Commit 976f5f5a by Alan Mishchenko

Changes to Boolean matching.

parent d080336b
......@@ -902,6 +902,10 @@ void Abc_Init( Abc_Frame_t * pAbc )
printf( "\n" );
}
*/
{
extern void If_CluTest();
If_CluTest();
}
}
/**Function*************************************************************
......@@ -12992,6 +12996,7 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->fSeqMap = 0;
pPars->fBidec = 0;
pPars->fVerbose = 0;
pPars->pLutStruct = NULL;
// internal parameters
pPars->fTruth = 0;
pPars->nLatches = pNtk? Abc_NtkLatchNum(pNtk) : 0;
......@@ -13003,7 +13008,7 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
fLutMux = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "KCFADEqaflepmrsdbugojikcvh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "KCFADEWSqaflepmrsdbugojikcvh" ) ) != EOF )
{
switch ( c )
{
......@@ -13075,6 +13080,31 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
if ( pPars->Epsilon < 0.0 || pPars->Epsilon > 1.0 )
goto usage;
break;
case 'W':
if ( globalUtilOptind >= argc )
{
Abc_Print( -1, "Command line switch \"-W\" should be followed by a floating point number.\n" );
goto usage;
}
pPars->WireDelay = (float)atof(argv[globalUtilOptind]);
globalUtilOptind++;
if ( pPars->WireDelay < 0.0 )
goto usage;
break;
case 'S':
if ( globalUtilOptind >= argc )
{
Abc_Print( -1, "Command line switch \"-S\" should be followed by string.\n" );
goto usage;
}
pPars->pLutStruct = argv[globalUtilOptind];
globalUtilOptind++;
if ( !strlen(pPars->pLutStruct) == 2 && !strlen(pPars->pLutStruct) == 3 )
{
Abc_Print( -1, "Command line switch \"-S\" should be followed by a 2- or 3-char string (e.g. \"44\" or \"555\").\n" );
goto usage;
}
break;
case 'q':
pPars->fPreprocess ^= 1;
break;
......@@ -13261,6 +13291,20 @@ int Abc_CommandIf( Abc_Frame_t * pAbc, int argc, char ** argv )
pPars->pLutLib = NULL;
}
// modify for LUT structures
if ( pPars->pLutStruct )
{
if ( pPars->nLutSize == -1 )
{
Abc_Print( -1, "Please specify the maximum cut size (-K <num>) when LUT structure is used.\n" );
return 1;
}
pPars->fTruth = 1;
pPars->fExpRed = 0;
pPars->fUsePerm = 1;
pPars->pLutLib = NULL;
}
// complain if truth tables are requested but the cut size is too large
if ( pPars->fTruth && pPars->nLutSize > IF_MAX_FUNC_LUTSIZE )
{
......@@ -13323,7 +13367,7 @@ usage:
sprintf( LutSize, "library" );
else
sprintf( LutSize, "%d", pPars->nLutSize );
Abc_Print( -2, "usage: if [-KCFA num] [-DE float] [-qarlepmsdbugojikcvh]\n" );
Abc_Print( -2, "usage: if [-KCFA num] [-DEW float] [-S str] [-qarlepmsdbugojikcvh]\n" );
Abc_Print( -2, "\t performs FPGA technology mapping of the network\n" );
Abc_Print( -2, "\t-K num : the number of LUT inputs (2 < num < %d) [default = %s]\n", IF_MAX_LUTSIZE+1, LutSize );
Abc_Print( -2, "\t-C num : the max number of priority cuts (0 < num < 2^12) [default = %d]\n", pPars->nCutsMax );
......@@ -13331,6 +13375,8 @@ usage:
Abc_Print( -2, "\t-A num : the number of exact area recovery iterations (num >= 0) [default = %d]\n", pPars->nAreaIters );
Abc_Print( -2, "\t-D float : sets the delay constraint for the mapping [default = %s]\n", Buffer );
Abc_Print( -2, "\t-E float : sets epsilon used for tie-breaking [default = %f]\n", pPars->Epsilon );
Abc_Print( -2, "\t-W float : sets wire delay between adjects LUTs [default = %f]\n", pPars->WireDelay );
Abc_Print( -2, "\t-S str : string representing the LUT structure [default = %s]\n", pPars->pLutStruct ? pPars->pLutStruct : "not used" );
Abc_Print( -2, "\t-q : toggles preprocessing using several starting points [default = %s]\n", pPars->fPreprocess? "yes": "no" );
Abc_Print( -2, "\t-a : toggles area-oriented mapping [default = %s]\n", pPars->fArea? "yes": "no" );
// Abc_Print( -2, "\t-f : toggles one fancy feature [default = %s]\n", pPars->fFancy? "yes": "no" );
......
......@@ -436,7 +436,7 @@ Abc_Obj_t * Abc_NodeFromIf_rec( Abc_Ntk_t * pNtkNew, If_Man_t * pIfMan, If_Obj_t
pCutBest = If_ObjCutBest( pIfObj );
// printf( "%d 0x%02X %d\n", pCutBest->nLeaves, 0xff & *If_CutTruth(pCutBest), pIfMan->pPars->pFuncCost(pCutBest) );
// if ( pIfMan->pPars->pLutLib && pIfMan->pPars->pLutLib->fVarPinDelays )
if ( !pIfMan->pPars->fDelayOpt )
if ( !pIfMan->pPars->fDelayOpt && !pIfMan->pPars->pLutStruct )
If_CutRotatePins( pIfMan, pCutBest );
if ( pIfMan->pPars->fUseCnfs || pIfMan->pPars->fUseMv )
{
......
......@@ -101,6 +101,8 @@ struct If_Par_t_
int fEnableCheck10;// enable additional checking
int fEnableRealPos;// enable additional feature
int fVerbose; // the verbosity flag
char * pLutStruct; // LUT structure
float WireDelay; // wire delay
// internal parameters
int fDelayOpt; // special delay optimization
int fAreaOnly; // area only mode
......@@ -414,6 +416,7 @@ extern float If_CutPowerRefed( If_Man_t * p, If_Cut_t * pCut, If_Obj_t
extern int If_CutPerformCheck07( unsigned * pTruth, int nVars, int nLeaves );
extern int If_CutPerformCheck08( unsigned * pTruth, int nVars, int nLeaves );
extern int If_CutPerformCheck10( unsigned * pTruth, int nVars, int nLeaves );
extern float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay );
/*=== ifLib.c =============================================================*/
extern If_Lib_t * If_LutLibRead( char * FileName );
extern If_Lib_t * If_LutLibDup( If_Lib_t * p );
......
......@@ -29,6 +29,17 @@ ABC_NAMESPACE_IMPL_START
#define CLU_MAX 16
// decomposition
typedef struct If_Bst_t_ If_Bst_t;
struct If_Bst_t_
{
int nMyu;
int nVars;
int Vars[CLU_MAX];
float Dels[CLU_MAX];
word Truth[1 << (CLU_MAX-6)];
};
// the bit count for the first 256 integer numbers
static int BitCount8[256] = {
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
......@@ -62,13 +73,8 @@ static word TruthAll[CLU_MAX][1 << (CLU_MAX-6)];
extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
// vars are numbered starting from MSB
// moving down means moving from MSB -> LSB
// moving up means moving from LSB -> MSB
// groups list vars indices from MSB to LSB
// group representation
// nVars | nCofs | v5 | v4 | v3 | v2 | v1 | v0
// group representation (MSB <-> LSB)
// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
// if nCofs > 2, v0 is the shared variable
////////////////////////////////////////////////////////////////////////
......@@ -136,49 +142,42 @@ static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nV
}
// moves one var (v) to the given position (p)
void If_CluMoveVarOneUp( word * pF, int * Var2Pla, int * Pla2Var, int nVars, int v, int p )
void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
{
word pG[32], * pIn = pF, * pOut = pG, * pTemp;
word pG[1 << (CLU_MAX-6)], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
assert( Var2Pla[v] >= p );
while ( Var2Pla[v] > p )
if ( Var2Pla[v] <= p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
while ( Var2Pla[v] < p )
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
assert( Pla2Var[p] == v );
}
// moves one var (v) to the given position (p)
void If_CluMoveVarOneDown( word * pF, int * Var2Pla, int * Pla2Var, int nVars, int v, int p )
{
word pG[32], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
assert( Var2Pla[v] <= p );
while ( Var2Pla[v] < p )
else
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
while ( Var2Pla[v] > p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
......@@ -186,28 +185,29 @@ void If_CluMoveVarOneDown( word * pF, int * Var2Pla, int * Pla2Var, int nVars, i
}
// moves vars to be the most signiticant ones (Group[0] is MSB)
void If_CluMoveVars( word * pF, int * V2P, int * P2V, int nVars, int Group )
void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, word Group )
{
char * pVars = (char *)&Group;
int v;
for ( v = 0; v < 4; v++ )
If_CluMoveVarOneUp( pF, V2P, P2V, nVars, (Group >> (8*v)) & 0xFF, v );
for ( v = 0; v < pVars[7]; v++ )
If_CluMoveVar( pF, nVars, V2P, P2V, pVars[pVars[7] - 1 - v], nVars - 1 - v );
}
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int * V2P, int * P2V, int nVars, int nBSsize )
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift )
{
int nShift = (1 << (nVars - nBSsize));
word Mask = (((word)1) << nShift) - 1;
word iCofs[16], iCof;
word iCofs[64], iCof;
int i, c, nMints = (1 << nBSsize), nCofs = 1;
assert( nBSsize >= 3 && nBSsize <= 5 );
assert( nBSsize >= 3 && nBSsize <= 6 );
assert( nVars - nBSsize > 0 && nVars - nBSsize <= 6 );
if ( nVars - nBSsize == 6 )
Mask = ~0;
iCofs[0] = pF[0] & Mask;
iCofs[0] = (pF[iShift / 64] >> (iShift & 63)) & Mask;
for ( i = 1; i < nMints; i++ )
{
iCof = (pF[(i * nShift) / 64] >> ((i * nShift) & 63)) & Mask;
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
for ( c = 0; c < nCofs; c++ )
if ( iCof == iCofs[c] )
break;
......@@ -220,80 +220,197 @@ int If_CluCountCofs( word * pF, int * V2P, int * P2V, int nVars, int nBSsize )
return nCofs;
}
// finds a good var group (cof count < 6; vars are MSBs)
int If_CluFindGroup( word * pF, int * V2P, int * P2V, int nVars, int GroupEx )
void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
{
pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
}
return;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
{
pCof0[i] = pCof0[Step+i] = pF[i];
pCof1[i] = pCof1[Step+i] = pF[Step+i];
}
pF += 2*Step;
pCof0 += 2*Step;
pCof1 += 2*Step;
}
return;
}
}
// check non-disjoint decomposition
int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, int nBSsize, char * pGroup )
{
/*
int i, Excl[10];
if ( GroupEx )
int v, i, nCofsBest2;
if ( (pGroup[6] == 3 || pGroup[6] == 4) )
{
for ( i = 0; i < nVars; i++ )
Excl[i] = 0;
for ( i = 0; i < 4; i++ )
Excl[(GroupEx >> (8*i)) & 0xFF] = 1;
word pCof0[1 << (CLU_MAX-6)];
word pCof1[1 << (CLU_MAX-6)];
// try cofactoring w.r.t. each variable
for ( v = 0; v < pGroup[7]; v++ )
{
If_CluCofactors( pF, nVars, pGroup[v], pCof0, pCof1 );
nCofsBest2 = If_CluCountCofs( pCof0, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
nCofsBest2 = If_CluCountCofs( pCof1, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
// find a good variable - move to the end
If_CluMoveVar( pF, nVars, V2P, P2V, pGroup[v], nVars-1 );
for ( i = 0; i < nBSsize; i++ )
pGroup[i] = P2V[nVars-nBSsize+i];
return 1;
}
}
*/
return 0;
}
void If_CluPrintGroup( word Group )
{
char * pGroup = (char *)&Group;
int i;
for ( i = 0; i < pGroup[7]; i++ )
printf( "%d ", pGroup[i] );
printf( "\n" );
printf( "Cofs = %d", pGroup[6] );
printf( "\n" );
printf( "Vars = %d", pGroup[7] );
printf( "\n" );
}
// finds a good var group (cof count < 6; vars are MSBs)
word If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
{
int nRounds = 3;
int GroupBest, nCofsBest;
int VarBest, nCofsBest2;
int i, r, v, nCofs;
assert( nVars > 4 );
word GroupBest = 0;
char * pGroupBest = (char *)&GroupBest;
int i, r, v, nCofs, VarBest, nCofsBest2;
assert( nVars >= nBSsize + iVarStart && nVars <= CLU_MAX );
assert( nBSsize >= 3 && nBSsize <= 6 );
// start with the default group
nCofsBest = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
GroupBest = 0;
for ( i = 0; i < 4; i++ )
GroupBest |= ( P2V[i] << (8*i) );
pGroupBest[7] = nBSsize;
pGroupBest[6] = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
printf( "Iter %d ", -1 );
If_CluPrintGroup( GroupBest );
// try to find better group
for ( r = 0; r < nRounds && nCofsBest > 2; r++ )
for ( r = 0; r < nRounds; r++ )
{
// find the best var to add
VarBest = P2V[4];
nCofsBest2 = If_CluCountCofs( pF, V2P, P2V, nVars, 5 );
for ( v = 5; v < nVars; v++ )
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
{
If_CluMoveVarOneUp( pF, V2P, P2V, nVars, P2V[v], 4 );
nCofs = If_CluCountCofs( pF, V2P, P2V, nVars, 5 );
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[4];
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVarOneUp( pF, V2P, P2V, nVars, VarBest, 4 );
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// find the best var to remove
VarBest = P2V[4];
nCofsBest2 = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
for ( v = 3; v >= 0; v-- )
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( v = nVars-nBSsize; v < nVars; v++ )
{
If_CluMoveVarOneDown( pF, V2P, P2V, nVars, v, 4 );
nCofs = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
If_CluMoveVar( pF, nVars, V2P, P2V, v, nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[4];
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVarOneDown( pF, V2P, P2V, nVars, VarBest, 4 );
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
assert( nCofs == nCofsBest2 );
if ( nCofsBest > nCofs )
if ( pGroupBest[6] > nCofs )
{
nCofsBest = nCofs;
for ( i = 0; i < 4; i++ )
GroupBest |= ( P2V[i] << (8*i) );
pGroupBest[7] = nBSsize;
pGroupBest[6] = nCofs;
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
}
printf( "Iter %d ", r );
If_CluPrintGroup( GroupBest );
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
}
if ( nCofsBest <= 4 )
return GroupBest;
assert( r == nRounds );
return 0;
}
// double check that the given group has a decomposition
void If_CluCheckGroup( word * pTruth, int nVars, word Group )
{
word pF[1 << (CLU_MAX-6)];
int v, nCofs, V2P[CLU_MAX], P2V[CLU_MAX];
char * pVars = (char *)&Group;
assert( pVars[7] >= 3 && pVars[7] <= 6 ); // vars
assert( pVars[6] >= 2 && pVars[6] <= 4 ); // cofs
// create permutation
for ( v = 0; v < nVars; v++ )
V2P[v] = P2V[v] = v;
// create truth table
If_CluCopy( pF, pTruth, nVars );
// move group up
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, Group );
// check the number of cofactors
nCofs = If_CluCountCofs( pF, nVars, pVars[7], 0 );
if ( nCofs != pVars[6] )
printf( "Group check 0 has failed.\n" );
// check compatible
if ( nCofs > 2 )
{
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, 0 );
if ( nCofs > 2 )
printf( "Group check 1 has failed.\n" );
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, (1 << (nVars-1)) );
if ( nCofs > 2 )
printf( "Group check 2 has failed.\n" );
}
}
static inline int If_CluSuppIsMinBase( int Supp )
{
return (Supp & (Supp+1)) == 0;
......@@ -332,18 +449,14 @@ static inline int If_CluSupport( word * t, int nVars )
return Supp;
}
// returns the number of nodes and conf bits in vConf
int If_CluCheck( word * pTruth, int nVars, Vec_Int_t * vConf )
word If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
{
int fDerive = 0;
int V2P[10], P2V[10];
int i, nSupp, nNodes, Group1, Group2, nCofs1, nCofs2;
word pF[16];
assert( nVars <= 10 );
if ( nVars <= 5 )
return 1;
int V2P[CLU_MAX], P2V[CLU_MAX];
word Group1, pF[1 << (CLU_MAX-6)];
int i, nSupp;
assert( nVars <= CLU_MAX );
assert( nVars <= nLutLeaf + nLutRoot - 1 );
// check minnimum base
If_CluCopy( pF, pTruth, nVars );
......@@ -354,33 +467,141 @@ int If_CluCheck( word * pTruth, int nVars, Vec_Int_t * vConf )
// perform testing
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
Group1 = If_CluFindGroup( pF, V2P, P2V, nVars, 0 );
Group1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
if ( Group1 == 0 )
return 0;
nCofs1 = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
assert( nCofs1 >= 2 && nCofs1 <= 4 );
if ( nVars <= 6 )
return 1;
if ( nCofs1 == 2 && nVars == 7 )
return 1;
if ( nCofs1 > 2 && nVars == 10 )
return 0;
// perform testing
Group2 = If_CluFindGroup( pF, V2P, P2V, nVars, Group1 );
if ( Group2 == 0 )
return 0;
nCofs2 = If_CluCountCofs( pF, V2P, P2V, nVars, 4 );
assert( nCofs2 >= 2 && nCofs2 <= 4 );
if ( nVars - 6 + (nCofs1 > 2) + (nCofs2 > 2) <= 4 )
return 1;
return 0;
// perform checking
If_CluCheckGroup( pTruth, nVars, Group1 );
// compute conf bits
return Group1;
}
return nNodes;
// computes delay of the decomposition
float If_CluDelayMax( word Group, float * pDelays )
{
char * pVars = (char *)&Group;
float Delay = 0.0;
int i;
for ( i = 0; i < pVars[7]; i++ )
Delay = Abc_MaxFloat( Delay, pDelays[pVars[i]] );
return Delay;
}
// returns delay of the decomposition; sets area of the cut as its cost
float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay )
{
float Delays[CLU_MAX+2];
int fUsed[CLU_MAX+2] = {0};
If_Obj_t * pLeaf;
word Group1 = 0, Group2 = 0, Group3 = 0;
char * pGroup1 = (char *)&Group1;
char * pGroup2 = (char *)&Group2;
char * pGroup3 = (char *)&Group3;
int nLeaves = If_CutLeaveNum(pCut);
int i, nLutLeaf, nLutRoot;
// mark the cut as user cut
pCut->fUser = 1;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
printf( "Wrong LUT struct (%s)\n", pStr );
return ABC_INFINITY;
}
nLutLeaf = pStr[0] - '0';
if ( nLutLeaf < 3 || nLutLeaf > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
return ABC_INFINITY;
}
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return ABC_INFINITY;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
{
printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot );
return ABC_INFINITY;
}
// remember the delays
If_CutForEachLeaf( p, pCut, pLeaf, i )
Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
{
assert( nLeaves <= 6 );
for ( i = 0; i < nLeaves; i++ )
{
pCut->pPerm[i] = 1;
pGroup1[i] = i;
}
pGroup1[7] = nLeaves;
pCut->Cost = 1;
return 1.0 + If_CluDelayMax( Group1, Delays );
}
// derive the first group
Group1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
if ( Group1 == 0 )
return ABC_INFINITY;
// compute the delay
Delays[nLeaves] = If_CluDelayMax( Group1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
if ( Group2 )
Delays[nLeaves+1] = If_CluDelayMax( Group2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
// mark used groups
for ( i = 0; i < pGroup1[7]; i++ )
fUsed[pGroup1[i]] = 1;
for ( i = 0; i < pGroup2[7]; i++ )
fUsed[pGroup2[i]] = 1;
// mark unused groups
assert( pGroup1[6] >= 2 && pGroup1[6] <= 4 );
if ( pGroup1[6] > 2 )
fUsed[pGroup1[0]] = 0;
assert( pGroup2[6] >= 2 && pGroup2[6] <= 4 );
if ( pGroup2[6] > 2 )
fUsed[pGroup2[0]] = 0;
// create remaining group
assert( pGroup3[7] == 0 );
for ( i = 0; i < nLeaves; i++ )
if ( !fUsed[i] )
pGroup3[pGroup3[7]++] = i;
pGroup3[pGroup3[7]++] = nLeaves;
if ( Group2 )
pGroup3[pGroup3[7]++] = nLeaves+1;
assert( pGroup1[7] + pGroup2[7] + pGroup3[7] == nLeaves + (pGroup1[7] > 0) + (pGroup2[7] > 0) + (pGroup1[6] > 2) + (pGroup2[6] > 2) );
// what if both non-disjoint vars are the same???
pCut->Cost = 2 + (pGroup2[7] > 0);
return 1.0 + If_CluDelayMax( Group3, Delays );
}
// testing procedure
void If_CluTest()
{
// word t = 0xff00f0f0ccccaaaa;
word t = 0xfedcba9876543210;
int nLeaves = 6;
int nLutLeaf = 4;
int nLutRoot = 4;
word Group1;
char * pVars = (char *)&Group1;
// return;
Group1 = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
If_CluPrintGroup( Group1 );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
......
......@@ -153,7 +153,9 @@ void If_ObjPerformMappingAnd( If_Man_t * p, If_Obj_t * pObj, int Mode, int fPrep
if ( pCut->nLeaves > 0 )
{
// recompute the parameters of the best cut
if ( p->pPars->fDelayOpt )
if ( p->pPars->pLutStruct )
pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
else if ( p->pPars->fDelayOpt )
pCut->Delay = If_CutDelaySopCost( p, pCut );
else
pCut->Delay = If_CutDelay( p, pObj, pCut );
......@@ -215,7 +217,9 @@ void If_ObjPerformMappingAnd( If_Man_t * p, If_Obj_t * pObj, int Mode, int fPrep
if ( pCut->Cost == IF_COST_MAX )
continue;
// check if the cut satisfies the required times
if ( p->pPars->fDelayOpt )
if ( p->pPars->pLutStruct )
pCut->Delay = If_CutDelayLutStruct( p, pCut, p->pPars->pLutStruct, p->pPars->WireDelay );
else if ( p->pPars->fDelayOpt )
pCut->Delay = If_CutDelaySopCost( p, pCut );
else
pCut->Delay = If_CutDelay( p, pObj, pCut );
......
......@@ -200,6 +200,7 @@ void Extra_PrintKMap(
int fSuppType, /* the flag which determines how support is computed */
char ** pVarNames )
{
int fPrintTruth = 1;
int d, p, n, s, v, h, w;
int nVarsVer;
int nVarsHor;
......@@ -213,6 +214,40 @@ void Extra_PrintKMap(
fprintf( Output, "PrintKMap(): The on-set and the off-set overlap\n" );
return;
}
// print truth table for debugging
if ( fPrintTruth )
{
DdNode * bCube, * bPart;
printf( "Truth table: " );
if ( nVars == 0 )
printf( "Constant" );
else if ( nVars == 1 )
printf( "1-var function" );
else
{
// printf( "0x" );
for ( d = (1<<(nVars-2)) - 1; d >= 0; d-- )
{
int Value = 0;
for ( s = 0; s < 4; s++ )
{
bCube = Extra_bddBitsToCube( dd, 4*d+s, nVars, dd->vars, 0 ); Cudd_Ref( bCube );
bPart = Cudd_Cofactor( dd, OnSet, bCube ); Cudd_Ref( bPart );
Value |= ((int)(bPart == b1) << s);
Cudd_RecursiveDeref( dd, bPart );
Cudd_RecursiveDeref( dd, bCube );
}
if ( Value < 10 )
fprintf( stdout, "%d", Value );
else
fprintf( stdout, "%c", 'a' + Value-10 );
}
}
printf( "\n" );
}
/*
if ( OnSet == b1 )
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment