Commit b2470dd3 by Alan Mishchenko

Version abc70901

parent 9f5ef0d6
......@@ -1542,7 +1542,7 @@ SOURCE=.\src\opt\lpk\lpk.h
# End Source File
# Begin Source File
SOURCE=.\src\opt\lpk\lpkAbcCore.c
SOURCE=.\src\opt\lpk\lpkAbcDec.c
# End Source File
# Begin Source File
......@@ -1550,11 +1550,11 @@ SOURCE=.\src\opt\lpk\lpkAbcDsd.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\lpk\lpkAbcFun.c
SOURCE=.\src\opt\lpk\lpkAbcMux.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\lpk\lpkAbcMux.c
SOURCE=.\src\opt\lpk\lpkAbcUtil.c
# End Source File
# Begin Source File
......
......@@ -425,9 +425,9 @@ extern void Aig_ObjOrderInsert( Aig_Man_t * p, int ObjId );
extern void Aig_ObjOrderRemove( Aig_Man_t * p, int ObjId );
extern void Aig_ObjOrderAdvance( Aig_Man_t * p );
/*=== aigPart.c =========================================================*/
extern Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan );
extern Vec_Vec_t * Aig_ManPartitionSmart( Aig_Man_t * p, int nPartSizeLimit, int fVerbose, Vec_Vec_t ** pvPartSupps );
extern Vec_Vec_t * Aig_ManPartitionNaive( Aig_Man_t * p, int nPartSize );
extern Vec_Ptr_t * Aig_ManSupports( Aig_Man_t * pMan );
extern Vec_Ptr_t * Aig_ManPartitionSmart( Aig_Man_t * p, int nPartSizeLimit, int fVerbose, Vec_Ptr_t ** pvPartSupps );
extern Vec_Ptr_t * Aig_ManPartitionNaive( Aig_Man_t * p, int nPartSize );
/*=== aigRepr.c =========================================================*/
extern void Aig_ManReprStart( Aig_Man_t * p, int nIdMax );
extern void Aig_ManReprStop( Aig_Man_t * p );
......
......@@ -264,18 +264,23 @@ Vec_Int_t * Part_ManTransferEntry( Part_One_t * p )
SeeAlso []
***********************************************************************/
Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan )
Vec_Ptr_t * Aig_ManSupports( Aig_Man_t * pMan )
{
Vec_Vec_t * vSupps;
Vec_Ptr_t * vSupports;
Vec_Int_t * vSupp;
Part_Man_t * p;
Part_One_t * pPart0, * pPart1;
Aig_Obj_t * pObj;
int i, iIns = 0, iOut = 0;
int i;
// set the number of PIs/POs
Aig_ManForEachPi( pMan, pObj, i )
pObj->pNext = (Aig_Obj_t *)i;
Aig_ManForEachPo( pMan, pObj, i )
pObj->pNext = (Aig_Obj_t *)i;
// start the support computation manager
p = Part_ManStart( 1 << 20, 1 << 6 );
// consider objects in the topological order
vSupps = Vec_VecAlloc( Aig_ManPoNum(pMan) );
vSupports = Vec_PtrAlloc( Aig_ManPoNum(pMan) );
Aig_ManCleanData(pMan);
Aig_ManForEachObj( pMan, pObj, i )
{
......@@ -296,8 +301,8 @@ Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan )
{
pPart0 = Aig_ObjFanin0(pObj)->pData;
vSupp = Part_ManTransferEntry(pPart0);
Vec_IntPush( vSupp, iOut++ );
Vec_PtrPush( (Vec_Ptr_t *)vSupps, vSupp );
Vec_IntPush( vSupp, (int)pObj->pNext );
Vec_PtrPush( vSupports, vSupp );
assert( pPart0->nRefs > 0 );
if ( --pPart0->nRefs == 0 )
Part_ManRecycleEntry( p, pPart0 );
......@@ -308,7 +313,7 @@ Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan )
if ( pObj->nRefs )
{
pPart0 = Part_ManFetchEntry( p, 1, pObj->nRefs );
pPart0->pOuts[ pPart0->nOuts++ ] = iIns++;
pPart0->pOuts[ pPart0->nOuts++ ] = (int)pObj->pNext;
pObj->pData = pPart0;
}
continue;
......@@ -324,13 +329,18 @@ Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan )
//printf( "Memory usage = %d Mb.\n", Vec_PtrSize(p->vMemory) * p->nChunkSize / (1<<20) );
Part_ManStop( p );
// sort supports by size
Vec_VecSort( vSupps, 1 );
Vec_VecSort( (Vec_Vec_t *)vSupports, 1 );
// clear the number of PIs/POs
Aig_ManForEachPi( pMan, pObj, i )
pObj->pNext = NULL;
Aig_ManForEachPo( pMan, pObj, i )
pObj->pNext = NULL;
/*
Aig_ManForEachPo( pMan, pObj, i )
printf( "%d ", Vec_IntSize( (Vec_Int_t *)Vec_VecEntry(vSupps, i) ) );
printf( "%d ", Vec_IntSize( (Vec_Int_t *)Vec_VecEntry(vSupports, i) ) );
printf( "\n" );
*/
return vSupps;
return vSupports;
}
/**Function*************************************************************
......@@ -344,16 +354,17 @@ Vec_Vec_t * Aig_ManSupports( Aig_Man_t * pMan )
SeeAlso []
***********************************************************************/
char * Aig_ManSuppCharStart( Vec_Int_t * vOne, int nPis )
unsigned * Aig_ManSuppCharStart( Vec_Int_t * vOne, int nPis )
{
char * pBuffer;
unsigned * pBuffer;
int i, Entry;
pBuffer = ALLOC( char, nPis );
memset( pBuffer, 0, sizeof(char) * nPis );
int nWords = Aig_BitWordNum(nPis);
pBuffer = ALLOC( unsigned, nWords );
memset( pBuffer, 0, sizeof(unsigned) * nWords );
Vec_IntForEachEntry( vOne, Entry, i )
{
assert( Entry < nPis );
pBuffer[Entry] = 1;
Aig_InfoSetBit( pBuffer, Entry );
}
return pBuffer;
}
......@@ -369,13 +380,13 @@ char * Aig_ManSuppCharStart( Vec_Int_t * vOne, int nPis )
SeeAlso []
***********************************************************************/
void Aig_ManSuppCharAdd( char * pBuffer, Vec_Int_t * vOne, int nPis )
void Aig_ManSuppCharAdd( unsigned * pBuffer, Vec_Int_t * vOne, int nPis )
{
int i, Entry;
Vec_IntForEachEntry( vOne, Entry, i )
{
assert( Entry < nPis );
pBuffer[Entry] = 1;
Aig_InfoSetBit( pBuffer, Entry );
}
}
......@@ -390,11 +401,11 @@ void Aig_ManSuppCharAdd( char * pBuffer, Vec_Int_t * vOne, int nPis )
SeeAlso []
***********************************************************************/
int Aig_ManSuppCharCommon( char * pBuffer, Vec_Int_t * vOne )
int Aig_ManSuppCharCommon( unsigned * pBuffer, Vec_Int_t * vOne )
{
int i, Entry, nCommon = 0;
Vec_IntForEachEntry( vOne, Entry, i )
nCommon += pBuffer[Entry];
nCommon += Aig_InfoHasBit(pBuffer, Entry);
return nCommon;
}
......@@ -409,24 +420,27 @@ int Aig_ManSuppCharCommon( char * pBuffer, Vec_Int_t * vOne )
SeeAlso []
***********************************************************************/
int Aig_ManPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsChar, int nPartSizeLimit, Vec_Int_t * vOne )
int Aig_ManPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsBit, int nSuppSizeLimit, Vec_Int_t * vOne )
{
Vec_Int_t * vPartSupp, * vPart;
Vec_Int_t * vPartSupp;//, * vPart;
int Attract, Repulse, Value, ValueBest;
int i, nCommon, iBest;
iBest = -1;
ValueBest = 0;
Vec_PtrForEachEntry( vPartSuppsAll, vPartSupp, i )
{
vPart = Vec_PtrEntry( vPartsAll, i );
if ( nPartSizeLimit > 0 && Vec_IntSize(vPart) >= nPartSizeLimit )
continue;
// vPart = Vec_PtrEntry( vPartsAll, i );
// if ( nSuppSizeLimit > 0 && Vec_IntSize(vPart) >= nSuppSizeLimit )
// continue;
// nCommon = Vec_IntTwoCountCommon( vPartSupp, vOne );
nCommon = Aig_ManSuppCharCommon( Vec_PtrEntry(vPartSuppsChar, i), vOne );
nCommon = Aig_ManSuppCharCommon( Vec_PtrEntry(vPartSuppsBit, i), vOne );
if ( nCommon == 0 )
continue;
if ( nCommon == Vec_IntSize(vOne) )
return i;
// skip partitions whose size exceeds the limit
if ( nSuppSizeLimit > 0 && Vec_IntSize(vPartSupp) >= 2 * nSuppSizeLimit )
continue;
Attract = 1000 * nCommon / Vec_IntSize(vOne);
if ( Vec_IntSize(vPartSupp) < 100 )
Repulse = 1;
......@@ -484,20 +498,20 @@ void Aig_ManPartitionPrint( Aig_Man_t * p, Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vP
SeeAlso []
***********************************************************************/
void Aig_ManPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll, int nPartSizeLimit )
void Aig_ManPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll, int nSuppSizeLimit )
{
Vec_Int_t * vOne, * vPart, * vPartSupp, * vTemp;
int i, iPart;
if ( nPartSizeLimit == 0 )
nPartSizeLimit = 200;
if ( nSuppSizeLimit == 0 )
nSuppSizeLimit = 200;
// pack smaller partitions into larger blocks
iPart = 0;
vPart = vPartSupp = NULL;
Vec_PtrForEachEntry( vPartSuppsAll, vOne, i )
{
if ( Vec_IntSize(vOne) < nPartSizeLimit )
if ( Vec_IntSize(vOne) < nSuppSizeLimit )
{
if ( vPartSupp == NULL )
{
......@@ -513,7 +527,7 @@ void Aig_ManPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll,
Vec_IntFree( vTemp );
Vec_IntFree( Vec_PtrEntry(vPartsAll, i) );
}
if ( Vec_IntSize(vPartSupp) < nPartSizeLimit )
if ( Vec_IntSize(vPartSupp) < nSuppSizeLimit )
continue;
}
else
......@@ -556,34 +570,33 @@ void Aig_ManPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll,
SeeAlso []
***********************************************************************/
Vec_Vec_t * Aig_ManPartitionSmart( Aig_Man_t * p, int nPartSizeLimit, int fVerbose, Vec_Vec_t ** pvPartSupps )
Vec_Ptr_t * Aig_ManPartitionSmart( Aig_Man_t * p, int nSuppSizeLimit, int fVerbose, Vec_Ptr_t ** pvPartSupps )
{
Vec_Ptr_t * vPartSuppsChar;
Vec_Ptr_t * vSupps, * vPartsAll, * vPartsAll2, * vPartSuppsAll;//, * vPartPtr;
Vec_Ptr_t * vPartSuppsBit;
Vec_Ptr_t * vSupports, * vPartsAll, * vPartsAll2, * vPartSuppsAll;//, * vPartPtr;
Vec_Int_t * vOne, * vPart, * vPartSupp, * vTemp;
int i, iPart, iOut, clk;
// compute the supports for all outputs
clk = clock();
vSupps = (Vec_Ptr_t *)Aig_ManSupports( p );
vSupports = Aig_ManSupports( p );
if ( fVerbose )
{
PRT( "Supps", clock() - clk );
}
// start char-based support representation
vPartSuppsChar = Vec_PtrAlloc( 1000 );
vPartSuppsBit = Vec_PtrAlloc( 1000 );
// create partitions
clk = clock();
vPartsAll = Vec_PtrAlloc( 256 );
vPartSuppsAll = Vec_PtrAlloc( 256 );
Vec_PtrForEachEntry( vSupps, vOne, i )
Vec_PtrForEachEntry( vSupports, vOne, i )
{
// get the output number
iOut = Vec_IntPop(vOne);
// find closely matching part
iPart = Aig_ManPartitionSmartFindPart( vPartSuppsAll, vPartsAll, vPartSuppsChar, nPartSizeLimit, vOne );
//printf( "%4d->%4d ", i, iPart );
iPart = Aig_ManPartitionSmartFindPart( vPartSuppsAll, vPartsAll, vPartSuppsBit, nSuppSizeLimit, vOne );
if ( iPart == -1 )
{
// create new partition
......@@ -595,7 +608,7 @@ clk = clock();
Vec_PtrPush( vPartsAll, vPart );
Vec_PtrPush( vPartSuppsAll, vPartSupp );
Vec_PtrPush( vPartSuppsChar, Aig_ManSuppCharStart(vOne, Aig_ManPiNum(p)) );
Vec_PtrPush( vPartSuppsBit, Aig_ManSuppCharStart(vOne, Aig_ManPiNum(p)) );
}
else
{
......@@ -609,14 +622,14 @@ clk = clock();
// reinsert new support
Vec_PtrWriteEntry( vPartSuppsAll, iPart, vPartSupp );
Aig_ManSuppCharAdd( Vec_PtrEntry(vPartSuppsChar, iPart), vOne, Aig_ManPiNum(p) );
Aig_ManSuppCharAdd( Vec_PtrEntry(vPartSuppsBit, iPart), vOne, Aig_ManPiNum(p) );
}
}
// stop char-based support representation
Vec_PtrForEachEntry( vPartSuppsChar, vTemp, i )
Vec_PtrForEachEntry( vPartSuppsBit, vTemp, i )
free( vTemp );
Vec_PtrFree( vPartSuppsChar );
Vec_PtrFree( vPartSuppsBit );
//printf( "\n" );
if ( fVerbose )
......@@ -640,7 +653,7 @@ clk = clock();
// compact small partitions
// Aig_ManPartitionPrint( p, vPartsAll, vPartSuppsAll );
Aig_ManPartitionCompact( vPartsAll, vPartSuppsAll, nPartSizeLimit );
Aig_ManPartitionCompact( vPartsAll, vPartSuppsAll, nSuppSizeLimit );
if ( fVerbose )
// Aig_ManPartitionPrint( p, vPartsAll, vPartSuppsAll );
printf( "Created %d partitions.\n", Vec_PtrSize(vPartsAll) );
......@@ -651,11 +664,11 @@ if ( fVerbose )
}
// cleanup
Vec_VecFree( (Vec_Vec_t *)vSupps );
Vec_VecFree( (Vec_Vec_t *)vSupports );
if ( pvPartSupps == NULL )
Vec_VecFree( (Vec_Vec_t *)vPartSuppsAll );
else
*pvPartSupps = (Vec_Vec_t *)vPartSuppsAll;
*pvPartSupps = vPartSuppsAll;
/*
// converts from intergers to nodes
Vec_PtrForEachEntry( vPartsAll, vPart, iPart )
......@@ -667,7 +680,7 @@ if ( fVerbose )
Vec_PtrWriteEntry( vPartsAll, iPart, vPartPtr );
}
*/
return (Vec_Vec_t *)vPartsAll;
return vPartsAll;
}
/**Function*************************************************************
......@@ -681,15 +694,15 @@ if ( fVerbose )
SeeAlso []
***********************************************************************/
Vec_Vec_t * Aig_ManPartitionNaive( Aig_Man_t * p, int nPartSize )
Vec_Ptr_t * Aig_ManPartitionNaive( Aig_Man_t * p, int nPartSize )
{
Vec_Vec_t * vParts;
Vec_Ptr_t * vParts;
Aig_Obj_t * pObj;
int nParts, i;
nParts = (Aig_ManPoNum(p) / nPartSize) + ((Aig_ManPoNum(p) % nPartSize) > 0);
vParts = Vec_VecStart( nParts );
vParts = (Vec_Ptr_t *)Vec_VecStart( nParts );
Aig_ManForEachPo( p, pObj, i )
Vec_VecPush( vParts, i / nPartSize, pObj );
Vec_IntPush( Vec_PtrEntry(vParts, i / nPartSize), i );
return vParts;
}
......@@ -787,18 +800,18 @@ Vec_Ptr_t * Aig_ManMiterPartitioned( Aig_Man_t * p1, Aig_Man_t * p2, int nPartSi
Aig_Man_t * pNew;
Aig_Obj_t * pMiter;
Vec_Ptr_t * vMiters, * vNodes1, * vNodes2;
Vec_Vec_t * vParts, * vPartSupps;
Vec_Ptr_t * vParts, * vPartSupps;
Vec_Int_t * vPart, * vPartSupp;
int i, k;
// partition the first manager
vParts = Aig_ManPartitionSmart( p1, nPartSize, 0, &vPartSupps );
// derive miters
vMiters = Vec_PtrAlloc( Vec_VecSize(vParts) );
for ( i = 0; i < Vec_VecSize(vParts); i++ )
vMiters = Vec_PtrAlloc( Vec_PtrSize(vParts) );
for ( i = 0; i < Vec_PtrSize(vParts); i++ )
{
// get partitions and their support
vPart = Vec_PtrEntry( (Vec_Ptr_t *)vParts, i );
vPartSupp = Vec_PtrEntry( (Vec_Ptr_t *)vPartSupps, i );
vPart = Vec_PtrEntry( vParts, i );
vPartSupp = Vec_PtrEntry( vPartSupps, i );
// create the new miter
pNew = Aig_ManStart( 1000 );
// create the PIs
......@@ -815,8 +828,8 @@ Vec_Ptr_t * Aig_ManMiterPartitioned( Aig_Man_t * p1, Aig_Man_t * p2, int nPartSi
Aig_ManCleanup( pNew );
Vec_PtrPush( vMiters, pNew );
}
Vec_VecFree( vParts );
Vec_VecFree( vPartSupps );
Vec_VecFree( (Vec_Vec_t *)vParts );
Vec_VecFree( (Vec_Vec_t *)vPartSupps );
return vMiters;
}
......@@ -837,7 +850,7 @@ Aig_Man_t * Aig_ManChoicePartitioned( Vec_Ptr_t * vAigs, int nPartSize )
Aig_Man_t * pChoice, * pNew, * pAig, * p;
Aig_Obj_t * pObj;
Vec_Ptr_t * vMiters, * vNodes;
Vec_Vec_t * vParts, * vPartSupps;
Vec_Ptr_t * vParts, * vPartSupps;
Vec_Int_t * vPart, * vPartSupp;
int i, k, m;
......@@ -847,12 +860,12 @@ Aig_Man_t * Aig_ManChoicePartitioned( Vec_Ptr_t * vAigs, int nPartSize )
vParts = Aig_ManPartitionSmart( pAig, nPartSize, 0, &vPartSupps );
// derive the AIG partitions
vMiters = Vec_PtrAlloc( Vec_VecSize(vParts) );
for ( i = 0; i < Vec_VecSize(vParts); i++ )
vMiters = Vec_PtrAlloc( Vec_PtrSize(vParts) );
for ( i = 0; i < Vec_PtrSize(vParts); i++ )
{
// get partitions and their support
vPart = Vec_PtrEntry( (Vec_Ptr_t *)vParts, i );
vPartSupp = Vec_PtrEntry( (Vec_Ptr_t *)vPartSupps, i );
vPart = Vec_PtrEntry( vParts, i );
vPartSupp = Vec_PtrEntry( vPartSupps, i );
// create the new miter
pNew = Aig_ManStart( 1000 );
// create the PIs
......@@ -884,13 +897,13 @@ Aig_Man_t * Aig_ManChoicePartitioned( Vec_Ptr_t * vAigs, int nPartSize )
Vec_PtrForEachEntry( vMiters, p, i )
{
// get partitions and their support
vPart = Vec_PtrEntry( (Vec_Ptr_t *)vParts, i );
vPartSupp = Vec_PtrEntry( (Vec_Ptr_t *)vPartSupps, i );
vPart = Vec_PtrEntry( vParts, i );
vPartSupp = Vec_PtrEntry( vPartSupps, i );
// copy the component
vNodes = Aig_ManDupPart( pNew, p, vPart, vPartSupp, 1 );
assert( Vec_PtrSize(vNodes) == Vec_VecSize(vParts) * Vec_PtrSize(vAigs) );
assert( Vec_PtrSize(vNodes) == Vec_PtrSize(vParts) * Vec_PtrSize(vAigs) );
// create choice node
for ( k = 0; k < Vec_VecSize(vParts); k++ )
for ( k = 0; k < Vec_PtrSize(vParts); k++ )
{
for ( m = 0; m < Vec_PtrSize(vAigs); m++ )
{
......@@ -901,8 +914,8 @@ Aig_Man_t * Aig_ManChoicePartitioned( Vec_Ptr_t * vAigs, int nPartSize )
}
Vec_PtrFree( vNodes );
}
Vec_VecFree( vParts );
Vec_VecFree( vPartSupps );
Vec_VecFree( (Vec_Vec_t *)vParts );
Vec_VecFree( (Vec_Vec_t *)vPartSupps );
// trasfer representatives
Aig_ManReprStart( pNew, Aig_ManObjIdMax(pNew)+1 );
......
......@@ -58,7 +58,7 @@ void Fra_ManPartitionTest( Aig_Man_t * p, int nComLim )
// compute supports
clk = clock();
vSupps = Aig_ManSupports( p );
vSupps = (Vec_Vec_t *)Aig_ManSupports( p );
PRT( "Supports", clock() - clk );
// remove last entry
Aig_ManForEachPo( p, pObj, i )
......@@ -192,7 +192,7 @@ void Fra_ManPartitionTest2( Aig_Man_t * p )
// compute supports
clk = clock();
vSupps = Aig_ManSupports( p );
vSupps = (Vec_Vec_t *)Aig_ManSupports( p );
PRT( "Supports", clock() - clk );
// remove last entry
Aig_ManForEachPo( p, pObj, i )
......
......@@ -729,6 +729,7 @@ extern void Abc_NtkFinalizeRead( Abc_Ntk_t * pNtk );
extern Abc_Ntk_t * Abc_NtkDup( Abc_Ntk_t * pNtk );
extern Abc_Ntk_t * Abc_NtkCreateCone( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNodeName, int fUseAllCis );
extern Abc_Ntk_t * Abc_NtkCreateConeArray( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, int fUseAllCis );
extern void Abc_NtkAppendToCone( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots );
extern Abc_Ntk_t * Abc_NtkCreateMffc( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNodeName );
extern Abc_Ntk_t * Abc_NtkCreateTarget( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, Vec_Int_t * vValues );
extern Abc_Ntk_t * Abc_NtkCreateFromNode( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode );
......
......@@ -623,7 +623,7 @@ Abc_Ntk_t * Abc_NtkCreateConeArray( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, int fU
}
Vec_PtrFree( vNodes );
// add the PO corresponding to the nodes
// add the POs corresponding to the root nodes
Vec_PtrForEachEntry( vRoots, pObj, i )
{
// create the PO node
......@@ -644,6 +644,59 @@ Abc_Ntk_t * Abc_NtkCreateConeArray( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, int fU
/**Function*************************************************************
Synopsis [Adds new nodes to the cone.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkAppendToCone( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pObj;
int i, iNodeId;
assert( Abc_NtkIsStrash(pNtkNew) );
assert( Abc_NtkIsStrash(pNtk) );
// collect the nodes in the TFI of the output (mark the TFI)
vNodes = Abc_NtkDfsNodes( pNtk, (Abc_Obj_t **)Vec_PtrArray(vRoots), Vec_PtrSize(vRoots) );
// establish connection between the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// create the PIs
Abc_NtkForEachCi( pNtk, pObj, i )
{
// skip CIs that are not used
if ( !Abc_NodeIsTravIdCurrent(pObj) )
continue;
// find the corresponding CI in the new network
iNodeId = Nm_ManFindIdByNameTwoTypes( pNtkNew->pManName, Abc_ObjName(pObj), ABC_OBJ_PI, ABC_OBJ_BO );
if ( iNodeId == -1 )
{
pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
else
pObj->pCopy = Abc_NtkObj( pNtkNew, iNodeId );
}
// copy the nodes
Vec_PtrForEachEntry( vNodes, pObj, i )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vNodes );
// do not add the COs
if ( !Abc_NtkCheck( pNtkNew ) )
fprintf( stdout, "Abc_NtkAppendToCone(): Network check has failed.\n" );
}
/**Function*************************************************************
Synopsis [Creates the network composed of MFFC of one node.]
Description []
......
......@@ -2977,6 +2977,9 @@ int Abc_CommandLutpack( Abc_Frame_t * pAbc, int argc, char ** argv )
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
printf("This command will be available soon\n");
return 0;
// set defaults
memset( pPars, 0, sizeof(Lpk_Par_t) );
pPars->nLutsMax = 4; // (N) the maximum number of LUTs in the structure
......
......@@ -648,46 +648,32 @@ Abc_Obj_t * Abc_NodeFraigTrust( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode )
SeeAlso []
***********************************************************************/
int Abc_NtkFraigStore( Abc_Ntk_t * pNtk )
int Abc_NtkFraigStore( Abc_Ntk_t * pNtkAdd )
{
Abc_Ntk_t * pStore;
int nAndsOld;
if ( !Abc_NtkIsLogic(pNtk) && !Abc_NtkIsStrash(pNtk) )
Vec_Ptr_t * vStore;
Abc_Ntk_t * pNtk;
// create the network to be stored
pNtk = Abc_NtkStrash( pNtkAdd, 0, 0, 0 );
if ( pNtk == NULL )
{
printf( "The netlist need to be converted into a logic network before adding it to storage.\n" );
printf( "Abc_NtkFraigStore: Initial strashing has failed.\n" );
return 0;
}
// get the network currently stored
pStore = Abc_FrameReadNtkStore();
if ( pStore == NULL )
vStore = Abc_FrameReadStore();
if ( Vec_PtrSize(vStore) > 0 )
{
// start the stored network
pStore = Abc_NtkStrash( pNtk, 0, 0, 0 );
if ( pStore == NULL )
// check that the networks have the same PIs
// reorder PIs of pNtk2 according to pNtk1
if ( !Abc_NtkCompareSignals( pNtk, Vec_PtrEntry(vStore, 0), 1, 1 ) )
{
printf( "Abc_NtkFraigStore: Initial strashing has failed.\n" );
return 0;
printf( "Trying to store the network with different primary inputs.\n" );
printf( "The previously stored networks are deleted and this one is added.\n" );
Abc_NtkFraigStoreClean();
}
// save the parameters
Abc_FrameSetNtkStore( pStore );
Abc_FrameSetNtkStoreSize( 1 );
nAndsOld = 0;
}
else
{
// add the new network to storage
nAndsOld = Abc_NtkNodeNum( pStore );
if ( !Abc_NtkAppend( pStore, pNtk, 0 ) )
{
printf( "The current network cannot be appended to the stored network.\n" );
return 0;
}
// set the number of networks stored
Abc_FrameSetNtkStoreSize( Abc_FrameReadNtkStoreSize() + 1 );
}
printf( "The number of AIG nodes added to storage = %5d.\n", Abc_NtkNodeNum(pStore) - nAndsOld );
Vec_PtrPush( vStore, pNtk );
printf( "The number of AIG nodes added to storage = %5d.\n", Abc_NtkNodeNum(pNtk) );
return 1;
}
......@@ -704,54 +690,48 @@ int Abc_NtkFraigStore( Abc_Ntk_t * pNtk )
***********************************************************************/
Abc_Ntk_t * Abc_NtkFraigRestore()
{
extern Abc_Ntk_t * Abc_NtkFraigPartitioned( Abc_Ntk_t * pNtk, void * pParams );
extern Abc_Ntk_t * Abc_NtkFraigPartitioned( Vec_Ptr_t * vStore, void * pParams );
Fraig_Params_t Params;
Abc_Ntk_t * pStore, * pFraig;
Vec_Ptr_t * vStore;
Abc_Ntk_t * pNtk, * pFraig;
int nWords1, nWords2, nWordsMin;
int clk = clock();
// get the stored network
pStore = Abc_FrameReadNtkStore();
Abc_FrameSetNtkStore( NULL );
if ( pStore == NULL )
vStore = Abc_FrameReadStore();
if ( Vec_PtrSize(vStore) == 0 )
{
printf( "There are no network currently in storage.\n" );
return NULL;
}
printf( "Currently stored %d networks with %d nodes will be fraiged.\n",
Abc_FrameReadNtkStoreSize(), Abc_NtkNodeNum(pStore) );
printf( "Currently stored %d networks will be fraiged.\n", Vec_PtrSize(vStore) );
pNtk = Vec_PtrEntry( vStore, 0 );
// to determine the number of simulation patterns
// use the following strategy
// at least 64 words (32 words random and 32 words dynamic)
// no more than 256M for one circuit (128M + 128M)
nWords1 = 32;
nWords2 = (1<<27) / (Abc_NtkNodeNum(pStore) + Abc_NtkCiNum(pStore));
nWords2 = (1<<27) / (Abc_NtkNodeNum(pNtk) + Abc_NtkCiNum(pNtk));
nWordsMin = ABC_MIN( nWords1, nWords2 );
// set parameters for fraiging
Fraig_ParamsSetDefault( &Params );
Params.nPatsRand = nWordsMin * 32; // the number of words of random simulation info
Params.nPatsDyna = nWordsMin * 32; // the number of words of dynamic simulation info
Params.nBTLimit = 999999; // the max number of backtracks to perform
Params.fFuncRed = 1; // performs only one level hashing
Params.fFeedBack = 1; // enables solver feedback
Params.fDist1Pats = 1; // enables distance-1 patterns
Params.fDoSparse = 1; // performs equiv tests for sparse functions
Params.fChoicing = 1; // enables recording structural choices
Params.fTryProve = 0; // tries to solve the final miter
Params.fVerbose = 0; // the verbosiness flag
// Fraig_ManReportChoices( p );
// transform it into FRAIG
// pFraig = Abc_NtkFraig( pStore, &Params, 1, 0 );
pFraig = Abc_NtkFraigPartitioned( pStore, &Params );
PRT( "Total fraiging time", clock() - clk );
if ( pFraig == NULL )
return NULL;
Abc_NtkDelete( pStore );
Params.nPatsRand = nWordsMin * 32; // the number of words of random simulation info
Params.nPatsDyna = nWordsMin * 32; // the number of words of dynamic simulation info
Params.nBTLimit = 1000; // the max number of backtracks to perform
Params.fFuncRed = 1; // performs only one level hashing
Params.fFeedBack = 1; // enables solver feedback
Params.fDist1Pats = 1; // enables distance-1 patterns
Params.fDoSparse = 1; // performs equiv tests for sparse functions
Params.fChoicing = 1; // enables recording structural choices
Params.fTryProve = 0; // tries to solve the final miter
Params.fVerbose = 0; // the verbosiness flag
// perform partitioned computation of structural choices
pFraig = Abc_NtkFraigPartitioned( vStore, &Params );
Abc_NtkFraigStoreClean();
PRT( "Total choicing time", clock() - clk );
return pFraig;
}
......@@ -768,12 +748,13 @@ PRT( "Total fraiging time", clock() - clk );
***********************************************************************/
void Abc_NtkFraigStoreClean()
{
Abc_Ntk_t * pStore;
// get the stored network
pStore = Abc_FrameReadNtkStore();
if ( pStore )
Abc_NtkDelete( pStore );
Abc_FrameSetNtkStore( NULL );
Vec_Ptr_t * vStore;
Abc_Ntk_t * pNtk;
int i;
vStore = Abc_FrameReadStore();
Vec_PtrForEachEntry( vStore, pNtk, i )
Abc_NtkDelete( pNtk );
Vec_PtrClear( vStore );
}
/**Function*************************************************************
......@@ -794,7 +775,7 @@ void Abc_NtkFraigStoreCheck( Abc_Ntk_t * pFraig )
int i, k;
// check that the PO functions are correct
nPoFinal = Abc_NtkPoNum(pFraig);
nStored = Abc_FrameReadNtkStoreSize();
nStored = Abc_FrameReadStoreSize();
assert( nPoFinal % nStored == 0 );
nPoOrig = nPoFinal / nStored;
for ( i = 0; i < nPoOrig; i++ )
......
......@@ -314,7 +314,7 @@ void Abc_NtkMiterFinalize( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, Abc_Ntk_t * pNt
Abc_ObjAddFanin( pNode, pMiter );
// assign the name to the node
if ( nPartSize == 1 )
sprintf( Buffer, "%s", Abc_ObjName(Abc_NtkPo(pNtk1,i)) );
sprintf( Buffer, "%s", Abc_ObjName(Abc_NtkCo(pNtk1,i)) );
else
sprintf( Buffer, "%d", i );
Abc_ObjAssignName( pNode, "miter_", Buffer );
......
......@@ -24,13 +24,238 @@
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Supp_Man_t_ Supp_Man_t;
struct Supp_Man_t_
{
int nChunkSize; // the size of one chunk of memory (~1 Mb)
int nStepSize; // the step size in saving memory (~64 bytes)
char * pFreeBuf; // the pointer to free memory
int nFreeSize; // the size of remaining free memory
Vec_Ptr_t * vMemory; // the memory allocated
Vec_Ptr_t * vFree; // the vector of free pieces of memory
};
typedef struct Supp_One_t_ Supp_One_t;
struct Supp_One_t_
{
int nRefs; // the number of references
int nOuts; // the number of outputs
int nOutsAlloc; // the array size
int pOuts[0]; // the array of outputs
};
static inline int Supp_SizeType( int nSize, int nStepSize ) { return nSize / nStepSize + ((nSize % nStepSize) > 0); }
static inline char * Supp_OneNext( char * pPart ) { return *((char **)pPart); }
static inline void Supp_OneSetNext( char * pPart, char * pNext ) { *((char **)pPart) = pNext; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Prepare supports.]
Synopsis [Start the memory manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Supp_Man_t * Supp_ManStart( int nChunkSize, int nStepSize )
{
Supp_Man_t * p;
p = ALLOC( Supp_Man_t, 1 );
memset( p, 0, sizeof(Supp_Man_t) );
p->nChunkSize = nChunkSize;
p->nStepSize = nStepSize;
p->vMemory = Vec_PtrAlloc( 1000 );
p->vFree = Vec_PtrAlloc( 1000 );
return p;
}
/**Function*************************************************************
Synopsis [Stops the memory manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Supp_ManStop( Supp_Man_t * p )
{
void * pMemory;
int i;
Vec_PtrForEachEntry( p->vMemory, pMemory, i )
free( pMemory );
Vec_PtrFree( p->vMemory );
Vec_PtrFree( p->vFree );
free( p );
}
/**Function*************************************************************
Synopsis [Fetches the memory entry of the given size.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char * Supp_ManFetch( Supp_Man_t * p, int nSize )
{
int Type, nSizeReal;
char * pMemory;
assert( nSize > 0 );
Type = Supp_SizeType( nSize, p->nStepSize );
Vec_PtrFillExtra( p->vFree, Type + 1, NULL );
if ( pMemory = Vec_PtrEntry( p->vFree, Type ) )
{
Vec_PtrWriteEntry( p->vFree, Type, Supp_OneNext(pMemory) );
return pMemory;
}
nSizeReal = p->nStepSize * Type;
if ( p->nFreeSize < nSizeReal )
{
p->pFreeBuf = ALLOC( char, p->nChunkSize );
p->nFreeSize = p->nChunkSize;
Vec_PtrPush( p->vMemory, p->pFreeBuf );
}
assert( p->nFreeSize >= nSizeReal );
pMemory = p->pFreeBuf;
p->pFreeBuf += nSizeReal;
p->nFreeSize -= nSizeReal;
return pMemory;
}
/**Function*************************************************************
Synopsis [Recycles the memory entry of the given size.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Supp_ManRecycle( Supp_Man_t * p, char * pMemory, int nSize )
{
int Type;
Type = Supp_SizeType( nSize, p->nStepSize );
Vec_PtrFillExtra( p->vFree, Type + 1, NULL );
Supp_OneSetNext( pMemory, Vec_PtrEntry(p->vFree, Type) );
Vec_PtrWriteEntry( p->vFree, Type, pMemory );
}
/**Function*************************************************************
Synopsis [Fetches the memory entry of the given size.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Supp_One_t * Supp_ManFetchEntry( Supp_Man_t * p, int nWords, int nRefs )
{
Supp_One_t * pPart;
pPart = (Supp_One_t *)Supp_ManFetch( p, sizeof(Supp_One_t) + sizeof(int) * nWords );
pPart->nRefs = nRefs;
pPart->nOuts = 0;
pPart->nOutsAlloc = nWords;
return pPart;
}
/**Function*************************************************************
Synopsis [Recycles the memory entry of the given size.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Supp_ManRecycleEntry( Supp_Man_t * p, Supp_One_t * pEntry )
{
assert( pEntry->nOuts <= pEntry->nOutsAlloc );
assert( pEntry->nOuts >= pEntry->nOutsAlloc/2 );
Supp_ManRecycle( p, (char *)pEntry, sizeof(Supp_One_t) + sizeof(int) * pEntry->nOutsAlloc );
}
/**Function*************************************************************
Synopsis [Merges two entries.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Supp_One_t * Supp_ManMergeEntry( Supp_Man_t * pMan, Supp_One_t * p1, Supp_One_t * p2, int nRefs )
{
Supp_One_t * p = Supp_ManFetchEntry( pMan, p1->nOuts + p2->nOuts, nRefs );
int * pBeg1 = p1->pOuts;
int * pBeg2 = p2->pOuts;
int * pBeg = p->pOuts;
int * pEnd1 = p1->pOuts + p1->nOuts;
int * pEnd2 = p2->pOuts + p2->nOuts;
while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
{
if ( *pBeg1 == *pBeg2 )
*pBeg++ = *pBeg1++, pBeg2++;
else if ( *pBeg1 < *pBeg2 )
*pBeg++ = *pBeg1++;
else
*pBeg++ = *pBeg2++;
}
while ( pBeg1 < pEnd1 )
*pBeg++ = *pBeg1++;
while ( pBeg2 < pEnd2 )
*pBeg++ = *pBeg2++;
p->nOuts = pBeg - p->pOuts;
assert( p->nOuts <= p->nOutsAlloc );
assert( p->nOuts >= p1->nOuts );
assert( p->nOuts >= p2->nOuts );
return p;
}
/**Function*************************************************************
Synopsis [Tranfers the entry.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Supp_ManTransferEntry( Supp_One_t * p )
{
Vec_Int_t * vSupp;
int i;
vSupp = Vec_IntAlloc( p->nOuts );
for ( i = 0; i < p->nOuts; i++ )
Vec_IntPush( vSupp, p->pOuts[i] );
return vSupp;
}
/**Function*************************************************************
Synopsis [Computes supports of the POs in the multi-output AIG.]
Description []
......@@ -39,7 +264,152 @@
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkPartitionCollectSupps( Abc_Ntk_t * pNtk )
Vec_Ptr_t * Abc_NtkDfsNatural( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pObj, * pNext;
int i, k;
assert( Abc_NtkIsStrash(pNtk) );
vNodes = Vec_PtrAlloc( Abc_NtkObjNum(pNtk) );
Abc_NtkIncrementTravId( pNtk );
// add the constant-1 nodes
pObj = Abc_AigConst1(pNtk);
Abc_NodeSetTravIdCurrent( pObj );
Vec_PtrPush( vNodes, pObj );
// add the CIs/nodes/COs in the topological order
Abc_NtkForEachNode( pNtk, pObj, i )
{
// check the fanins and add CIs
Abc_ObjForEachFanin( pObj, pNext, k )
if ( Abc_ObjIsCi(pNext) && !Abc_NodeIsTravIdCurrent(pNext) )
{
Abc_NodeSetTravIdCurrent( pNext );
Vec_PtrPush( vNodes, pNext );
}
// add the node
Vec_PtrPush( vNodes, pObj );
// check the fanouts and add COs
Abc_ObjForEachFanout( pObj, pNext, k )
if ( Abc_ObjIsCo(pNext) && !Abc_NodeIsTravIdCurrent(pNext) )
{
Abc_NodeSetTravIdCurrent( pNext );
Vec_PtrPush( vNodes, pNext );
}
}
return vNodes;
}
/**Function*************************************************************
Synopsis [Computes supports of the POs.]
Description [Returns the ptr-vector of int-vectors.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkComputeSupportsSmart( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vSupports;
Vec_Ptr_t * vNodes;
Vec_Int_t * vSupp;
Supp_Man_t * p;
Supp_One_t * pPart0, * pPart1;
Abc_Obj_t * pObj;
int i;
// set the number of PIs/POs
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pNext = (Abc_Obj_t *)i;
Abc_NtkForEachCo( pNtk, pObj, i )
pObj->pNext = (Abc_Obj_t *)i;
// start the support computation manager
p = Supp_ManStart( 1 << 20, 1 << 6 );
// consider objects in the topological order
vSupports = Vec_PtrAlloc( Abc_NtkCoNum(pNtk) );
Abc_NtkCleanCopy(pNtk);
// order the nodes so that the PIs and POs follow naturally
vNodes = Abc_NtkDfsNatural( pNtk );
Vec_PtrForEachEntry( vNodes, pObj, i )
{
if ( Abc_ObjIsNode(pObj) )
{
pPart0 = (Supp_One_t *)Abc_ObjFanin0(pObj)->pCopy;
pPart1 = (Supp_One_t *)Abc_ObjFanin1(pObj)->pCopy;
pObj->pCopy = (Abc_Obj_t *)Supp_ManMergeEntry( p, pPart0, pPart1, Abc_ObjFanoutNum(pObj) );
assert( pPart0->nRefs > 0 );
if ( --pPart0->nRefs == 0 )
Supp_ManRecycleEntry( p, pPart0 );
assert( pPart1->nRefs > 0 );
if ( --pPart1->nRefs == 0 )
Supp_ManRecycleEntry( p, pPart1 );
continue;
}
if ( Abc_ObjIsCo(pObj) )
{
pPart0 = (Supp_One_t *)Abc_ObjFanin0(pObj)->pCopy;
// only save the CO if it is non-trivial
if ( Abc_ObjIsNode(Abc_ObjFanin0(pObj)) )
{
vSupp = Supp_ManTransferEntry(pPart0);
Vec_IntPush( vSupp, (int)pObj->pNext );
Vec_PtrPush( vSupports, vSupp );
}
assert( pPart0->nRefs > 0 );
if ( --pPart0->nRefs == 0 )
Supp_ManRecycleEntry( p, pPart0 );
continue;
}
if ( Abc_ObjIsCi(pObj) )
{
if ( Abc_ObjFanoutNum(pObj) )
{
pPart0 = (Supp_One_t *)Supp_ManFetchEntry( p, 1, Abc_ObjFanoutNum(pObj) );
pPart0->pOuts[ pPart0->nOuts++ ] = (int)pObj->pNext;
pObj->pCopy = (Abc_Obj_t *)pPart0;
}
continue;
}
if ( pObj == Abc_AigConst1(pNtk) )
{
if ( Abc_ObjFanoutNum(pObj) )
pObj->pCopy = (Abc_Obj_t *)Supp_ManFetchEntry( p, 0, Abc_ObjFanoutNum(pObj) );
continue;
}
assert( 0 );
}
Vec_PtrFree( vNodes );
//printf( "Memory usage = %d Mb.\n", Vec_PtrSize(p->vMemory) * p->nChunkSize / (1<<20) );
Supp_ManStop( p );
// sort supports by size
Vec_VecSort( (Vec_Vec_t *)vSupports, 1 );
// clear the number of PIs/POs
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pNext = NULL;
Abc_NtkForEachCo( pNtk, pObj, i )
pObj->pNext = NULL;
/*
Vec_PtrForEachEntry( vSupports, vSupp, i )
printf( "%d ", Vec_IntSize(vSupp) );
printf( "\n" );
*/
return vSupports;
}
/**Function*************************************************************
Synopsis [Computes supports of the POs using naive method.]
Description [Returns the ptr-vector of int-vectors.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkComputeSupportsNaive( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vSupp, * vSupports;
Vec_Int_t * vSuppI;
......@@ -47,29 +417,39 @@ Vec_Ptr_t * Abc_NtkPartitionCollectSupps( Abc_Ntk_t * pNtk )
int i, k;
// set the PI numbers
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = (void *)i;
// save hte CI numbers
pObj->pNext = (void *)i;
// save the CI numbers
vSupports = Vec_PtrAlloc( Abc_NtkCoNum(pNtk) );
Abc_NtkForEachCo( pNtk, pObj, i )
{
if ( !Abc_ObjIsNode(Abc_ObjFanin0(pObj)) )
continue;
vSupp = Abc_NtkNodeSupport( pNtk, &pObj, 1 );
vSuppI = (Vec_Int_t *)vSupp;
Vec_PtrForEachEntry( vSupp, pTemp, k )
Vec_IntWriteEntry( vSuppI, k, (int)pTemp->pCopy );
Vec_IntWriteEntry( vSuppI, k, (int)pTemp->pNext );
Vec_IntSort( vSuppI, 0 );
// append the number of this output
Vec_IntPush( vSuppI, i );
// save the support in the vector
Vec_PtrPush( vSupports, vSuppI );
}
// clean the CI numbers
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pNext = NULL;
// sort supports by size
Vec_VecSort( (Vec_Vec_t *)vSupports, 1 );
/*
Vec_PtrForEachEntry( vSupports, vSuppI, i )
printf( "%d ", Vec_IntSize(vSuppI) );
printf( "\n" );
*/
return vSupports;
}
/**Function*************************************************************
Synopsis [Start char-bases support representation.]
Synopsis [Start bitwise support representation.]
Description []
......@@ -78,23 +458,24 @@ Vec_Ptr_t * Abc_NtkPartitionCollectSupps( Abc_Ntk_t * pNtk )
SeeAlso []
***********************************************************************/
char * Abc_NtkSuppCharStart( Vec_Int_t * vOne, int nPis )
unsigned * Abc_NtkSuppCharStart( Vec_Int_t * vOne, int nPis )
{
char * pBuffer;
unsigned * pBuffer;
int i, Entry;
pBuffer = ALLOC( char, nPis );
memset( pBuffer, 0, sizeof(char) * nPis );
int nWords = Abc_BitWordNum(nPis);
pBuffer = ALLOC( unsigned, nWords );
memset( pBuffer, 0, sizeof(unsigned) * nWords );
Vec_IntForEachEntry( vOne, Entry, i )
{
assert( Entry < nPis );
pBuffer[Entry] = 1;
Abc_InfoSetBit( pBuffer, Entry );
}
return pBuffer;
}
/**Function*************************************************************
Synopsis [Add to char-bases support representation.]
Synopsis [Add to bitwise support representation.]
Description []
......@@ -103,19 +484,19 @@ char * Abc_NtkSuppCharStart( Vec_Int_t * vOne, int nPis )
SeeAlso []
***********************************************************************/
void Abc_NtkSuppCharAdd( char * pBuffer, Vec_Int_t * vOne, int nPis )
void Abc_NtkSuppCharAdd( unsigned * pBuffer, Vec_Int_t * vOne, int nPis )
{
int i, Entry;
Vec_IntForEachEntry( vOne, Entry, i )
{
assert( Entry < nPis );
pBuffer[Entry] = 1;
Abc_InfoSetBit( pBuffer, Entry );
}
}
/**Function*************************************************************
Synopsis [Find the common variables using char-bases support representation.]
Synopsis [Find the common variables using bitwise support representation.]
Description []
......@@ -124,11 +505,11 @@ void Abc_NtkSuppCharAdd( char * pBuffer, Vec_Int_t * vOne, int nPis )
SeeAlso []
***********************************************************************/
int Abc_NtkSuppCharCommon( char * pBuffer, Vec_Int_t * vOne )
int Abc_NtkSuppCharCommon( unsigned * pBuffer, Vec_Int_t * vOne )
{
int i, Entry, nCommon = 0;
Vec_IntForEachEntry( vOne, Entry, i )
nCommon += pBuffer[Entry];
nCommon += Abc_InfoHasBit(pBuffer, Entry);
return nCommon;
}
......@@ -143,7 +524,7 @@ int Abc_NtkSuppCharCommon( char * pBuffer, Vec_Int_t * vOne )
SeeAlso []
***********************************************************************/
int Abc_NtkPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsChar, int nPartSizeLimit, Vec_Int_t * vOne )
int Abc_NtkPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsChar, int nSuppSizeLimit, Vec_Int_t * vOne )
{
/*
Vec_Int_t * vPartSupp, * vPart;
......@@ -178,7 +559,7 @@ int Abc_NtkPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vParts
return iBest;
*/
Vec_Int_t * vPartSupp, * vPart;
Vec_Int_t * vPartSupp;//, * vPart;
int Attract, Repulse, Value, ValueBest;
int i, nCommon, iBest;
// int nCommon2;
......@@ -186,16 +567,24 @@ int Abc_NtkPartitionSmartFindPart( Vec_Ptr_t * vPartSuppsAll, Vec_Ptr_t * vParts
ValueBest = 0;
Vec_PtrForEachEntry( vPartSuppsAll, vPartSupp, i )
{
vPart = Vec_PtrEntry( vPartsAll, i );
if ( nPartSizeLimit > 0 && Vec_IntSize(vPart) >= nPartSizeLimit )
continue;
// skip partitions with too many outputs
// vPart = Vec_PtrEntry( vPartsAll, i );
// if ( nSuppSizeLimit > 0 && Vec_IntSize(vPart) >= nSuppSizeLimit )
// continue;
// find the number of common variables between this output and the partitions
// nCommon2 = Vec_IntTwoCountCommon( vPartSupp, vOne );
nCommon = Abc_NtkSuppCharCommon( Vec_PtrEntry(vPartSuppsChar, i), vOne );
// assert( nCommon2 == nCommon );
// if no common variables, continue searching
if ( nCommon == 0 )
continue;
// if all variables are common, the best partition if found
if ( nCommon == Vec_IntSize(vOne) )
return i;
// skip partitions whose size exceeds the limit
if ( nSuppSizeLimit > 0 && Vec_IntSize(vPartSupp) >= 2 * nSuppSizeLimit )
continue;
// figure out might be the good partition for this one
Attract = 1000 * nCommon / Vec_IntSize(vOne);
if ( Vec_IntSize(vPartSupp) < 100 )
Repulse = 1;
......@@ -238,7 +627,7 @@ void Abc_NtkPartitionPrint( Abc_Ntk_t * pNtk, Vec_Ptr_t * vPartsAll, Vec_Ptr_t *
if ( i == Vec_PtrSize(vPartsAll) - 1 )
break;
}
assert( Counter == Abc_NtkCoNum(pNtk) );
// assert( Counter == Abc_NtkCoNum(pNtk) );
printf( "\nTotal = %d. Outputs = %d.\n", Counter, Abc_NtkCoNum(pNtk) );
}
......@@ -253,20 +642,20 @@ void Abc_NtkPartitionPrint( Abc_Ntk_t * pNtk, Vec_Ptr_t * vPartsAll, Vec_Ptr_t *
SeeAlso []
***********************************************************************/
void Abc_NtkPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll, int nPartSizeLimit )
void Abc_NtkPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll, int nSuppSizeLimit )
{
Vec_Int_t * vOne, * vPart, * vPartSupp, * vTemp;
int i, iPart;
if ( nPartSizeLimit == 0 )
nPartSizeLimit = 200;
if ( nSuppSizeLimit == 0 )
nSuppSizeLimit = 200;
// pack smaller partitions into larger blocks
iPart = 0;
vPart = vPartSupp = NULL;
Vec_PtrForEachEntry( vPartSuppsAll, vOne, i )
{
if ( Vec_IntSize(vOne) < nPartSizeLimit )
if ( Vec_IntSize(vOne) < nSuppSizeLimit )
{
if ( vPartSupp == NULL )
{
......@@ -282,7 +671,7 @@ void Abc_NtkPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll,
Vec_IntFree( vTemp );
Vec_IntFree( Vec_PtrEntry(vPartsAll, i) );
}
if ( Vec_IntSize(vPartSupp) < nPartSizeLimit )
if ( Vec_IntSize(vPartSupp) < nSuppSizeLimit )
continue;
}
else
......@@ -318,23 +707,25 @@ void Abc_NtkPartitionCompact( Vec_Ptr_t * vPartsAll, Vec_Ptr_t * vPartSuppsAll,
Synopsis [Perform the smart partitioning.]
Description []
Description [Returns the ptr-vector of int-vectors.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Vec_t * Abc_NtkPartitionSmart( Abc_Ntk_t * pNtk, int nPartSizeLimit, int fVerbose )
Vec_Ptr_t * Abc_NtkPartitionSmart( Abc_Ntk_t * pNtk, int nSuppSizeLimit, int fVerbose )
{
ProgressBar * pProgress;
Vec_Ptr_t * vPartSuppsChar;
Vec_Ptr_t * vSupps, * vPartsAll, * vPartsAll2, * vPartSuppsAll, * vPartPtr;
Vec_Ptr_t * vSupps, * vPartsAll, * vPartsAll2, * vPartSuppsAll;
Vec_Int_t * vOne, * vPart, * vPartSupp, * vTemp;
int i, iPart, iOut, clk, clk2, timeFind = 0;
// compute the supports for all outputs
clk = clock();
vSupps = Abc_NtkPartitionCollectSupps( pNtk );
// vSupps = Abc_NtkComputeSupportsNaive( pNtk );
vSupps = Abc_NtkComputeSupportsSmart( pNtk );
if ( fVerbose )
{
PRT( "Supps", clock() - clk );
......@@ -346,15 +737,19 @@ PRT( "Supps", clock() - clk );
clk = clock();
vPartsAll = Vec_PtrAlloc( 256 );
vPartSuppsAll = Vec_PtrAlloc( 256 );
pProgress = Extra_ProgressBarStart( stdout, Vec_PtrSize(vSupps) );
Vec_PtrForEachEntry( vSupps, vOne, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// if ( i % 1000 == 0 )
// printf( "CIs = %6d. COs = %6d. Processed = %6d (out of %6d). Parts = %6d.\r",
// Abc_NtkCiNum(pNtk), Abc_NtkCoNum(pNtk), i, Vec_PtrSize(vSupps), Vec_PtrSize(vPartsAll) );
// get the output number
iOut = Vec_IntPop(vOne);
// find closely matching part
clk2 = clock();
iPart = Abc_NtkPartitionSmartFindPart( vPartSuppsAll, vPartsAll, vPartSuppsChar, nPartSizeLimit, vOne );
iPart = Abc_NtkPartitionSmartFindPart( vPartSuppsAll, vPartsAll, vPartSuppsChar, nSuppSizeLimit, vOne );
timeFind += clock() - clk2;
//printf( "%4d->%4d ", i, iPart );
if ( iPart == -1 )
{
// create new partition
......@@ -383,6 +778,7 @@ timeFind += clock() - clk2;
Abc_NtkSuppCharAdd( Vec_PtrEntry(vPartSuppsChar, iPart), vOne, Abc_NtkCiNum(pNtk) );
}
}
Extra_ProgressBarStop( pProgress );
// stop char-based support representation
Vec_PtrForEachEntry( vPartSuppsChar, vTemp, i )
......@@ -411,20 +807,20 @@ clk = clock();
// compact small partitions
// Abc_NtkPartitionPrint( pNtk, vPartsAll, vPartSuppsAll );
Abc_NtkPartitionCompact( vPartsAll, vPartSuppsAll, nPartSizeLimit );
if ( fVerbose )
// Abc_NtkPartitionPrint( pNtk, vPartsAll, vPartSuppsAll );
printf( "Created %d partitions.\n", Vec_PtrSize(vPartsAll) );
Abc_NtkPartitionCompact( vPartsAll, vPartSuppsAll, nSuppSizeLimit );
if ( fVerbose )
{
PRT( "Comps", clock() - clk );
}
if ( fVerbose )
printf( "Created %d partitions.\n", Vec_PtrSize(vPartsAll) );
// Abc_NtkPartitionPrint( pNtk, vPartsAll, vPartSuppsAll );
// cleanup
Vec_VecFree( (Vec_Vec_t *)vSupps );
Vec_VecFree( (Vec_Vec_t *)vPartSuppsAll );
/*
// converts from intergers to nodes
Vec_PtrForEachEntry( vPartsAll, vPart, iPart )
{
......@@ -434,34 +830,54 @@ PRT( "Comps", clock() - clk );
Vec_IntFree( vPart );
Vec_PtrWriteEntry( vPartsAll, iPart, vPartPtr );
}
return (Vec_Vec_t *)vPartsAll;
*/
return vPartsAll;
}
/**Function*************************************************************
Synopsis [Perform the naive partitioning.]
Description []
Description [Returns the ptr-vector of int-vectors.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Vec_t * Abc_NtkPartitionNaive( Abc_Ntk_t * pNtk, int nPartSize )
Vec_Ptr_t * Abc_NtkPartitionNaive( Abc_Ntk_t * pNtk, int nPartSize )
{
Vec_Vec_t * vParts;
Vec_Ptr_t * vParts;
Abc_Obj_t * pObj;
int nParts, i;
nParts = (Abc_NtkCoNum(pNtk) / nPartSize) + ((Abc_NtkCoNum(pNtk) % nPartSize) > 0);
vParts = Vec_VecStart( nParts );
vParts = (Vec_Ptr_t *)Vec_VecStart( nParts );
Abc_NtkForEachCo( pNtk, pObj, i )
Vec_VecPush( vParts, i / nPartSize, pObj );
Vec_IntPush( Vec_PtrEntry(vParts, i / nPartSize), i );
return vParts;
}
/**Function*************************************************************
Synopsis [Converts from intergers to pointers for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkConvertCos( Abc_Ntk_t * pNtk, Vec_Int_t * vOuts, Vec_Ptr_t * vOutsPtr )
{
int Out, i;
Vec_PtrClear( vOutsPtr );
Vec_IntForEachEntry( vOuts, Out, i )
Vec_PtrPush( vOutsPtr, Abc_NtkCo(pNtk, Out) );
}
/**Function*************************************************************
Synopsis [Returns representative of the given node.]
Description []
......@@ -506,134 +922,6 @@ static inline Abc_Obj_t * Abc_NtkPartStitchCopy1( Vec_Ptr_t * vEquiv, Abc_Obj_t
/**Function*************************************************************
Synopsis [Stitches together several networks with choice nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkPartStitchChoices_old( Abc_Ntk_t * pNtk, Vec_Ptr_t * vParts )
{
Vec_Ptr_t * vNodes, * vEquiv;
Abc_Ntk_t * pNtkNew, * pNtkNew2, * pNtkTemp;
Abc_Obj_t * pObj, * pFanin, * pRepr0, * pRepr1, * pRepr;
int i, k, iNodeId;
// start a new network similar to the original one
assert( Abc_NtkIsStrash(pNtk) );
pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_STRASH, ABC_FUNC_AIG );
// duplicate the name and the spec
pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
// annotate parts to point to the new network
vEquiv = Vec_PtrStart( Abc_NtkObjNumMax(pNtk) + 1 );
Vec_PtrForEachEntry( vParts, pNtkTemp, i )
{
assert( Abc_NtkIsStrash(pNtkTemp) );
Abc_NtkCleanCopy( pNtkTemp );
// map the CI nodes
Abc_AigConst1(pNtkTemp)->pCopy = Abc_AigConst1(pNtkNew);
Abc_NtkForEachCi( pNtkTemp, pObj, k )
{
iNodeId = Nm_ManFindIdByNameTwoTypes( pNtkNew->pManName, Abc_ObjName(pObj), ABC_OBJ_PI, ABC_OBJ_BO );
if ( iNodeId == -1 )
{
printf( "Cannot find CI node %s in the original network.\n", Abc_ObjName(pObj) );
return NULL;
}
pObj->pCopy = Abc_NtkObj( pNtkNew, iNodeId );
}
// add the internal nodes while saving representatives
vNodes = Abc_AigDfs( pNtkTemp, 1, 0 );
Vec_PtrForEachEntry( vNodes, pObj, k )
{
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
assert( !Abc_ObjIsComplement(pObj->pCopy) );
if ( !Abc_AigNodeIsChoice(pObj) )
continue;
// find the earliest representative of the choice node
pRepr0 = NULL;
for ( pFanin = pObj; pFanin; pFanin = pFanin->pData )
{
pRepr1 = Abc_NtkPartStitchFindRepr_rec( vEquiv, pFanin->pCopy );
if ( pRepr0 == NULL || pRepr0->Id > pRepr1->Id )
pRepr0 = pRepr1;
}
// set this representative for the representives of all choices
for ( pFanin = pObj; pFanin; pFanin = pFanin->pData )
{
pRepr1 = Abc_NtkPartStitchFindRepr_rec( vEquiv, pFanin->pCopy );
Vec_PtrWriteEntry( vEquiv, pRepr1->Id, pRepr0 );
}
}
Vec_PtrFree( vNodes );
// map the CO nodes
Abc_NtkForEachCo( pNtkTemp, pObj, k )
{
iNodeId = Nm_ManFindIdByNameTwoTypes( pNtkNew->pManName, Abc_ObjName(pObj), ABC_OBJ_PO, ABC_OBJ_BI );
if ( iNodeId == -1 )
{
printf( "Cannot find CO node %s in the original network.\n", Abc_ObjName(pObj) );
return NULL;
}
pObj->pCopy = Abc_NtkObj( pNtkNew, iNodeId );
Abc_ObjAddFanin( pObj->pCopy, Abc_ObjChild0Copy(pObj) );
}
}
// reconstruct the AIG
pNtkNew2 = Abc_NtkStartFrom( pNtkNew, ABC_NTK_STRASH, ABC_FUNC_AIG );
// duplicate the name and the spec
pNtkNew2->pName = Extra_UtilStrsav(pNtkNew->pName);
pNtkNew2->pSpec = Extra_UtilStrsav(pNtkNew->pSpec);
// duplicate internal nodes
Abc_AigForEachAnd( pNtkNew, pObj, i )
{
pRepr0 = Abc_NtkPartStitchCopy0( vEquiv, pObj );
pRepr1 = Abc_NtkPartStitchCopy1( vEquiv, pObj );
pObj->pCopy = Abc_AigAnd( pNtkNew2->pManFunc, pRepr0, pRepr1 );
assert( !Abc_ObjIsComplement(pObj->pCopy) );
// add the choice if applicable
pRepr = Abc_NtkPartStitchFindRepr_rec( vEquiv, pObj );
if ( pObj != pRepr )
{
assert( pObj->Id > pRepr->Id );
if ( pObj->pCopy != pRepr->pCopy )
{
assert( pObj->pCopy->Id > pRepr->pCopy->Id );
pObj->pCopy->pData = pRepr->pCopy->pData;
pRepr->pCopy->pData = pObj->pCopy;
}
}
}
// connect the COs
Abc_NtkForEachCo( pNtkNew, pObj, k )
Abc_ObjAddFanin( pObj->pCopy, Abc_NtkPartStitchCopy0(vEquiv,pObj) );
// replace the network
Abc_NtkDelete( pNtkNew );
pNtkNew = pNtkNew2;
// check correctness of the new network
Vec_PtrFree( vEquiv );
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkPartStitchChoices: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
/**Function*************************************************************
Synopsis []
Description []
......@@ -762,6 +1050,20 @@ Abc_Ntk_t * Abc_NtkPartStitchChoices( Abc_Ntk_t * pNtk, Vec_Ptr_t * vParts )
}
}
// connect the remaining POs
/*
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = Abc_NtkCi( pNtkNew, i );
Abc_NtkForEachCo( pNtk, pObj, i )
pObj->pCopy = Abc_NtkCo( pNtkNew, i );
*/
Abc_NtkForEachCo( pNtk, pObj, i )
{
if ( Abc_ObjFaninNum(pObj->pCopy) == 0 )
Abc_ObjAddFanin( pObj->pCopy, Abc_ObjChild0Copy(pObj) );
}
// transform into the HOP manager
pMan = Abc_NtkPartStartHop( pNtkNew );
pNtkNew = Abc_NtkHopRemoveLoops( pNtkTemp = pNtkNew, pMan );
......@@ -788,47 +1090,57 @@ Abc_Ntk_t * Abc_NtkPartStitchChoices( Abc_Ntk_t * pNtk, Vec_Ptr_t * vParts )
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkFraigPartitioned( Abc_Ntk_t * pNtk, void * pParams )
Abc_Ntk_t * Abc_NtkFraigPartitioned( Vec_Ptr_t * vStore, void * pParams )
{
extern int Cmd_CommandExecute( void * pAbc, char * sCommand );
extern void * Abc_FrameGetGlobalFrame();
Vec_Vec_t * vParts;
Vec_Ptr_t * vFraigs, * vOne;
Abc_Ntk_t * pNtkAig, * pNtkFraig;
int i;
Vec_Ptr_t * vParts, * vFraigs, * vOnePtr;
Vec_Int_t * vOne;
Abc_Ntk_t * pNtk, * pNtk2, * pNtkAig, * pNtkFraig;
int i, k;
// perform partitioning
pNtk = Vec_PtrEntry( vStore, 0 );
assert( Abc_NtkIsStrash(pNtk) );
// vParts = Abc_NtkPartitionNaive( pNtk, 20 );
vParts = Abc_NtkPartitionSmart( pNtk, 0, 0 );
vParts = Abc_NtkPartitionSmart( pNtk, 300, 0 );
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "unset progressbar" );
// fraig each partition
vFraigs = Vec_PtrAlloc( Vec_VecSize(vParts) );
Vec_VecForEachLevel( vParts, vOne, i )
vOnePtr = Vec_PtrAlloc( 1000 );
vFraigs = Vec_PtrAlloc( Vec_PtrSize(vParts) );
Vec_PtrForEachEntry( vParts, vOne, i )
{
pNtkAig = Abc_NtkCreateConeArray( pNtk, vOne, 0 );
pNtkFraig = Abc_NtkFraig( pNtkAig, pParams, 0, 0 );
// start the partition
Abc_NtkConvertCos( pNtk, vOne, vOnePtr );
pNtkAig = Abc_NtkCreateConeArray( pNtk, vOnePtr, 0 );
// add nodes to the partition
Vec_PtrForEachEntryStart( vStore, pNtk2, k, 1 )
{
Abc_NtkConvertCos( pNtk2, vOne, vOnePtr );
Abc_NtkAppendToCone( pNtkAig, pNtk2, vOnePtr );
}
printf( "Fraiging part %4d (out of %4d) PI = %5d. PO = %5d. And = %6d. Lev = %4d.\r",
i+1, Vec_PtrSize(vParts), Abc_NtkPiNum(pNtkAig), Abc_NtkPoNum(pNtkAig),
Abc_NtkNodeNum(pNtkAig), Abc_AigLevel(pNtkAig) );
// fraig the partition
pNtkFraig = Abc_NtkFraig( pNtkAig, pParams, 1, 0 );
Vec_PtrPush( vFraigs, pNtkFraig );
Abc_NtkDelete( pNtkAig );
printf( "Finished part %d (out of %d)\r", i+1, Vec_VecSize(vParts) );
}
Vec_VecFree( vParts );
printf( " \r" );
Vec_VecFree( (Vec_Vec_t *)vParts );
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "set progressbar" );
// derive the final network
pNtkFraig = Abc_NtkPartStitchChoices( pNtk, vFraigs );
Vec_PtrForEachEntry( vFraigs, pNtkAig, i )
{
// Abc_NtkPrintStats( stdout, pNtkAig, 0 );
Abc_NtkDelete( pNtkAig );
}
Vec_PtrFree( vFraigs );
Vec_PtrFree( vOnePtr );
return pNtkFraig;
}
......@@ -848,8 +1160,8 @@ void Abc_NtkFraigPartitionedTime( Abc_Ntk_t * pNtk, void * pParams )
extern int Cmd_CommandExecute( void * pAbc, char * sCommand );
extern void * Abc_FrameGetGlobalFrame();
Vec_Vec_t * vParts;
Vec_Ptr_t * vFraigs, * vOne;
Vec_Ptr_t * vParts, * vFraigs, * vOnePtr;
Vec_Int_t * vOne;
Abc_Ntk_t * pNtkAig, * pNtkFraig;
int i;
int clk = clock();
......@@ -857,22 +1169,24 @@ void Abc_NtkFraigPartitionedTime( Abc_Ntk_t * pNtk, void * pParams )
// perform partitioning
assert( Abc_NtkIsStrash(pNtk) );
// vParts = Abc_NtkPartitionNaive( pNtk, 20 );
vParts = Abc_NtkPartitionSmart( pNtk, 0, 0 );
vParts = Abc_NtkPartitionSmart( pNtk, 300, 0 );
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "unset progressbar" );
// fraig each partition
vFraigs = Vec_PtrAlloc( Vec_VecSize(vParts) );
Vec_VecForEachLevel( vParts, vOne, i )
vOnePtr = Vec_PtrAlloc( 1000 );
vFraigs = Vec_PtrAlloc( Vec_PtrSize(vParts) );
Vec_PtrForEachEntry( vParts, vOne, i )
{
pNtkAig = Abc_NtkCreateConeArray( pNtk, vOne, 0 );
Abc_NtkConvertCos( pNtk, vOne, vOnePtr );
pNtkAig = Abc_NtkCreateConeArray( pNtk, vOnePtr, 0 );
pNtkFraig = Abc_NtkFraig( pNtkAig, pParams, 0, 0 );
Vec_PtrPush( vFraigs, pNtkFraig );
Abc_NtkDelete( pNtkAig );
printf( "Finished part %d (out of %d)\r", i+1, Vec_VecSize(vParts) );
printf( "Finished part %5d (out of %5d)\r", i+1, Vec_PtrSize(vParts) );
}
Vec_VecFree( vParts );
Vec_VecFree( (Vec_Vec_t *)vParts );
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "set progressbar" );
......@@ -880,7 +1194,7 @@ void Abc_NtkFraigPartitionedTime( Abc_Ntk_t * pNtk, void * pParams )
Vec_PtrForEachEntry( vFraigs, pNtkAig, i )
Abc_NtkDelete( pNtkAig );
Vec_PtrFree( vFraigs );
Vec_PtrFree( vOnePtr );
PRT( "Partitioned fraiging time", clock() - clk );
}
......
......@@ -293,7 +293,7 @@ void Abc_NtkCecFraigPart( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, in
}
else
{
printf( "Finished part %d (out of %d)\r", i+1, Abc_NtkPoNum(pMiter) );
printf( "Finished part %5d (out of %5d)\r", i+1, Abc_NtkPoNum(pMiter) );
nOutputs += nPartSize;
}
// if ( pMiter->pModel )
......@@ -301,7 +301,7 @@ void Abc_NtkCecFraigPart( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, in
if ( pMiterPart )
Abc_NtkDelete( pMiterPart );
}
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "set progressbar" );
if ( Status == 1 )
......@@ -325,12 +325,13 @@ void Abc_NtkCecFraigPart( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, in
void Abc_NtkCecFraigPartAuto( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, int fVerbose )
{
extern int Abc_NtkCombinePos( Abc_Ntk_t * pNtk, int fAnd );
extern Vec_Vec_t * Abc_NtkPartitionSmart( Abc_Ntk_t * pNtk, int nPartSizeLimit, int fVerbose );
extern Vec_Ptr_t * Abc_NtkPartitionSmart( Abc_Ntk_t * pNtk, int nPartSizeLimit, int fVerbose );
extern void Abc_NtkConvertCos( Abc_Ntk_t * pNtk, Vec_Int_t * vOuts, Vec_Ptr_t * vOnePtr );
extern int Cmd_CommandExecute( void * pAbc, char * sCommand );
extern void * Abc_FrameGetGlobalFrame();
Vec_Vec_t * vParts;
Vec_Ptr_t * vOne;
Vec_Ptr_t * vParts, * vOnePtr;
Vec_Int_t * vOne;
Prove_Params_t Params, * pParams = &Params;
Abc_Ntk_t * pMiter, * pMiterPart;
int i, RetValue, Status, nOutputs;
......@@ -368,15 +369,17 @@ void Abc_NtkCecFraigPartAuto( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "unset progressbar" );
// partition the outputs
vParts = Abc_NtkPartitionSmart( pMiter, 50, 1 );
vParts = Abc_NtkPartitionSmart( pMiter, 300, 0 );
// fraig each partition
Status = 1;
nOutputs = 0;
Vec_VecForEachLevel( vParts, vOne, i )
vOnePtr = Vec_PtrAlloc( 1000 );
Vec_PtrForEachEntry( vParts, vOne, i )
{
// get this part of the miter
pMiterPart = Abc_NtkCreateConeArray( pMiter, vOne, 0 );
Abc_NtkConvertCos( pMiter, vOne, vOnePtr );
pMiterPart = Abc_NtkCreateConeArray( pMiter, vOnePtr, 0 );
Abc_NtkCombinePos( pMiterPart, 0 );
// check the miter for being constant
RetValue = Abc_NtkMiterIsConstant( pMiterPart );
......@@ -391,6 +394,9 @@ void Abc_NtkCecFraigPartAuto( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds
Abc_NtkDelete( pMiterPart );
continue;
}
printf( "Verifying part %4d (out of %4d) PI = %5d. PO = %5d. And = %6d. Lev = %4d.\r",
i+1, Vec_PtrSize(vParts), Abc_NtkPiNum(pMiterPart), Abc_NtkPoNum(pMiterPart),
Abc_NtkNodeNum(pMiterPart), Abc_AigLevel(pMiterPart) );
// solve the problem
RetValue = Abc_NtkIvyProve( &pMiterPart, pParams );
if ( RetValue == -1 )
......@@ -412,12 +418,14 @@ void Abc_NtkCecFraigPartAuto( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds
}
else
{
printf( "Finished part %d (out of %d)\r", i+1, Vec_VecSize(vParts) );
nOutputs += Vec_PtrSize(vOne);
// printf( "Finished part %5d (out of %5d)\r", i+1, Vec_PtrSize(vParts) );
nOutputs += Vec_IntSize(vOne);
}
Abc_NtkDelete( pMiterPart );
}
Vec_VecFree( vParts );
printf( " \r" );
Vec_VecFree( (Vec_Vec_t *)vParts );
Vec_PtrFree( vOnePtr );
Cmd_CommandExecute( Abc_FrameGetGlobalFrame(), "set progressbar" );
......
......@@ -92,8 +92,8 @@ extern void Abc_FrameDeleteAllNetworks( Abc_Frame_t * p );
extern void Abc_FrameSetGlobalFrame( Abc_Frame_t * p );
extern Abc_Frame_t * Abc_FrameGetGlobalFrame();
extern Abc_Ntk_t * Abc_FrameReadNtkStore();
extern int Abc_FrameReadNtkStoreSize();
extern Vec_Ptr_t * Abc_FrameReadStore();
extern int Abc_FrameReadStoreSize();
extern void * Abc_FrameReadLibLut();
extern void * Abc_FrameReadLibGen();
extern void * Abc_FrameReadLibSuper();
......
......@@ -43,8 +43,8 @@ static Abc_Frame_t * s_GlobalFrame = NULL;
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_FrameReadNtkStore() { return s_GlobalFrame->pStored; }
int Abc_FrameReadNtkStoreSize() { return s_GlobalFrame->nStored; }
Vec_Ptr_t * Abc_FrameReadStore() { return s_GlobalFrame->vStore; }
int Abc_FrameReadStoreSize() { return Vec_PtrSize(s_GlobalFrame->vStore); }
void * Abc_FrameReadLibLut() { return s_GlobalFrame->pLibLut; }
void * Abc_FrameReadLibGen() { return s_GlobalFrame->pLibGen; }
void * Abc_FrameReadLibSuper() { return s_GlobalFrame->pLibSuper; }
......@@ -53,8 +53,6 @@ void * Abc_FrameReadManDd() { if ( s_GlobalFrame->dd ==
void * Abc_FrameReadManDec() { if ( s_GlobalFrame->pManDec == NULL ) s_GlobalFrame->pManDec = Dec_ManStart(); return s_GlobalFrame->pManDec; }
char * Abc_FrameReadFlag( char * pFlag ) { return Cmd_FlagReadByName( s_GlobalFrame, pFlag ); }
void Abc_FrameSetNtkStore( Abc_Ntk_t * pNtk ) { s_GlobalFrame->pStored = pNtk; }
void Abc_FrameSetNtkStoreSize( int nStored ) { s_GlobalFrame->nStored = nStored; }
void Abc_FrameSetLibLut( void * pLib ) { s_GlobalFrame->pLibLut = pLib; }
void Abc_FrameSetLibGen( void * pLib ) { s_GlobalFrame->pLibGen = pLib; }
void Abc_FrameSetLibSuper( void * pLib ) { s_GlobalFrame->pLibSuper = pLib; }
......@@ -113,6 +111,8 @@ Abc_Frame_t * Abc_FrameAllocate()
// set the starting step
p->nSteps = 1;
p->fBatchMode = 0;
// networks to be used by choice
p->vStore = Vec_PtrAlloc( 16 );
// initialize decomposition manager
define_cube_size(20);
set_espresso_flags();
......@@ -145,6 +145,7 @@ void Abc_FrameDeallocate( Abc_Frame_t * p )
if ( p->pLibVer ) Abc_LibFree( p->pLibVer, NULL );
if ( p->pManDec ) Dec_ManStop( p->pManDec );
if ( p->dd ) Extra_StopManager( p->dd );
if ( p->vStore ) Vec_PtrFree( p->vStore );
Abc_FrameDeleteAllNetworks( p );
free( p );
s_GlobalFrame = NULL;
......
......@@ -63,8 +63,7 @@ struct Abc_Frame_t_
int TimeCommand; // the runtime of the last command
int TimeTotal; // the total runtime of all commands
// temporary storage for structural choices
Abc_Ntk_t * pStored; // the stored networks
int nStored; // the number of stored networks
Vec_Ptr_t * vStore; // networks to be used by choice
// decomposition package
void * pManDec; // decomposition manager
DdManager * dd; // temporary BDD package
......
/**CFile****************************************************************
FileName [lpkAbcCore.c]
FileName [lpkAbcDec.c]
SystemName [ABC: Logic synthesis and verification system.]
......@@ -14,7 +14,7 @@
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: lpkAbcCore.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
Revision [$Id: lpkAbcDec.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
......@@ -39,7 +39,7 @@
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_FunImplement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Lpk_Fun_t * p )
Abc_Obj_t * Lpk_ImplementFun( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Lpk_Fun_t * p )
{
Abc_Obj_t * pObjNew;
int i;
......@@ -73,7 +73,7 @@ Abc_Obj_t * Lpk_FunImplement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Lpk_Fun_t *
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_LptImplement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, int nLeavesOld )
Abc_Obj_t * Lpk_Implement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, int nLeavesOld )
{
Lpk_Fun_t * pFun;
Abc_Obj_t * pRes;
......@@ -81,7 +81,7 @@ Abc_Obj_t * Lpk_LptImplement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, int nLeaves
for ( i = Vec_PtrSize(vLeaves) - 1; i >= nLeavesOld; i-- )
{
pFun = Vec_PtrEntry( vLeaves, i );
pRes = Lpk_FunImplement( pNtk, vLeaves, pFun );
pRes = Lpk_ImplementFun( pNtk, vLeaves, pFun );
Vec_PtrWriteEntry( vLeaves, i, pRes );
Lpk_FunFree( pFun );
}
......@@ -99,7 +99,7 @@ Abc_Obj_t * Lpk_LptImplement( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, int nLeaves
SeeAlso []
***********************************************************************/
int Lpk_LpkDecompose_rec( Lpk_Fun_t * p )
int Lpk_Decompose_rec( Lpk_Fun_t * p )
{
Lpk_Fun_t * p2;
int VarPol;
......@@ -107,14 +107,14 @@ int Lpk_LpkDecompose_rec( Lpk_Fun_t * p )
if ( p->nVars <= p->nLutK )
return 1;
// check if decomposition exists
VarPol = Lpk_FunAnalizeMux( p );
VarPol = Lpk_MuxAnalize( p );
if ( VarPol == -1 )
return 0;
// split and call recursively
p2 = Lpk_FunSplitMux( p, VarPol );
if ( !Lpk_LpkDecompose_rec( p2 ) )
p2 = Lpk_MuxSplit( p, VarPol );
if ( !Lpk_Decompose_rec( p2 ) )
return 0;
return Lpk_LpkDecompose_rec( p );
return Lpk_Decompose_rec( p );
}
......@@ -129,7 +129,7 @@ int Lpk_LpkDecompose_rec( Lpk_Fun_t * p )
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_LpkDecompose( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, int nLutK, int AreaLim, int DelayLim )
Abc_Obj_t * Lpk_Decompose( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, int nLutK, int AreaLim, int DelayLim )
{
Lpk_Fun_t * p;
Abc_Obj_t * pObjNew = NULL;
......@@ -139,8 +139,8 @@ Abc_Obj_t * Lpk_LpkDecompose( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned *
p = Lpk_FunCreate( pNtk, vLeaves, pTruth, nLutK, AreaLim, DelayLim );
Lpk_FunSuppMinimize( p );
// decompose the function
if ( Lpk_LpkDecompose_rec(p) )
pObjNew = Lpk_LptImplement( pNtk, vLeaves, nLeaves );
if ( Lpk_Decompose_rec(p) )
pObjNew = Lpk_Implement( pNtk, vLeaves, nLeaves );
else
{
for ( i = Vec_PtrSize(vLeaves) - 1; i >= nLeaves; i-- )
......
......@@ -6,7 +6,7 @@
PackageName [Fast Boolean matching for LUT structures.]
Synopsis []
Synopsis [LUT-decomposition based on recursive DSD.]
Author [Alan Mishchenko]
......@@ -266,7 +266,7 @@ void Lpk_FunFreeTruthTables( Lpk_Fun_t * p, int nCofDepth, unsigned * ppTruths[5
SeeAlso []
***********************************************************************/
Lpk_Res_t * Lpk_FunAnalizeDsd( Lpk_Fun_t * p, int nCofDepth )
Lpk_Res_t * Lpk_DsdAnalize( Lpk_Fun_t * p, int nCofDepth )
{
static Lpk_Res_t Res, * pRes = &Res;
unsigned * ppTruths[5][16];
......@@ -330,7 +330,7 @@ Lpk_Res_t * Lpk_FunAnalizeDsd( Lpk_Fun_t * p, int nCofDepth )
SeeAlso []
***********************************************************************/
Lpk_Fun_t * Lpk_FunSplitDsd( Lpk_Fun_t * p, char * pCofVars, int nCofVars, unsigned uBoundSet )
Lpk_Fun_t * Lpk_DsdSplit( Lpk_Fun_t * p, char * pCofVars, int nCofVars, unsigned uBoundSet )
{
Kit_DsdMan_t * pDsdMan;
Kit_DsdNtk_t * pNtkDec, * pTemp;
......
......@@ -6,7 +6,7 @@
PackageName [Fast Boolean matching for LUT structures.]
Synopsis [Iterative MUX decomposition.]
Synopsis [LUT-decomposition based on recursive MUX decomposition.]
Author [Alan Mishchenko]
......@@ -85,7 +85,7 @@ void Lpk_FunComputeCofSupps( Lpk_Fun_t * p, unsigned * puSupps )
SeeAlso []
***********************************************************************/
int Lpk_FunAnalizeMux( Lpk_Fun_t * p )
int Lpk_MuxAnalize( Lpk_Fun_t * p )
{
unsigned puSupps[32] = {0};
int nSuppSize0, nSuppSize1, Delay, Delay0, Delay1, DelayA, DelayB;
......@@ -193,7 +193,7 @@ int Lpk_FunAnalizeMux( Lpk_Fun_t * p )
SeeAlso []
***********************************************************************/
Lpk_Fun_t * Lpk_FunSplitMux( Lpk_Fun_t * p, int VarPol )
Lpk_Fun_t * Lpk_MuxSplit( Lpk_Fun_t * p, int VarPol )
{
Lpk_Fun_t * pNew;
unsigned * pTruth = Lpk_FunTruth( p, 0 );
......
/**CFile****************************************************************
FileName [lpkAbcFun.c]
FileName [lpkAbcUtil.c]
SystemName [ABC: Logic synthesis and verification system.]
......@@ -14,7 +14,7 @@
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: lpkAbcFun.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
Revision [$Id: lpkAbcUtil.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
......
......@@ -378,7 +378,7 @@ p->timeTruth += clock() - clk;
// update the network
clk = clock();
pObjNew = Lpk_LpkDecompose( p->pNtk, vLeaves, pTruth, p->pPars->nLutSize,
pObjNew = Lpk_Decompose( p->pNtk, vLeaves, pTruth, p->pPars->nLutSize,
(int)pCut->nNodes - (int)pCut->nNodesDup - 1, Abc_ObjRequiredLevel(p->pObj) );
p->timeEval += clock() - clk;
......
......@@ -118,21 +118,7 @@ struct Lpk_Man_t_
};
// preliminary decomposition result
typedef struct Lpk_Res_t_ Lpk_Res_t;
struct Lpk_Res_t_
{
int nBSVars;
unsigned BSVars;
int nCofVars;
char pCofVars[4];
int nSuppSizeS;
int nSuppSizeL;
int DelayEst;
int AreaEst;
};
// function to be decomposed
// internal representation of the function to be decomposed
typedef struct Lpk_Fun_t_ Lpk_Fun_t;
struct Lpk_Fun_t_
{
......@@ -148,15 +134,23 @@ struct Lpk_Fun_t_
unsigned pTruth[0]; // the truth table (contains room for three truth tables)
};
#define Lpk_SuppForEachVar( Supp, Var )\
for ( Var = 0; Var < 16; Var++ )\
if ( !(Supp & (1<<Var)) ) {} else
static inline int Lpk_LutNumVars( int nLutsLim, int nLutK ) { return nLutsLim * (nLutK - 1) + 1; }
static inline int Lpk_LutNumLuts( int nVarsMax, int nLutK ) { return (nVarsMax - 1) / (nLutK - 1) + (int)((nVarsMax - 1) % (nLutK - 1) > 0); }
static inline unsigned * Lpk_FunTruth( Lpk_Fun_t * p, int Num ) { assert( Num < 3 ); return p->pTruth + Kit_TruthWordNum(p->nVars) * Num; }
// preliminary decomposition result
typedef struct Lpk_Res_t_ Lpk_Res_t;
struct Lpk_Res_t_
{
int nBSVars; // the number of bound set variables
unsigned BSVars; // the bound set
int nCofVars; // the number of cofactoring variables
char pCofVars[4]; // the cofactoring variables
int nSuppSizeS; // support size of the smaller (decomposed) function
int nSuppSizeL; // support size of the larger (composition) function
int DelayEst; // estimated delay of the decomposition
int AreaEst; // estimated area of the decomposition
};
static inline int Lpk_LutNumVars( int nLutsLim, int nLutK ) { return nLutsLim * (nLutK - 1) + 1; }
static inline int Lpk_LutNumLuts( int nVarsMax, int nLutK ) { return (nVarsMax - 1) / (nLutK - 1) + (int)((nVarsMax - 1) % (nLutK - 1) > 0); }
static inline unsigned * Lpk_FunTruth( Lpk_Fun_t * p, int Num ) { assert( Num < 3 ); return p->pTruth + Kit_TruthWordNum(p->nVars) * Num; }
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
......@@ -172,14 +166,23 @@ static inline unsigned * Lpk_FunTruth( Lpk_Fun_t * p, int Num ) { assert( Num <
for ( i = 0; (i < (int)(pCut)->nNodes) && (((pObj) = Abc_NtkObj(pNtk, (pCut)->pNodes[i])), 1); i++ )
#define Lpk_CutForEachNodeReverse( pNtk, pCut, pObj, i ) \
for ( i = (int)(pCut)->nNodes - 1; (i >= 0) && (((pObj) = Abc_NtkObj(pNtk, (pCut)->pNodes[i])), 1); i-- )
#define Lpk_SuppForEachVar( Supp, Var )\
for ( Var = 0; Var < 16; Var++ )\
if ( !(Supp & (1<<Var)) ) {} else
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*=== lpkAbcCore.c ============================================================*/
extern Abc_Obj_t * Lpk_LpkDecompose( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, int nLutK, int AreaLim, int DelayLim );
/*=== lpkAbcFun.c ============================================================*/
/*=== lpkAbcDec.c ============================================================*/
extern Abc_Obj_t * Lpk_Decompose( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, int nLutK, int AreaLim, int DelayLim );
/*=== lpkAbcDsd.c ============================================================*/
extern Lpk_Res_t * Lpk_DsdAnalize( Lpk_Fun_t * p, int nCofDepth );
extern Lpk_Fun_t * Lpk_DsdSplit( Lpk_Fun_t * p, char * pCofVars, int nCofVars, unsigned uBoundSet );
/*=== lpkAbcMux.c ============================================================*/
extern int Lpk_MuxAnalize( Lpk_Fun_t * p );
extern Lpk_Fun_t * Lpk_MuxSplit( Lpk_Fun_t * p, int VarPol );
/*=== lpkAbcUtil.c ============================================================*/
extern Lpk_Fun_t * Lpk_FunAlloc( int nVars );
extern void Lpk_FunFree( Lpk_Fun_t * p );
extern Lpk_Fun_t * Lpk_FunCreate( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, int nLutK, int AreaLim, int DelayLim );
......@@ -187,12 +190,6 @@ extern Lpk_Fun_t * Lpk_FunDup( Lpk_Fun_t * p, unsigned * pTruth );
extern void Lpk_FunSuppMinimize( Lpk_Fun_t * p );
extern int Lpk_SuppDelay( unsigned uSupp, char * pDelays );
extern int Lpk_SuppToVars( unsigned uBoundSet, char * pVars );
/*=== lpkAbcDsd.c ============================================================*/
extern Lpk_Res_t * Lpk_FunAnalizeDsd( Lpk_Fun_t * p, int nCofDepth );
extern Lpk_Fun_t * Lpk_FunSplitDsd( Lpk_Fun_t * p, char * pCofVars, int nCofVars, unsigned uBoundSet );
/*=== lpkAbcMux.c ============================================================*/
extern int Lpk_FunAnalizeMux( Lpk_Fun_t * p );
extern Lpk_Fun_t * Lpk_FunSplitMux( Lpk_Fun_t * p, int VarPol );
/*=== lpkCut.c =========================================================*/
......
SRC += src/opt/lpk/lpkCore.c \
src/opt/lpk/lpkAbcDec.c \
src/opt/lpk/lpkAbcMux.c \
src/opt/lpk/lpkAbcDsd.c \
src/opt/lpk/lpkAbcUtil.c \
src/opt/lpk/lpkCut.c \
src/opt/lpk/lpkMan.c \
src/opt/lpk/lpkMap.c \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment