Commit 9ff7134f by Alan Mishchenko

Adding new NPN code developed by XueGong Zhou at Fudan University.

parent a6d489e7
......@@ -6674,6 +6674,7 @@ usage:
Abc_Print( -2, "\t 5: new fast hybrid semi-canonical form\n" );
Abc_Print( -2, "\t 6: new phase canonical form\n" );
Abc_Print( -2, "\t 7: new hierarchical matching\n" );
Abc_Print( -2, "\t 8: hierarchical matching by XueGong Zhou at Fudan University, Shanghai\n" );
Abc_Print( -2, "\t-N <num> : the number of support variables (binary files only) [default = unused]\n" );
Abc_Print( -2, "\t-d : toggle dumping resulting functions into a file [default = %s]\n", fDumpRes? "yes": "no" );
Abc_Print( -2, "\t-b : toggle dumping in binary format [default = %s]\n", fBinary? "yes": "no" );
......@@ -200,6 +200,8 @@ void Abc_TruthNpnPerform( Abc_TtStore_t * p, int NpnType, int fVerbose )
pAlgoName = "new phase flipping ";
else if ( NpnType == 7 )
pAlgoName = "new hier. matching ";
else if ( NpnType == 8 )
pAlgoName = "new adap. matching ";
assert( p->nVars <= 16 );
if ( pAlgoName )
......@@ -293,13 +295,12 @@ void Abc_TruthNpnPerform( Abc_TtStore_t * p, int NpnType, int fVerbose )
}
else if ( NpnType == 7 )
{
extern unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int fExact );
extern Abc_TtMan_t * Abc_TtManStart( int nVars );
extern void Abc_TtManStop( Abc_TtMan_t * p );
extern int Abc_TtManNumClasses( Abc_TtMan_t * p );
extern unsigned Abc_TtCanonicizeHie(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int fExact );
extern Abc_TtHieMan_t * Abc_TtHieManStart( int nVars, int nLevels );
extern void Abc_TtHieManStop(Abc_TtHieMan_t * p );
int fExact = 0;
Abc_TtMan_t * pMan = Abc_TtManStart( p->nVars );
Abc_TtHieMan_t * pMan = Abc_TtHieManStart( p->nVars, 5 );
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
......@@ -310,7 +311,27 @@ void Abc_TruthNpnPerform( Abc_TtStore_t * p, int NpnType, int fVerbose )
printf( "\n" );
}
// nClasses = Abc_TtManNumClasses( pMan );
Abc_TtManStop( pMan );
Abc_TtHieManStop( pMan );
}
else if ( NpnType == 8 )
{
typedef unsigned(*TtCanonicizeFunc)(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeWrap(TtCanonicizeFunc func, Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeAda(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int iThres);
Abc_TtHieMan_t * Abc_TtHieManStart(int nVars, int nLevels);
void Abc_TtHieManStop(Abc_TtHieMan_t * p);
int fHigh = 1, iEnumThres = 25;
Abc_TtHieMan_t * pMan = Abc_TtHieManStart(p->nVars, 5);
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
uCanonPhase = Abc_TtCanonicizeWrap(Abc_TtCanonicizeAda, pMan, p->pFuncs[i], p->nVars, pCanonPerm, fHigh*100 + iEnumThres);
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), Abc_TruthNpnPrint(pCanonPerm, uCanonPhase, p->nVars), printf( "\n" );
}
Abc_TtHieManStop(pMan);
}
else assert( 0 );
clk = Abc_Clock() - clk;
......@@ -375,7 +396,7 @@ int Abc_NpnTest( char * pFileName, int NpnType, int nVarNum, int fDumpRes, int f
{
if ( fVerbose )
printf( "Using truth tables from file \"%s\"...\n", pFileName );
if ( NpnType >= 0 && NpnType <= 7 )
if ( NpnType >= 0 && NpnType <= 8 )
Abc_TruthNpnTest( pFileName, NpnType, nVarNum, fDumpRes, fBinary, fVerbose );
else
printf( "Unknown canonical form value (%d).\n", NpnType );
......
......@@ -59,7 +59,7 @@ typedef enum {
} Dau_DsdType_t;
typedef struct Dss_Man_t_ Dss_Man_t;
typedef struct Abc_TtMan_t_ Abc_TtMan_t;
typedef struct Abc_TtHieMan_t_ Abc_TtHieMan_t;
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
......
......@@ -22,6 +22,7 @@
#include "misc/util/utilTruth.h"
#include "misc/vec/vecMem.h"
#include "bool/lucky/lucky.h"
#include <math.h>
ABC_NAMESPACE_IMPL_START
......@@ -43,6 +44,90 @@ static word s_CMasks6[5] = {
/**Function*************************************************************
Synopsis [Compares Cof0 and Cof1.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
/*
static inline int Abc_TtCompare1VarCofs( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
{
word Cof0 = pTruth[0] & s_Truths6Neg[iVar];
word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
return 0;
}
if ( iVar <= 5 )
{
word Cof0, Cof1;
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
{
Cof0 = pTruth[w] & s_Truths6Neg[iVar];
Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
}
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
assert( nWords >= 2 );
for ( ; pTruth < pLimit; pTruth += 2*iStep )
for ( i = 0; i < iStep; i++ )
if ( pTruth[i] != pTruth[i + iStep] )
return pTruth[i] < pTruth[i + iStep] ? -1 : 1;
return 0;
}
}
static inline int Abc_TtCompare1VarCofsRev( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
{
word Cof0 = pTruth[0] & s_Truths6Neg[iVar];
word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
return 0;
}
if ( iVar <= 5 )
{
word Cof0, Cof1;
int w, shift = (1 << iVar);
for ( w = nWords - 1; w >= 0; w-- )
{
Cof0 = pTruth[w] & s_Truths6Neg[iVar];
Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
}
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
assert( nWords >= 2 );
for ( pLimit -= 2*iStep; pLimit >= pTruth; pLimit -= 2*iStep )
for ( i = iStep - 1; i >= 0; i-- )
if ( pLimit[i] != pLimit[i + iStep] )
return pLimit[i] < pLimit[i + iStep] ? -1 : 1;
return 0;
}
}
*/
/**Function*************************************************************
Synopsis [Checks equality of pairs of cofactors w.r.t. adjacent variables.]
Description []
......@@ -207,10 +292,21 @@ static inline int Abc_TtCompare2VarCofsRev( word * pTruth, int nWords, int iVar,
SeeAlso []
***********************************************************************/
#define DO_SMALL_TRUTHTABLE 0
inline void Abc_TtNormalizeSmallTruth(word * pTruth, int nVars)
{
#if DO_SMALL_TRUTHTABLE
if (nVars < 6)
*pTruth &= (1ULL << (1 << nVars)) - 1;
#endif
}
static inline int Abc_TtCountOnesInTruth( word * pTruth, int nVars )
{
int nWords = Abc_TtWordNum( nVars );
int k, Counter = 0;
Abc_TtNormalizeSmallTruth(pTruth, nVars);
for ( k = 0; k < nWords; k++ )
if ( pTruth[k] )
Counter += Abc_TtCountOnes( pTruth[k] );
......@@ -222,6 +318,7 @@ static inline void Abc_TtCountOnesInCofs( word * pTruth, int nVars, int * pStore
int i, k, Counter, nWords;
if ( nVars <= 6 )
{
Abc_TtNormalizeSmallTruth(pTruth, nVars);
for ( i = 0; i < nVars; i++ )
pStore[i] = Abc_TtCountOnes( pTruth[0] & s_Truths6Neg[i] );
return;
......@@ -972,72 +1069,84 @@ unsigned Abc_TtCanonicizePhase( word * pTruth, int nVars )
SeeAlso []
***********************************************************************/
#define TT_NUM_TABLES 5
#define TT_MAX_LEVELS 5
struct Abc_TtMan_t_
struct Abc_TtHieMan_t_
{
Vec_Mem_t * vTtMem[TT_NUM_TABLES]; // truth table memory and hash tables
Vec_Int_t ** vRepres; // pointers to the representatives from the last hierarchical level
int nLastLevel, nWords;
Vec_Mem_t * vTtMem[TT_MAX_LEVELS]; // truth table memory and hash tables
Vec_Int_t * vRepres[TT_MAX_LEVELS]; // pointers to the representatives from the last hierarchical level
int vTruthId[TT_MAX_LEVELS];
};
Vec_Int_t ** Abc_TtRepresStart() {
Vec_Int_t ** vRepres = ABC_ALLOC(Vec_Int_t *, TT_NUM_TABLES - 1);
int i;
// create a list of pointers for each level of the hierarchy
for (i = 0; i < (TT_NUM_TABLES - 1); i++) {
vRepres[i] = Vec_IntAlloc(1);
}
return vRepres;
}
void Abc_TtRepresStop(Vec_Int_t ** vRepres) {
int i;
for (i = 0; i < (TT_NUM_TABLES - 1); i++) {
Vec_IntFree(vRepres[i]);
}
ABC_FREE( vRepres );
}
Abc_TtMan_t * Abc_TtManStart( int nVars )
Abc_TtHieMan_t * Abc_TtHieManStart(int nVars, int nLevels)
{
Abc_TtMan_t * p = ABC_CALLOC( Abc_TtMan_t, 1 );
int i, nWords = Abc_TtWordNum( nVars );
for ( i = 0; i < TT_NUM_TABLES; i++ )
Abc_TtHieMan_t * p = NULL;
int i;
if (nLevels > TT_MAX_LEVELS) return p;
p = ABC_CALLOC(Abc_TtHieMan_t, 1);
p->nLastLevel = nLevels - 1;
p->nWords = Abc_TtWordNum(nVars);
for (i = 0; i < nLevels; i++)
{
p->vTtMem[i] = Vec_MemAlloc( nWords, 12 );
Vec_MemHashAlloc( p->vTtMem[i], 10000 );
p->vTtMem[i] = Vec_MemAlloc(p->nWords, 12);
Vec_MemHashAlloc(p->vTtMem[i], 10000);
p->vRepres[i] = Vec_IntAlloc(1);
}
p->vRepres = Abc_TtRepresStart();
return p;
}
void Abc_TtManStop( Abc_TtMan_t * p )
void Abc_TtHieManStop(Abc_TtHieMan_t * p)
{
int i;
for ( i = 0; i < TT_NUM_TABLES; i++ )
for (i = 0; i <= p->nLastLevel; i++)
{
Vec_MemHashFree( p->vTtMem[i] );
Vec_MemFreeP( &p->vTtMem[i] );
Vec_MemHashFree(p->vTtMem[i]);
Vec_MemFreeP(&p->vTtMem[i]);
Vec_IntFree(p->vRepres[i]);
}
Abc_TtRepresStop(p->vRepres);
ABC_FREE( p );
ABC_FREE(p);
}
int Abc_TtManNumClasses( Abc_TtMan_t * p )
int Abc_TtHieRetrieveOrInsert(Abc_TtHieMan_t * p, int level, word * pTruth, word * pResult)
{
return Vec_MemEntryNum( p->vTtMem[TT_NUM_TABLES-1] );
int i, iSpot, truthId;
word * pRepTruth;
if (level < 0) level += p->nLastLevel + 1;
if (level < 0 || level > p->nLastLevel) return -1;
iSpot = *Vec_MemHashLookup(p->vTtMem[level], pTruth);
if (iSpot == -1) {
p->vTruthId[level] = Vec_MemHashInsert(p->vTtMem[level], pTruth);
if (level < p->nLastLevel) return 0;
iSpot = p->vTruthId[level];
}
// return the class representative
if (level < p->nLastLevel)
truthId = Vec_IntEntry(p->vRepres[level], iSpot);
else
truthId = iSpot;
for (i = 0; i < level; i++)
Vec_IntSetEntry(p->vRepres[i], p->vTruthId[i], truthId);
pRepTruth = Vec_MemReadEntry(p->vTtMem[p->nLastLevel], truthId);
if (level < p->nLastLevel) {
Abc_TtCopy(pResult, pRepTruth, p->nWords, 0);
return 1;
}
assert(Abc_TtEqual(pTruth, pRepTruth, p->nWords));
if (pTruth != pResult)
Abc_TtCopy(pResult, pRepTruth, p->nWords, 0);
return 0;
}
unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, char * pCanonPerm, int fExact )
unsigned Abc_TtCanonicizeHie( Abc_TtHieMan_t * p, word * pTruthInit, int nVars, char * pCanonPerm, int fExact )
{
int fNaive = 1;
int pStore[17];
static word pTruth[1024];
unsigned uCanonPhase = 0;
int nOnes, nWords = Abc_TtWordNum( nVars );
int i, k, truthId;
int * pSpot;
int vTruthId[TT_NUM_TABLES-1];
int fLevelFound;
word * pRepTruth;
int i, k;
assert( nVars <= 16 );
Abc_TtCopy( pTruth, pTruthInit, nWords, 0 );
......@@ -1054,12 +1163,7 @@ unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, cha
uCanonPhase |= (1 << nVars);
}
// check cache
pSpot = Vec_MemHashLookup( p->vTtMem[0], pTruth );
if ( *pSpot != -1 ) {
fLevelFound = 0;
goto end_repres;
}
vTruthId[0] = Vec_MemHashInsert( p->vTtMem[0], pTruth );
if (Abc_TtHieRetrieveOrInsert(p, 0, pTruth, pTruthInit) > 0) return 0;
// normalize phase
Abc_TtCountOnesInCofs( pTruth, nVars, pStore );
......@@ -1073,12 +1177,7 @@ unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, cha
pStore[i] = nOnes - pStore[i];
}
// check cache
pSpot = Vec_MemHashLookup( p->vTtMem[1], pTruth );
if ( *pSpot != -1 ) {
fLevelFound = 1;
goto end_repres;
}
vTruthId[1] = Vec_MemHashInsert( p->vTtMem[1], pTruth );
if (Abc_TtHieRetrieveOrInsert(p, 1, pTruth, pTruthInit) > 0) return 0;
// normalize permutation
{
......@@ -1102,12 +1201,7 @@ unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, cha
}
}
// check cache
pSpot = Vec_MemHashLookup( p->vTtMem[2], pTruth );
if ( *pSpot != -1 ) {
fLevelFound = 2;
goto end_repres;
}
vTruthId[2] = Vec_MemHashInsert( p->vTtMem[2], pTruth );
if (Abc_TtHieRetrieveOrInsert(p, 2, pTruth, pTruthInit) > 0) return 0;
// iterate TT permutations for tied variables
for ( k = 0; k < 5; k++ )
......@@ -1126,12 +1220,7 @@ unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, cha
break;
}
// check cache
pSpot = Vec_MemHashLookup( p->vTtMem[3], pTruth );
if ( *pSpot != -1 ) {
fLevelFound = 3;
goto end_repres;
}
vTruthId[3] = Vec_MemHashInsert( p->vTtMem[3], pTruth );
if (Abc_TtHieRetrieveOrInsert(p, 3, pTruth, pTruthInit) > 0) return 0;
// perform exact NPN using groups
if ( fExact ) {
......@@ -1172,25 +1261,868 @@ unsigned Abc_TtCanonicizeHie( Abc_TtMan_t * p, word * pTruthInit, int nVars, cha
freePermInfoPtr(pis[i]);
}
}
// check cache
pSpot = Vec_MemHashLookup( p->vTtMem[4], pTruth );
fLevelFound = 4;
if ( *pSpot != -1 ) {
goto end_repres;
// update cache
Abc_TtHieRetrieveOrInsert(p, 4, pTruth, pTruthInit);
return 0;
}
/**Function*************************************************************
Synopsis [Adaptive exact/semi-canonical form computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
typedef struct TiedGroup_
{
char iStart; // index of Abc_TgMan_t::pPerm
char nGVars; // the number of variables in the group
char fPhased; // if the phases of the variables are determined
} TiedGroup;
typedef struct Abc_TgMan_t_
{
word *pTruth;
int nVars; // the number of variables
int nGVars; // the number of variables in groups ( symmetric variables purged )
int nGroups; // the number of tied groups
unsigned uPhase; // phase of each variable and the function
char pPerm[16]; // permutation of variables, symmetric variables purged, for grouping
char pPermT[16]; // permutation of variables, symmetric variables expanded, actual transformation for pTruth
char pPermTRev[16]; // reverse permutation of pPermT
signed char pPermDir[16]; // for generating the next permutation
TiedGroup pGroup[16]; // tied groups
// symemtric group attributes
char symPhase[16]; // phase type of symemtric groups
signed char symLink[17]; // singly linked list, indicate the variables in symemtric groups
} Abc_TgMan_t;
#if !defined(NDEBUG) && !defined(CANON_VERIFY)
#define CANON_VERIFY
#endif
/**Function*************************************************************
Synopsis [Utilities.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
// JohnsonCTrotter algorithm
static int Abc_NextPermSwapC(char * pData, signed char * pDir, int size)
{
int i, j, k = -1;
for (i = 0; i < size; i++)
{
j = i + pDir[i];
if (j >= 0 && j < size && pData[i] > pData[j] && (k < 0 || pData[i] > pData[k]))
k = i;
}
*pSpot = Vec_MemHashInsert( p->vTtMem[4], pTruth );
if (k < 0) k = 0;
end_repres:
// return the class representative
if(fLevelFound < (TT_NUM_TABLES - 1))
truthId = Vec_IntEntry(p->vRepres[fLevelFound], *pSpot);
else truthId = *pSpot;
for(i = 0; i < fLevelFound; i++)
Vec_IntSetEntry(p->vRepres[i], vTruthId[i], truthId);
pRepTruth = Vec_MemReadEntry(p->vTtMem[TT_NUM_TABLES-1], truthId);
Abc_TtCopy( pTruthInit, pRepTruth, nWords, 0 );
for (i = 0; i < size; i++)
if (pData[i] > pData[k])
pDir[i] = -pDir[i];
j = k + pDir[k];
return j < k ? j : k;
}
typedef unsigned(*TtCanonicizeFunc)(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag);
unsigned Abc_TtCanonicizeWrap(TtCanonicizeFunc func, Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int flag)
{
int nWords = Abc_TtWordNum(nVars);
unsigned uCanonPhase1, uCanonPhase2;
char pCanonPerm2[16];
static word pTruth2[1024];
if (Abc_TtCountOnesInTruth(pTruth, nVars) != (1 << (nVars - 1)))
return func(p, pTruth, nVars, pCanonPerm, flag);
Abc_TtCopy(pTruth2, pTruth, nWords, 1);
Abc_TtNormalizeSmallTruth(pTruth2, nVars);
uCanonPhase1 = func(p, pTruth, nVars, pCanonPerm, flag);
uCanonPhase2 = func(p, pTruth2, nVars, pCanonPerm2, flag);
if (Abc_TtCompareRev(pTruth, pTruth2, nWords) <= 0)
return uCanonPhase1;
Abc_TtCopy(pTruth, pTruth2, nWords, 0);
memcpy(pCanonPerm, pCanonPerm2, nVars);
return uCanonPhase2;
}
word gpVerCopy[1024];
static int Abc_TtCannonVerify(word* pTruth, int nVars, char * pCanonPerm, unsigned uCanonPhase)
{
#ifdef CANON_VERIFY
int nWords = Abc_TtWordNum(nVars);
char pCanonPermCopy[16];
static word pCopy2[1024];
Abc_TtCopy(pCopy2, pTruth, nWords, 0);
memcpy(pCanonPermCopy, pCanonPerm, sizeof(char) * nVars);
Abc_TtImplementNpnConfig(pCopy2, nVars, pCanonPermCopy, uCanonPhase);
Abc_TtNormalizeSmallTruth(pCopy2, nVars);
return Abc_TtEqual(gpVerCopy, pCopy2, nWords);
#else
return 1;
#endif
}
/**Function*************************************************************
Synopsis [Tied group management.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static void Abc_TginitMan(Abc_TgMan_t * pMan, word * pTruth, int nVars)
{
int i;
pMan->pTruth = pTruth;
pMan->nVars = pMan->nGVars = nVars;
pMan->uPhase = 0;
for (i = 0; i < nVars; i++)
{
pMan->pPerm[i] = i;
pMan->pPermT[i] = i;
pMan->pPermTRev[i] = i;
pMan->symPhase[i] = 1;
}
}
inline void Abc_TgManCopy(Abc_TgMan_t* pDst, word* pDstTruth, Abc_TgMan_t* pSrc)
{
*pDst = *pSrc;
Abc_TtCopy(pDstTruth, pSrc->pTruth, Abc_TtWordNum(pSrc->nVars), 0);
pDst->pTruth = pDstTruth;
}
inline int Abc_TgCannonVerify(Abc_TgMan_t* pMan)
{
return Abc_TtCannonVerify(pMan->pTruth, pMan->nVars, pMan->pPermT, pMan->uPhase);
}
void Abc_TgExpendSymmetry(Abc_TgMan_t * pMan, char * pPerm, char * pDest);
static void CheckConfig(Abc_TgMan_t * pMan)
{
#ifndef NDEBUG
int i;
char pPermE[16];
Abc_TgExpendSymmetry(pMan, pMan->pPerm, pPermE);
for (i = 0; i < pMan->nVars; i++)
{
assert(pPermE[i] == pMan->pPermT[i]);
assert(pMan->pPermTRev[pMan->pPermT[i]] == i);
}
assert(Abc_TgCannonVerify(pMan));
#endif
}
/**Function*************************************************************
Synopsis [Truthtable manipulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
inline void Abc_TgFlipVar(Abc_TgMan_t* pMan, int iVar)
{
int nWords = Abc_TtWordNum(pMan->nVars);
int ivp = pMan->pPermTRev[iVar];
Abc_TtFlip(pMan->pTruth, nWords, ivp);
pMan->uPhase ^= 1 << ivp;
}
inline void Abc_TgFlipSymGroupByVar(Abc_TgMan_t* pMan, int iVar)
{
for (; iVar >= 0; iVar = pMan->symLink[iVar])
if (pMan->symPhase[iVar])
Abc_TgFlipVar(pMan, iVar);
}
inline void Abc_TgFlipSymGroup(Abc_TgMan_t* pMan, int idx)
{
Abc_TgFlipSymGroupByVar(pMan, pMan->pPerm[idx]);
}
inline void Abc_TgClearSymGroupPhase(Abc_TgMan_t* pMan, int iVar)
{
for (; iVar >= 0; iVar = pMan->symLink[iVar])
pMan->symPhase[iVar] = 0;
}
static void Abc_TgImplementPerm(Abc_TgMan_t* pMan, const char *pPermDest)
{
int i, nVars = pMan->nVars;
char *pPerm = pMan->pPermT;
char *pRev = pMan->pPermTRev;
unsigned uPhase = pMan->uPhase & (1 << nVars);
for (i = 0; i < nVars; i++)
pRev[pPerm[i]] = i;
for (i = 0; i < nVars; i++)
pPerm[i] = pRev[pPermDest[i]];
for (i = 0; i < nVars; i++)
pRev[pPerm[i]] = i;
Abc_TtImplementNpnConfig(pMan->pTruth, nVars, pRev, 0);
Abc_TtNormalizeSmallTruth(pMan->pTruth, nVars);
for (i = 0; i < nVars; i++)
{
if (pMan->uPhase & (1 << pPerm[i]))
uPhase |= (1 << i);
pPerm[i] = pPermDest[i];
pRev[pPerm[i]] = i;
}
pMan->uPhase = uPhase;
}
static void Abc_TgSwapAdjacentSymGroups(Abc_TgMan_t* pMan, int idx)
{
int iVar, jVar, ix;
char pPermNew[16];
assert(idx < pMan->nGVars - 1);
iVar = pMan->pPerm[idx];
jVar = pMan->pPerm[idx + 1];
pMan->pPerm[idx] = jVar;
pMan->pPerm[idx + 1] = iVar;
ABC_SWAP(char, pMan->pPermDir[idx], pMan->pPermDir[idx + 1]);
if (pMan->symLink[iVar] >= 0 || pMan->symLink[jVar] >= 0)
{
Abc_TgExpendSymmetry(pMan, pMan->pPerm, pPermNew);
Abc_TgImplementPerm(pMan, pPermNew);
return;
}
// plain variable swap
ix = pMan->pPermTRev[iVar];
assert(pMan->pPermT[ix] == iVar && pMan->pPermT[ix + 1] == jVar);
Abc_TtSwapAdjacent(pMan->pTruth, Abc_TtWordNum(pMan->nVars), ix);
pMan->pPermT[ix] = jVar;
pMan->pPermT[ix + 1] = iVar;
pMan->pPermTRev[iVar] = ix + 1;
pMan->pPermTRev[jVar] = ix;
if (((pMan->uPhase >> ix) & 1) != ((pMan->uPhase >> (ix + 1)) & 1))
pMan->uPhase ^= 1 << ix | 1 << (ix + 1);
assert(Abc_TgCannonVerify(pMan));
}
/**Function*************************************************************
Synopsis [semmetry of two variables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static word pSymCopy[1024];
static int Abc_TtIsSymmetric(word * pTruth, int nVars, int iVar, int jVar, int fPhase)
{
int rv;
int nWords = Abc_TtWordNum(nVars);
Abc_TtCopy(pSymCopy, pTruth, nWords, 0);
Abc_TtSwapVars(pSymCopy, nVars, iVar, jVar);
rv = Abc_TtEqual(pTruth, pSymCopy, nWords) * 2;
if (!fPhase) return rv;
Abc_TtFlip(pSymCopy, nWords, iVar);
Abc_TtFlip(pSymCopy, nWords, jVar);
return rv + Abc_TtEqual(pTruth, pSymCopy, nWords);
}
static int Abc_TtIsSymmetricHigh(Abc_TgMan_t * pMan, int iVar, int jVar, int fPhase)
{
int rv, iv, jv, n;
int nWords = Abc_TtWordNum(pMan->nVars);
Abc_TtCopy(pSymCopy, pMan->pTruth, nWords, 0);
for (n = 0, iv = iVar, jv = jVar; iv >= 0 && jv >= 0; iv = pMan->symLink[iv], jv = pMan->symLink[jv], n++)
Abc_TtSwapVars(pSymCopy, pMan->nVars, iv, jv);
assert(iv < 0 && jv < 0); // two symmetric groups must have the same size
rv = Abc_TtEqual(pMan->pTruth, pSymCopy, nWords) * 2;
if (!fPhase) return rv;
for (iv = iVar, jv = jVar; iv >= 0 && jv >= 0; iv = pMan->symLink[iv], jv = pMan->symLink[jv])
{
if (pMan->symPhase[iv]) Abc_TtFlip(pSymCopy, nWords, iv);
if (pMan->symPhase[jv]) Abc_TtFlip(pSymCopy, nWords, jv);
}
return rv + Abc_TtEqual(pMan->pTruth, pSymCopy, nWords);
}
/**Function*************************************************************
Synopsis [Create groups by cofactor signatures]
Description [Similar to Abc_TtSemiCanonicize.
Use stable insertion sort to keep the order of the variables in the groups.
Defer permutation. ]
SideEffects []
SeeAlso []
***********************************************************************/
static void Abc_TgCreateGroups(Abc_TgMan_t * pMan)
{
int pStore[17];
int i, j, nOnes;
int nVars = pMan->nVars, nWords = Abc_TtWordNum(nVars);
TiedGroup * pGrp = pMan->pGroup;
assert(nVars <= 16);
// normalize polarity
nOnes = Abc_TtCountOnesInTruth(pMan->pTruth, nVars);
if (nOnes > (1 << (nVars - 1)))
{
Abc_TtNot(pMan->pTruth, nWords);
nOnes = (1 << nVars) - nOnes;
pMan->uPhase |= (1 << nVars);
}
// normalize phase
Abc_TtCountOnesInCofs(pMan->pTruth, nVars, pStore);
pStore[nVars] = nOnes;
for (i = 0; i < nVars; i++)
{
if (pStore[i] >= nOnes - pStore[i])
continue;
Abc_TtFlip(pMan->pTruth, nWords, i);
pMan->uPhase |= (1 << i);
pStore[i] = nOnes - pStore[i];
}
// sort variables
for (i = 1; i < nVars; i++)
{
int a = pStore[i]; char aa = pMan->pPerm[i];
for (j = i; j > 0 && pStore[j - 1] > a; j--)
pStore[j] = pStore[j - 1], pMan->pPerm[j] = pMan->pPerm[j - 1];
pStore[j] = a; pMan->pPerm[j] = aa;
}
// group variables
// Abc_SortIdxC(pStore, pMan->pPerm, nVars);
pGrp[0].iStart = 0;
pGrp[0].fPhased = pStore[0] * 2 != nOnes;
for (i = j = 1; i < nVars; i++)
{
if (pStore[i] == pStore[i - 1]) continue;
pGrp[j].iStart = i;
pGrp[j].fPhased = pStore[i] * 2 != nOnes;
pGrp[j - 1].nGVars = i - pGrp[j - 1].iStart;
j++;
}
pGrp[j - 1].nGVars = i - pGrp[j - 1].iStart;
pMan->nGroups = j;
}
/**Function*************************************************************
Synopsis [Group symmetric variables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static int Abc_TgGroupSymmetry(Abc_TgMan_t * pMan, TiedGroup * pGrp, int doHigh)
{
int i, j, iVar, jVar, nsym = 0;
int fDone[16], scnt[16], stype[16];
signed char *symLink = pMan->symLink;
// char * symPhase = pMan->symPhase;
int nGVars = pGrp->nGVars;
char * pVars = pMan->pPerm + pGrp->iStart;
int modified, order = 0;
for (i = 0; i < nGVars; i++)
fDone[i] = 0, scnt[i] = 1;
do {
modified = 0;
for (i = 0; i < nGVars - 1; i++)
{
iVar = pVars[i];
if (iVar < 0 || fDone[i]) continue;
// if (!pGrp->fPhased && !Abc_TtHasVar(pMan->pTruth, pMan->nVars, iVar)) continue;
// Mark symmetric variables/groups
for (j = i + 1; j < nGVars; j++)
{
jVar = pVars[j];
if (jVar < 0 || scnt[j] != scnt[i]) // || pMan->symPhase[jVar] != pMan->symPhase[iVar])
stype[j] = 0;
else if (scnt[j] == 1)
stype[j] = Abc_TtIsSymmetric(pMan->pTruth, pMan->nVars, iVar, jVar, !pGrp->fPhased);
else
stype[j] = Abc_TtIsSymmetricHigh(pMan, iVar, jVar, !pGrp->fPhased);
}
fDone[i] = 1;
// Merge symmetric groups
for (j = i + 1; j < nGVars; j++)
{
int ii;
jVar = pVars[j];
switch (stype[j])
{
case 1: // E-Symmetry
Abc_TgFlipSymGroupByVar(pMan, jVar);
// fallthrough
case 2: // NE-Symmetry
pMan->symPhase[iVar] += pMan->symPhase[jVar];
break;
case 3: // multiform Symmetry
Abc_TgClearSymGroupPhase(pMan, jVar);
break;
default: // case 0: No Symmetry
continue;
}
for (ii = iVar; symLink[ii] >= 0; ii = symLink[ii])
;
symLink[ii] = jVar;
pVars[j] = -1;
scnt[i] += scnt[j];
modified = 1;
fDone[i] = 0;
nsym++;
}
}
// if (++order > 3) printf("%d", order);
} while (doHigh && modified);
return nsym;
}
static void Abc_TgPurgeSymmetry(Abc_TgMan_t * pMan, int doHigh)
{
int i, j, k, sum = 0, nVars = pMan->nVars;
signed char *symLink = pMan->symLink;
char gcnt[16] = { 0 };
char * pPerm = pMan->pPerm;
for (i = 0; i <= nVars; i++)
symLink[i] = -1;
// purge unsupported variables
if (!pMan->pGroup[0].fPhased)
{
int iVar = pMan->nVars;
for (j = 0; j < pMan->pGroup[0].nGVars; j++)
{
int jVar = pPerm[j];
assert(jVar >= 0);
if (!Abc_TtHasVar(pMan->pTruth, nVars, jVar))
{
symLink[jVar] = symLink[iVar];
symLink[iVar] = jVar;
pPerm[j] = -1;
gcnt[0]++;
}
}
}
for (k = 0; k < pMan->nGroups; k++)
gcnt[k] += Abc_TgGroupSymmetry(pMan, pMan->pGroup + k, doHigh);
for (i = 0; i < nVars && pPerm[i] >= 0; i++)
;
for (j = i + 1; ; i++, j++)
{
while (j < nVars && pPerm[j] < 0) j++;
if (j >= nVars) break;
pPerm[i] = pPerm[j];
}
for (k = 0; k < pMan->nGroups; k++)
{
pMan->pGroup[k].nGVars -= gcnt[k];
pMan->pGroup[k].iStart -= sum;
sum += gcnt[k];
}
if (pMan->pGroup[0].nGVars == 0)
{
pMan->nGroups--;
memmove(pMan->pGroup, pMan->pGroup + 1, sizeof(TiedGroup) * pMan->nGroups);
assert(pMan->pGroup[0].iStart == 0);
}
pMan->nGVars -= sum;
}
static void Abc_TgExpendSymmetry(Abc_TgMan_t * pMan, char * pPerm, char * pDest)
{
int i = 0, j, k;
for (j = 0; j < pMan->nGVars; j++)
for (k = pPerm[j]; k >= 0; k = pMan->symLink[k])
pDest[i++] = k;
for (k = pMan->symLink[pMan->nVars]; k >= 0; k = pMan->symLink[k])
pDest[i++] = k;
assert(i == pMan->nVars);
}
/**Function*************************************************************
Synopsis [Semi-canonical form computation.]
Description [simple config enumeration]
SideEffects []
SeeAlso []
***********************************************************************/
static int Abc_TgSymGroupPerm(Abc_TgMan_t* pMan, int idx, TiedGroup* pTGrp)
{
word* pTruth = pMan->pTruth;
static word pCopy[1024];
static word pBest[1024];
int Config = 0;
int nWords = Abc_TtWordNum(pMan->nVars);
Abc_TgMan_t tgManCopy, tgManBest;
int fSwapOnly = pTGrp->fPhased;
CheckConfig(pMan);
if (fSwapOnly)
{
Abc_TgManCopy(&tgManCopy, pCopy, pMan);
Abc_TgSwapAdjacentSymGroups(&tgManCopy, idx);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pTruth, pCopy, nWords) < 0)
{
Abc_TgManCopy(pMan, pTruth, &tgManCopy);
return 4;
}
return 0;
}
// save two copies
Abc_TgManCopy(&tgManCopy, pCopy, pMan);
Abc_TgManCopy(&tgManBest, pBest, pMan);
// PXY
// 001
Abc_TgFlipSymGroup(&tgManCopy, idx);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 1;
// PXY
// 011
Abc_TgFlipSymGroup(&tgManCopy, idx + 1);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 3;
// PXY
// 010
Abc_TgFlipSymGroup(&tgManCopy, idx);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 2;
// PXY
// 110
Abc_TgSwapAdjacentSymGroups(&tgManCopy, idx);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 6;
// PXY
// 111
Abc_TgFlipSymGroup(&tgManCopy, idx + 1);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 7;
// PXY
// 101
Abc_TgFlipSymGroup(&tgManCopy, idx);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 5;
// PXY
// 100
Abc_TgFlipSymGroup(&tgManCopy, idx + 1);
CheckConfig(&tgManCopy);
if (Abc_TtCompareRev(pBest, pCopy, nWords) == 1)
Abc_TgManCopy(&tgManBest, pBest, &tgManCopy), Config = 4;
// PXY
// 000
Abc_TgSwapAdjacentSymGroups(&tgManCopy, idx);
CheckConfig(&tgManCopy);
assert(Abc_TtEqual(pTruth, pCopy, nWords));
if (Config == 0)
return 0;
assert(Abc_TtCompareRev(pTruth, pBest, nWords) == 1);
Abc_TgManCopy(pMan, pTruth, &tgManBest);
return Config;
}
static int Abc_TgPermPhase(Abc_TgMan_t* pMan, int iVar)
{
static word pCopy[1024];
int nWords = Abc_TtWordNum(pMan->nVars);
int ivp = pMan->pPermTRev[iVar];
Abc_TtCopy(pCopy, pMan->pTruth, nWords, 0);
Abc_TtFlip(pCopy, nWords, ivp);
if (Abc_TtCompareRev(pMan->pTruth, pCopy, nWords) == 1)
{
Abc_TtCopy(pMan->pTruth, pCopy, nWords, 0);
pMan->uPhase ^= 1 << ivp;
return 16;
}
return 0;
}
static void Abc_TgSimpleEnumeration(Abc_TgMan_t * pMan)
{
int i, j, k;
int pGid[16];
for (k = j = 0; j < pMan->nGroups; j++)
for (i = 0; i < pMan->pGroup[j].nGVars; i++, k++)
pGid[k] = j;
assert(k == pMan->nGVars);
for (k = 0; k < 5; k++)
{
int fChanges = 0;
for (i = pMan->nGVars - 2; i >= 0; i--)
if (pGid[i] == pGid[i + 1])
fChanges |= Abc_TgSymGroupPerm(pMan, i, pMan->pGroup + pGid[i]);
for (i = 1; i < pMan->nGVars - 1; i++)
if (pGid[i] == pGid[i + 1])
fChanges |= Abc_TgSymGroupPerm(pMan, i, pMan->pGroup + pGid[i]);
for (i = pMan->nVars - 1; i >= 0; i--)
if (pMan->symPhase[i])
fChanges |= Abc_TgPermPhase(pMan, i);
for (i = 1; i < pMan->nVars; i++)
if (pMan->symPhase[i])
fChanges |= Abc_TgPermPhase(pMan, i);
if (!fChanges) break;
}
assert(Abc_TgCannonVerify(pMan));
}
/**Function*************************************************************
Synopsis [Exact canonical form computation.]
Description [full config enumeration]
SideEffects []
SeeAlso []
***********************************************************************/
// enumeration time = exp((cost-27.12)*0.59)
static int Abc_TgEnumerationCost(Abc_TgMan_t * pMan)
{
int cSym = 0;
double cPerm = 0.0;
TiedGroup * pGrp = 0;
int i, j, n;
if (pMan->nGroups == 0) return 0;
for (i = 0; i < pMan->nGroups; i++)
{
pGrp = pMan->pGroup + i;
n = pGrp->nGVars;
if (n > 1)
cPerm += 0.92 + log(n) / 2 + n * (log(n) - 1);
}
if (pMan->pGroup->fPhased)
n = 0;
else
{
char * pVars = pMan->pPerm;
n = pMan->pGroup->nGVars;
for (i = 0; i < n; i++)
for (j = pVars[i]; j >= 0; j = pMan->symLink[j])
cSym++;
}
// coefficients computed by linear regression
return pMan->nVars + n * 1.09 + cPerm * 1.65 + 0.5;
// return (rv > 60 ? 100000000 : 0) + n * 1000000 + cSym * 10000 + cPerm * 100 + 0.5;
}
static int Abc_TgIsInitPerm(char * pData, signed char * pDir, int size)
{
int i;
if (pDir[0] != -1) return 0;
for (i = 1; i < size; i++)
if (pDir[i] != -1 || pData[i] < pData[i - 1])
return 0;
return 1;
}
static void Abc_TgFirstPermutation(Abc_TgMan_t * pMan)
{
int i;
for (i = 0; i < pMan->nGVars; i++)
pMan->pPermDir[i] = -1;
#ifndef NDEBUG
for (i = 0; i < pMan->nGroups; i++)
{
TiedGroup * pGrp = pMan->pGroup + i;
int nGvars = pGrp->nGVars;
char * pVars = pMan->pPerm + pGrp->iStart;
signed char * pDirs = pMan->pPermDir + pGrp->iStart;
assert(Abc_TgIsInitPerm(pVars, pDirs, nGvars));
}
#endif
}
static int Abc_TgNextPermutation(Abc_TgMan_t * pMan)
{
int i, j, nGvars;
TiedGroup * pGrp;
char * pVars;
signed char * pDirs;
for (i = 0; i < pMan->nGroups; i++)
{
pGrp = pMan->pGroup + i;
nGvars = pGrp->nGVars;
if (nGvars == 1) continue;
pVars = pMan->pPerm + pGrp->iStart;
pDirs = pMan->pPermDir + pGrp->iStart;
j = Abc_NextPermSwapC(pVars, pDirs, nGvars);
if (j >= 0)
{
Abc_TgSwapAdjacentSymGroups(pMan, j + pGrp->iStart);
return 1;
}
Abc_TgSwapAdjacentSymGroups(pMan, pGrp->iStart);
assert(Abc_TgIsInitPerm(pVars, pDirs, nGvars));
}
return 0;
}
inline unsigned grayCode(unsigned a) { return a ^ (a >> 1); }
static int grayFlip(unsigned a, int n)
{
unsigned d = grayCode(a) ^ grayCode(a + 1);
int i;
for (i = 0; i < n; i++)
if (d == 1U << i) return i;
assert(0);
return -1;
}
inline void Abc_TgSaveBest(Abc_TgMan_t * pMan, Abc_TgMan_t * pBest)
{
if (Abc_TtCompare(pBest->pTruth, pMan->pTruth, Abc_TtWordNum(pMan->nVars)) == 1)
Abc_TgManCopy(pBest, pBest->pTruth, pMan);
}
static void Abc_TgPhaseEnumeration(Abc_TgMan_t * pMan, Abc_TgMan_t * pBest)
{
char pFGrps[16];
TiedGroup * pGrp = pMan->pGroup;
int i, j, n = pGrp->nGVars;
Abc_TgSaveBest(pMan, pBest);
if (pGrp->fPhased) return;
// sort by symPhase
for (i = 0; i < n; i++)
{
char iv = pMan->pPerm[i];
for (j = i; j > 0 && pMan->symPhase[pFGrps[j-1]] > pMan->symPhase[iv]; j--)
pFGrps[j] = pFGrps[j - 1];
pFGrps[j] = iv;
}
for (i = 0; i < (1 << n) - 1; i++)
{
Abc_TgFlipSymGroupByVar(pMan, pFGrps[grayFlip(i, n)]);
Abc_TgSaveBest(pMan, pBest);
}
}
static void Abc_TgFullEnumeration(Abc_TgMan_t * pWork, Abc_TgMan_t * pBest)
{
// static word pCopy[1024];
// Abc_TgMan_t tgManCopy;
// Abc_TgManCopy(&tgManCopy, pCopy, pMan);
Abc_TgFirstPermutation(pWork);
do Abc_TgPhaseEnumeration(pWork, pBest);
while (Abc_TgNextPermutation(pWork));
pBest->uPhase |= 1U << 30;
}
unsigned Abc_TtCanonicizeAda(Abc_TtHieMan_t * p, word * pTruth, int nVars, char * pCanonPerm, int iThres)
{
int nWords = Abc_TtWordNum(nVars);
unsigned fExac = 0, fHash = 1U << 29;
static word pCopy[1024];
Abc_TgMan_t tgMan, tgManCopy;
int iCost;
const int MaxCost = 84; // maximun posible cost for function with 16 inputs
const int doHigh = iThres / 100, iEnumThres = iThres % 100;
#ifdef CANON_VERIFY
Abc_TtCopy(gpVerCopy, pTruth, nWords, 0);
#endif
assert(nVars <= 16);
if (p && Abc_TtHieRetrieveOrInsert(p, -5, pTruth, pTruth) > 0) return fHash;
Abc_TginitMan(&tgMan, pTruth, nVars);
Abc_TgCreateGroups(&tgMan);
if (p && Abc_TtHieRetrieveOrInsert(p, -4, pTruth, pTruth) > 0) return fHash;
Abc_TgPurgeSymmetry(&tgMan, doHigh);
Abc_TgExpendSymmetry(&tgMan, tgMan.pPerm, pCanonPerm);
Abc_TgImplementPerm(&tgMan, pCanonPerm);
assert(Abc_TgCannonVerify(&tgMan));
if (p == NULL) {
if (iEnumThres > MaxCost || Abc_TgEnumerationCost(&tgMan) < iEnumThres) {
Abc_TgManCopy(&tgManCopy, pCopy, &tgMan);
Abc_TgFullEnumeration(&tgManCopy, &tgMan);
}
else
Abc_TgSimpleEnumeration(&tgMan);
}
else {
iCost = Abc_TgEnumerationCost(&tgMan);
if (iCost < iEnumThres) fExac = 1U << 30;
if (Abc_TtHieRetrieveOrInsert(p, -3, pTruth, pTruth) > 0) return fHash + fExac;
Abc_TgManCopy(&tgManCopy, pCopy, &tgMan);
Abc_TgSimpleEnumeration(&tgMan);
if (Abc_TtHieRetrieveOrInsert(p, -2, pTruth, pTruth) > 0) return fHash + fExac;
if (fExac) {
Abc_TgManCopy(&tgMan, pTruth, &tgManCopy);
Abc_TgFullEnumeration(&tgManCopy, &tgMan);
}
Abc_TtHieRetrieveOrInsert(p, -1, pTruth, pTruth);
}
memcpy(pCanonPerm, tgMan.pPermT, sizeof(char) * nVars);
#ifdef CANON_VERIFY
if (!Abc_TgCannonVerify(&tgMan))
printf("Canonical form verification failed!\n");
#endif
return tgMan.uPhase;
}
////////////////////////////////////////////////////////////////////////
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment