
++
)
for
(
n
=
0
;
n
<
2
;
n
++
)
{
{
if
(
n
&&
MatrC
[
0
][
i
]
==
MatrC
[
1
][
i
]
)
if
(
n
&&
MatrC
[
0
][
i
]
==
MatrC
[
1
][
i
]
)
continue
;
continue
;
assert
(
MatrC
[
n
][
i
]
);
assert
(
MatrC
[
n
][
i
]
);
Cube0
=
~
MatrS
[
i
]
&
MatrC
[
n
][
i
];
CubeNew
[
0
]
=
~
MatrS
[
i
]
&
MatrC
[
n
][
i
];
Cube1
=
MatrS
[
i
]
&
MatrC
[
n
][
i
];
CubeNew
[
1
]
=
MatrS
[
i
]
&
MatrC
[
n
][
i
];
assert
(
Cube0
||
Cube1
);
assert
(
CubeNew
[
0
]
||
CubeNew
[
1
]
);
for
(
k
=
0
;
k
<
nCubes
[
Index
];
k
++
)
nCubes
[
Index
]
=
Sbd_ManAddCube2
(
Cubes
[
Index
],
nCubes
[
Index
],
CubeNew
);
if
(
Cubes
[
Index
][
0
][
k
]
==
Cube0
&&
Cubes
[
Index
][
1
][
k
]
==
Cube1
)
break
;
if
(
k
==
nCubes
[
Index
]
&&
k
<
64
)
{
Cubes
[
Index
][
0
][
nCubes
[
Index
]]
=
Cube0
;
Cubes
[
Index
][
1
][
nCubes
[
Index
]]
=
Cube1
;
nCubes
[
Index
]
++
;
}
}
}
}
}
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Generated matrix with %d x %d entries.
\n
"
,
nCubes
[
0
],
nCubes
[
1
]
);
printf
(
"Generated matrix with %d x %d entries.
\n
"
,
nCubes
[
0
],
nCubes
[
1
]
);
if
(
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
for
(
n
=
0
;
n
<
2
;
n
++
)
for
(
n
=
0
;
n
<
2
;
n
++
)
{
{
printf
(
"%s:
\n
"
,
n
?
"Onset"
:
"Offset"
);
printf
(
"%s:
\n
"
,
n
?
"Onset"
:
"Offset"
);
...
@@ -804,96 +946,99 @@ int Sbd_ManExplore( Sbd_Man_t * p, int Pivot, word * pTruth )
...
@@ -804,96 +946,99 @@ int Sbd_ManExplore( Sbd_Man_t * p, int Pivot, word * pTruth )
printf
(
"
\n
"
);
printf
(
"
\n
"
);
}
}
// collect cover
// create covering table
for
(
i
=
0
;
i
<
nCubes
[
0
];
i
++
)
nRows
=
0
;
for
(
k
=
0
;
k
<
nCubes
[
1
];
k
++
)
for
(
i
=
0
;
i
<
nCubes
[
0
]
&&
nRows
<
32
;
i
++
)
for
(
k
=
0
;
k
<
nCubes
[
1
]
&&
nRows
<
32
;
k
++
)
{
{
Cube
=
(
Cubes
[
0
][
1
][
i
]
&
Cubes
[
1
][
0
][
k
])
|
(
Cubes
[
0
][
0
][
i
]
&
Cubes
[
1
][
1
][
k
]);
Cube
=
(
Cubes
[
0
][
1
][
i
]
&
Cubes
[
1
][
0
][
k
])
|
(
Cubes
[
0
][
0
][
i
]
&
Cubes
[
1
][
1
][
k
]);
assert
(
Cube
);
assert
(
Cube
);
for
(
n
=
0
;
n
<
nRows
;
n
++
)
nRows
=
Sbd_ManAddCube1
(
Cover
,
nRows
,
Cube
);
if
(
Cover
[
63
-
n
]
==
Cube
)
break
;
if
(
n
==
nRows
&&
n
<
64
)
Cover
[
63
-
nRows
++
]
=
Cube
;
}
}
Sbd_ManCoverReverseOrder
(
Cover
);
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Generated cover with %d entries.
\n
"
,
nRows
);
printf
(
"Generated cover with %d entries.
\n
"
,
nRows
);
//if ( p->pPars->fVerbose )
//Sbd_PrintMatrix64( Cover );
//Sbd_PrintMatrix64( Cover );
Sbd_TransposeMatrix64
(
Cover
);
Sbd_TransposeMatrix64
(
Cover
);
//if ( p->pPars->fVerbose )
//Sbd_PrintMatrix64( Cover );
//Sbd_PrintMatrix64( Cover );
// swap
Sbd_ManCoverReverseOrder
(
Cover
);
for
(
i
=
0
;
i
<
32
;
i
++
)
{
Cube
=
Cover
[
i
];
Cover
[
i
]
=
Cover
[
63
-
i
];
Cover
[
63
-
i
]
=
Cube
;
}
if
(
fVerbose
)
{
for
(
i
=
0
;
i
<=
nRows
;
i
++
,
printf
(
"
\n
"
)
)
for
(
k
=
0
;
k
<
64
;
k
++
)
printf
(
"%d"
,
(
int
)((
Cover
[
i
]
>>
k
)
&
1
)
);
}
Target
=
Cover
[
Vec_IntSize
(
p
->
vDivValues
)];
nRowsOld
=
nRows
;
for
(
c0
=
0
;
c0
<
Vec_IntSize
(
p
->
vDivValues
);
c0
++
)
for
(
nIters
=
0
;
nIters
<
nItersMax
&&
nRows
<
64
;
nIters
++
)
for
(
c1
=
c0
+
1
;
c1
<
Vec_IntSize
(
p
->
vDivValues
);
c1
++
)
for
(
c2
=
c1
+
1
;
c2
<
Vec_IntSize
(
p
->
vDivValues
);
c2
++
)
for
(
c3
=
c2
+
1
;
c3
<
Vec_IntSize
(
p
->
vDivValues
);
c3
++
)
{
if
(
(
Cover
[
c0
]
|
Cover
[
c1
]
|
Cover
[
c2
]
|
Cover
[
c3
])
==
Target
)
goto
finish
;
}
finish:
if
(
c0
==
Vec_IntSize
(
p
->
vDivValues
)
)
{
{
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Cannot find a feasible cover.
\n
"
);
Sbd_ManMatrPrint
(
Cover
,
nDivs
,
nRows
);
return
RetValue
;
}
Vec_IntClear
(
p
->
vDivVars
);
clk
=
Abc_Clock
();
Vec_IntPush
(
p
->
vDivVars
,
c0
);
if
(
!
Sbd_ManFindCands
(
p
,
Cover
,
nDivs
)
)
Vec_IntPush
(
p
->
vDivVars
,
c1
);
{
Vec_IntPush
(
p
->
vDivVars
,
c2
);
if
(
p
->
pPars
->
fVerbose
)
Vec_IntPush
(
p
->
vDivVars
,
c3
);
printf
(
"Cannot find a feasible cover.
\n
"
);
clkEnu
+=
Abc_Clock
()
-
clk
;
clkAll
=
Abc_Clock
()
-
clkAll
-
clkSat
-
clkEnu
;
p
->
timeSat
+=
clkSat
;
p
->
timeCov
+=
clkAll
;
p
->
timeEnu
+=
clkEnu
;
return
RetValue
;
}
clkEnu
+=
Abc_Clock
()
-
clk
;
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Feasible cover: "
);
if
(
p
->
pPars
->
fVerbose
)
Vec_IntPrint
(
p
->
vDivVars
);
*
pTruth
=
Sbd_ManSolve
(
p
->
pSat
,
PivotVar
,
FreeVar
,
p
->
vDivVars
,
p
->
vDivValues
,
p
->
vLits
);
if
(
*
pTruth
==
SBD_SAT_UNDEC
)
printf
(
"Node %d: Undecided.
\n
"
,
Pivot
);
else
if
(
*
pTruth
==
SBD_SAT_SAT
)
{
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Candidate support: "
),
Vec_IntPrint
(
p
->
vDivVars
);
clk
=
Abc_Clock
();
*
pTruth
=
Sbd_ManSolve
(
p
->
pSat
,
PivotVar
,
FreeVar
+
nIters
,
p
->
vDivVars
,
p
->
vDivValues
,
p
->
vLits
);
clkSat
+=
Abc_Clock
()
-
clk
;
if
(
*
pTruth
==
SBD_SAT_UNDEC
)
printf
(
"Node %d: Undecided.
\n
"
,
Pivot
);
else
if
(
*
pTruth
==
SBD_SAT_SAT
)
{
{
int
i
;
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Node %d: SAT.
\n
"
,
Pivot
);
{
for
(
i
=
0
;
i
<
Vec_IntSize
(
p
->
vDivValues
);
i
++
)
int
i
;
printf
(
"%d"
,
Vec_IntEntry
(
p
->
vDivValues
,
i
)
&
1
);
printf
(
"Node %d: SAT.
\n
"
,
Pivot
);
printf
(
"
\n
"
);
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
for
(
i
=
0
;
i
<
Vec_IntSize
(
p
->
vDivValues
);
i
++
)
printf
(
"%d"
,
i
%
10
);
printf
(
"%d"
,
Vec_IntEntry
(
p
->
vDivValues
,
i
)
>>
1
);
printf
(
"
\n
"
);
printf
(
"
\n
"
);
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
printf
(
"%c"
,
(
Vec_IntEntry
(
p
->
vDivValues
,
i
)
&
0x4
)
?
'0'
+
(
Vec_IntEntry
(
p
->
vDivValues
,
i
)
&
1
)
:
'x'
);
printf
(
"
\n
"
);
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
printf
(
"%c"
,
(
Vec_IntEntry
(
p
->
vDivValues
,
i
)
&
0x8
)
?
'0'
+
((
Vec_IntEntry
(
p
->
vDivValues
,
i
)
>>
1
)
&
1
)
:
'x'
);
printf
(
"
\n
"
);
}
// add row to the covering table
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
if
(
Vec_IntEntry
(
p
->
vDivValues
,
i
)
==
0xE
||
Vec_IntEntry
(
p
->
vDivValues
,
i
)
==
0xD
)
Cover
[
i
]
|=
((
word
)
1
<<
nRows
);
Cover
[
nDivs
]
|=
((
word
)
1
<<
nRows
);
nRows
++
;
}
}
else
{
if
(
p
->
pPars
->
fVerbose
)
{
printf
(
"Node %d: UNSAT.
\n
"
,
Pivot
);
Extra_PrintBinary
(
stdout
,
(
unsigned
*
)
pTruth
,
1
<<
Vec_IntSize
(
p
->
vDivVars
)
),
printf
(
"
\n
"
);
}
RetValue
=
1
;
break
;
}
//break;
}
}
else
//printf( "Node %4d : Iter = %4d Start table = %4d Final table = %4d\n", Pivot, nIters, nRowsOld, nRows );
{
clkAll
=
Abc_Clock
()
-
clkAll
-
clkSat
-
clkEnu
;
if
(
p
->
pPars
->
fVerbose
)
p
->
timeSat
+=
clkSat
;
printf
(
"Node %d: UNSAT.
\n
"
,
Pivot
);
p
->
timeCov
+=
clkAll
;
if
(
p
->
pPars
->
fVerbose
)
p
->
timeEnu
+=
clkEnu
;
Extra_PrintBinary
(
stdout
,
(
unsigned
*
)
pTruth
,
1
<<
Vec_IntSize
(
p
->
vDivVars
)
),
printf
(
"
\n
"
);
RetValue
=
1
;
}
return
RetValue
;
return
RetValue
;
}
}
...
@@ -930,9 +1075,11 @@ int Sbd_CutMergeSimple( Sbd_Man_t * p, int * pCut1, int * pCut2, int * pCut )
...
@@ -930,9 +1075,11 @@ int Sbd_CutMergeSimple( Sbd_Man_t * p, int * pCut1, int * pCut2, int * pCut )
*
pBeg
++
=
*
pBeg2
++
;
*
pBeg
++
=
*
pBeg2
++
;
return
(
pCut
[
0
]
=
pBeg
-
pCut
-
1
);
return
(
pCut
[
0
]
=
pBeg
-
pCut
-
1
);
}
}
int
Sbd_ManComputeCut
(
Sbd_Man_t
*
p
,
int
Node
)
/*
int Sbd_ManMergeCuts( Sbd_Man_t * p, int Node )
{
{
int
pCut
[
2
*
SBD_MAX_LUTSIZE
];
int Result = 1; // no need to resynthesize
int pCut[2*SBD_MAX_LUTSIZE+1];
int iFan0 = Gia_ObjFaninId0( Gia_ManObj(p->pGia, Node), Node );
int iFan0 = Gia_ObjFaninId0( Gia_ManObj(p->pGia, Node), Node );
int iFan1 = Gia_ObjFaninId1( Gia_ManObj(p->pGia, Node), Node );
int iFan1 = Gia_ObjFaninId1( Gia_ManObj(p->pGia, Node), Node );
int Level0 = Vec_IntEntry( p->vLutLevs, iFan0 );
int Level0 = Vec_IntEntry( p->vLutLevs, iFan0 );
...
@@ -940,30 +1087,147 @@ int Sbd_ManComputeCut( Sbd_Man_t * p, int Node )
...
@@ -940,30 +1087,147 @@ int Sbd_ManComputeCut( Sbd_Man_t * p, int Node )
int LevMax = (Level0 || Level1) ? Abc_MaxInt(Level0, Level1) : 1;
int LevMax = (Level0 || Level1) ? Abc_MaxInt(Level0, Level1) : 1;
int * pCut0 = Sbd_ObjCut( p, iFan0 );
int * pCut0 = Sbd_ObjCut( p, iFan0 );
int * pCut1 = Sbd_ObjCut( p, iFan1 );
int * pCut1 = Sbd_ObjCut( p, iFan1 );
int
Cut0
[
2
]
=
{
1
,
iFan0
},
*
pCut0Temp
=
Level0
<
LevMax
?
Cut0
:
pCut0
;
int nSize = Sbd_CutMergeSimple( p, pCut0, pCut1, pCut );
int
Cut1
[
2
]
=
{
1
,
iFan1
},
*
pCut1Temp
=
Level1
<
LevMax
?
Cut1
:
pCut1
;
int
nSize
=
Sbd_CutMergeSimple
(
p
,
pCut0Temp
,
pCut1Temp
,
pCut
);
int
Result
=
1
;
// no need to resynthesize
assert
(
iFan0
!=
iFan1
);
if ( nSize > p->pPars->nLutSize )
if ( nSize > p->pPars->nLutSize )
{
{
pCut
[
0
]
=
2
;
if ( Level0 != Level1 )
pCut
[
1
]
=
iFan0
<
iFan1
?
iFan0
:
iFan1
;
{
pCut
[
2
]
=
iFan0
<
iFan1
?
iFan1
:
iFan0
;
int Cut0[2] = {1, iFan0}, * pCut0Temp = Level0 < LevMax ? Cut0 : pCut0;
Result
=
LevMax
?
0
:
1
;
int Cut1[2] = {1, iFan1}, * pCut1Temp = Level1 < LevMax ? Cut1 : pCut1;
LevMax
++
;
nSize = Sbd_CutMergeSimple( p, pCut0Temp, pCut1Temp, pCut );
}
if ( nSize > p->pPars->nLutSize )
{
pCut[0] = 2;
pCut[1] = iFan0 < iFan1 ? iFan0 : iFan1;
pCut[2] = iFan0 < iFan1 ? iFan1 : iFan0;
Result = LevMax ? 0 : 1;
LevMax++;
}
}
}
assert( iFan0 != iFan1 );
assert( Vec_IntEntry(p->vLutLevs, Node) == 0 );
assert( Vec_IntEntry(p->vLutLevs, Node) == 0 );
Vec_IntWriteEntry( p->vLutLevs, Node, LevMax );
Vec_IntWriteEntry( p->vLutLevs, Node, LevMax );
memcpy( Sbd_ObjCut(p, Node), pCut, sizeof(int) * (pCut[0] + 1) );
memcpy( Sbd_ObjCut(p, Node), pCut, sizeof(int) * (pCut[0] + 1) );
//printf( "Setting node %d with delay %d (result = %d).\n", Node, LevMax, Result );
//printf( "Setting node %d with delay %d (result = %d).\n", Node, LevMax, Result );
return Result;
return Result;
}
}
*/
int
Sbd_ManMergeCuts
(
Sbd_Man_t
*
p
,
int
Node
)
{
int
pCut11
[
2
*
SBD_MAX_LUTSIZE
+
1
];
int
pCut01
[
2
*
SBD_MAX_LUTSIZE
+
1
];
int
pCut10
[
2
*
SBD_MAX_LUTSIZE
+
1
];
int
pCut00
[
2
*
SBD_MAX_LUTSIZE
+
1
];
int
iFan0
=
Gia_ObjFaninId0
(
Gia_ManObj
(
p
->
pGia
,
Node
),
Node
);
int
iFan1
=
Gia_ObjFaninId1
(
Gia_ManObj
(
p
->
pGia
,
Node
),
Node
);
int
Level0
=
Vec_IntEntry
(
p
->
vLutLevs
,
iFan0
)
?
Vec_IntEntry
(
p
->
vLutLevs
,
iFan0
)
:
1
;
int
Level1
=
Vec_IntEntry
(
p
->
vLutLevs
,
iFan1
)
?
Vec_IntEntry
(
p
->
vLutLevs
,
iFan1
)
:
1
;
int
*
pCut0
=
Sbd_ObjCut
(
p
,
iFan0
);
int
*
pCut1
=
Sbd_ObjCut
(
p
,
iFan1
);
int
Cut0
[
2
]
=
{
1
,
iFan0
};
int
Cut1
[
2
]
=
{
1
,
iFan1
};
int
nSize11
=
Sbd_CutMergeSimple
(
p
,
pCut0
,
pCut1
,
pCut11
);
int
nSize01
=
Sbd_CutMergeSimple
(
p
,
Cut0
,
pCut1
,
pCut01
);
int
nSize10
=
Sbd_CutMergeSimple
(
p
,
pCut0
,
Cut1
,
pCut10
);
int
nSize00
=
Sbd_CutMergeSimple
(
p
,
Cut0
,
Cut1
,
pCut00
);
int
Lev11
=
nSize11
<=
p
->
pPars
->
nLutSize
?
Abc_MaxInt
(
Level0
,
Level1
)
:
ABC_INFINITY
;
int
Lev01
=
nSize01
<=
p
->
pPars
->
nLutSize
?
Abc_MaxInt
(
Level0
+
1
,
Level1
)
:
ABC_INFINITY
;
int
Lev10
=
nSize10
<=
p
->
pPars
->
nLutSize
?
Abc_MaxInt
(
Level0
,
Level1
+
1
)
:
ABC_INFINITY
;
int
Lev00
=
nSize00
<=
p
->
pPars
->
nLutSize
?
Abc_MaxInt
(
Level0
+
1
,
Level1
+
1
)
:
ABC_INFINITY
;
int
*
pCutRes
=
pCut11
;
int
LevCur
=
Lev11
;
if
(
Lev01
<
LevCur
||
(
Lev01
==
LevCur
&&
pCut01
[
0
]
<
pCutRes
[
0
])
)
{
pCutRes
=
pCut01
;
LevCur
=
Lev01
;
}
if
(
Lev10
<
LevCur
||
(
Lev10
==
LevCur
&&
pCut10
[
0
]
<
pCutRes
[
0
])
)
{
pCutRes
=
pCut10
;
LevCur
=
Lev10
;
}
if
(
Lev00
<
LevCur
||
(
Lev00
==
LevCur
&&
pCut00
[
0
]
<
pCutRes
[
0
])
)
{
pCutRes
=
pCut00
;
LevCur
=
Lev00
;
}
assert
(
iFan0
!=
iFan1
);
assert
(
Vec_IntEntry
(
p
->
vLutLevs
,
Node
)
==
0
);
Vec_IntWriteEntry
(
p
->
vLutLevs
,
Node
,
LevCur
);
assert
(
pCutRes
[
0
]
<=
p
->
pPars
->
nLutSize
);
memcpy
(
Sbd_ObjCut
(
p
,
Node
),
pCutRes
,
sizeof
(
int
)
*
(
pCutRes
[
0
]
+
1
)
);
//printf( "Setting node %d with delay %d.\n", Node, LevCur );
return
LevCur
==
Abc_MaxInt
(
Level0
,
Level1
);
}
int
Sbd_ManDelay
(
Sbd_Man_t
*
p
)
{
int
i
,
Id
,
Delay
=
0
;
Gia_ManForEachCoDriverId
(
p
->
pGia
,
Id
,
i
)
Delay
=
Abc_MaxInt
(
Delay
,
Vec_IntEntry
(
p
->
vLutLevs
,
Id
)
);
return
Delay
;
}
void
Sbd_ManMergeTest
(
Sbd_Man_t
*
p
)
{
int
Node
;
Gia_ManForEachAndId
(
p
->
pGia
,
Node
)
Sbd_ManMergeCuts
(
p
,
Node
);
printf
(
"Delay %d.
\n
"
,
Sbd_ManDelay
(
p
)
);
}
void
Sbd_ManFindCut_rec
(
Gia_Man_t
*
p
,
Gia_Obj_t
*
pObj
)
{
if
(
pObj
->
fMark1
)
return
;
pObj
->
fMark1
=
1
;
if
(
pObj
->
fMark0
)
return
;
assert
(
Gia_ObjIsAnd
(
pObj
)
);
Sbd_ManFindCut_rec
(
p
,
Gia_ObjFanin0
(
pObj
)
);
Sbd_ManFindCut_rec
(
p
,
Gia_ObjFanin1
(
pObj
)
);
}
void
Sbd_ManFindCutUnmark_rec
(
Gia_Man_t
*
p
,
Gia_Obj_t
*
pObj
)
{
if
(
!
pObj
->
fMark1
)
return
;
pObj
->
fMark1
=
0
;
if
(
pObj
->
fMark0
)
return
;
assert
(
Gia_ObjIsAnd
(
pObj
)
);
Sbd_ManFindCutUnmark_rec
(
p
,
Gia_ObjFanin0
(
pObj
)
);
Sbd_ManFindCutUnmark_rec
(
p
,
Gia_ObjFanin1
(
pObj
)
);
}
void
Sbd_ManFindCut
(
Sbd_Man_t
*
p
,
int
Node
,
Vec_Int_t
*
vCutLits
)
{
int
pCut
[
SBD_MAX_LUTSIZE
+
1
];
int
i
,
LevelMax
=
0
;
// label reachable nodes
Gia_Obj_t
*
pTemp
,
*
pObj
=
Gia_ManObj
(
p
->
pGia
,
Node
);
Sbd_ManFindCut_rec
(
p
->
pGia
,
pObj
);
// collect
pCut
[
0
]
=
0
;
Gia_ManForEachObjVec
(
vCutLits
,
p
->
pGia
,
pTemp
,
i
)
if
(
pTemp
->
fMark1
)
{
LevelMax
=
Abc_MaxInt
(
LevelMax
,
Vec_IntEntry
(
p
->
vLutLevs
,
Gia_ObjId
(
p
->
pGia
,
pTemp
))
);
pCut
[
1
+
pCut
[
0
]
++
]
=
Gia_ObjId
(
p
->
pGia
,
pTemp
);
}
assert
(
pCut
[
0
]
<=
p
->
pPars
->
nLutSize
);
// unlabel reachable nodes
Sbd_ManFindCutUnmark_rec
(
p
->
pGia
,
pObj
);
// create cut
assert
(
Vec_IntEntry
(
p
->
vLutLevs
,
Node
)
==
0
);
Vec_IntWriteEntry
(
p
->
vLutLevs
,
Node
,
LevelMax
+
1
);
memcpy
(
Sbd_ObjCut
(
p
,
Node
),
pCut
,
sizeof
(
int
)
*
(
pCut
[
0
]
+
1
)
);
}
int
Sbd_ManImplement
(
Sbd_Man_t
*
p
,
int
Pivot
,
word
Truth
)
int
Sbd_ManImplement
(
Sbd_Man_t
*
p
,
int
Pivot
,
word
Truth
)
{
{
int
i
,
k
,
w
,
iLit
,
Node
;
int
i
,
k
,
w
,
iLit
,
Entry
,
Node
;
int
iObjLast
=
Gia_ManObjNum
(
p
->
pGia
);
int
iObjLast
=
Gia_ManObjNum
(
p
->
pGia
);
int
iCurLev
=
Vec_IntEntry
(
p
->
vLutLevs
,
Pivot
);
int
iCurLev
=
Vec_IntEntry
(
p
->
vLutLevs
,
Pivot
);
int
iNewLev
;
Gia_Obj_t
*
pObj
;
// collect leaf literals
// collect leaf literals
Vec_IntClear
(
p
->
vLits
);
Vec_IntClear
(
p
->
vLits
);
Vec_IntForEachEntry
(
p
->
vDivVars
,
Node
,
i
)
Vec_IntForEachEntry
(
p
->
vDivVars
,
Node
,
i
)
...
@@ -986,7 +1250,13 @@ int Sbd_ManImplement( Sbd_Man_t * p, int Pivot, word Truth )
...
@@ -986,7 +1250,13 @@ int Sbd_ManImplement( Sbd_Man_t * p, int Pivot, word Truth )
Vec_IntWriteEntry
(
p
->
vMirrors
,
Pivot
,
iLit
);
Vec_IntWriteEntry
(
p
->
vMirrors
,
Pivot
,
iLit
);
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"Replacing node %d by literal %d.
\n
"
,
Pivot
,
iLit
);
printf
(
"Replacing node %d by literal %d.
\n
"
,
Pivot
,
iLit
);
// extend data-structure for new nodes
// translate literals into variables
Vec_IntForEachEntry
(
p
->
vLits
,
Entry
,
i
)
Vec_IntWriteEntry
(
p
->
vLits
,
i
,
Abc_Lit2Var
(
Entry
)
);
// label inputs
Gia_ManForEachObjVec
(
p
->
vLits
,
p
->
pGia
,
pObj
,
i
)
pObj
->
fMark0
=
1
;
// extend data-structure to accommodate new nodes
assert
(
Vec_IntSize
(
p
->
vLutLevs
)
==
iObjLast
);
assert
(
Vec_IntSize
(
p
->
vLutLevs
)
==
iObjLast
);
for
(
i
=
iObjLast
;
i
<
Gia_ManObjNum
(
p
->
pGia
);
i
++
)
for
(
i
=
iObjLast
;
i
<
Gia_ManObjNum
(
p
->
pGia
);
i
++
)
{
{
...
@@ -994,13 +1264,20 @@ int Sbd_ManImplement( Sbd_Man_t * p, int Pivot, word Truth )
...
@@ -994,13 +1264,20 @@ int Sbd_ManImplement( Sbd_Man_t * p, int Pivot, word Truth )
Vec_IntPush
(
p
->
vObj2Var
,
0
);
Vec_IntPush
(
p
->
vObj2Var
,
0
);
Vec_IntPush
(
p
->
vMirrors
,
-
1
);
Vec_IntPush
(
p
->
vMirrors
,
-
1
);
Vec_IntFillExtra
(
p
->
vLutCuts
,
Vec_IntSize
(
p
->
vLutCuts
)
+
p
->
pPars
->
nLutSize
+
1
,
0
);
Vec_IntFillExtra
(
p
->
vLutCuts
,
Vec_IntSize
(
p
->
vLutCuts
)
+
p
->
pPars
->
nLutSize
+
1
,
0
);
Sbd_Man
ComputeCut
(
p
,
i
);
Sbd_Man
FindCut
(
p
,
i
,
p
->
vLits
);
for
(
k
=
0
;
k
<
4
;
k
++
)
for
(
k
=
0
;
k
<
4
;
k
++
)
for
(
w
=
0
;
w
<
p
->
pPars
->
nWords
;
w
++
)
for
(
w
=
0
;
w
<
p
->
pPars
->
nWords
;
w
++
)
Vec_WrdPush
(
p
->
vSims
[
k
],
0
);
Vec_WrdPush
(
p
->
vSims
[
k
],
0
);
}
}
// unlabel inputs
Gia_ManForEachObjVec
(
p
->
vLits
,
p
->
pGia
,
pObj
,
i
)
pObj
->
fMark0
=
0
;
// make sure delay reduction is achieved
// make sure delay reduction is achieved
assert
(
Vec_IntEntry
(
p
->
vLutLevs
,
Abc_Lit2Var
(
iLit
))
<
iCurLev
);
iNewLev
=
Vec_IntEntry
(
p
->
vLutLevs
,
Abc_Lit2Var
(
iLit
)
);
assert
(
iNewLev
<
iCurLev
);
// update delay of the initial node
assert
(
Vec_IntEntry
(
p
->
vLutLevs
,
Pivot
)
==
iCurLev
);
Vec_IntWriteEntry
(
p
->
vLutLevs
,
Pivot
,
iNewLev
);
p
->
nChanges
++
;
p
->
nChanges
++
;
return
0
;
return
0
;
}
}
...
@@ -1074,16 +1351,18 @@ Gia_Man_t * Sbd_NtkPerform( Gia_Man_t * pGia, Sbd_Par_t * pPars )
...
@@ -1074,16 +1351,18 @@ Gia_Man_t * Sbd_NtkPerform( Gia_Man_t * pGia, Sbd_Par_t * pPars )
{
{
Gia_Man_t
*
pNew
;
Gia_Man_t
*
pNew
;
Sbd_Man_t
*
p
=
Sbd_ManStart
(
pGia
,
pPars
);
Sbd_Man_t
*
p
=
Sbd_ManStart
(
pGia
,
pPars
);
int
nNodesOld
=
Gia_ManObjNum
(
pGia
);
int
nNodesOld
=
Gia_ManObjNum
(
pGia
);
//, Count = 0;
int
RetValue
,
Pivot
;
word
Truth
=
0
;
int
RetValue
,
Pivot
;
word
Truth
=
0
;
assert
(
pPars
->
nLutSize
<=
6
);
assert
(
pPars
->
nLutSize
<=
6
);
//Sbd_ManMergeTest( p );
//return NULL;
Gia_ManForEachAndId
(
pGia
,
Pivot
)
Gia_ManForEachAndId
(
pGia
,
Pivot
)
{
{
if
(
Pivot
>=
nNodesOld
)
if
(
Pivot
>=
nNodesOld
)
break
;
break
;
if
(
Sbd_Man
ComputeCut
(
p
,
Pivot
)
)
if
(
Sbd_Man
MergeCuts
(
p
,
Pivot
)
)
continue
;
continue
;
//if ( Pivot != 3
13
)
//if ( Pivot != 3
44
)
// continue;
// continue;
if
(
p
->
pPars
->
fVerbose
)
if
(
p
->
pPars
->
fVerbose
)
printf
(
"
\n
Looking at node %d
\n
"
,
Pivot
);
printf
(
"
\n
Looking at node %d
\n
"
,
Pivot
);
...
@@ -1093,10 +1372,25 @@ Gia_Man_t * Sbd_NtkPerform( Gia_Man_t * pGia, Sbd_Par_t * pPars )
...
@@ -1093,10 +1372,25 @@ Gia_Man_t * Sbd_NtkPerform( Gia_Man_t * pGia, Sbd_Par_t * pPars )
if
(
RetValue
>=
0
)
if
(
RetValue
>=
0
)
Vec_IntWriteEntry
(
p
->
vMirrors
,
Pivot
,
RetValue
);
Vec_IntWriteEntry
(
p
->
vMirrors
,
Pivot
,
RetValue
);
else
if
(
Sbd_ManExplore
(
p
,
Pivot
,
&
Truth
)
)
else
if
(
Sbd_ManExplore
(
p
,
Pivot
,
&
Truth
)
)
{
Sbd_ManImplement
(
p
,
Pivot
,
Truth
);
Sbd_ManImplement
(
p
,
Pivot
,
Truth
);
//if ( Count++ == 1 )
// break;
}
}
}
printf
(
"Found %d constants and %d replacements.
\n
"
,
p
->
nConsts
,
p
->
nChanges
);
printf
(
"Found %d constants and %d replacements with delay %d. "
,
p
->
nConsts
,
p
->
nChanges
,
Sbd_ManDelay
(
p
)
);
p
->
timeTotal
=
Abc_Clock
()
-
p
->
timeTotal
;
Abc_PrintTime
(
1
,
"Time"
,
p
->
timeTotal
);
pNew
=
Sbd_ManDerive
(
pGia
,
p
->
vMirrors
);
pNew
=
Sbd_ManDerive
(
pGia
,
p
->
vMirrors
);
// print runtime statistics
p
->
timeOther
=
p
->
timeTotal
-
p
->
timeWin
-
p
->
timeCnf
-
p
->
timeSat
-
p
->
timeCov
-
p
->
timeEnu
;
ABC_PRTP
(
"Win"
,
p
->
timeWin
,
p
->
timeTotal
);
ABC_PRTP
(
"Cnf"
,
p
->
timeCnf
,
p
->
timeTotal
);
ABC_PRTP
(
"Sat"
,
p
->
timeSat
,
p
->
timeTotal
);
ABC_PRTP
(
"Cov"
,
p
->
timeCov
,
p
->
timeTotal
);
ABC_PRTP
(
"Enu"
,
p
->
timeEnu
,
p
->
timeTotal
);
ABC_PRTP
(
"Oth"
,
p
->
timeOther
,
p
->
timeTotal
);
ABC_PRTP
(
"ALL"
,
p
->
timeTotal
,
p
->
timeTotal
);
Sbd_ManStop
(
p
);
Sbd_ManStop
(
p
);
return
pNew
;
return
pNew
;
}
}
...
...
src/opt/sbd/sbdWin.c
View file @
c88a2421
...
@@ -155,9 +155,9 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
...
@@ -155,9 +155,9 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
int
nBTLimit
=
0
;
int
nBTLimit
=
0
;
word
uCube
,
uTruth
=
0
;
word
uCube
,
uTruth
=
0
;
int
status
,
i
,
iVar
,
nFinal
,
*
pFinal
,
pLits
[
2
],
nIter
=
0
;
int
status
,
i
,
iVar
,
nFinal
,
*
pFinal
,
pLits
[
2
],
nIter
=
0
;
assert
(
FreeVar
<
sat_solver_nvars
(
pSat
)
);
pLits
[
0
]
=
Abc_Var2Lit
(
PivotVar
,
0
);
// F = 1
pLits
[
0
]
=
Abc_Var2Lit
(
PivotVar
,
0
);
// F = 1
pLits
[
1
]
=
Abc_Var2Lit
(
FreeVar
,
0
);
// iNewLit
pLits
[
1
]
=
Abc_Var2Lit
(
FreeVar
,
0
);
// iNewLit
assert
(
Vec_IntSize
(
vValues
)
<=
sat_solver_nvars
(
pSat
)
);
while
(
1
)
while
(
1
)
{
{
// find onset minterm
// find onset minterm
...
@@ -169,7 +169,7 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
...
@@ -169,7 +169,7 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
assert
(
status
==
l_True
);
assert
(
status
==
l_True
);
// remember variable values
// remember variable values
for
(
i
=
0
;
i
<
Vec_IntSize
(
vValues
);
i
++
)
for
(
i
=
0
;
i
<
Vec_IntSize
(
vValues
);
i
++
)
Vec_IntWriteEntry
(
vValues
,
i
,
sat_solver_var_value
(
pSat
,
i
)
);
Vec_IntWriteEntry
(
vValues
,
i
,
2
*
sat_solver_var_value
(
pSat
,
i
)
);
// collect divisor literals
// collect divisor literals
Vec_IntClear
(
vTemp
);
Vec_IntClear
(
vTemp
);
Vec_IntPush
(
vTemp
,
Abc_LitNot
(
pLits
[
0
])
);
// F = 0
Vec_IntPush
(
vTemp
,
Abc_LitNot
(
pLits
[
0
])
);
// F = 0
...
@@ -203,7 +203,27 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
...
@@ -203,7 +203,27 @@ word Sbd_ManSolve( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDi
assert
(
status
==
l_True
);
assert
(
status
==
l_True
);
// store the counter-example
// store the counter-example
for
(
i
=
0
;
i
<
Vec_IntSize
(
vValues
);
i
++
)
for
(
i
=
0
;
i
<
Vec_IntSize
(
vValues
);
i
++
)
Vec_IntAddToEntry
(
vValues
,
i
,
2
*
sat_solver_var_value
(
pSat
,
i
)
);
Vec_IntAddToEntry
(
vValues
,
i
,
sat_solver_var_value
(
pSat
,
i
)
);
for
(
i
=
0
;
i
<
Vec_IntSize
(
vValues
);
i
++
)
Vec_IntAddToEntry
(
vValues
,
i
,
0xC
);
/*
// reduce the counter example
for ( n = 0; n < 2; n++ )
{
Vec_IntClear( vTemp );
Vec_IntPush( vTemp, Abc_Var2Lit(PivotVar, n) ); // n = 0 => F = 1 (expanding offset against onset)
for ( i = 0; i < Vec_IntSize(vValues); i++ )
Vec_IntPush( vTemp, Abc_Var2Lit(i, !((Vec_IntEntry(vValues, i) >> n) & 1)) );
status = sat_solver_solve( pSat, Vec_IntArray(vTemp), Vec_IntArray(vTemp) + Vec_IntSize(vTemp), nBTLimit, 0, 0, 0 );
assert( status == l_False );
// compute cube and add clause
nFinal = sat_solver_final( pSat, &pFinal );
for ( i = 0; i < nFinal; i++ )
if ( Abc_Lit2Var(pFinal[i]) != PivotVar )
Vec_IntAddToEntry( vValues, Abc_Lit2Var(pFinal[i]), 1 << (n+2) );
}
*/
return
SBD_SAT_SAT
;
return
SBD_SAT_SAT
;
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment