Commit 88c57c93 by Alan Mishchenko

Several additional files for source control.

parent 6b6e5861
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
Synopsis [Cut computation.] Synopsis [Cut computation.]
Author [Alan Mishchenko] Author [Alan Mishchenko]`
Affiliation [UC Berkeley] Affiliation [UC Berkeley]
...@@ -19,7 +19,10 @@ ...@@ -19,7 +19,10 @@
***********************************************************************/ ***********************************************************************/
#include "gia.h" #include "gia.h"
#include "misc/tim/tim.h"
#include "misc/vec/vecSet.h" #include "misc/vec/vecSet.h"
#include "misc/vec/vecMem.h"
#include "misc/util/utilTruth.h"
ABC_NAMESPACE_IMPL_START ABC_NAMESPACE_IMPL_START
...@@ -27,11 +30,1942 @@ ABC_NAMESPACE_IMPL_START ...@@ -27,11 +30,1942 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS /// /// DECLARATIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
#define LF_LEAF_MAX 12
#define LF_CUT_MAX 32
#define LF_LOG_PAGE 12
#define LF_NO_LEAF 255
#define LF_CUT_WORDS (4+LF_LEAF_MAX/2)
#define LF_TT_WORDS ((LF_LEAF_MAX > 6) ? 1 << (LF_LEAF_MAX-6) : 1)
typedef struct Lf_Cut_t_ Lf_Cut_t;
struct Lf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
int iFunc; // functionality
unsigned Cost : 22; // misc cut cost
unsigned fLate : 1; // fails timing
unsigned fMux7 : 1; // specialized cut
unsigned nLeaves : 8; // the number of leaves
int pLeaves[0]; // leaves
};
typedef struct Lf_Plc_t_ Lf_Plc_t;
struct Lf_Plc_t_
{
unsigned fUsed : 1; // the cut is used
unsigned Handle : 31; // the cut handle
};
typedef struct Lf_Bst_t_ Lf_Bst_t;
struct Lf_Bst_t_
{
int Delay[3]; // delay
float Flow[3]; // flow
Lf_Plc_t Cut[2]; // cut info
};
typedef struct Lf_Mem_t_ Lf_Mem_t;
struct Lf_Mem_t_
{
int LogPage; // log size of memory page
int MaskPage; // page mask
int nCutWords; // cut size in words
int iCur; // writing position
Vec_Ptr_t vPages; // memory pages
Vec_Ptr_t * vFree; // free pages
};
typedef struct Lf_Man_t_ Lf_Man_t;
struct Lf_Man_t_
{
// user data
Gia_Man_t * pGia; // manager
Jf_Par_t * pPars; // parameters
// cut data
int nCutWords; // cut size in words
int nSetWords; // set size in words
Lf_Bst_t * pObjBests; // best cuts
Vec_Ptr_t vMemSets; // memory for cutsets
Vec_Int_t vFreeSets; // free cutsets
Vec_Mem_t * vTtMem; // truth tables
Vec_Ptr_t vFreePages; // free memory pages
Lf_Mem_t vStoreOld; // previous cuts
Lf_Mem_t vStoreNew; // current cuts
// mapper data
Vec_Int_t vOffsets; // offsets
Vec_Int_t vRequired; // required times
Vec_Int_t vCutSets; // cutsets (pObj->Value stores cut refs)
Vec_Flt_t vFlowRefs; // flow refs
Vec_Int_t vMapRefs; // mapping refs
Vec_Flt_t vSwitches; // switching activity
Vec_Int_t vCiArrivals; // arrival times of the CIs
// statistics
abctime clkStart; // starting time
double CutCount[4]; // cut counts
double Switches; // switching activity
int nFrontMax; // frontier
int nCoDrivers; // CO drivers
int nInverters; // inverters
int nTimeFails; // timing fails
int Iter; // mapping iteration
int fUseEla; // use exact local area
int nCutMux; // non-trivial MUX cuts
int nCutEqual; // equal two cuts
int nCutCounts[LF_LEAF_MAX+1];
};
static inline void Lf_CutCopy( Lf_Cut_t * p, Lf_Cut_t * q, int n ) { memcpy(p, q, sizeof(word) * n); }
static inline Lf_Cut_t * Lf_CutNext( Lf_Cut_t * p, int n ) { return (Lf_Cut_t *)((word *)p + n); }
static inline word * Lf_CutTruth( Lf_Man_t * p, Lf_Cut_t * pCut ) { return Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)); }
static inline int Lf_ObjOff( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vOffsets, i); }
static inline int Lf_ObjRequired( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vRequired, i); }
static inline void Lf_ObjSetRequired( Lf_Man_t * p, int i, int t ) { Vec_IntDowndateEntry(&p->vRequired, i, t); }
static inline Lf_Bst_t * Lf_ObjReadBest( Lf_Man_t * p, int i ) { return p->pObjBests + Lf_ObjOff(p,i); }
static inline float Lf_ObjFlowRefs( Lf_Man_t * p, int i ) { return Vec_FltEntry(&p->vFlowRefs, Lf_ObjOff(p,i)); }
static inline int Lf_ObjMapRefNum( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vMapRefs, Lf_ObjOff(p,i)); }
static inline int Lf_ObjMapRefInc( Lf_Man_t * p, int i ) { return (*Vec_IntEntryP(&p->vMapRefs, Lf_ObjOff(p,i)))++; }
static inline int Lf_ObjMapRefDec( Lf_Man_t * p, int i ) { return --(*Vec_IntEntryP(&p->vMapRefs, Lf_ObjOff(p,i))); }
static inline float Lf_ObjSwitches( Lf_Man_t * p, int i ) { return Vec_FltEntry(&p->vSwitches, i); }
static inline int Lf_BestDiffCuts( Lf_Bst_t * p ) { return p->Cut[0].Handle != p->Cut[1].Handle; }
static inline int Lf_BestIsMapped( Lf_Bst_t * p ) { return (int)(p->Cut[0].fUsed ^ p->Cut[1].fUsed); }
static inline int Lf_BestIndex( Lf_Bst_t * p ) { return p->Cut[1].fUsed; }
static inline int Lf_BestCutIndex( Lf_Bst_t * p ) { if (p->Cut[0].fUsed) return 0; if (p->Cut[1].fUsed) return 1; return 2; }
#define Lf_CutSetForEachCut( nWords, pCutSet, pCut, i, nCuts ) for ( i = 0, pCut = pCutSet; i < nCuts; pCut = Lf_CutNext(pCut, nWords), i++ )
#define Lf_CutForEachVar( pCut, Var, i ) for ( i = 0; i < (int)pCut->nLeaves && (Var = pCut->pLeaves[i]); i++ ) if ( Lf_ObjOff(p, Var) < 0 ) {} else
extern int Kit_TruthToGia( Gia_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory, Vec_Int_t * vLeaves, int fHash );
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS /// /// FUNCTION DEFINITIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_ObjSetCiArrival( Lf_Man_t * p, int iCi, int Time )
{
Vec_IntWriteEntry( &p->vCiArrivals, iCi, Time );
}
static inline int Lf_ObjCiArrival( Lf_Man_t * p, int iCi )
{
return Vec_IntEntry( &p->vCiArrivals, iCi );
}
int Lf_ObjArrival_rec( Lf_Man_t * p, Gia_Obj_t * pDriver )
{
if ( Gia_ObjIsBuf(pDriver) )
return Lf_ObjArrival_rec( p, Gia_ObjFanin0(pDriver) );
if ( Gia_ObjIsAnd(pDriver) )
return Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver))->Delay[0];
if ( Gia_ObjIsCi(pDriver) )
return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
return 0;
}
static inline int Lf_ObjCoArrival( Lf_Man_t * p, int iCo )
{
Gia_Obj_t * pObj = Gia_ManCo(p->pGia, iCo);
Gia_Obj_t * pDriver = Gia_ObjFanin0(pObj);
return Lf_ObjArrival_rec( p, pDriver );
// if ( Gia_ObjIsAnd(pDriver) )
// return Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver))->Delay[0];
// if ( Gia_ObjIsCi(pDriver) )
// return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
// return 0;
}
int Lf_ObjCoArrival2_rec( Lf_Man_t * p, Gia_Obj_t * pDriver )
{
if ( Gia_ObjIsBuf(pDriver) )
return Lf_ObjCoArrival2_rec( p, Gia_ObjFanin0(pDriver) );
if ( Gia_ObjIsAnd(pDriver) )
{
Lf_Bst_t * pBest = Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver));
int Index = Lf_BestCutIndex( pBest );
assert( Index < 2 || Gia_ObjIsMux(p->pGia, pDriver) );
return pBest->Delay[Index];
}
if ( Gia_ObjIsCi(pDriver) )
return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
return 0;
}
static inline int Lf_ObjCoArrival2( Lf_Man_t * p, int iCo )
{
Gia_Obj_t * pObj = Gia_ManCo(p->pGia, iCo);
Gia_Obj_t * pDriver = Gia_ObjFanin0(pObj);
return Lf_ObjCoArrival2_rec( p, pDriver );
// if ( Gia_ObjIsAnd(pDriver) )
// {
// Lf_Bst_t * pBest = Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver));
// int Index = Lf_BestCutIndex( pBest );
// assert( Index < 2 || Gia_ObjIsMux(p->pGia, pDriver) );
// return pBest->Delay[Index];
// }
// if ( Gia_ObjIsCi(pDriver) )
// return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
// return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Lf_ManComputeCrossCut( Gia_Man_t * p )
{
Gia_Obj_t * pObj;
int i, nCutMax = 0, nCutCur = 0;
assert( p->pMuxes == NULL );
Gia_ManForEachObj( p, pObj, i )
pObj->Value = 0;
Gia_ManForEachAnd( p, pObj, i )
{
if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) )
Gia_ObjFanin0(pObj)->Value++;
if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) )
Gia_ObjFanin1(pObj)->Value++;
}
Gia_ManForEachAnd( p, pObj, i )
{
if ( pObj->Value )
nCutCur++;
if ( nCutMax < nCutCur )
nCutMax = nCutCur;
if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) && --Gia_ObjFanin0(pObj)->Value == 0 )
nCutCur--;
if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) && --Gia_ObjFanin1(pObj)->Value == 0 )
nCutCur--;
}
assert( nCutCur == 0 );
if ( nCutCur )
printf( "Cutset is not 0\n" );
Gia_ManForEachObj( p, pObj, i )
assert( pObj->Value == 0 );
printf( "CutMax = %d\n", nCutMax );
return nCutMax;
}
/**Function*************************************************************
Synopsis [Detect MUX truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Lf_ManTtIsMux( word t )
{
static unsigned s_Muxes[24] = {
(~0xAAAAAAAA & ~0xCCCCCCCC) | ( 0xAAAAAAAA & ~0xF0F0F0F0),
(~0xAAAAAAAA & ~0xCCCCCCCC) | ( 0xAAAAAAAA & 0xF0F0F0F0),
(~0xAAAAAAAA & 0xCCCCCCCC) | ( 0xAAAAAAAA & ~0xF0F0F0F0),
(~0xAAAAAAAA & 0xCCCCCCCC) | ( 0xAAAAAAAA & 0xF0F0F0F0),
( 0xAAAAAAAA & ~0xCCCCCCCC) | (~0xAAAAAAAA & ~0xF0F0F0F0),
( 0xAAAAAAAA & ~0xCCCCCCCC) | (~0xAAAAAAAA & 0xF0F0F0F0),
( 0xAAAAAAAA & 0xCCCCCCCC) | (~0xAAAAAAAA & ~0xF0F0F0F0),
( 0xAAAAAAAA & 0xCCCCCCCC) | (~0xAAAAAAAA & 0xF0F0F0F0),
(~0xCCCCCCCC & ~0xAAAAAAAA) | ( 0xCCCCCCCC & ~0xF0F0F0F0),
(~0xCCCCCCCC & ~0xAAAAAAAA) | ( 0xCCCCCCCC & 0xF0F0F0F0),
(~0xCCCCCCCC & 0xAAAAAAAA) | ( 0xCCCCCCCC & ~0xF0F0F0F0),
(~0xCCCCCCCC & 0xAAAAAAAA) | ( 0xCCCCCCCC & 0xF0F0F0F0),
( 0xCCCCCCCC & ~0xAAAAAAAA) | (~0xCCCCCCCC & ~0xF0F0F0F0),
( 0xCCCCCCCC & ~0xAAAAAAAA) | (~0xCCCCCCCC & 0xF0F0F0F0),
( 0xCCCCCCCC & 0xAAAAAAAA) | (~0xCCCCCCCC & ~0xF0F0F0F0),
( 0xCCCCCCCC & 0xAAAAAAAA) | (~0xCCCCCCCC & 0xF0F0F0F0),
(~0xF0F0F0F0 & ~0xCCCCCCCC) | ( 0xF0F0F0F0 & ~0xAAAAAAAA),
(~0xF0F0F0F0 & ~0xCCCCCCCC) | ( 0xF0F0F0F0 & 0xAAAAAAAA),
(~0xF0F0F0F0 & 0xCCCCCCCC) | ( 0xF0F0F0F0 & ~0xAAAAAAAA),
(~0xF0F0F0F0 & 0xCCCCCCCC) | ( 0xF0F0F0F0 & 0xAAAAAAAA),
( 0xF0F0F0F0 & ~0xCCCCCCCC) | (~0xF0F0F0F0 & ~0xAAAAAAAA),
( 0xF0F0F0F0 & ~0xCCCCCCCC) | (~0xF0F0F0F0 & 0xAAAAAAAA),
( 0xF0F0F0F0 & 0xCCCCCCCC) | (~0xF0F0F0F0 & ~0xAAAAAAAA),
( 0xF0F0F0F0 & 0xCCCCCCCC) | (~0xF0F0F0F0 & 0xAAAAAAAA)
};
int i;
for ( i = 0; i < 24; i++ )
if ( ((unsigned)t) == s_Muxes[i] )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Count the number of unique drivers and invertors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lf_ManAnalyzeCoDrivers( Gia_Man_t * p, int * pnDrivers, int * pnInverts )
{
Gia_Obj_t * pObj;
int i, Entry, nDrivers, nInverts;
Vec_Int_t * vMarks = Vec_IntStart( Gia_ManObjNum(p) );
nDrivers = nInverts = 0;
Gia_ManForEachCo( p, pObj, i )
*Vec_IntEntryP( vMarks, Gia_ObjFaninId0p(p, pObj) ) |= Gia_ObjFaninC0(pObj) ? 2 : 1;
Vec_IntForEachEntry( vMarks, Entry, i )
nDrivers += (int)(Entry != 0), nInverts += (int)(Entry == 3);
Vec_IntFree( vMarks );
*pnDrivers = nDrivers;
*pnInverts = nInverts;
}
void Lf_ManComputeSwitching( Gia_Man_t * p, Vec_Flt_t * vSwitches )
{
// abctime clk = Abc_Clock();
Vec_Flt_t * vSwitching = (Vec_Flt_t *)Gia_ManComputeSwitchProbs( p, 48, 16, 0 );
assert( Vec_FltCap(vSwitches) == 0 );
*vSwitches = *vSwitching;
ABC_FREE( vSwitching );
// Abc_PrintTime( 1, "Computing switching activity", Abc_Clock() - clk );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCreateUnit( Lf_Cut_t * p, int i )
{
p->fLate = 0;
p->fMux7 = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline Lf_Cut_t * Lf_ManFetchSet( Lf_Man_t * p, int i )
{
int uMaskPage = (1 << LF_LOG_PAGE) - 1;
Gia_Obj_t * pObj = Gia_ManObj( p->pGia, i );
int iOffSet = Vec_IntEntry( &p->vOffsets, i );
int Entry = Vec_IntEntry( &p->vCutSets, iOffSet );
assert( Gia_ObjIsAndNotBuf(pObj) );
assert( pObj->Value > 0 );
if ( Entry == -1 ) // first visit
{
if ( Vec_IntSize(&p->vFreeSets) == 0 ) // add new
{
Lf_Cut_t * pCut = (Lf_Cut_t *)ABC_CALLOC( word, p->nSetWords * (1 << LF_LOG_PAGE) );
int uMaskShift = Vec_PtrSize(&p->vMemSets) << LF_LOG_PAGE;
Vec_PtrPush( &p->vMemSets, pCut );
for ( Entry = uMaskPage; Entry >= 0; Entry-- )
{
Vec_IntPush( &p->vFreeSets, uMaskShift | Entry );
pCut[Entry].nLeaves = LF_NO_LEAF;
}
}
Entry = Vec_IntPop( &p->vFreeSets );
Vec_IntWriteEntry( &p->vCutSets, iOffSet, Entry );
p->nFrontMax = Abc_MaxInt( p->nFrontMax, Entry + 1 );
}
else if ( --pObj->Value == 0 )
{
Vec_IntPush( &p->vFreeSets, Entry );
Vec_IntWriteEntry( &p->vCutSets, iOffSet, -1 );
}
return (Lf_Cut_t *)((word *)Vec_PtrEntry(&p->vMemSets, Entry >> LF_LOG_PAGE) + p->nSetWords * (Entry & uMaskPage));
}
static inline int Lf_ManPrepareSet( Lf_Man_t * p, int iObj, int Index, Lf_Cut_t ** ppCutSet )
{
static word CutTemp[3][LF_CUT_WORDS];
if ( Vec_IntEntry(&p->vOffsets, iObj) == -1 )
return Lf_CutCreateUnit( (*ppCutSet = (Lf_Cut_t *)CutTemp[Index]), iObj );
{
Lf_Cut_t * pCut;
int i, nCutNum = p->pPars->nCutNum;
*ppCutSet = Lf_ManFetchSet(p, iObj);
Lf_CutSetForEachCut( p->nCutWords, *ppCutSet, pCut, i, nCutNum )
if ( pCut->nLeaves == LF_NO_LEAF )
return i;
return i;
}
}
/**Function*************************************************************
Synopsis [Cut manipulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline word Lf_CutGetSign( Lf_Cut_t * pCut )
{
word Sign = 0; int i;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
Sign |= ((word)1) << (pCut->pLeaves[i] & 0x3F);
return Sign;
}
static inline int Lf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline int Lf_CutEqual( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
int i;
if ( pCut0->iFunc != pCut1->iFunc )
return 0;
if ( pCut0->nLeaves != pCut1->nLeaves )
return 0;
for ( i = 0; i < (int)pCut0->nLeaves; i++ )
if ( pCut0->pLeaves[i] != pCut1->pLeaves[i] )
return 0;
return 1;
}
static inline float Lf_CutSwitches( Lf_Man_t * p, Lf_Cut_t * pCut )
{
float Switches = 0; int i;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
Switches += Lf_ObjSwitches(p, pCut->pLeaves[i]);
//printf( "%.2f ", Switches );
return Switches;
}
static inline void Lf_CutPrint( Lf_Man_t * p, Lf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } Late = %d D = %4d A = %9.4f F = %6d\n",
pCut->fLate, pCut->Delay, pCut->Flow, pCut->iFunc );
}
static inline float Lf_CutArea( Lf_Man_t * p, Lf_Cut_t * pCut )
{
if ( pCut->nLeaves < 2 || pCut->fMux7 )
return 0;
if ( p->pPars->fPower )
return 1.0 * pCut->nLeaves + Lf_CutSwitches( p, pCut );
if ( p->pPars->fOptEdge )
return pCut->nLeaves + p->pPars->nAreaTuner;
return 1;
}
static inline int Lf_CutIsMux( Lf_Man_t * p, Lf_Cut_t * pCut, Gia_Obj_t * pMux )
{
int i, Id;
if ( pCut->nLeaves != 3 )
return 0;
assert( Gia_ObjIsMux(p->pGia, pMux) );
if ( Gia_ObjIsCi(Gia_ObjFanin0(pMux)) || Gia_ObjIsCi(Gia_ObjFanin1(pMux)) )
return 0;
Id = Gia_ObjFaninId0p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
Id = Gia_ObjFaninId1p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
Id = Gia_ObjFaninId2p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Cut packing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_MemAlloc( Lf_Mem_t * p, int LogPage, Vec_Ptr_t * vFree, int nCutWords )
{
memset( p, 0, sizeof(Lf_Mem_t) );
p->LogPage = LogPage;
p->MaskPage = (1 << LogPage) - 1;
p->nCutWords = nCutWords;
p->vFree = vFree;
}
static inline int Lf_MemSaveCut( Lf_Mem_t * p, Lf_Cut_t * pCut, int iObj )
{
unsigned char * pPlace;
int i, iPlace, Prev = iObj, iCur = p->iCur;
assert( !pCut->fMux7 );
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> p->LogPage) )
Vec_PtrPush( &p->vPages, Vec_PtrSize(p->vFree) ? Vec_PtrPop(p->vFree) : ABC_ALLOC(char,p->MaskPage+1) );
assert( p->MaskPage - (p->iCur & p->MaskPage) >= 4 * (LF_LEAF_MAX + 2) );
iPlace = iCur & p->MaskPage;
pPlace = (unsigned char *)Vec_PtrEntry(&p->vPages, p->iCur >> p->LogPage);
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, pCut->nLeaves );
for ( i = pCut->nLeaves - 1; i >= 0; i-- )
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, Prev - pCut->pLeaves[i] ), Prev = pCut->pLeaves[i];
assert( pCut->nLeaves >= 2 || pCut->iFunc <= 3 );
if ( pCut->iFunc >= 0 )
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, pCut->iFunc );
if ( p->MaskPage - (iPlace & p->MaskPage) < 4 * (LF_LEAF_MAX + 2) )
p->iCur = ((p->iCur >> p->LogPage) + 1) << p->LogPage;
else
p->iCur = (p->iCur & ~p->MaskPage) | iPlace;
return iCur;
}
static inline Lf_Cut_t * Lf_MemLoadCut( Lf_Mem_t * p, int iCur, int iObj, Lf_Cut_t * pCut, int fTruth, int fRecycle )
{
unsigned char * pPlace;
int i, Prev = iObj, Page = iCur >> p->LogPage;
assert( Page < Vec_PtrSize(&p->vPages) );
pPlace = (unsigned char *)Vec_PtrEntry(&p->vPages, Page) + (iCur & p->MaskPage);
pCut->nLeaves = Gia_AigerReadUnsigned(&pPlace);
assert( pCut->nLeaves <= LF_LEAF_MAX );
for ( i = pCut->nLeaves - 1; i >= 0; i-- )
pCut->pLeaves[i] = Prev - Gia_AigerReadUnsigned(&pPlace), Prev = pCut->pLeaves[i];
pCut->iFunc = fTruth ? Gia_AigerReadUnsigned(&pPlace) : -1;
assert( pCut->nLeaves >= 2 || pCut->iFunc <= 3 );
if ( fRecycle && Page && Vec_PtrEntry(&p->vPages, Page-1) )
{
Vec_PtrPush( p->vFree, Vec_PtrEntry(&p->vPages, Page-1) );
Vec_PtrWriteEntry( &p->vPages, Page-1, NULL );
}
pCut->Sign = fRecycle ? Lf_CutGetSign(pCut) : 0;
pCut->fMux7 = 0;
return pCut;
}
static inline void Lf_MemRecycle( Lf_Mem_t * p )
{
void * pPlace; int i;
Vec_PtrForEachEntry( void *, &p->vPages, pPlace, i )
if ( pPlace )
Vec_PtrPush( p->vFree, pPlace );
Vec_PtrClear( &p->vPages );
p->iCur = 0;
}
static inline Lf_Cut_t * Lf_MemLoadMuxCut( Lf_Man_t * p, int iObj, Lf_Cut_t * pCut )
{
Gia_Obj_t * pMux = Gia_ManObj( p->pGia, iObj );
assert( Gia_ObjIsMux(p->pGia, pMux) );
pCut->iFunc = p->pPars->fCutMin ? 4 : -1;
pCut->pLeaves[0] = Gia_ObjFaninId0( pMux, iObj );
pCut->pLeaves[1] = Gia_ObjFaninId1( pMux, iObj );
pCut->pLeaves[2] = Gia_ObjFaninId2( p->pGia, iObj );
pCut->nLeaves = 3;
pCut->fMux7 = 1;
return pCut;
}
static inline Lf_Cut_t * Lf_ObjCutMux( Lf_Man_t * p, int i )
{
static word CutSet[LF_CUT_WORDS];
return Lf_MemLoadMuxCut( p, i, (Lf_Cut_t *)CutSet );
}
static inline Lf_Cut_t * Lf_ObjCutBest( Lf_Man_t * p, int i )
{
static word CutSet[LF_CUT_WORDS];
Lf_Bst_t * pBest = Lf_ObjReadBest( p, i );
Lf_Cut_t * pCut = (Lf_Cut_t *)CutSet;
int Index = Lf_BestCutIndex( pBest );
pCut->Delay = pBest->Delay[Index];
pCut->Flow = pBest->Flow[Index];
if ( Index == 2 )
return Lf_MemLoadMuxCut( p, i, pCut );
return Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[Index].Handle, i, pCut, p->pPars->fCutMin, 0 );
}
static inline Lf_Cut_t * Lf_ObjCutBestNew( Lf_Man_t * p, int i, Lf_Cut_t * pCut )
{
Lf_Bst_t * pBest = Lf_ObjReadBest( p, i );
int Index = Lf_BestCutIndex( pBest );
pCut->Delay = pBest->Delay[Index];
pCut->Flow = pBest->Flow[Index];
if ( Index == 2 )
return Lf_MemLoadMuxCut( p, i, pCut );
return Lf_MemLoadCut( &p->vStoreNew, pBest->Cut[Index].Handle, i, pCut, 0, 0 );
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCheck( Lf_Cut_t * pBase, Lf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Lf_SetCheckArray( Lf_Cut_t ** ppCuts, int nCuts )
{
Lf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( !pCut0->fMux7 );
assert( pCut0->nLeaves < LF_LEAF_MAX );
assert( pCut0->Sign == Lf_CutGetSign(pCut0) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Lf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutMergeOrder( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Lf_CutMergeOrder2( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
xMin = Abc_MinInt(x0, x1);
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
}
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Lf_CutMergeOrderMux( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut2, Lf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Lf_SetCutIsContainedOrder( Lf_Cut_t * pBase, Lf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Lf_SetLastCutIsContained( Lf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Lf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCompareDelay( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
if ( pCut0->Flow < pCut1->Flow ) return -1;
if ( pCut0->Flow > pCut1->Flow ) return 1;
return 0;
}
static inline int Lf_CutCompareArea( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
if ( pCut0->fLate < pCut1->fLate ) return -1;
if ( pCut0->fLate > pCut1->fLate ) return 1;
if ( pCut0->Flow < pCut1->Flow ) return -1;
if ( pCut0->Flow > pCut1->Flow ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline int Lf_SetLastCutContainsArea( Lf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 1; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Lf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = LF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 1; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == LF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Lf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline void Lf_SetSortByArea( Lf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 1; i-- )
{
if ( Lf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Lf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Lf_SetAddCut( Lf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Lf_SetLastCutContainsArea(pCuts, nCuts);
assert( nCuts >= 1 );
if ( Lf_CutCompareDelay(pCuts[0], pCuts[nCuts]) == 1 ) // new cut is better for delay
{
ABC_SWAP( Lf_Cut_t *, pCuts[0], pCuts[nCuts] );
// if old cut (now cut number nCuts) is contained - remove it
if ( pCuts[0]->nLeaves < pCuts[nCuts]->nLeaves && (pCuts[0]->Sign & pCuts[nCuts]->Sign) == pCuts[0]->Sign && Lf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[0]) )
return nCuts;
}
// sort area cuts by area
Lf_SetSortByArea( pCuts, nCuts );
// add new cut if there is room
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline void Lf_SetSortBySize( Lf_Cut_t ** pCutsR, int nCutsR )
{
int i, j, best_i;
for ( i = 1; i < nCutsR-1; i++ )
{
best_i = i;
for ( j = i+1; j < nCutsR; j++ )
if ( pCutsR[j]->nLeaves > pCutsR[best_i]->nLeaves )
best_i = j;
ABC_SWAP( Lf_Cut_t *, pCutsR[i], pCutsR[best_i] );
}
}
/**Function*************************************************************
Synopsis [Check if truth table has non-const-cof cofactoring variable.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_ManFindCofVar( word * pTruth, int nWords, int nVars )
{
word uTruthCof[LF_TT_WORDS]; int iVar;
for ( iVar = 0; iVar < nVars; iVar++ )
{
Abc_TtCofactor0p( uTruthCof, pTruth, nWords, iVar );
if ( Abc_TtSupportSize(uTruthCof, nVars) < 2 )
continue;
Abc_TtCofactor1p( uTruthCof, pTruth, nWords, iVar );
if ( Abc_TtSupportSize(uTruthCof, nVars) < 2 )
continue;
return iVar;
}
return -1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutComputeTruth6( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, int fCompl0, int fCompl1, Lf_Cut_t * pCutR, int fIsXor )
{
// extern int Mf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Lf_CutTruth(p, pCut0);
word t1 = *Lf_CutTruth(p, pCut1);
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
// p->nCutMux += Lf_ManTtIsMux( t );
assert( (int)pCutR->nLeaves <= nOldSupp );
// Mf_ManTruthCanonicize( &t, pCutR->nLeaves );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Lf_CutComputeTruth( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, int fCompl0, int fCompl1, Lf_Cut_t * pCutR, int fIsXor )
{
if ( p->pPars->nLutSize <= 6 )
return Lf_CutComputeTruth6( p, pCut0, pCut1, fCompl0, fCompl1, pCutR, fIsXor );
{
word uTruth[LF_TT_WORDS], uTruth0[LF_TT_WORDS], uTruth1[LF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Lf_CutTruth(p, pCut0);
word * pTruth1 = Lf_CutTruth(p, pCut1);
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
if ( fIsXor )
Abc_TtXor( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] ^ uTruth1[0]) & 1)) );
else
Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] & uTruth1[0]) & 1)) );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
//Kit_DsdPrintFromTruth( uTruth, pCutR->nLeaves ), printf("\n" ), printf("\n" );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
static inline int Lf_CutComputeTruthMux6( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Lf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Lf_CutTruth(p, pCut0);
word t1 = *Lf_CutTruth(p, pCut1);
word tC = *Lf_CutTruth(p, pCutC);
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Lf_CutComputeTruthMux( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Lf_Cut_t * pCutR )
{
if ( p->pPars->nLutSize <= 6 )
return Lf_CutComputeTruthMux6( p, pCut0, pCut1, pCutC, fCompl0, fCompl1, fComplC, pCutR );
{
word uTruth[LF_TT_WORDS], uTruth0[LF_TT_WORDS], uTruth1[LF_TT_WORDS], uTruthC[LF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Lf_CutTruth(p, pCut0);
word * pTruth1 = Lf_CutTruth(p, pCut1);
word * pTruthC = Lf_CutTruth(p, pCutC);
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtCopy( uTruthC, pTruthC, nWords, Abc_LitIsCompl(pCutC->iFunc) ^ fComplC );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruthC, LutSize, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtMux( uTruth, uTruthC, uTruth1, uTruth0, nWords );
fCompl = (int)(uTruth[0] & 1);
if ( fCompl ) Abc_TtNot( uTruth, nWords );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
/**Function*************************************************************
Synopsis [Exact local area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Lf_CutRef_rec( Lf_Man_t * p, Lf_Cut_t * pCut )
{
word CutTemp[LF_CUT_WORDS] = {0};
float Count = Lf_CutArea(p, pCut);
int i, Var;
Lf_CutForEachVar( pCut, Var, i )
if ( !Lf_ObjMapRefInc(p, Var) )
Count += Lf_CutRef_rec( p, Lf_ObjCutBestNew(p, Var, (Lf_Cut_t *)CutTemp) );
return Count;
}
float Lf_CutDeref_rec( Lf_Man_t * p, Lf_Cut_t * pCut )
{
word CutTemp[LF_CUT_WORDS] = {0};
float Count = Lf_CutArea(p, pCut);
int i, Var;
Lf_CutForEachVar( pCut, Var, i )
if ( !Lf_ObjMapRefDec(p, Var) )
Count += Lf_CutDeref_rec( p, Lf_ObjCutBestNew(p, Var, (Lf_Cut_t *)CutTemp) );
return Count;
}
static inline float Lf_CutAreaDerefed( Lf_Man_t * p, Lf_Cut_t * pCut )
{
float Ela1 = Lf_CutRef_rec( p, pCut );
Lf_CutDeref_rec( p, pCut );
// float Ela2 = Lf_CutDeref_rec( p, pCut );
// assert( Ela1 == Ela2 );
return Ela1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutRequired( Lf_Man_t * p, Lf_Cut_t * pCut )
{
int i, Arr, Req, Arrival = 0, Required = 0;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
if ( Lf_ObjOff(p, pCut->pLeaves[i]) < 0 )
// Arr = Lf_ObjCiArrival( p, Gia_ObjCioId(Gia_ManObj(p->pGia, pCut->pLeaves[i])) );
Arr = Lf_ObjArrival_rec( p, Gia_ManObj(p->pGia, pCut->pLeaves[i]) );
else
Arr = Lf_ObjReadBest(p, pCut->pLeaves[i])->Delay[0];
Arrival = Abc_MaxInt( Arrival, Arr );
Req = Lf_ObjRequired(p, pCut->pLeaves[i]);
if ( Req < ABC_INFINITY )
Required = Abc_MaxInt( Required, Req );
}
return Abc_MaxInt( Required + 2, Arrival + 1 );
}
static inline void Lf_CutParams( Lf_Man_t * p, Lf_Cut_t * pCut, int Required, float FlowRefs, Gia_Obj_t * pMux )
{
Lf_Bst_t * pBest;
int i, Index, Delay;
assert( !pCut->fMux7 || Gia_ObjIsMux(p->pGia, pMux) );
pCut->fLate = 0;
pCut->Delay = 0;
pCut->Flow = 0;
assert( pCut->nLeaves < LF_NO_LEAF );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
if ( Lf_ObjOff(p, pCut->pLeaves[i]) < 0 )
// Delay = Lf_ObjCiArrival( p, Gia_ObjCioId(Gia_ManObj(p->pGia, pCut->pLeaves[i])) );
Delay = Lf_ObjArrival_rec( p, Gia_ManObj(p->pGia, pCut->pLeaves[i]) );
else
{
pBest = Lf_ObjReadBest(p, pCut->pLeaves[i]);
assert( pBest->Delay[0] <= pBest->Delay[1] );
assert( pBest->Flow[0] >= pBest->Flow[1] );
if ( p->fUseEla )
Index = Lf_BestIndex(pBest);
else
{
Index = (int)(pBest->Delay[1] + 1 <= Required && Required != ABC_INFINITY);
pCut->Flow += pBest->Flow[Index];
}
Delay = pBest->Delay[Index];
}
// if ( pCut->fMux7 && pCut->pLeaves[i] == Gia_ObjFaninId2p(p->pGia, pMux) )
// Delay += 1;
pCut->Delay = Abc_MaxInt( pCut->Delay, Delay );
}
pCut->Delay += (int)(pCut->nLeaves > 1);// && !pCut->fMux7;
if ( pCut->Delay > Required )
pCut->fLate = 1;
if ( p->fUseEla )
pCut->Flow = Lf_CutAreaDerefed(p, pCut) / FlowRefs;
else
pCut->Flow = (pCut->Flow + Lf_CutArea(p, pCut)) / FlowRefs;
}
void Lf_ObjMergeOrder( Lf_Man_t * p, int iObj )
{
word CutSet[LF_CUT_MAX][LF_CUT_WORDS] = {{0}};
Lf_Cut_t * pCutSet0, * pCutSet1, * pCutSet2, * pCut0, * pCut1, * pCut2;
Lf_Cut_t * pCutSet = (Lf_Cut_t *)CutSet, * pCutsR[LF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
Lf_Bst_t * pBest = Lf_ObjReadBest(p, iObj);
float FlowRefs = Lf_ObjFlowRefs(p, iObj);
int Required = Lf_ObjRequired(p, iObj);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCutWords = p->nCutWords;
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int nCuts0 = Lf_ManPrepareSet( p, Gia_ObjFaninId0(pObj, iObj), 0, &pCutSet0 );
int nCuts1 = Lf_ManPrepareSet( p, Gia_ObjFaninId1(pObj, iObj), 1, &pCutSet1 );
int iSibl = Gia_ObjSibl(p->pGia, iObj);
int i, k, n, iCutUsed, nCutsR = 0;
float Value1 = -1, Value2 = -1;
assert( !Gia_ObjIsBuf(pObj) );
Lf_CutSetForEachCut( nCutWords, pCutSet, pCut0, i, nCutNum )
pCutsR[i] = pCut0;
if ( p->Iter )
{
assert( nCutsR == 0 );
// load cuts
Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[0].Handle, iObj, pCutsR[0], p->pPars->fCutMin, 1 );
if ( Lf_BestDiffCuts(pBest) )
Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[1].Handle, iObj, pCutsR[1], p->pPars->fCutMin, 1 );
// deref the cut
if ( p->fUseEla && Lf_ObjMapRefNum(p, iObj) > 0 )
Value1 = Lf_CutDeref_rec( p, pCutsR[Lf_BestIndex(pBest)] );
// update required times
if ( Required == ABC_INFINITY )//&& !p->fUseEla )
Required = Lf_CutRequired( p, pCutsR[0] );
// compute parameters
Lf_CutParams( p, pCutsR[nCutsR++], Required, FlowRefs, pObj );
if ( Lf_BestDiffCuts(pBest) )
{
assert( nCutsR == 1 );
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
if ( pCutsR[0]->fLate )
p->nTimeFails++;
}
if ( iSibl )
{
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCutsE = Lf_ManPrepareSet( p, iSibl, 2, &pCutSet2 );
Lf_CutSetForEachCut( nCutWords, pCutSet2, pCut2, n, nCutsE )
{
if ( pCut2->pLeaves[0] == iSibl )
continue;
Lf_CutCopy( pCutsR[nCutsR], pCut2, nCutWords );
if ( pCutsR[nCutsR]->iFunc >= 0 )
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
int nCuts2 = Lf_ManPrepareSet( p, Gia_ObjFaninId2(p->pGia, iObj), 2, &pCutSet2 );
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
Lf_CutSetForEachCut( nCutWords, pCutSet0, pCut0, i, nCuts0 )
Lf_CutSetForEachCut( nCutWords, pCutSet1, pCut1, k, nCuts1 )
Lf_CutSetForEachCut( nCutWords, pCutSet2, pCut2, n, nCuts2 )
{
if ( Lf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Lf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Lf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Lf_CutComputeTruthMux(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Lf_CutGetSign(pCutsR[nCutsR]);
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCutsR[nCutsR]->nLeaves &&
Lf_ManFindCofVar(Lf_CutTruth(p,pCutsR[nCutsR]), Abc_Truth6WordNum(nLutSize), pCutsR[nCutsR]->nLeaves) == -1 )
continue;
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
Lf_CutSetForEachCut( nCutWords, pCutSet0, pCut0, i, nCuts0 )
Lf_CutSetForEachCut( nCutWords, pCutSet1, pCut1, k, nCuts1 )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Lf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Lf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Lf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Lf_CutComputeTruth(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Lf_CutGetSign(pCutsR[nCutsR]);
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCutsR[nCutsR]->nLeaves &&
Lf_ManFindCofVar(Lf_CutTruth(p,pCutsR[nCutsR]), Abc_Truth6WordNum(nLutSize), pCutsR[nCutsR]->nLeaves) == -1 )
continue;
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
{
printf( "*** Obj = %d FlowRefs = %.2f MapRefs = %2d Required = %2d\n", iObj, FlowRefs, Lf_ObjMapRefNum(p, iObj), Required );
for ( i = 0; i < nCutsR; i++ )
Lf_CutPrint( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Lf_SetCheckArray(pCutsR, nCutsR) );
// delay cut
assert( nCutsR == 1 || pCutsR[0]->Delay <= pCutsR[1]->Delay );
pBest->Cut[0].fUsed = pBest->Cut[1].fUsed = 0;
pBest->Cut[0].Handle = pBest->Cut[1].Handle = Lf_MemSaveCut(&p->vStoreNew, pCutsR[0], iObj);
pBest->Delay[0] = pBest->Delay[1] = pCutsR[0]->Delay;
pBest->Flow[0] = pBest->Flow[1] = pCutsR[0]->Flow;
p->nCutCounts[pCutsR[0]->nLeaves]++;
p->CutCount[3] += nCutsR;
p->nCutEqual++;
// area cut
iCutUsed = 0;
if ( nCutsR > 1 && pCutsR[0]->Flow > pCutsR[1]->Flow )//&& !pCutsR[1]->fLate ) // can remove !fLate
{
pBest->Cut[1].Handle = Lf_MemSaveCut(&p->vStoreNew, pCutsR[1], iObj);
pBest->Delay[1] = pCutsR[1]->Delay;
pBest->Flow[1] = pCutsR[1]->Flow;
p->nCutCounts[pCutsR[1]->nLeaves]++;
p->nCutEqual--;
if ( !pCutsR[1]->fLate )
iCutUsed = 1;
}
// mux cut
if ( p->pPars->fUseMux7 && Gia_ObjIsMuxId(p->pGia, iObj) )
{
pCut2 = Lf_ObjCutMux( p, iObj );
Lf_CutParams( p, pCut2, Required, FlowRefs, pObj );
pBest->Delay[2] = pCut2->Delay;
pBest->Flow[2] = pCut2->Flow;
// update area value of the best area cut
// if ( !pCut2->fLate )
// pBest->Flow[1] = Abc_MinFloat( pBest->Flow[1], pBest->Flow[2] );
}
// reference resulting cut
if ( p->fUseEla )
{
pBest->Cut[iCutUsed].fUsed = 1;
if ( Lf_ObjMapRefNum(p, iObj) > 0 )
Value2 = Lf_CutRef_rec( p, pCutsR[iCutUsed] );
// if ( Value1 < Value2 )
// printf( "ELA degradated cost at node %d from %d to %d.\n", iObj, Value1, Value2 ), fflush(stdout);
// assert( Value1 >= Value2 );
// if ( Value1 != -1 )
// printf( "%.2f -> %.2f ", Value1, Value2 );
}
if ( pObj->Value == 0 )
return;
// store the cutset
pCutSet = Lf_ManFetchSet(p, iObj);
Lf_CutSetForEachCut( nCutWords, pCutSet, pCut0, i, nCutNum )
{
assert( !pCut0->fMux7 );
if ( i < nCutsR )
Lf_CutCopy( pCut0, pCutsR[i], nCutWords );
else if ( i == nCutsR && pCutsR[0]->nLeaves > 1 && (nCutsR == 1 || pCutsR[1]->nLeaves > 1) )
Lf_CutCreateUnit( pCut0, iObj );
else
pCut0->nLeaves = LF_NO_LEAF;
}
}
/**Function*************************************************************
Synopsis [Computing delay/area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_ManSetFlowRefInc( Gia_Man_t * p, Vec_Flt_t * vRefs, Vec_Int_t * vOffsets, int i )
{
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p, i)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, i), 1 );
}
void Lf_ManSetFlowRefs( Gia_Man_t * p, Vec_Flt_t * vRefs, Vec_Int_t * vOffsets )
{
int fDiscount = 1;
Gia_Obj_t * pObj, * pCtrl, * pData0, * pData1;
int i, Id;
Vec_FltFill( vRefs, Gia_ManAndNotBufNum(p), 0 );
Gia_ManForEachAnd( p, pObj, i )
{
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId0(pObj, i)), 1 );
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin1(pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId1(pObj, i)), 1 );
if ( p->pMuxes )
{
if ( Gia_ObjIsMuxId(p, i) && Gia_ObjIsAndNotBuf(Gia_ObjFanin2(p, pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId2(p, i)), 1 );
}
else if ( fDiscount && Gia_ObjIsMuxType(pObj) ) // discount XOR/MUX
{
pCtrl = Gia_Regular(Gia_ObjRecognizeMux(pObj, &pData1, &pData0));
pData0 = Gia_Regular(pData0);
pData1 = Gia_Regular(pData1);
if ( Gia_ObjIsAndNotBuf(pCtrl) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjId(p, pCtrl)), -1 );
if ( pData0 == pData1 && Gia_ObjIsAndNotBuf(pData0) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjId(p, pData0)), -1 );
}
}
Gia_ManForEachCoDriverId( p, Id, i )
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p, Id)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Id), 1 );
for ( i = 0; i < Vec_FltSize(vRefs); i++ )
Vec_FltUpdateEntry( vRefs, i, 1 );
}
void Lf_ManSetCutRefs( Lf_Man_t * p )
{
Gia_Obj_t * pObj; int i;
if ( Vec_PtrSize(&p->vMemSets) * (1 << LF_LOG_PAGE) != Vec_IntSize(&p->vFreeSets) )
printf( "The number of used cutsets = %d.\n", Vec_PtrSize(&p->vMemSets) * (1 << LF_LOG_PAGE) - Vec_IntSize(&p->vFreeSets) );
Gia_ManForEachAnd( p->pGia, pObj, i )
{
assert( pObj->Value == 0 );
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Gia_ObjFanin0(pObj)->Value++;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin1(pObj)) )
Gia_ObjFanin1(pObj)->Value++;
if ( Gia_ObjIsMuxId(p->pGia, i) && Gia_ObjIsAndNotBuf(Gia_ObjFanin2(p->pGia, pObj)) )
Gia_ObjFanin2(p->pGia, pObj)->Value++;
if ( Gia_ObjSibl(p->pGia, i) && Gia_ObjIsAndNotBuf(Gia_ObjSiblObj(p->pGia, i)) )
Gia_ObjSiblObj(p->pGia, i)->Value++;
}
}
static inline int Lf_ManSetMuxCut( Lf_Man_t * p, Lf_Bst_t * pBest, int iObj, int Required )
{
Gia_Obj_t * pMux;
if ( !Gia_ObjIsMuxId(p->pGia, iObj) )
return 0;
if ( pBest->Delay[2] > Required )
return 0;
if ( pBest->Flow[2] > 1.1 * pBest->Flow[1] )
return 0;
pMux = Gia_ManObj(p->pGia, iObj);
if ( pMux->fMark0 || Gia_ObjFanin0(pMux)->fMark0 || Gia_ObjFanin1(pMux)->fMark0 )
return 0;
Gia_ObjFanin0(pMux)->fMark0 = 1;
Gia_ObjFanin1(pMux)->fMark0 = 1;
return 1;
}
void Lf_ManSetMapRefsOne( Lf_Man_t * p, int iObj )
{
Lf_Cut_t * pCut;
Lf_Bst_t * pBest = Lf_ObjReadBest( p, iObj );
int k, Index, Required = Lf_ObjRequired( p, iObj );
assert( Lf_ObjMapRefNum(p, iObj) > 0 );
assert( !pBest->Cut[0].fUsed && !pBest->Cut[1].fUsed );
if ( !p->pPars->fUseMux7 || !Lf_ManSetMuxCut(p, pBest, iObj, Required) )
{
Index = (int)(Lf_BestDiffCuts(pBest) && pBest->Delay[1] <= Required);
pBest->Cut[Index].fUsed = 1;
}
pCut = Lf_ObjCutBest( p, iObj );
assert( !pCut->fMux7 || pCut->nLeaves == 3 );
// assert( pCut->Delay <= Required );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
{
// if ( pCut->fMux7 && pCut->pLeaves[k] != Gia_ObjFaninId2(p->pGia, iObj) )
// Lf_ObjSetRequired( p, pCut->pLeaves[k], Required );
// else
Lf_ObjSetRequired( p, pCut->pLeaves[k], Required - 1 );
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p->pGia, pCut->pLeaves[k])) )
Lf_ObjMapRefInc( p, pCut->pLeaves[k] );
}
if ( pCut->fMux7 )
{
p->pPars->Mux7++;
p->pPars->Edge++;
return;
}
if ( Vec_FltSize(&p->vSwitches) )
p->Switches += Lf_CutSwitches(p, pCut);
p->pPars->Edge += pCut->nLeaves;
p->pPars->Area++;
}
int Lf_ManSetMapRefs( Lf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
float * pFlowRefs;
int * pMapRefs, i;
Gia_Obj_t * pObj;
// compute delay
int Delay = 0;
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Delay = Abc_MaxInt( Delay, Lf_ObjCoArrival(p, i) );
// check delay target
if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->DelayTarget != -1 )
{
if ( Delay < p->pPars->DelayTarget + 0.01 )
Delay = p->pPars->DelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay );
}
p->pPars->Delay = Delay;
// compute area/edges/required
p->pPars->Mux7 = p->pPars->Area = p->pPars->Edge = p->Switches = 0;
Vec_IntFill( &p->vMapRefs, Gia_ManAndNotBufNum(p->pGia), 0 );
Vec_IntFill( &p->vRequired, Gia_ManObjNum(p->pGia), ABC_INFINITY );
if ( p->pPars->fUseMux7 )
{
Gia_ManCleanMark0(p->pGia);
Gia_ManForEachCi( p->pGia, pObj, i )
pObj->fMark0 = 1;
}
if ( p->pGia->pManTime != NULL )
{
assert( Gia_ManBufNum(p->pGia) );
Tim_ManIncrementTravId( p->pGia->pManTime );
if ( p->pPars->fDoAverage )
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Tim_ManSetCoRequired( p->pGia->pManTime, i, (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) );
else
Tim_ManInitPoRequiredAll( p->pGia->pManTime, Delay );
Gia_ManForEachObjReverse1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsAnd(pObj) )
{
if ( Lf_ObjMapRefNum(p, i) )
Lf_ManSetMapRefsOne( p, i );
}
else if ( Gia_ObjIsCi(pObj) )
Tim_ManSetCiRequired( p->pGia->pManTime, Gia_ObjCioId(pObj), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsCo(pObj) )
{
int iDriverId = Gia_ObjFaninId0(pObj, i);
int reqTime = Tim_ManGetCoRequired( p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetRequired( p, iDriverId, reqTime );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, iDriverId );
}
else assert( 0 );
}
}
else
{
Gia_ManForEachCo( p->pGia, pObj, i )
{
int iDriverId = Gia_ObjFaninId0p(p->pGia, pObj);
int reqTime = p->pPars->fDoAverage ? (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) : Delay;
Lf_ObjSetRequired( p, iDriverId, reqTime );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, iDriverId );
}
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i) );
}
else if ( Lf_ObjMapRefNum(p, i) )
Lf_ManSetMapRefsOne( p, i );
}
}
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
// blend references
assert( Vec_IntSize(&p->vMapRefs) == Gia_ManAndNotBufNum(p->pGia) );
assert( Vec_FltSize(&p->vFlowRefs) == Gia_ManAndNotBufNum(p->pGia) );
pMapRefs = Vec_IntArray(&p->vMapRefs);
pFlowRefs = Vec_FltArray(&p->vFlowRefs);
for ( i = 0; i < Vec_IntSize(&p->vMapRefs); i++ )
pFlowRefs[i] = Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]);
// pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
return p->pPars->Area;
}
void Lf_ManCountMapRefsOne( Lf_Man_t * p, int iObj )
{
Lf_Bst_t * pBest = Lf_ObjReadBest( p, iObj );
Lf_Cut_t * pCut = Lf_ObjCutBest( p, iObj );
int k ,Required = Lf_ObjRequired( p, iObj );
assert( Lf_ObjMapRefNum(p, iObj) > 0 );
assert( Lf_BestIsMapped(pBest) );
assert( !pCut->fMux7 );
// assert( pCut->Delay <= Required );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Lf_ObjSetRequired( p, pCut->pLeaves[k], Required - 1 );
if ( Vec_FltSize(&p->vSwitches) )
p->Switches += Lf_CutSwitches(p, pCut);
p->pPars->Edge += pCut->nLeaves;
p->pPars->Area++;
}
void Lf_ManCountMapRefs( Lf_Man_t * p )
{
// compute delay
Gia_Obj_t * pObj;
int i, Id, Delay = 0;
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Delay = Abc_MaxInt( Delay, Lf_ObjCoArrival2(p, i) );
// check delay target
if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->DelayTarget != -1 )
{
if ( Delay < p->pPars->DelayTarget + 0.01 )
Delay = p->pPars->DelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay );
}
p->pPars->Delay = Delay;
// compute area/edges/required
p->pPars->Mux7 = p->pPars->Area = p->pPars->Edge = p->Switches = 0;
Vec_IntFill( &p->vRequired, Gia_ManObjNum(p->pGia), ABC_INFINITY );
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
if ( p->pGia->pManTime != NULL )
{
Tim_ManIncrementTravId( p->pGia->pManTime );
if ( p->pPars->fDoAverage )
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Tim_ManSetCoRequired( p->pGia->pManTime, i, (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) );
else
Tim_ManInitPoRequiredAll( p->pGia->pManTime, Delay );
Gia_ManForEachObjReverse1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsAnd(pObj) )
{
if ( Lf_ObjMapRefNum(p, i) )
Lf_ManCountMapRefsOne( p, i );
}
else if ( Gia_ObjIsCi(pObj) )
Tim_ManSetCiRequired( p->pGia->pManTime, Gia_ObjCioId(pObj), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsCo(pObj) )
{
int reqTime = Tim_ManGetCoRequired( p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), reqTime );
}
else assert( 0 );
}
}
else
{
Gia_ManForEachCoDriverId( p->pGia, Id, i )
Lf_ObjSetRequired( p, Id, p->pPars->fDoAverage ? (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) : Delay );
Gia_ManForEachAndReverse( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Lf_ObjMapRefNum(p, i) )
Lf_ManCountMapRefsOne( p, i );
}
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Lf_ManDeriveMapping( Lf_Man_t * p )
{
Vec_Int_t * vMapping;
Lf_Cut_t * pCut;
int i, k;
assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL );
vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 );
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Lf_ObjMapRefNum(p, i) )
continue;
assert( !Gia_ObjIsBuf(Gia_ManObj(p->pGia,i)) );
pCut = Lf_ObjCutBest( p, i );
assert( !pCut->fMux7 );
Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, pCut->nLeaves );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( vMapping, pCut->pLeaves[k] );
Vec_IntPush( vMapping, i );
}
assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vMapping = vMapping;
return p->pGia;
}
Gia_Man_t * Lf_ManDeriveMappingCoarse( Lf_Man_t * p )
{
Gia_Man_t * pNew, * pGia = p->pGia;
Gia_Obj_t * pObj;
Lf_Cut_t * pCut;
int i, k;
assert( !p->pPars->fCutMin && pGia->pMuxes );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(pGia) );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
// start mapping
pNew->vMapping = Vec_IntAlloc( Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia) + (int)p->pPars->Edge + 2*(int)p->pPars->Area + 4*(int)p->pPars->Mux7 );
Vec_IntFill( pNew->vMapping, Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia), 0 );
// process objects
Gia_ManConst0(pGia)->Value = 0;
Gia_ManForEachObj1( pGia, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
{ pObj->Value = Gia_ManAppendCi( pNew ); continue; }
if ( Gia_ObjIsCo(pObj) )
{ pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); continue; }
if ( Gia_ObjIsBuf(pObj) )
{ pObj->Value = Gia_ManAppendBuf( pNew, Gia_ObjFanin0Copy(pObj) ); continue; }
if ( Gia_ObjIsMuxId(pGia, i) )
pObj->Value = Gia_ManAppendMux( pNew, Gia_ObjFanin2Copy(pGia, pObj), Gia_ObjFanin1Copy(pObj), Gia_ObjFanin0Copy(pObj) );
else if ( Gia_ObjIsXor(pObj) )
pObj->Value = Gia_ManAppendXor( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
else
pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
if ( !Lf_ObjMapRefNum(p, i) )
continue;
pCut = Lf_ObjCutBest( p, i );
Vec_IntWriteEntry( pNew->vMapping, Abc_Lit2Var(pObj->Value), Vec_IntSize(pNew->vMapping) );
Vec_IntPush( pNew->vMapping, pCut->nLeaves );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( pNew->vMapping, Abc_Lit2Var(Gia_ManObj(pGia, pCut->pLeaves[k])->Value) );
Vec_IntPush( pNew->vMapping, pCut->fMux7 ? -Abc_Lit2Var(pObj->Value) : Abc_Lit2Var(pObj->Value) );
}
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
assert( Vec_IntCap(pNew->vMapping) == 16 || Vec_IntSize(pNew->vMapping) == Vec_IntCap(pNew->vMapping) );
return pNew;
}
static inline int Lf_ManDerivePart( Lf_Man_t * p, Gia_Man_t * pNew, Vec_Int_t * vMapping, Vec_Int_t * vMapping2, Vec_Int_t * vCopies, Lf_Cut_t * pCut, Vec_Int_t * vLeaves, Vec_Int_t * vCover, Gia_Obj_t * pObj )
{
word * pTruth;
int k, iLit, iTemp;
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCut->nLeaves )
{
word pTruthCof[LF_TT_WORDS], * pTruth = Lf_CutTruth( p, pCut );
int pVarsNew[LF_LEAF_MAX], nVarsNew, iLitCofs[2];
int LutSize = p->pPars->nLutSize;
int nWords = Abc_Truth6WordNum(LutSize);
int c, iVar = Lf_ManFindCofVar( pTruth, nWords, pCut->nLeaves );
assert( iVar >= 0 && iVar < (int)pCut->nLeaves );
for ( c = 0; c < 2; c++ )
{
for ( k = 0; k < (int)pCut->nLeaves; k++ )
pVarsNew[k] = k;
if ( c )
Abc_TtCofactor1p( pTruthCof, pTruth, nWords, iVar );
else
Abc_TtCofactor0p( pTruthCof, pTruth, nWords, iVar );
nVarsNew = Abc_TtMinBase( pTruthCof, pVarsNew, pCut->nLeaves, LutSize );
assert( nVarsNew > 0 );
// derive LUT
Vec_IntClear( vLeaves );
for ( k = 0; k < nVarsNew; k++ )
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[pVarsNew[k]]) );
iLitCofs[c] = Kit_TruthToGia( pNew, (unsigned *)pTruthCof, nVarsNew, vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLitCofs[c]), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, Abc_Lit2Var(iLitCofs[c]) );
}
// derive MUX
pTruthCof[0] = ABC_CONST(0xCACACACACACACACA);
Vec_IntClear( vLeaves );
Vec_IntPush( vLeaves, iLitCofs[0] );
Vec_IntPush( vLeaves, iLitCofs[1] );
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[iVar]) );
iLit = Kit_TruthToGia( pNew, (unsigned *)pTruthCof, Vec_IntSize(vLeaves), vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, -Abc_Lit2Var(iLit) );
return iLit;
}
Vec_IntClear( vLeaves );
if ( pCut->fMux7 )
{
assert( pCut->nLeaves == 3 );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[0]), Gia_ObjFaninC0(pObj)) );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[1]), Gia_ObjFaninC1(pObj)) );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[2]), Gia_ObjFaninC2(p->pGia,pObj)) );
}
else
{
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[k]) );
}
pTruth = Lf_CutTruth( p, pCut );
iLit = Kit_TruthToGia( pNew, (unsigned *)pTruth, Vec_IntSize(vLeaves), vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, pCut->fMux7 ? -Abc_Lit2Var(iLit) : Abc_Lit2Var(iLit) );
return iLit;
}
Gia_Man_t * Lf_ManDeriveMappingGia( Lf_Man_t * p )
{
Gia_Man_t * pNew;
Gia_Obj_t * pObj;
Vec_Int_t * vCopies = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
Vec_Int_t * vMapping = Vec_IntStart( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + 2*(int)p->pPars->Area + 4*(int)p->pPars->Mux7 );
Vec_Int_t * vMapping2 = Vec_IntStart( (int)p->pPars->Edge + 2*(int)p->pPars->Area + 1000 );
Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 );
Vec_Int_t * vLeaves = Vec_IntAlloc( 16 );
Lf_Cut_t * pCut;
int i, iLit;
assert( p->pPars->fCutMin );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(p->pGia) );
pNew->pName = Abc_UtilStrsav( p->pGia->pName );
pNew->pSpec = Abc_UtilStrsav( p->pGia->pSpec );
Vec_IntWriteEntry( vCopies, 0, 0 );
Gia_ManForEachObj1( p->pGia, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
{
Vec_IntWriteEntry( vCopies, i, Gia_ManAppendCi(pNew) );
continue;
}
if ( Gia_ObjIsCo(pObj) )
{
iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) );
iLit = Gia_ManAppendCo( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) );
continue;
}
if ( Gia_ObjIsBuf(pObj) )
{
iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) );
iLit = Gia_ManAppendBuf( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) );
Vec_IntWriteEntry( vCopies, i, iLit );
continue;
}
if ( !Lf_ObjMapRefNum(p, i) )
continue;
pCut = Lf_ObjCutBest( p, i );
assert( pCut->iFunc >= 0 );
if ( pCut->nLeaves == 0 )
{
assert( Abc_Lit2Var(pCut->iFunc) == 0 );
Vec_IntWriteEntry( vCopies, i, pCut->iFunc );
continue;
}
if ( pCut->nLeaves == 1 )
{
assert( Abc_Lit2Var(pCut->iFunc) == 1 );
iLit = Vec_IntEntry( vCopies, pCut->pLeaves[0] );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(pCut->iFunc)) );
continue;
}
iLit = Lf_ManDerivePart( p, pNew, vMapping, vMapping2, vCopies, pCut, vLeaves, vCover, pObj );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(pCut->iFunc)) );
}
Vec_IntFree( vCopies );
Vec_IntFree( vCover );
Vec_IntFree( vLeaves );
// finish mapping
if ( Vec_IntSize(vMapping) > Gia_ManObjNum(pNew) )
Vec_IntShrink( vMapping, Gia_ManObjNum(pNew) );
else
Vec_IntFillExtra( vMapping, Gia_ManObjNum(pNew), 0 );
assert( Vec_IntSize(vMapping) == Gia_ManObjNum(pNew) );
Vec_IntForEachEntry( vMapping, iLit, i )
if ( iLit > 0 )
Vec_IntAddToEntry( vMapping, i, Gia_ManObjNum(pNew) );
Vec_IntAppend( vMapping, vMapping2 );
Vec_IntFree( vMapping2 );
// attach mapping and packing
assert( pNew->vMapping == NULL );
pNew->vMapping = vMapping;
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p->pGia) );
return pNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Lf_Man_t * Lf_ManAlloc( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Lf_Man_t * p; int i, k = 0;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= LF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= LF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vMapping );
Gia_ManCleanValue( pGia );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
p = ABC_CALLOC( Lf_Man_t, 1 );
Lf_ManAnalyzeCoDrivers( pGia, &p->nCoDrivers, &p->nInverters );
if ( pPars->fPower )
Lf_ManComputeSwitching( pGia, &p->vSwitches );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->nCutWords = (sizeof(Lf_Cut_t)/sizeof(int) + pPars->nLutSize + 1) >> 1;
p->nSetWords = p->nCutWords * pPars->nCutNum;
p->vTtMem = pPars->fCutMin ? Vec_MemAllocForTT( pPars->nLutSize, 0 ) : NULL;
if ( pPars->fCutMin && pPars->fUseMux7 )
Vec_MemAddMuxTT( p->vTtMem, pPars->nLutSize );
p->pObjBests = ABC_CALLOC( Lf_Bst_t, Gia_ManAndNotBufNum(pGia) );
Vec_IntGrow( &p->vFreeSets, (1<<14) );
Vec_PtrGrow( &p->vFreePages, 256 );
Lf_MemAlloc( &p->vStoreOld, 16, &p->vFreePages, p->nCutWords );
Lf_MemAlloc( &p->vStoreNew, 16, &p->vFreePages, p->nCutWords );
Vec_IntFill( &p->vOffsets, Gia_ManObjNum(pGia), -1 );
Vec_IntFill( &p->vRequired, Gia_ManObjNum(pGia), ABC_INFINITY );
Vec_IntFill( &p->vCutSets, Gia_ManAndNotBufNum(pGia), -1 );
Vec_FltFill( &p->vFlowRefs, Gia_ManAndNotBufNum(pGia), 0 );
Vec_IntFill( &p->vMapRefs, Gia_ManAndNotBufNum(pGia), 0 );
Vec_IntFill( &p->vCiArrivals, Gia_ManCiNum(pGia), 0 );
Gia_ManForEachAndId( pGia, i )
if ( !Gia_ObjIsBuf(Gia_ManObj(pGia, i)) )
Vec_IntWriteEntry( &p->vOffsets, i, k++ );
assert( k == Gia_ManAndNotBufNum(pGia) );
Lf_ManSetFlowRefs( pGia, &p->vFlowRefs, &p->vOffsets );
if ( pPars->pTimesArr )
for ( i = 0; i < Gia_ManPiNum(pGia); i++ )
Vec_IntWriteEntry( &p->vCiArrivals, i, pPars->pTimesArr[i] );
return p;
}
void Lf_ManFree( Lf_Man_t * p )
{
ABC_FREE( p->pPars->pTimesArr );
ABC_FREE( p->pPars->pTimesReq );
if ( p->pPars->fCutMin )
Vec_MemHashFree( p->vTtMem );
if ( p->pPars->fCutMin )
Vec_MemFree( p->vTtMem );
Vec_PtrFreeData( &p->vMemSets );
Vec_PtrFreeData( &p->vFreePages );
Vec_PtrFreeData( &p->vStoreOld.vPages );
Vec_PtrFreeData( &p->vStoreNew.vPages );
ABC_FREE( p->vMemSets.pArray );
ABC_FREE( p->vFreePages.pArray );
ABC_FREE( p->vStoreOld.vPages.pArray );
ABC_FREE( p->vStoreNew.vPages.pArray );
ABC_FREE( p->vFreePages.pArray );
ABC_FREE( p->vFreeSets.pArray );
ABC_FREE( p->vOffsets.pArray );
ABC_FREE( p->vRequired.pArray );
ABC_FREE( p->vCutSets.pArray );
ABC_FREE( p->vFlowRefs.pArray );
ABC_FREE( p->vMapRefs.pArray );
ABC_FREE( p->vSwitches.pArray );
ABC_FREE( p->vCiArrivals.pArray );
ABC_FREE( p->pObjBests );
ABC_FREE( p );
}
/**Function************************************************************* /**Function*************************************************************
...@@ -46,15 +1980,311 @@ ABC_NAMESPACE_IMPL_START ...@@ -46,15 +1980,311 @@ ABC_NAMESPACE_IMPL_START
***********************************************************************/ ***********************************************************************/
void Lf_ManSetDefaultPars( Jf_Par_t * pPars ) void Lf_ManSetDefaultPars( Jf_Par_t * pPars )
{ {
Jf_ManSetDefaultPars( pPars ); memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 8;
pPars->nProcNum = 0;
pPars->nRounds = 4;
pPars->nRoundsEla = 1;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fUseMux7 = 0;
pPars->fPower = 0;
pPars->fCoarsen = 1;
pPars->fCutMin = 0;
pPars->fFuncDsd = 0;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fCutHashing = 0;
pPars->fCutSimple = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = LF_LEAF_MAX;
pPars->nCutNumMax = LF_CUT_MAX;
}
void Lf_ManPrintStats( Lf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Level =%6lu ", p->pPars->Delay );
printf( "Area =%9lu ", p->pPars->Area );
printf( "Edge =%9lu ", p->pPars->Edge );
printf( "LUT =%9lu ", p->pPars->Area+p->nInverters );
if ( Vec_FltSize(&p->vSwitches) )
printf( "Swt =%8.1f ", p->Switches );
if ( p->pPars->fUseMux7 )
printf( "Mux7 =%7lu ", p->pPars->Mux7 );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Lf_ManPrintInit( Lf_Man_t * p )
{
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
if ( p->pPars->nRelaxRatio )
printf( "Ratio = %d ", p->pPars->nRelaxRatio );
printf( "Edge = %d ", p->pPars->fOptEdge );
if ( p->pPars->DelayTarget != -1 )
printf( "Delay = %d ", p->pPars->DelayTarget );
printf( "CutMin = %d ", p->pPars->fCutMin );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "Cut/Set = %d/%d Bytes", 8*p->nCutWords, 8*p->nSetWords );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Lf_ManPrintQuit( Lf_Man_t * p, Gia_Man_t * pNew )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan = 1.0 * sizeof(int) * (2 * Gia_ManObjNum(p->pGia) + 3 * Gia_ManAndNotBufNum(p->pGia)) / (1<<20); // offset, required, cutsets, maprefs, flowrefs
float MemCutsB = 1.0 * (p->vStoreOld.MaskPage + 1) * (Vec_PtrSize(&p->vFreePages) + Vec_PtrSize(&p->vStoreOld.vPages)) / (1<<20) + 1.0 * sizeof(Lf_Bst_t) * Gia_ManAndNotBufNum(p->pGia) / (1<<20);
float MemCutsF = 1.0 * sizeof(word) * p->nSetWords * (1<<LF_LOG_PAGE) * Vec_PtrSize(&p->vMemSets) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
float MemMap = Vec_IntMemory(pNew->vMapping) / (1<<20);
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] );
printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] );
printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Best = %.2f MB ", MemCutsB );
printf( "Front = %.2f MB ", MemCutsF );
printf( "Map = %.2f MB ", MemMap );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB", MemGia + MemMan + MemCutsB + MemCutsF + MemMap + MemTt );
printf( "\n" );
if ( 1 )
{
int i;
for ( i = 0; i <= p->pPars->nLutSize; i++ )
printf( "%d:%d ", i, p->nCutCounts[i] );
printf( "Equal = %d (%.0f %%) ", p->nCutEqual, 100.0 * p->nCutEqual / p->Iter / Gia_ManAndNotBufNum(p->pGia) );
if ( p->vTtMem )
printf( "TT = %d (%.2f %%) ", Vec_MemEntryNum(p->vTtMem), 100.0 * Vec_MemEntryNum(p->vTtMem) / p->CutCount[2] );
if ( p->pGia->pMuxes && p->nCutMux )
printf( "MuxTT = %d (%.0f %%) ", p->nCutMux, 100.0 * p->nCutMux / p->Iter / Gia_ManMuxNum(p->pGia) );
printf( "\n" );
}
printf( "CoDrvs = %d (%.2f %%) ", p->nCoDrivers, 100.0*p->nCoDrivers/Gia_ManCoNum(p->pGia) );
printf( "CoInvs = %d (%.2f %%) ", p->nInverters, 100.0*p->nInverters/Gia_ManCoNum(p->pGia) );
printf( "Front = %d (%.2f %%) ", p->nFrontMax, 100.0*p->nFrontMax/Gia_ManAndNum(p->pGia) );
printf( "TimeFails = %d ", p->nTimeFails );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Lf_ManComputeMapping( Lf_Man_t * p )
{
Gia_Obj_t * pObj;
int i, arrTime;
assert( p->vStoreNew.iCur == 0 );
Lf_ManSetCutRefs( p );
if ( p->pGia->pManTime != NULL )
{
assert( !Gia_ManBufNum(p->pGia) );
Tim_ManIncrementTravId( p->pGia->pManTime );
Gia_ManForEachObj1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAnd(pObj) )
Lf_ObjMergeOrder( p, i );
else if ( Gia_ObjIsCi(pObj) )
{
arrTime = Tim_ManGetCiArrival( p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetCiArrival( p, Gia_ObjCioId(pObj), arrTime );
}
else if ( Gia_ObjIsCo(pObj) )
{
arrTime = Lf_ObjCoArrival( p, Gia_ObjCioId(pObj) );
Tim_ManSetCoArrival( p->pGia->pManTime, Gia_ObjCioId(pObj), arrTime );
}
else assert( 0 );
}
// Tim_ManPrint( p->pGia->pManTime );
}
else
{
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( !Gia_ObjIsBuf(pObj) )
Lf_ObjMergeOrder( p, i );
}
Lf_MemRecycle( &p->vStoreOld );
ABC_SWAP( Lf_Mem_t, p->vStoreOld, p->vStoreNew );
if ( p->fUseEla )
Lf_ManCountMapRefs( p );
else
Lf_ManSetMapRefs( p );
Lf_ManPrintStats( p, p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay") );
}
Gia_Man_t * Lf_ManPerformMappingInt( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
int fUsePowerMode = 0;
Lf_Man_t * p;
Gia_Man_t * pNew, * pCls;
if ( pPars->fUseMux7 )
pPars->fCoarsen = 1, pPars->nRoundsEla = 0;
if ( Gia_ManHasChoices(pGia) || pPars->nLutSizeMux )
pPars->fCutMin = 1;
if ( pPars->fCoarsen )
{
pCls = Gia_ManDupMuxes(pGia, pPars->nCoarseLimit);
pCls->pManTime = pGia->pManTime; pGia->pManTime = NULL;
}
else pCls = pGia;
p = Lf_ManAlloc( pCls, pPars );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Lf_ManPrintInit( p );
// power mode
if ( fUsePowerMode && Vec_FltSize(&p->vSwitches) )
pPars->fPower = 0;
// perform mapping
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
Lf_ManComputeMapping( p );
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
Lf_ManComputeMapping( p );
// power mode
if ( fUsePowerMode && Vec_FltSize(&p->vSwitches) )
{
pPars->fPower = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla + 2; p->Iter++ )
Lf_ManComputeMapping( p );
}
if ( pPars->fVeryVerbose && pPars->fCutMin )
Vec_MemDumpTruthTables( p->vTtMem, Gia_ManName(p->pGia), pPars->nLutSize );
if ( pPars->fCutMin )
pNew = Lf_ManDeriveMappingGia( p );
else if ( pPars->fCoarsen )
pNew = Lf_ManDeriveMappingCoarse( p );
else
pNew = Lf_ManDeriveMapping( p );
Gia_ManMappingVerify( pNew );
Lf_ManPrintQuit( p, pNew );
Lf_ManFree( p );
if ( pCls != pGia )
{
pGia->pManTime = pCls->pManTime; pCls->pManTime = NULL;
Gia_ManStop( pCls );
}
return pNew;
} }
Gia_Man_t * Lf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) Gia_Man_t * Lf_ManPerformMapping( Gia_Man_t * p, Jf_Par_t * pPars )
{ {
return Jf_ManPerformMapping( pGia, pPars ); Gia_Man_t * pNew;
if ( p->pManTime && Tim_ManBoxNum(p->pManTime) && Gia_ManIsNormalized(p) )
{
Tim_Man_t * pTimOld = (Tim_Man_t *)p->pManTime;
p->pManTime = Tim_ManDup( pTimOld, 1 );
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
if ( pNew != p )
{
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
}
// normalize
pNew = Gia_ManDupNormalize( p = pNew );
Gia_ManTransferMapping( pNew, p );
// Gia_ManTransferPacking( pNew, p );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p ); // do not delete if the original one!
// cleanup
Tim_ManStop( (Tim_Man_t *)pNew->pManTime );
pNew->pManTime = pTimOld;
assert( Gia_ManIsNormalized(pNew) );
}
else
{
// mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
Gia_ManTransferTiming( pNew, p );
}
return pNew;
} }
/**Function*************************************************************
Synopsis [Interface of LUT mapping package.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManPerformLfMapping( Gia_Man_t * p, Jf_Par_t * pPars, int fNormalized ) Gia_Man_t * Gia_ManPerformLfMapping( Gia_Man_t * p, Jf_Par_t * pPars, int fNormalized )
{ {
Gia_Man_t * pNew;
// reconstruct GIA according to the hierarchy manager
assert( pPars->pTimesArr == NULL );
assert( pPars->pTimesReq == NULL );
if ( p->pManTime )
{
if ( fNormalized )
{
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL; return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// set arrival and required times
pPars->pTimesArr = Tim_ManGetArrTimes( (Tim_Man_t *)p->pManTime );
pPars->pTimesReq = Tim_ManGetReqTimes( (Tim_Man_t *)p->pManTime );
}
else
p = Gia_ManDup( p );
}
else
p = Gia_ManDup( p );
// perform mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
if ( pNew != p )
{
// transfer name
ABC_FREE( pNew->pName );
ABC_FREE( pNew->pSpec );
pNew->pName = Abc_UtilStrsav( p->pName );
pNew->pSpec = Abc_UtilStrsav( p->pSpec );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) );
// return the original (unmodified by the mapper) timing manager
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
}
// normalize and transfer mapping
pNew = Gia_ManDupNormalize( p = pNew );
Gia_ManTransferMapping( pNew, p );
// Gia_ManTransferPacking( pNew, p );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
return pNew;
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
PackageName [Scalable AIG package.] PackageName [Scalable AIG package.]
Synopsis [Technology mapper.] Synopsis [Standard-cell mapper.]
Author [Alan Mishchenko] Author [Alan Mishchenko]
...@@ -18,7 +18,16 @@ ...@@ -18,7 +18,16 @@
***********************************************************************/ ***********************************************************************/
#include <float.h>
#include "gia.h" #include "gia.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "base/main/main.h"
#include "misc/vec/vecMem.h"
#include "misc/vec/vecWec.h"
#include "opt/dau/dau.h"
ABC_NAMESPACE_IMPL_START ABC_NAMESPACE_IMPL_START
...@@ -26,12 +35,663 @@ ABC_NAMESPACE_IMPL_START ...@@ -26,12 +35,663 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS /// /// DECLARATIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
#define NF_LEAF_MAX 6
#define NF_CUT_MAX 32
#define NF_NO_LEAF 31
#define NF_INFINITY FLT_MAX
enum { NF_ANDOR = 1, NF_XOR = 2, NF_PRIME = 3 };
typedef struct Nf_Cut_t_ Nf_Cut_t;
struct Nf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
unsigned iFunc : 26; // function
unsigned Useless : 1; // function
unsigned nLeaves : 5; // leaf number (NF_NO_LEAF)
int pLeaves[NF_LEAF_MAX+1]; // leaves
};
typedef struct Nf_Mat_t_ Nf_Mat_t;
struct Nf_Mat_t_
{
unsigned Gate : 20; // gate
unsigned CutH : 10; // cut handle
unsigned fCompl : 1; // complemented
unsigned fBest : 1; // best cut
int Conf; // input literals
float D; // delay
float A; // area
};
typedef struct Nf_Obj_t_ Nf_Obj_t;
struct Nf_Obj_t_
{
Nf_Mat_t M[2][2]; // del/area (2x)
};
typedef struct Nf_Man_t_ Nf_Man_t;
struct Nf_Man_t_
{
// user data
Gia_Man_t * pGia; // derived manager
Jf_Par_t * pPars; // parameters
// matching
Vec_Mem_t * vTtMem; // truth tables
Vec_Wec_t * vTt2Match; // matches for truth tables
Vec_Str_t * vMemStore; // memory for matches
Mio_Cell_t * pCells; // library gates
int nCells; // library gate count
// cut data
Nf_Obj_t * pNfObjs; // best cuts
Vec_Ptr_t vPages; // cut memory
Vec_Int_t vCutSets; // cut offsets
Vec_Int_t vMapRefs; // mapping refs (2x)
Vec_Flt_t vFlowRefs; // flow refs (2x)
Vec_Flt_t vRequired; // required times (2x)
Vec_Flt_t vCutFlows; // temporary cut area
Vec_Int_t vCutDelays; // temporary cut delay
Vec_Int_t vBackup; // backup literals
Vec_Int_t vBackup2; // backup literals
int iCur; // current position
int Iter; // mapping iterations
int fUseEla; // use exact area
int nInvs; // the inverter count
float InvDelay; // inverter delay
float InvArea; // inverter area
// statistics
abctime clkStart; // starting time
double CutCount[6]; // cut counts
int nCutUseAll; // objects with useful cuts
};
static inline Nf_Obj_t * Nf_ManObj( Nf_Man_t * p, int i ) { return p->pNfObjs + i; }
static inline Mio_Cell_t* Nf_ManCell( Nf_Man_t * p, int i ) { return p->pCells + i; }
static inline int * Nf_ManCutSet( Nf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); }
static inline int Nf_ObjCutSetId( Nf_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); }
static inline int * Nf_ObjCutSet( Nf_Man_t * p, int i ) { return Nf_ManCutSet(p, Nf_ObjCutSetId(p, i)); }
static inline int Nf_ObjHasCuts( Nf_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); }
static inline int * Nf_ObjCutBest( Nf_Man_t * p, int i ) { return NULL; }
static inline int Nf_ObjCutUseless( Nf_Man_t * p, int TruthId ) { return (int)(TruthId >= Vec_WecSize(p->vTt2Match)); }
static inline float Nf_ObjCutFlow( Nf_Man_t * p, int i ) { return Vec_FltEntry(&p->vCutFlows, i); }
static inline int Nf_ObjCutDelay( Nf_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); }
static inline void Nf_ObjSetCutFlow( Nf_Man_t * p, int i, float a ) { Vec_FltWriteEntry(&p->vCutFlows, i, a); }
static inline void Nf_ObjSetCutDelay( Nf_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); }
static inline int Nf_ObjMapRefNum( Nf_Man_t * p, int i, int c ) { return Vec_IntEntry(&p->vMapRefs, Abc_Var2Lit(i,c)); }
static inline int Nf_ObjMapRefInc( Nf_Man_t * p, int i, int c ) { return (*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c)))++; }
static inline int Nf_ObjMapRefDec( Nf_Man_t * p, int i, int c ) { return --(*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c))); }
static inline float Nf_ObjFlowRefs( Nf_Man_t * p, int i, int c ) { return Vec_FltEntry(&p->vFlowRefs, Abc_Var2Lit(i,c)); }
static inline float Nf_ObjRequired( Nf_Man_t * p, int i, int c ) { return Vec_FltEntry(&p->vRequired, Abc_Var2Lit(i,c)); }
static inline void Nf_ObjSetRequired(Nf_Man_t * p,int i, int c, float f) { Vec_FltWriteEntry(&p->vRequired, Abc_Var2Lit(i,c), f); }
static inline void Nf_ObjUpdateRequired(Nf_Man_t * p,int i, int c, float f) { if (Nf_ObjRequired(p, i, c) > f) Nf_ObjSetRequired(p, i, c, f); }
static inline Nf_Mat_t * Nf_ObjMatchD( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][0]; }
static inline Nf_Mat_t * Nf_ObjMatchA( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][1]; }
static inline Nf_Mat_t * Nf_ObjMatchBest( Nf_Man_t * p, int i, int c )
{
Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c);
Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c);
assert( pD->fBest != pA->fBest );
assert( Nf_ObjMapRefNum(p, i, c) > 0 );
if ( pA->fBest )
return pA;
if ( pD->fBest )
return pD;
return NULL;
}
static inline int Nf_CutSize( int * pCut ) { return pCut[0] & NF_NO_LEAF; }
static inline int Nf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); }
static inline int * Nf_CutLeaves( int * pCut ) { return pCut + 1; }
static inline int Nf_CutSetBoth( int n, int f ) { return n | (f << 5); }
static inline int Nf_CutIsTriv( int * pCut, int i ) { return Nf_CutSize(pCut) == 1 && pCut[1] == i; }
static inline int Nf_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; }
static inline int * Nf_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; }
static inline int Nf_CutConfLit( int Conf, int i ) { return 15 & (Conf >> (i << 2)); }
static inline int Nf_CutConfVar( int Conf, int i ) { return Abc_Lit2Var( Nf_CutConfLit(Conf, i) ); }
static inline int Nf_CutConfC( int Conf, int i ) { return Abc_LitIsCompl( Nf_CutConfLit(Conf, i) ); }
#define Nf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Nf_CutSize(pCut) + 1 )
#define Nf_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ )
#define Nf_CutForEachLit( pCut, Conf, iLit, i ) for ( i = 0; i < Nf_CutSize(pCut) && (iLit = Abc_Lit2LitV(Nf_CutLeaves(pCut), Nf_CutConfLit(Conf, i))); i++ )
#define Nf_CutForEachVar( pCut, Conf, iVar, c, i ) for ( i = 0; i < Nf_CutSize(pCut) && (iVar = Nf_CutLeaves(pCut)[Nf_CutConfVar(Conf, i)]) && ((c = Nf_CutConfC(Conf, i)), 1); i++ )
/*
Three types of config:
<match> : <gate> <compl> <type> <offset>
<type> : AND/OR | XOR | prime
<offset> : <record>
<record>
- XOR : <array>
- prime : <array>, ... <array>
- AND/OR : <num_configs>, <config>, ... <config>
<config> : <num_entries>, <num_neg_entries>, <array>
<array> : <entry>, ...., <entry> (sorted by increasing order of arrivals)
*/
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS /// /// FUNCTION DEFINITIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/**Function************************************************************* /**Function*************************************************************
Synopsis [Sort inputs by delay.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nf_StoSelectSort( int * pArray, int nSize, Mio_Cell_t * pCell )
{
int i, j, best_i;
for ( i = 0; i < nSize-1; i++ )
{
best_i = i;
for ( j = i+1; j < nSize; j++ )
if ( pCell->Delays[Abc_Lit2Var(pArray[j])] < pCell->Delays[Abc_Lit2Var(pArray[best_i])] )
best_i = j;
if ( i != best_i )
ABC_SWAP( int, pArray[i], pArray[best_i] );
}
}
static inline void Nf_StoSelectSortLit( int * pArray, int nSize, Mio_Cell_t * pCell )
{
int i, j, best_i;
for ( i = 0; i < nSize-1; i++ )
{
best_i = i;
for ( j = i+1; j < nSize; j++ )
if ( Abc_LitIsCompl(pArray[j]) > Abc_LitIsCompl(pArray[best_i]) ||
(Abc_LitIsCompl(pArray[j]) == Abc_LitIsCompl(pArray[best_i]) &&
pCell->Delays[Abc_Lit2Var(pArray[j])] < pCell->Delays[Abc_Lit2Var(pArray[best_i])]) )
best_i = j;
if ( i != best_i )
ABC_SWAP( int, pArray[i], pArray[best_i] );
}
}
void Nf_StoCreateGateAdd( Nf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId, int Type )
{
Vec_Int_t * vArray;
int i, fCompl = (int)(uTruth & 1);
word uFunc = fCompl ? ~uTruth : uTruth;
int iFunc = Vec_MemHashInsert( pMan->vTtMem, &uFunc );
if ( iFunc == Vec_WecSize(pMan->vTt2Match) )
Vec_WecPushLevel( pMan->vTt2Match );
vArray = Vec_WecEntry( pMan->vTt2Match, iFunc );
Vec_IntPush( vArray, (CellId << 8) | (Type << 4) | fCompl );
Vec_IntPush( vArray, Vec_StrSize(pMan->vMemStore) );
if ( Type == NF_ANDOR )
return;
for ( i = 0; i < nFans; i++ )
Vec_StrPush( pMan->vMemStore, (char)pFans[i] );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nf_StoBuildDsdAnd_rec( Nf_Man_t * pMan, Mio_Cell_t * pCell, char * pStr, char ** p, int * pMatches,
int pGroups[NF_LEAF_MAX][NF_LEAF_MAX], int * nGroupSizes, int * pnGroups )
{
int fCompl = 0;
if ( **p == '!' )
(*p)++, fCompl = 1;
if ( **p >= 'a' && **p < 'a' + NF_LEAF_MAX ) // var
// return Abc_Var2Lit( **p - 'a', fCompl );
return Abc_Var2Lit( **p - 'a', 0 );
if ( **p == '(' ) // and/or
{
char * q = pStr + pMatches[ *p - pStr ];
int pFans[NF_LEAF_MAX], nFans = 0;
assert( **p == '(' && *q == ')' );
for ( (*p)++; *p < q; (*p)++ )
{
int Value = Nf_StoBuildDsdAnd_rec( pMan, pCell, pStr, p, pMatches, pGroups, nGroupSizes, pnGroups );
if ( Value == -1 )
continue;
pFans[nFans++] = Value;
}
// collect
if ( nFans > 0 )
{
memcpy( pGroups[*pnGroups], pFans, sizeof(int) * nFans );
nGroupSizes[*pnGroups] = nFans;
(*pnGroups)++;
}
assert( *p == q );
return -1;
}
assert( 0 );
return 0;
}
int Nf_StoBuildDsdAnd( Nf_Man_t * pMan, Mio_Cell_t * pCell, char * p )
{
int pGroups[NF_LEAF_MAX][NF_LEAF_MAX], pGroups2[NF_LEAF_MAX][NF_LEAF_MAX];
int nGroupSizes[NF_LEAF_MAX], nGroupInvs[NF_LEAF_MAX], Phases[NF_LEAF_MAX];
int nGroups = 0, nVars = 0, nConfigs = 1;
int i, k, c, Res, fCompl = 0;
char ** pp = &p;
word uTruth;
assert( *(p+1) != 0 );
if ( *p == '!' )
(*pp)++, fCompl = 1;
assert( **pp != '!' );
Res = Nf_StoBuildDsdAnd_rec( pMan, pCell, p, pp, Dau_DsdComputeMatches(p), pGroups, nGroupSizes, &nGroups );
assert( Res == -1 );
assert( *++p == 0 );
// create groups
for ( i = 0; i < nGroups; i++ )
{
nVars += nGroupSizes[i];
nConfigs *= (1 << nGroupSizes[i]);
}
assert( nVars == (int)pCell->nFanins );
// iterate through phase assignments
for ( c = 0; c < nConfigs; c++ )
{
int Start = c;
for ( i = nGroups - 1; i >= 0; i-- )
{
Phases[i] = Start % (1 << nGroupSizes[i]);
Start /= (1 << nGroupSizes[i]);
memcpy( pGroups2[i], pGroups[i], sizeof(int) * nGroupSizes[i] );
// printf( "%d ", Phases[i] );
}
// printf( "\n" );
// create configuration
uTruth = pCell->uTruth;
for ( i = 0; i < nGroups; i++ )
{
nGroupInvs[i] = 0;
for ( k = 0; k < nGroupSizes[i]; k++ )
if ( (Phases[i] >> k) & 1 )
{
pGroups2[i][k] = Abc_LitNot(pGroups2[i][k]);
uTruth = Abc_Tt6Flip( uTruth, Abc_Lit2Var(pGroups2[i][k]) );
nGroupInvs[i]++;
}
/*
if ( pCell->nFanins == 4 && nGroups == 1 )
{
printf( "Group before:\n" );
for ( k = 0; k < nGroupSizes[i]; k++ )
printf( "%d %.2f\n", pGroups2[i][k], pCell->Delays[Abc_Lit2Var(pGroups2[i][k])] );
}
*/
// Nf_StoSelectSortLit( pGroups2[i], nGroupSizes[i], pCell );
/*
if ( pCell->nFanins == 4 && nGroups == 1 )
{
printf( "Group after:\n" );
for ( k = 0; k < nGroupSizes[i]; k++ )
printf( "%d %.2f\n", pGroups2[i][k], pCell->Delays[Abc_Lit2Var(pGroups2[i][k])] );
printf( "\n" );
}
*/
}
// save
Nf_StoCreateGateAdd( pMan, uTruth, NULL, -1, pCell->Id, NF_ANDOR );
Vec_StrPush( pMan->vMemStore, (char)nGroups );
for ( i = 0; i < nGroups; i++ )
for ( k = 0; k < nGroupSizes[i]; k++ )
{
Vec_StrPush( pMan->vMemStore, (char)nGroupSizes[i] );
Vec_StrPush( pMan->vMemStore, (char)nGroupInvs[i] );
for ( k = 0; k < nGroupSizes[i]; k++ )
Vec_StrPush( pMan->vMemStore, (char)pGroups2[i][k] );
}
}
return Res;
}
int Nf_StoCheckDsdAnd_rec( char * pStr, char ** p, int * pMatches )
{
if ( **p == '!' )
(*p)++;
if ( **p >= 'a' && **p < 'a' + NF_LEAF_MAX ) // var
return 1;
if ( **p == '(' ) // and/or
{
char * q = pStr + pMatches[ *p - pStr ];
assert( **p == '(' && *q == ')' );
for ( (*p)++; *p < q; (*p)++ )
if ( Nf_StoCheckDsdAnd_rec(pStr, p, pMatches) != 1 )
return 0;
assert( *p == q );
return 1;
}
return 0;
}
int Nf_StoCheckDsdAnd( char * p )
{
int Res;
assert( *(p+1) != 0 );
Res = Nf_StoCheckDsdAnd_rec( p, &p, Dau_DsdComputeMatches(p) );
// assert( *++p == 0 );
return Res;
}
int Nf_StoCheckDsdXor_rec( char * pStr, char ** p, int * pMatches )
{
int Value, fCompl = 0;
if ( **p == '!' )
(*p)++, fCompl ^= 1;
if ( **p >= 'a' && **p < 'a' + NF_LEAF_MAX ) // var
return fCompl;
if ( **p == '[' ) // xor
{
char * q = pStr + pMatches[ *p - pStr ];
assert( **p == '[' && *q == ']' );
for ( (*p)++; *p < q; (*p)++ )
{
Value = Nf_StoCheckDsdXor_rec( pStr, p, pMatches );
if ( Value == -1 )
return -1;
fCompl ^= Value;
}
assert( *p == q );
return fCompl;
}
return -1;
}
int Nf_StoCheckDsdXor( char * p )
{
int Res;
assert( *(p+1) != 0 );
Res = Nf_StoCheckDsdXor_rec( p, &p, Dau_DsdComputeMatches(p) );
// assert( *++p == 0 );
return Res;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_StoCreateGateNonDsd( Nf_Man_t * pMan, Mio_Cell_t * pCell, int ** pComp, int ** pPerm, int * pnPerms )
{
int Perm[NF_LEAF_MAX], * Perm1, * Perm2;
int nPerms = pnPerms[pCell->nFanins];
int nMints = (1 << pCell->nFanins);
word tCur, tTemp1, tTemp2;
int i, p, c;
for ( i = 0; i < (int)pCell->nFanins; i++ )
Perm[i] = Abc_Var2Lit( i, 0 );
tCur = tTemp1 = pCell->uTruth;
for ( p = 0; p < nPerms; p++ )
{
tTemp2 = tCur;
for ( c = 0; c < nMints; c++ )
{
Nf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id, NF_PRIME );
// update
tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] );
Perm1 = Perm + pComp[pCell->nFanins][c];
*Perm1 = Abc_LitNot( *Perm1 );
}
assert( tTemp2 == tCur );
// update
tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] );
Perm1 = Perm + pPerm[pCell->nFanins][p];
Perm2 = Perm1 + 1;
ABC_SWAP( int, *Perm1, *Perm2 );
}
assert( tTemp1 == tCur );
}
void Nf_StoCreateGateDsd( Nf_Man_t * pMan, Mio_Cell_t * pCell, int ** pComp, int ** pPerm, int * pnPerms )
{
/*
char pDsd[1000];
int i, Value, Perm[NF_LEAF_MAX];
word uTruth = pCell->uTruth;
int nSizeNonDec = Dau_DsdDecompose( &uTruth, pCell->nFanins, 0, 0, pDsd );
assert( pCell->nFanins > 1 );
if ( nSizeNonDec == 0 )
{
if ( Nf_StoCheckDsdAnd(pDsd) )
{
Nf_StoBuildDsdAnd( pMan, pCell, pDsd );
return;
}
Value = Nf_StoCheckDsdXor(pDsd);
if ( Value >= 0 )
{
for ( i = 0; i < (int)pCell->nFanins; i++ )
Perm[i] = Abc_Var2Lit(i, 0);
// Nf_StoSelectSort( Perm, pCell->nFanins, pCell );
Nf_StoCreateGateAdd( pMan, pCell->uTruth, Perm, pCell->nFanins, pCell->Id, NF_XOR );
return;
}
}
*/
Nf_StoCreateGateNonDsd( pMan, pCell, pComp, pPerm, pnPerms );
}
void Nf_StoDeriveMatches( Nf_Man_t * p, int fVerbose )
{
// abctime clk = Abc_Clock();
int * pComp[7];
int * pPerm[7];
int nPerms[7], i;
for ( i = 2; i <= 6; i++ )
pComp[i] = Extra_GreyCodeSchedule( i );
for ( i = 2; i <= 6; i++ )
pPerm[i] = Extra_PermSchedule( i );
for ( i = 2; i <= 6; i++ )
nPerms[i] = Extra_Factorial( i );
p->pCells = Mio_CollectRootsNewDefault( 6, &p->nCells, fVerbose );
for ( i = 4; i < p->nCells; i++ )
Nf_StoCreateGateDsd( p, p->pCells + i, pComp, pPerm, nPerms );
for ( i = 2; i <= 6; i++ )
ABC_FREE( pComp[i] );
for ( i = 2; i <= 6; i++ )
ABC_FREE( pPerm[i] );
// Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
void Nf_StoPrintOne( Nf_Man_t * p, int Count, int t, int i, Mio_Cell_t * pC, int Type, int fCompl, char * pInfo )
{
word * pTruth = Vec_MemReadEntry(p->vTtMem, t);
int k, nSuppSize = Abc_TtSupportSize(pTruth, 6);
printf( "%6d : ", Count++ );
printf( "%6d : ", t );
printf( "%6d : ", i/2 );
printf( "Gate %16s ", pC->pName );
printf( "Inputs = %d ", pC->nFanins );
if ( Type == NF_PRIME )
printf( "prime" );
else if ( Type == NF_XOR )
printf( "xor " );
else if ( Type == NF_ANDOR )
printf( "andor" );
else assert( 0 );
if ( fCompl )
printf( " compl " );
else
printf( " " );
if ( Type == NF_PRIME || Type == NF_XOR )
{
for ( k = 0; k < (int)pC->nFanins; k++ )
{
int fComplF = Abc_LitIsCompl((int)pInfo[k]);
int iFanin = Abc_Lit2Var((int)pInfo[k]);
printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') );
}
}
else if ( Type == NF_ANDOR )
{
int g, nGroups = (int)*pInfo++;
for ( g = 0; g < nGroups; g++ )
{
int nSizeAll = (int)*pInfo++;
int nSizeNeg = (int)*pInfo++;
printf( "{" );
for ( k = 0; k < nSizeAll; k++ )
{
int fComplF = Abc_LitIsCompl((int)pInfo[k]);
int iFanin = Abc_Lit2Var((int)pInfo[k]);
printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') );
}
printf( "}" );
pInfo += nSizeAll;
}
}
else assert( 0 );
printf( " " );
Dau_DsdPrintFromTruth( pTruth, nSuppSize );
}
void Nf_StoPrint( Nf_Man_t * p, int fVerbose )
{
int t, i, Info, Offset, Count = 0, CountMux = 0;
for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ )
{
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t );
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Mio_Cell_t*pC = p->pCells + (Info >> 8);
int Type = (Info >> 4) & 15;
int fCompl = (Info & 1);
char * pInfo = Vec_StrEntryP( p->vMemStore, Offset );
if ( Type == NF_PRIME && pC->nFanins != 3 )
{
Count++;
CountMux++;
continue;
}
if ( !fVerbose )
{
Count++;
continue;
}
Nf_StoPrintOne( p, Count, t, i, pC, Type, fCompl, pInfo );
}
}
printf( "Gates = %d. Truths = %d. Matches = %d. MatchesPrime = %d. Size = %d.\n",
p->nCells, Vec_MemEntryNum(p->vTtMem), Count, CountMux, Vec_StrSize(p->vMemStore) );
}
/*
void Nf_ManPrepareLibraryTest()
{
int fVerbose = 0;
abctime clk = Abc_Clock();
Nf_Man_t * p;
p = Nf_StoCreate( NULL, NULL, fVerbose );
Nf_StoPrint( p, fVerbose );
Nf_StoDelete(p);
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
*/
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nf_Man_t * Nf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs );
Vec_Int_t * vFlowRefs;
Nf_Man_t * p;
int i, Entry;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= NF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= NF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vCellMapping );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
// create
p = ABC_CALLOC( Nf_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->pNfObjs = ABC_CALLOC( Nf_Obj_t, Gia_ManObjNum(pGia) );
p->iCur = 2;
// other
Vec_PtrGrow( &p->vPages, 256 ); // cut memory
Vec_IntFill( &p->vMapRefs, 2*Gia_ManObjNum(pGia), 0 ); // mapping refs (2x)
Vec_FltFill( &p->vFlowRefs, 2*Gia_ManObjNum(pGia), 0 ); // flow refs (2x)
Vec_FltFill( &p->vRequired, 2*Gia_ManObjNum(pGia), NF_INFINITY ); // required times (2x)
Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets
Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area
Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay
Vec_IntGrow( &p->vBackup, 1000 );
Vec_IntGrow( &p->vBackup2, 1000 );
// references
vFlowRefs = Vec_IntAlloc(0);
Mf_ManSetFlowRefs( pGia, vFlowRefs );
Vec_IntForEachEntry( vFlowRefs, Entry, i )
{
Vec_FltWriteEntry( &p->vFlowRefs, 2*i, /*0.5* */Entry );
Vec_FltWriteEntry( &p->vFlowRefs, 2*i+1, /*0.5* */Entry );
}
Vec_IntFree(vFlowRefs);
// matching
p->vTtMem = Vec_MemAllocForTT( 6, 0 );
p->vTt2Match = Vec_WecAlloc( 1000 );
p->vMemStore = Vec_StrAlloc( 10000 );
Vec_WecPushLevel( p->vTt2Match );
Vec_WecPushLevel( p->vTt2Match );
assert( Vec_WecSize(p->vTt2Match) == Vec_MemEntryNum(p->vTtMem) );
Nf_StoDeriveMatches( p, 0 );//pPars->fVerbose );
p->InvDelay = p->pCells[3].Delays[0];
p->InvArea = p->pCells[3].Area;
Nf_ObjMatchD(p, 0, 0)->Gate = 0;
Nf_ObjMatchD(p, 0, 1)->Gate = 1;
// prepare cuts
return p;
}
void Nf_StoDelete( Nf_Man_t * p )
{
Vec_PtrFreeData( &p->vPages );
ABC_FREE( p->vPages.pArray );
ABC_FREE( p->vMapRefs.pArray );
ABC_FREE( p->vFlowRefs.pArray );
ABC_FREE( p->vRequired.pArray );
ABC_FREE( p->vCutSets.pArray );
ABC_FREE( p->vCutFlows.pArray );
ABC_FREE( p->vCutDelays.pArray );
ABC_FREE( p->vBackup.pArray );
ABC_FREE( p->vBackup2.pArray );
ABC_FREE( p->pNfObjs );
// matching
Vec_WecFree( p->vTt2Match );
Vec_MemHashFree( p->vTtMem );
Vec_MemFree( p->vTtMem );
Vec_StrFree( p->vMemStore );
ABC_FREE( p->pCells );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [] Synopsis []
Description [] Description []
...@@ -41,12 +701,1845 @@ ABC_NAMESPACE_IMPL_START ...@@ -41,12 +701,1845 @@ ABC_NAMESPACE_IMPL_START
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
static inline int Nf_CutComputeTruth6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, int fCompl0, int fCompl1, Nf_Cut_t * pCutR, int fIsXor )
{
// extern int Nf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Nf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Nf_CutComputeTruthMux6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Nf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Nf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Nf_CutGetSign( int * pLeaves, int nLeaves )
{
word Sign = 0; int i;
for ( i = 0; i < nLeaves; i++ )
Sign |= ((word)1) << (pLeaves[i] & 0x3F);
return Sign;
}
static inline int Nf_CutCreateUnit( Nf_Cut_t * p, int i )
{
p->Delay = 0;
p->Flow = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline void Nf_Cutprintf( Nf_Man_t * p, Nf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } Useless = %d. D = %4d A = %9.4f F = %6d ",
pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc );
if ( p->vTtMem )
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
else
printf( "\n" );
}
static inline int Nf_ManPrepareCuts( Nf_Cut_t * pCuts, Nf_Man_t * p, int iObj, int fAddUnit )
{
if ( Nf_ObjHasCuts(p, iObj) )
{
Nf_Cut_t * pMfCut = pCuts;
int i, * pCut, * pList = Nf_ObjCutSet(p, iObj);
Nf_SetForEachCut( pList, pCut, i )
{
pMfCut->Delay = 0;
pMfCut->Flow = 0;
pMfCut->iFunc = Nf_CutFunc( pCut );
pMfCut->nLeaves = Nf_CutSize( pCut );
pMfCut->Sign = Nf_CutGetSign( pCut+1, Nf_CutSize(pCut) );
memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Nf_CutSize(pCut) );
pMfCut++;
}
if ( fAddUnit && pCuts->nLeaves > 1 )
return pList[0] + Nf_CutCreateUnit( pMfCut, iObj );
return pList[0];
}
return Nf_CutCreateUnit( pCuts, iObj );
}
static inline int Nf_ManSaveCuts( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts, int fUseful )
{
int i, * pPlace, iCur, nInts = 1, nCutsNew = 0;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
nInts += pCuts[i]->nLeaves + 1, nCutsNew++;
if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
p->iCur = ((p->iCur >> 16) + 1) << 16;
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) );
iCur = p->iCur; p->iCur += nInts;
pPlace = Nf_ManCutSet( p, iCur );
*pPlace++ = nCutsNew;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
{
*pPlace++ = Nf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc );
memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
pPlace += pCuts[i]->nLeaves;
}
return iCur;
}
static inline int Nf_ManCountUseful( Nf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
Count += !pCuts[i]->Useless;
return Count;
}
static inline int Nf_ManCountMatches( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
if ( !pCuts[i]->Useless )
Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2;
return Count;
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutCheck( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Nf_SetCheckArray( Nf_Cut_t ** ppCuts, int nCuts )
{
Nf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( pCut0->nLeaves <= NF_LEAF_MAX );
assert( pCut0->Sign == Nf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Nf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutMergeOrder( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Nf_CutMergeOrderMux( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut2, Nf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Nf_SetCutIsContainedOrder( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Nf_SetLastCutIsContained( Nf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Nf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
static inline int Nf_SetLastCutContainsArea( Nf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Nf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = NF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 0; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == NF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Nf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline int Nf_CutCompareArea( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1 )
{
if ( pCut0->Useless < pCut1->Useless ) return -1;
if ( pCut0->Useless > pCut1->Useless ) return 1;
if ( pCut0->Flow < pCut1->Flow ) return -1;
if ( pCut0->Flow > pCut1->Flow ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline void Nf_SetSortByArea( Nf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 0; i-- )
{
if ( Nf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Nf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Nf_SetAddCut( Nf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Nf_SetLastCutContainsArea(pCuts, nCuts);
Nf_SetSortByArea( pCuts, nCuts );
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Nf_CutArea( Nf_Man_t * p, int nLeaves )
{
if ( nLeaves < 2 )
return 0;
return nLeaves + p->pPars->nAreaTuner;
}
static inline void Nf_CutParams( Nf_Man_t * p, Nf_Cut_t * pCut, float FlowRefs )
{
int i, nLeaves = pCut->nLeaves;
assert( nLeaves <= p->pPars->nLutSize );
pCut->Delay = 0;
pCut->Flow = 0;
for ( i = 0; i < nLeaves; i++ )
{
pCut->Delay = Abc_MaxInt( pCut->Delay, Nf_ObjCutDelay(p, pCut->pLeaves[i]) );
pCut->Flow += Nf_ObjCutFlow(p, pCut->pLeaves[i]);
}
pCut->Delay += (int)(nLeaves > 1);
pCut->Flow = (pCut->Flow + Nf_CutArea(p, nLeaves)) / FlowRefs;
}
void Nf_ObjMergeOrder( Nf_Man_t * p, int iObj )
{
Nf_Cut_t pCuts0[NF_CUT_MAX], pCuts1[NF_CUT_MAX], pCuts[NF_CUT_MAX], * pCutsR[NF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
float dFlowRefs = Nf_ObjFlowRefs(p, iObj, 0) + Nf_ObjFlowRefs(p, iObj, 1);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCuts0 = Nf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
int nCuts1 = Nf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int iSibl = Gia_ObjSibl(p->pGia, iObj);
Nf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
int i, nCutsUse, nCutsR = 0;
assert( !Gia_ObjIsBuf(pObj) );
for ( i = 0; i < nCutNum; i++ )
pCutsR[i] = pCuts + i;
if ( iSibl )
{
Nf_Cut_t pCuts2[NF_CUT_MAX];
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, iSibl, 0);
Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
*pCutsR[nCutsR] = *pCut2;
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Nf_Cut_t pCuts2[NF_CUT_MAX];
int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
if ( Nf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Nf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Nf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Nf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Nf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Nf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
// if ( iObj % 10000 == 0 )
// if ( iObj == 1090 )
{
printf( "*** Obj = %d Useful = %d\n", iObj, Nf_ManCountUseful(pCutsR, nCutsR) );
for ( i = 0; i < nCutsR; i++ )
Nf_Cutprintf( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Nf_SetCheckArray(pCutsR, nCutsR) );
// store the cutset
Nf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow );
Nf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay );
*Vec_IntEntryP(&p->vCutSets, iObj) = Nf_ManSaveCuts(p, pCutsR, nCutsR, 0);
p->CutCount[3] += nCutsR;
nCutsUse = Nf_ManCountUseful(pCutsR, nCutsR);
p->CutCount[4] += nCutsUse;
p->nCutUseAll += nCutsUse == nCutsR;
p->CutCount[5] += Nf_ManCountMatches(p, pCutsR, nCutsR);
}
void Nf_ManComputeCuts( Nf_Man_t * p )
{
Gia_Obj_t * pObj; int i, iFanin;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
{
iFanin = Gia_ObjFaninId0(pObj, i);
Nf_ObjSetCutFlow( p, i, Nf_ObjCutFlow(p, iFanin) );
Nf_ObjSetCutDelay( p, i, Nf_ObjCutDelay(p, iFanin) );
}
else
Nf_ObjMergeOrder( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManPrintStats( Nf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Delay =%8.2f ", p->pPars->MapDelay );
printf( "Area =%12.2f ", p->pPars->MapArea );
printf( "Gate =%6d ", (int)p->pPars->Area );
printf( "Inv =%6d ", (int)p->nInvs );
printf( "Edge =%7d ", (int)p->pPars->Edge );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Nf_ManPrintInit( Nf_Man_t * p )
{
int nChoices;
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "Cells = %d ", p->nCells );
printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) );
printf( "Matches = %d ", Vec_WecSizeSize(p->vTt2Match)/2 );
nChoices = Gia_ManChoiceNum( p->pGia );
if ( nChoices )
printf( "Choices = %d ", nChoices );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Nf_ManPrintQuit( Nf_Man_t * p )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan =(1.0 * sizeof(Nf_Obj_t) + 8.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20);
float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) );
printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) );
printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) );
printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) );
printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) );
// printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Cut = %.2f MB ", MemCuts );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt );
// printf( "\n" );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Nf_MatchDeref2_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
int k, iVar, fCompl, * pCut;
float Area = 0;
if ( pM->fCompl )
{
assert( Nf_ObjMapRefNum(p, i, !c) > 0 );
if ( !Nf_ObjMapRefDec(p, i, !c) )
Area += Nf_MatchDeref2_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c) );
return Area + p->InvArea;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 );
if ( !Nf_ObjMapRefDec(p, iVar, fCompl) )
Area += Nf_MatchDeref2_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl) );
}
return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef2_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, Vec_Int_t * vBackup )
{
int k, iVar, fCompl, * pCut;
float Area = 0;
if ( pM->fCompl )
{
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) );
assert( Nf_ObjMapRefNum(p, i, !c) >= 0 );
if ( !Nf_ObjMapRefInc(p, i, !c) )
Area += Nf_MatchRef2_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c), vBackup );
return Area + p->InvArea;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) );
assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 );
if ( !Nf_ObjMapRefInc(p, iVar, fCompl) )
Area += Nf_MatchRef2_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl), vBackup );
}
return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef2Area( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
float Area; int iLit, k;
Vec_IntClear( &p->vBackup );
Area = Nf_MatchRef2_rec( p, i, c, pM, &p->vBackup );
Vec_IntForEachEntry( &p->vBackup, iLit, k )
{
assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 );
Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) );
}
return Area;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManCutMatchprintf( Nf_Man_t * p, int iObj, int fCompl, Nf_Mat_t * pM )
{
Mio_Cell_t * pCell;
int i, * pCut;
printf( "%5d %d : ", iObj, fCompl );
if ( pM->CutH == 0 )
{
printf( "Unassigned\n" );
return;
}
pCell = Nf_ManCell( p, pM->Gate );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
printf( "D = %8.2f ", pM->D );
printf( "A = %8.2f ", pM->A );
printf( "C = %d ", pM->fCompl );
// printf( "B = %d ", pM->fBest );
printf( " " );
printf( "Cut = {" );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%5d ", Nf_CutLeaves(pCut)[i] );
for ( ; i < 6; i++ )
printf( " " );
printf( "} " );
printf( "%12s ", pCell->pName );
printf( "%d ", pCell->nFanins );
printf( "{" );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%7.2f ", pCell->Delays[i] );
for ( ; i < 6; i++ )
printf( " " );
printf( " } " );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%2d ", Nf_CutConfLit(pM->Conf, i) );
for ( ; i < 6; i++ )
printf( " " );
Dau_DsdPrintFromTruth( &pCell->uTruth, pCell->nFanins );
}
void Nf_ManCutMatchOne( Nf_Man_t * p, int iObj, int * pCut, int * pCutSet )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
int * pFans = Nf_CutLeaves(pCut);
int nFans = Nf_CutSize(pCut);
int iFuncLit = Nf_CutFunc(pCut);
int fComplExt = Abc_LitIsCompl(iFuncLit);
float Epsilon = p->pPars->Epsilon;
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
int i, k, c, Info, Offset, iFanin, fComplF;
float ArrivalD, ArrivalA;
Nf_Mat_t * pD, * pA;
// assign fanins matches
Nf_Obj_t * pBestF[NF_LEAF_MAX];
for ( i = 0; i < nFans; i++ )
pBestF[i] = Nf_ManObj( p, pFans[i] );
// special cases
if ( nFans == 0 )
{
int Const = (iFuncLit == 1);
assert( iFuncLit == 0 || iFuncLit == 1 );
for ( c = 0; c < 2; c++ )
{
pD = Nf_ObjMatchD( p, iObj, c );
pA = Nf_ObjMatchA( p, iObj, c );
pD->D = pA->D = 0;
pD->A = pA->A = p->pCells[c ^ Const].Area;
pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pA->Gate = c ^ Const;
pD->Conf = pA->Conf = 0;
}
return;
}
if ( nFans == 1 )
{
int Const = (iFuncLit == 3);
assert( iFuncLit == 2 || iFuncLit == 3 );
for ( c = 0; c < 2; c++ )
{
pD = Nf_ObjMatchD( p, iObj, c );
pA = Nf_ObjMatchA( p, iObj, c );
pD->D = pA->D = pBestF[0]->M[c ^ !Const][0].D + p->pCells[2 + (c ^ Const)].Delays[0];
pD->A = pA->A = pBestF[0]->M[c ^ !Const][0].A + p->pCells[2 + (c ^ Const)].Area;
pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pA->Gate = 2 + (c ^ Const);
pD->Conf = pA->Conf = 0;
}
return;
}
// consider matches of this function
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Mio_Cell_t* pC = Nf_ManCell( p, Info >> 8 );
int Type = (Info >> 4) & 15;
int fCompl = (Info & 1) ^ fComplExt;
char * pInfo = Vec_StrEntryP( p->vMemStore, Offset );
float Required = Nf_ObjRequired( p, iObj, fCompl );
Nf_Mat_t * pD = &pBest->M[fCompl][0];
Nf_Mat_t * pA = &pBest->M[fCompl][1];
assert( nFans == (int)pC->nFanins );
// if ( iObj == 9 && fCompl == 0 && i == 192 )
// Nf_StoPrintOne( p, -1, Abc_Lit2Var(iFuncLit), i, pC, Type, fCompl, pInfo );
if ( Type == NF_PRIME )
{
float Area = pC->Area, Delay = 0;
for ( k = 0; k < nFans; k++ )
{
iFanin = Abc_Lit2Var((int)pInfo[k]);
fComplF = Abc_LitIsCompl((int)pInfo[k]);
ArrivalD = pBestF[k]->M[fComplF][0].D;
ArrivalA = pBestF[k]->M[fComplF][1].D;
if ( ArrivalA + pC->Delays[iFanin] < Required + Epsilon && Required != NF_INFINITY )
{
Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][1].A;
}
else
{
// assert( ArrivalD + pC->Delays[iFanin] < Required + Epsilon );
if ( pD->D < NF_INFINITY && pA->D < NF_INFINITY && ArrivalD + pC->Delays[iFanin] >= Required + Epsilon )
break;
Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][0].A;
}
}
if ( k < nFans )
continue;
if ( p->fUseEla )
{
Nf_Mat_t Temp, * pTemp = &Temp;
memset( pTemp, 0, sizeof(Nf_Mat_t) );
pTemp->D = Delay;
pTemp->A = Area;
pTemp->CutH = Nf_CutHandle(pCutSet, pCut);
pTemp->Gate = pC->Id;
pTemp->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pD->Conf |= ((int)pInfo[k] << (k << 2));
pTemp->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
Area = Nf_MatchRef2Area(p, iObj, fCompl, pTemp );
}
// select best match
if ( pD->D > Delay )//+ Epsilon )
{
pD->D = Delay;
pD->A = Area;
pD->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pC->Id;
pD->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pD->Conf |= ((int)pInfo[k] << (k << 2));
pD->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
}
if ( pA->A > Area )//+ Epsilon )
{
pA->D = Delay;
pA->A = Area;
pA->CutH = Nf_CutHandle(pCutSet, pCut);
pA->Gate = pC->Id;
pA->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pA->Conf |= ((int)pInfo[k] << (k << 2));
pA->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
}
}
else if ( Type == NF_XOR )
{
int m, nMints = 1 << nFans;
for ( m = 0; m < nMints; m++ )
{
int fComplAll = fCompl;
// collect best fanin delays
float Area = pC->Area, Delay = 0;
for ( k = 0; k < nFans; k++ )
{
assert( !Abc_LitIsCompl((int)pInfo[k]) );
iFanin = Abc_Lit2Var((int)pInfo[k]);
fComplF = ((m >> k) & 1);
ArrivalD = pBestF[k]->M[fComplF][0].D;
ArrivalA = pBestF[k]->M[fComplF][1].D;
if ( ArrivalA + pC->Delays[iFanin] <= Required && Required != NF_INFINITY )
{
Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][1].A;
}
else
{
assert( ArrivalD + pC->Delays[iFanin] < Required + Epsilon );
Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][0].A;
}
fComplAll ^= fComplF;
}
pD = &pBest->M[fComplAll][0];
pA = &pBest->M[fComplAll][1];
if ( pD->D > Delay )
{
pD->D = Delay;
pD->A = Area;
pD->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pC->Id;
pD->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pD->Conf |= Abc_LitNotCond((int)pInfo[k], (m >> k) & 1) << (k << 2);
pD->Conf |= (Abc_Var2Lit(k, (m >> k) & 1) << (Abc_Lit2Var((int)pInfo[k]) << 2));
}
if ( pA->A > Area )
{
pA->D = Delay;
pA->A = Area;
pA->CutH = Nf_CutHandle(pCutSet, pCut);
pA->Gate = pC->Id;
pA->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pA->Conf |= Abc_LitNotCond((int)pInfo[k], (m >> k) & 1) << (k << 2);
pA->Conf |= (Abc_Var2Lit(k, (m >> k) & 1) << (Abc_Lit2Var((int)pInfo[k]) << 2));
}
}
}
else if ( Type == NF_ANDOR )
{
float Area = pC->Area, Delay = 0;
int g, Conf = 0, nGroups = (int)*pInfo++;
for ( g = 0; g < nGroups; g++ )
{
int nSizeAll = (int)*pInfo++;
int nSizeNeg = (int)*pInfo++;
float ArrivalD, ArrivalA;
for ( k = 0; k < nSizeAll; k++ )
{
fComplF = Abc_LitIsCompl((int)pInfo[k]);
iFanin = Abc_Lit2Var((int)pInfo[k]);
ArrivalD = pBestF[k]->M[fComplF][0].D;
ArrivalA = pBestF[k]->M[fComplF][1].D;
if ( ArrivalA + pC->Delays[iFanin] < Required + Epsilon && Required != NF_INFINITY )
{
Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][1].A;
}
else
{
assert( ArrivalD + pC->Delays[iFanin] < Required + Epsilon );
Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
Area += pBestF[k]->M[fComplF][0].A;
}
// Conf |= Abc_LitNotCond((int)pInfo[k], 0) << (iFanin << 2);
Conf |= Abc_Var2Lit(iFanin, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2);
}
pInfo += nSizeAll;
}
assert( Conf > 0 );
if ( pD->D > Delay )
{
pD->D = Delay;
pD->A = Area;
pD->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pC->Id;
pD->Conf = Conf;
}
if ( pA->A > Area )
{
pA->D = Delay;
pA->A = Area;
pA->CutH = Nf_CutHandle(pCutSet, pCut);
pA->Gate = pC->Id;
pA->Conf = Conf;
}
}
}
/*
Nf_ManCutMatchprintf( p, iObj, 0, &pBest->M[0][0] );
Nf_ManCutMatchprintf( p, iObj, 0, &pBest->M[0][1] );
Nf_ManCutMatchprintf( p, iObj, 1, &pBest->M[1][0] );
Nf_ManCutMatchprintf( p, iObj, 1, &pBest->M[1][1] );
*/
}
static inline void Nf_ObjPrepareCi( Nf_Man_t * p, int iObj )
{
Nf_Mat_t * pD = Nf_ObjMatchD( p, iObj, 1 );
Nf_Mat_t * pA = Nf_ObjMatchA( p, iObj, 1 );
pD->fCompl = 1;
pD->D = p->InvDelay;
pD->A = p->InvArea;
pA->fCompl = 1;
pA->D = p->InvDelay;
pA->A = p->InvArea;
Nf_ObjMatchD( p, iObj, 0 )->fBest = 1;
Nf_ObjMatchD( p, iObj, 1 )->fBest = 1;
}
static inline void Nf_ObjPrepareBuf( Nf_Man_t * p, Gia_Obj_t * pObj )
{
// get fanin info
int iObj = Gia_ObjId( p->pGia, pObj );
int iFanin = Gia_ObjFaninId0( pObj, iObj );
Nf_Mat_t * pDf = Nf_ObjMatchD( p, iFanin, Gia_ObjFaninC0(pObj) );
Nf_Mat_t * pAf = Nf_ObjMatchA( p, iFanin, Gia_ObjFaninC0(pObj) );
// set the direct phase
Nf_Mat_t * pDp = Nf_ObjMatchD( p, iObj, 0 );
Nf_Mat_t * pAp = Nf_ObjMatchA( p, iObj, 0 );
Nf_Mat_t * pDn = Nf_ObjMatchD( p, iObj, 1 );
Nf_Mat_t * pAn = Nf_ObjMatchA( p, iObj, 1 );
assert( Gia_ObjIsBuf(pObj) );
memset( Nf_ManObj(p, iObj), 0, sizeof(Nf_Obj_t) );
// set the direct phase
pDp->D = pAp->D = pDf->D;
pDp->A = pAp->A = pDf->A; // do not pass flow???
pDp->fBest = 1;
// set the inverted phase
pDn->D = pAn->D = pDf->D + p->InvDelay;
pDn->A = pAn->A = pDf->A + p->InvArea;
pDn->fCompl = pAn->fCompl = 1;
pDn->fBest = 1;
}
static inline float Nf_CutRequired( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet )
{
Mio_Cell_t * pCell = Nf_ManCell( p, pM->Gate );
int * pCut = Nf_CutFromHandle( pCutSet, pM->CutH );
int * pFans = Nf_CutLeaves(pCut);
int i, nFans = Nf_CutSize(pCut);
float Arrival = 0, Required = 0;
for ( i = 0; i < nFans; i++ )
{
int iLit = Nf_CutConfLit( pM->Conf, i );
int iFanin = pFans[ Abc_Lit2Var(iLit) ];
int fCompl = Abc_LitIsCompl( iLit );
float Arr = Nf_ManObj(p, iFanin)->M[fCompl][0].D + pCell->Delays[i];
float Req = Nf_ObjRequired(p, iFanin, fCompl);
Arrival = Abc_MaxInt( Arrival, Arr );
if ( Req < NF_INFINITY )
Required = Abc_MaxInt( Required, Req + pCell->Delays[i] );
}
return Abc_MaxFloat( Required + 2*p->InvDelay, Arrival );
}
static inline void Nf_ObjComputeRequired( Nf_Man_t * p, int iObj )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
int c, * pCutSet = Nf_ObjCutSet( p, iObj );
for ( c = 0; c < 2; c++ )
if ( Nf_ObjRequired(p, iObj, c) == NF_INFINITY )
Nf_ObjSetRequired( p, iObj, c, Nf_CutRequired(p, &pBest->M[c][0], pCutSet) );
}
void Nf_ManCutMatch( Nf_Man_t * p, int iObj )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
Nf_Mat_t * pDp = &pBest->M[0][0];
Nf_Mat_t * pDn = &pBest->M[1][0];
Nf_Mat_t * pAp = &pBest->M[0][1];
Nf_Mat_t * pAn = &pBest->M[1][1];
float FlowRefP = Nf_ObjFlowRefs(p, iObj, 0);
float FlowRefN = Nf_ObjFlowRefs(p, iObj, 1);
float Epsilon = p->pPars->Epsilon;
int i, Index, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
float ValueBeg[2] = {0}, ValueEnd[2] = {0}, Required[2] = {0};
if ( p->Iter )
{
Nf_ObjComputeRequired( p, iObj );
Required[0] = Nf_ObjRequired( p, iObj, 0 );
Required[1] = Nf_ObjRequired( p, iObj, 1 );
}
if ( p->fUseEla && Nf_ObjMapRefNum(p, iObj, 0) > 0 )
ValueBeg[0] = Nf_MatchDeref2_rec( p, iObj, 0, Nf_ObjMatchBest(p, iObj, 0) );
if ( p->fUseEla && Nf_ObjMapRefNum(p, iObj, 1) > 0 )
ValueBeg[1] = Nf_MatchDeref2_rec( p, iObj, 1, Nf_ObjMatchBest(p, iObj, 1) );
memset( pBest, 0, sizeof(Nf_Obj_t) );
pDp->D = pDp->A = NF_INFINITY;
pDn->D = pDn->A = NF_INFINITY;
pAp->D = pAp->A = NF_INFINITY;
pAn->D = pAn->A = NF_INFINITY;
Nf_SetForEachCut( pCutSet, pCut, i )
{
if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
continue;
assert( !Nf_CutIsTriv(pCut, iObj) );
assert( Nf_CutSize(pCut) <= p->pPars->nLutSize );
assert( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) );
Nf_ManCutMatchOne( p, iObj, pCut, pCutSet );
}
/*
if ( 18687 == iObj )
{
printf( "Obj %6d (%f %f):\n", iObj, Required[0], Required[1] );
Nf_ManCutMatchprintf( p, iObj, 0, &pBest->M[0][0] );
Nf_ManCutMatchprintf( p, iObj, 0, &pBest->M[0][1] );
Nf_ManCutMatchprintf( p, iObj, 1, &pBest->M[1][0] );
Nf_ManCutMatchprintf( p, iObj, 1, &pBest->M[1][1] );
printf( "\n" );
}
*/
// divide by ref count
pDp->A /= FlowRefP;
pAp->A /= FlowRefP;
pDn->A /= FlowRefN;
pAn->A /= FlowRefN;
// add the inverters
//assert( pDp->D < NF_INFINITY || pDn->D < NF_INFINITY );
if ( pDp->D > pDn->D + p->InvDelay + Epsilon )
{
*pDp = *pDn;
pDp->D += p->InvDelay;
pDp->A += p->InvArea;
pDp->fCompl = 1;
if ( pAp->D == NF_INFINITY )
*pAp = *pDp;
//printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 1 );
}
else if ( pDn->D > pDp->D + p->InvDelay + Epsilon )
{
*pDn = *pDp;
pDn->D += p->InvDelay;
pDn->A += p->InvArea;
pDn->fCompl = 1;
if ( pAn->D == NF_INFINITY )
*pAn = *pDn;
//printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 0 );
}
//assert( pAp->A < NF_INFINITY || pAn->A < NF_INFINITY );
// try replacing pos with neg
if ( pAp->D == NF_INFINITY || (pAp->A > pAn->A + p->InvArea + Epsilon && pAn->D + p->InvDelay + Epsilon < Required[1]) )
{
assert( p->Iter > 0 );
*pAp = *pAn;
pAp->D += p->InvDelay;
pAp->A += p->InvArea;
pAp->fCompl = 1;
if ( pDp->D == NF_INFINITY )
*pDp = *pAp;
//printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 1 );
}
// try replacing neg with pos
else if ( pAn->D == NF_INFINITY || (pAn->A > pAp->A + p->InvArea + Epsilon && pAp->D + p->InvDelay + Epsilon < Required[0]) )
{
assert( p->Iter > 0 );
*pAn = *pAp;
pAn->D += p->InvDelay;
pAn->A += p->InvArea;
pAn->fCompl = 1;
if ( pDn->D == NF_INFINITY )
*pDn = *pAn;
//printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 0 );
}
if ( pDp->D == NF_INFINITY )
printf( "Object %d has pDp unassigned.\n", iObj );
if ( pDn->D == NF_INFINITY )
printf( "Object %d has pDn unassigned.\n", iObj );
if ( pAp->D == NF_INFINITY )
printf( "Object %d has pAp unassigned.\n", iObj );
if ( pAn->D == NF_INFINITY )
printf( "Object %d has pAn unassigned.\n", iObj );
pDp->A = Abc_MinFloat( pDp->A, NF_INFINITY/1000000 );
pDn->A = Abc_MinFloat( pDn->A, NF_INFINITY/1000000 );
pAp->A = Abc_MinFloat( pAp->A, NF_INFINITY/1000000 );
pAn->A = Abc_MinFloat( pAn->A, NF_INFINITY/1000000 );
assert( pDp->D < NF_INFINITY );
assert( pDn->D < NF_INFINITY );
assert( pAp->D < NF_INFINITY );
assert( pAn->D < NF_INFINITY );
assert( pDp->A < NF_INFINITY );
assert( pDn->A < NF_INFINITY );
assert( pAp->A < NF_INFINITY );
assert( pAn->A < NF_INFINITY );
//printf( "%16f %16f %16f %16f\n", pDp->A, pDn->A, pAp->A, pAn->A );
// assert ( pDp->A < 1000 );
if ( p->fUseEla )
{
// set the first good cut
Index = (pAp->D != NF_INFINITY && pAp->D < Nf_ObjRequired(p, iObj, 0) + Epsilon);
assert( !pDp->fBest && !pAp->fBest );
pBest->M[0][Index].fBest = 1;
assert( pDp->fBest != pAp->fBest );
// set the second good cut
Index = (pAn->D != NF_INFINITY && pAn->D < Nf_ObjRequired(p, iObj, 1) + Epsilon);
assert( !pDn->fBest && !pAn->fBest );
pBest->M[1][Index].fBest = 1;
assert( pDn->fBest != pAn->fBest );
// reference if needed
if ( Nf_ObjMapRefNum(p, iObj, 0) > 0 )
ValueEnd[0] = Nf_MatchRef2_rec( p, iObj, 0, Nf_ObjMatchBest(p, iObj, 0), NULL );
if ( Nf_ObjMapRefNum(p, iObj, 1) > 0 )
ValueEnd[1] = Nf_MatchRef2_rec( p, iObj, 1, Nf_ObjMatchBest(p, iObj, 1), NULL );
// assert( ValueBeg[0] > ValueEnd[0] - Epsilon );
// assert( ValueBeg[1] > ValueEnd[1] - Epsilon );
}
}
void Nf_ManComputeMapping( Nf_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Nf_ObjPrepareBuf( p, pObj );
else
Nf_ManCutMatch( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManSetMapRefsGate( Nf_Man_t * p, int iObj, float Required, Nf_Mat_t * pM )
{
int k, iVar, fCompl;
Mio_Cell_t * pCell = Nf_ManCell( p, pM->Gate );
int * pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
Nf_ObjMapRefInc( p, iVar, fCompl );
Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] );
}
assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
// update global stats
p->pPars->MapArea += pCell->Area;
p->pPars->Edge += Nf_CutSize(pCut);
p->pPars->Area++;
// update status of the gate
assert( pM->fBest == 0 );
pM->fBest = 1;
}
int Nf_ManSetMapRefs( Nf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
float * pFlowRefs = Vec_FltArray( &p->vFlowRefs );
int * pMapRefs = Vec_IntArray( &p->vMapRefs );
float Epsilon = p->pPars->Epsilon;
int nLits = 2*Gia_ManObjNum(p->pGia);
int i, c, Id, nRefs[2];
Nf_Mat_t * pD, * pA, * pM;
Nf_Mat_t * pDs[2], * pAs[2], * pMs[2];
Gia_Obj_t * pObj;
float Required, Requireds[2];
// check references
assert( !p->fUseEla );
memset( pMapRefs, 0, sizeof(int) * nLits );
Vec_FltFill( &p->vRequired, nLits, NF_INFINITY );
// for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
// assert( !Nf_ObjMapRefNum(p, i, 0) && !Nf_ObjMapRefNum(p, i, 1) );
// compute delay
p->pPars->MapDelay = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
if ( Required == NF_INFINITY )
{
Nf_ManCutMatchprintf( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) ) );
}
p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required );
}
// check delay target
if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->MapDelayTarget != -1 )
{
if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon )
p->pPars->MapDelay = p->pPars->MapDelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay );
}
// set required times
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay;
Nf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required );
Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
}
// compute area and edges
p->nInvs = 0;
p->pPars->MapArea = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
{
Nf_ObjMapRefInc( p, i, 0 );
Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelay );
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) );
Nf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj));
continue;
}
// skip if this node is not used
for ( c = 0; c < 2; c++ )
{
nRefs[c] = Nf_ObjMapRefNum(p, i, c);
//if ( Nf_ObjMatchD( p, i, c )->fCompl )
// printf( "Match D of node %d has inv in phase %d.\n", i, c );
//if ( Nf_ObjMatchA( p, i, c )->fCompl )
// printf( "Match A of node %d has inv in phase %d.\n", i, c );
}
if ( !nRefs[0] && !nRefs[1] )
continue;
// consider two cases
if ( nRefs[0] && nRefs[1] )
{
// find best matches for both phases
for ( c = 0; c < 2; c++ )
{
Requireds[c] = Nf_ObjRequired( p, i, c );
assert( Requireds[c] < NF_INFINITY );
pDs[c] = Nf_ObjMatchD( p, i, c );
pAs[c] = Nf_ObjMatchA( p, i, c );
pMs[c] = (pAs[c]->D < Requireds[c] + Epsilon) ? pAs[c] : pDs[c];
}
// swap complemented matches
if ( pMs[0]->fCompl && pMs[1]->fCompl )
{
pMs[0]->fCompl = pMs[1]->fCompl = 0;
ABC_SWAP( Nf_Mat_t *, pMs[0], pMs[1] );
}
// check if intervers are involved
if ( !pMs[0]->fCompl && !pMs[1]->fCompl )
{
// no inverters
for ( c = 0; c < 2; c++ )
Nf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] );
}
else
{
// one interver
assert( !pMs[0]->fCompl || !pMs[1]->fCompl );
c = pMs[1]->fCompl;
assert( pMs[c]->fCompl && !pMs[!c]->fCompl );
//printf( "Using inverter at node %d in phase %d\n", i, c );
// update this phase phase
pM = pMs[c];
pM->fBest = 1;
Required = Requireds[c];
// update opposite phase
Nf_ObjMapRefInc( p, i, !c );
Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );
// select oppositve phase
Required = Nf_ObjRequired( p, i, !c );
assert( Required < NF_INFINITY );
pD = Nf_ObjMatchD( p, i, !c );
pA = Nf_ObjMatchA( p, i, !c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
assert( !pM->fCompl );
// account for the inverter
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
// create gate
Nf_ManSetMapRefsGate( p, i, Required, pM );
}
}
else
{
c = (int)(nRefs[1] > 0);
assert( nRefs[c] && !nRefs[!c] );
// consider this phase
Required = Nf_ObjRequired( p, i, c );
assert( Required < NF_INFINITY );
pD = Nf_ObjMatchD( p, i, c );
pA = Nf_ObjMatchA( p, i, c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
if ( pM->fCompl ) // use inverter
{
p->nInvs++;
//printf( "Using inverter at node %d in phase %d\n", i, c );
pM->fBest = 1;
// update opposite phase
Nf_ObjMapRefInc( p, i, !c );
Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );
// select oppositve phase
Required = Nf_ObjRequired( p, i, !c );
assert( Required < NF_INFINITY );
pD = Nf_ObjMatchD( p, i, !c );
pA = Nf_ObjMatchA( p, i, !c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
assert( !pM->fCompl );
// account for the inverter
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
}
// create gate
Nf_ManSetMapRefsGate( p, i, Required, pM );
}
// the result of this:
// - only one phase can be implemented as inverter of the other phase
// - required times are propagated correctly
// - references are set correctly
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
Nf_ObjMapRefInc( p, Id, 0 );
Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay );
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
// blend references
for ( i = 0; i < nLits; i++ )
// pFlowRefs[i] = Abc_MaxFloat(1.0, pMapRefs[i]);
pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]));
// pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
// memset( pMapRefs, 0, sizeof(int) * nLits );
return p->pPars->Area;
}
Gia_Man_t * Nf_ManDeriveMapping( Nf_Man_t * p )
{
Vec_Int_t * vMapping;
Nf_Mat_t * pM;
int i, k, c, Id, iLit, * pCut;
assert( p->pGia->vCellMapping == NULL );
vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 );
// create CI inverters
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 );
// create internal nodes
Gia_ManForEachAndId( p->pGia, i )
{
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i);
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 );
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 );
continue;
}
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
// printf( "Using %d %d\n", i, c );
pM = Nf_ObjMatchBest( p, i, c );
// remember inverter
if ( pM->fCompl )
{
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 );
continue;
}
// Nf_ManCutMatchprintf( p, i, c, pM );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
// create mapping
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Nf_CutSize(pCut) );
Nf_CutForEachLit( pCut, pM->Conf, iLit, k )
Vec_IntPush( vMapping, iLit );
Vec_IntPush( vMapping, pM->Gate );
}
}
// assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vCellMapping = vMapping;
return p->pGia;
}
void Nf_ManUpdateStats( Nf_Man_t * p )
{
Nf_Mat_t * pM;
Gia_Obj_t * pObj;
Mio_Cell_t * pCell;
int i, c, Id, * pCut;
p->pPars->MapDelay = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
float Delay = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Delay );
}
p->pPars->MapArea = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndId( p->pGia, i )
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
pM = Nf_ObjMatchBest( p, i, c );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
pCell = Nf_ManCell( p, pM->Gate );
assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
p->pPars->MapArea += pCell->Area;
p->pPars->Edge += Nf_CutSize(pCut);
p->pPars->Area++;
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
}
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
/*
static inline Nf_Mat_t * Nf_ObjMatchBestReq( Nf_Man_t * p, int i, int c, float r )
{
Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c);
Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c);
assert( !pD->fBest && !pA->fBest );
assert( Nf_ObjMapRefNum(p, i, c) == 0 );
if ( pA->D < r + p->pPars->Epsilon )
return pA;
return pD;
}
float Nf_MatchDeref_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
int k, iVar, fCompl, * pCut;
float Area = 0;
int Value = pM->fBest;
pM->fBest = 0;
if ( pM->fCompl )
{
assert( Nf_ObjMapRefNum(p, i, !c) > 0 );
if ( !Nf_ObjMapRefDec(p, i, !c) )
Area += Nf_MatchDeref_rec( p, i, !c, Nf_ObjMatchBest(p, i, !c) );
return Area + p->InvArea;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
assert( Value == 1 );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 );
if ( !Nf_ObjMapRefDec(p, iVar, fCompl) )
Area += Nf_MatchDeref_rec( p, iVar, fCompl, Nf_ObjMatchBest(p, iVar, fCompl) );
}
return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRef_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, float Required, Vec_Int_t * vBackup )
{
int k, iVar, fCompl, * pCut;
float ReqFanin, Area = 0;
assert( pM->fBest == 0 );
if ( vBackup == NULL )
pM->fBest = 1;
if ( pM->fCompl )
{
ReqFanin = Required - p->InvDelay;
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) );
assert( Nf_ObjMapRefNum(p, i, !c) >= 0 );
if ( !Nf_ObjMapRefInc(p, i, !c) )
Area += Nf_MatchRef_rec( p, i, !c, Nf_ObjMatchBestReq(p, i, !c, ReqFanin), ReqFanin, vBackup );
return Area + p->InvArea;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
ReqFanin = Required - Nf_ManCell(p, pM->Gate)->Delays[k];
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) );
assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 );
if ( !Nf_ObjMapRefInc(p, iVar, fCompl) )
Area += Nf_MatchRef_rec( p, iVar, fCompl, Nf_ObjMatchBestReq(p, iVar, fCompl, ReqFanin), ReqFanin, vBackup );
}
return Area + Nf_ManCell(p, pM->Gate)->Area;
}
float Nf_MatchRefArea( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, float Required )
{
float Area; int iLit, k;
Vec_IntClear( &p->vBackup );
Area = Nf_MatchRef_rec( p, i, c, pM, Required, &p->vBackup );
Vec_IntForEachEntry( &p->vBackup, iLit, k )
{
assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 );
Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) );
}
return Area;
}
void Nf_ManElaBestMatchOne( Nf_Man_t * p, int iObj, int c, int * pCut, int * pCutSet, Nf_Mat_t * pRes, float Required )
{
Nf_Mat_t Mb, * pMb = &Mb;
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
int * pFans = Nf_CutLeaves(pCut);
int nFans = Nf_CutSize(pCut);
int iFuncLit = Nf_CutFunc(pCut);
int fComplExt = Abc_LitIsCompl(iFuncLit);
float Epsilon = p->pPars->Epsilon;
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
int i, k, Info, Offset, iFanin, fComplF;
float ArrivalD, ArrivalA;
// assign fanins matches
Nf_Obj_t * pBestF[NF_LEAF_MAX];
for ( i = 0; i < nFans; i++ )
pBestF[i] = Nf_ManObj( p, pFans[i] );
// special cases
if ( nFans < 2 )
{
*pRes = *Nf_ObjMatchBestReq( p, iObj, c, Required );
return;
}
// consider matches of this function
memset( pMb, 0, sizeof(Nf_Mat_t) );
pMb->D = pMb->A = NF_INFINITY;
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Mio_Cell_t* pC = Nf_ManCell( p, Info >> 8 );
int Type = (Info >> 4) & 15;
int fCompl = (Info & 1) ^ fComplExt;
char * pInfo = Vec_StrEntryP( p->vMemStore, Offset );
Nf_Mat_t * pD = &pBest->M[fCompl][0];
Nf_Mat_t * pA = &pBest->M[fCompl][1];
assert( nFans == (int)pC->nFanins );
if ( fCompl != c )
continue;
if ( Type == NF_PRIME )
{
float Delay = 0;
for ( k = 0; k < nFans; k++ )
{
iFanin = Abc_Lit2Var((int)pInfo[k]);
fComplF = Abc_LitIsCompl((int)pInfo[k]);
ArrivalD = pBestF[k]->M[fComplF][0].D;
ArrivalA = pBestF[k]->M[fComplF][1].D;
if ( ArrivalA + pC->Delays[iFanin] < Required + Epsilon && Required != NF_INFINITY )
Delay = Abc_MaxFloat( Delay, ArrivalA + pC->Delays[iFanin] );
else
Delay = Abc_MaxFloat( Delay, ArrivalD + pC->Delays[iFanin] );
if ( Delay > Required + Epsilon )
break;
}
if ( k < nFans )
continue;
// create match
pMb->D = Delay;
pMb->A = -1;
pMb->CutH = Nf_CutHandle(pCutSet, pCut);
pMb->Gate = pC->Id;
pMb->Conf = 0;
for ( k = 0; k < nFans; k++ )
// pD->Conf |= ((int)pInfo[k] << (k << 2));
pMb->Conf |= (Abc_Var2Lit(k, Abc_LitIsCompl((int)pInfo[k])) << (Abc_Lit2Var((int)pInfo[k]) << 2));
// compute area
pMb->A = Nf_MatchRefArea( p, iObj, c, pMb, Required );
// compare
if ( pRes->A > pMb->A + Epsilon || (pRes->A == pMb->A && pRes->D > pMb->D + Epsilon) )
*pRes = *pMb;
}
}
}
void Nf_ManElaBestMatch( Nf_Man_t * p, int iObj, int c, Nf_Mat_t * pRes, float Required )
{
int k, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
memset( pRes, 0, sizeof(Nf_Mat_t) );
pRes->D = pRes->A = NF_INFINITY;
Nf_SetForEachCut( pCutSet, pCut, k )
{
if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
continue;
Nf_ManElaBestMatchOne( p, iObj, c, pCut, pCutSet, pRes, Required );
}
}
// the best match is stored in pA provided that it satisfies pA->D < req
// area is never compared
void Nf_ManComputeMappingEla( Nf_Man_t * p )
{
Gia_Obj_t * pObj;
Mio_Cell_t * pCell;
Nf_Mat_t Mb, * pMb = &Mb, * pM;
float Epsilon = p->pPars->Epsilon;
float AreaBef, AreaAft, Required, MapArea;
int nLits = 2*Gia_ManObjNum(p->pGia);
int i, c, iVar, Id, fCompl, k, * pCut;
Vec_FltFill( &p->vRequired, nLits, NF_INFINITY );
// compute delay
p->pPars->MapDelay = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required );
}
// check delay target
if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->MapDelayTarget != -1 )
{
if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon )
p->pPars->MapDelay = p->pPars->MapDelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay );
}
// set required times
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay;
Nf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required );
Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
}
// compute area and edges
MapArea = p->pPars->MapArea;
p->pPars->MapArea = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverseId( p->pGia, i )
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
pM = Nf_ObjMatchBest( p, i, c );
Required = Nf_ObjRequired( p, i, c );
assert( pM->D < Required + Epsilon );
// try different cuts at this node and find best match
Vec_IntClear( &p->vBackup2 );
AreaBef = Nf_MatchDeref_rec( p, i, c, pM );
Nf_ManElaBestMatch( p, i, c, pMb, Required );
AreaAft = Nf_MatchRef_rec( p, i, c, pMb, Required, NULL );
assert( pMb->A == AreaAft );
assert( AreaBef + Epsilon > AreaAft );
MapArea += AreaAft - AreaBef;
// printf( "%8.2f %8.2f\n", AreaBef, AreaAft );
// set match
assert( pMb->D < Required + Epsilon );
assert( pMb->fBest == 0 );
*Nf_ObjMatchA(p, i, c) = *pMb;
assert( Nf_ObjMatchA(p, i, c) == Nf_ObjMatchBest( p, i, c ) );
// count status
pCell = Nf_ManCell( p, pMb->Gate );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pMb->CutH );
Nf_CutForEachVar( pCut, pMb->Conf, iVar, fCompl, k )
Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] );
p->pPars->MapArea += pCell->Area;
p->pPars->Edge += Nf_CutSize(pCut);
p->pPars->Area++;
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
Nf_ObjMapRefInc( p, Id, 0 );
Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay );
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
}
// Nf_ManUpdateStats( p );
if ( !(MapArea < p->pPars->MapArea + Epsilon && MapArea + Epsilon > p->pPars->MapArea) )
printf( "Mismatch: Estimated = %.2f Real = %.2f\n", MapArea, p->pPars->MapArea );
// assert( MapArea < p->pPars->MapArea + Epsilon && MapArea + Epsilon > p->pPars->MapArea );
Nf_ManPrintStats( p, "Ela " );
}
*/
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManSetDefaultPars( Jf_Par_t * pPars ) void Nf_ManSetDefaultPars( Jf_Par_t * pPars )
{ {
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 16;
pPars->nProcNum = 0;
pPars->nRounds = 3;
pPars->nRoundsEla = 0;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 1;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = NF_LEAF_MAX;
pPars->nCutNumMax = NF_CUT_MAX;
pPars->MapDelayTarget = -1;
pPars->Epsilon = (float)0.01;
} }
Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{ {
Gia_Man_t * pNew = NULL, * pCls;
Nf_Man_t * p; int i, Id;
if ( Gia_ManHasChoices(pGia) )
pPars->fCoarsen = 0;
pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
p = Nf_StoCreate( pCls, pPars );
// if ( pPars->fVeryVerbose )
// Nf_StoPrint( p, pPars->fVeryVerbose );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Nf_ManPrintInit( p );
Nf_ManComputeCuts( p );
Nf_ManPrintQuit( p );
Gia_ManForEachCiId( p->pGia, Id, i )
Nf_ObjPrepareCi( p, Id );
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
{
Nf_ManComputeMapping( p );
Nf_ManSetMapRefs( p );
Nf_ManPrintStats( p, p->Iter ? "Area " : "Delay" );
}
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
{
Nf_ManComputeMapping( p );
Nf_ManUpdateStats( p );
Nf_ManPrintStats( p, "Ela " );
}
pNew = Nf_ManDeriveMapping( p );
// Gia_ManMappingVerify( pNew );
Nf_StoDelete( p );
if ( pCls != pGia )
Gia_ManStop( pCls );
if ( pNew == NULL )
return Gia_ManDup( pGia ); return Gia_ManDup( pGia );
return pNew;
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
PackageName [Scalable AIG package.] PackageName [Scalable AIG package.]
Synopsis [Cut computation.] Synopsis [AIG structuring.]
Author [Alan Mishchenko] Author [Alan Mishchenko]
...@@ -19,6 +19,9 @@ ...@@ -19,6 +19,9 @@
***********************************************************************/ ***********************************************************************/
#include "gia.h" #include "gia.h"
#include "misc/util/utilNam.h"
#include "misc/vec/vecWec.h"
#include "misc/tim/tim.h"
ABC_NAMESPACE_IMPL_START ABC_NAMESPACE_IMPL_START
...@@ -26,15 +29,1343 @@ ABC_NAMESPACE_IMPL_START ...@@ -26,15 +29,1343 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS /// /// DECLARATIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
#define STR_SUPER 100
enum {
STR_NONE = 0,
STR_CONST0 = 1,
STR_PI = 2,
STR_AND = 3,
STR_XOR = 4,
STR_MUX = 5,
STR_BUF = 6,
STR_PO = 7,
STR_UNUSED = 8
};
typedef struct Str_Obj_t_ Str_Obj_t;
struct Str_Obj_t_
{
unsigned Type : 4; // object type
unsigned nFanins : 28; // fanin count
int iOffset; // place where fanins are stored
int iTop; // top level MUX
int iCopy; // copy of this node
};
typedef struct Str_Ntk_t_ Str_Ntk_t;
struct Str_Ntk_t_
{
int nObjs; // object count
int nObjsAlloc; // alloc objects
Str_Obj_t * pObjs; // objects
Vec_Int_t vFanins; // object fanins
int nObjCount[STR_UNUSED];
int nTrees;
int nGroups;
int DelayGain;
};
typedef struct Str_Man_t_ Str_Man_t;
struct Str_Man_t_
{
// user data
Gia_Man_t * pOld; // manager
int nLutSize; // LUT size
int fCutMin; // cut minimization
// internal data
Str_Ntk_t * pNtk; // balanced network
// AIG under construction
Gia_Man_t * pNew; // newly constructed
Vec_Int_t * vDelays; // delays of each object
};
static inline Str_Obj_t * Str_NtkObj( Str_Ntk_t * p, int i ) { assert( i < p->nObjs ); return p->pObjs + i; }
static inline int Str_ObjFaninId( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_Lit2Var( Vec_IntEntry(&p->vFanins, pObj->iOffset + i) ); }
static inline Str_Obj_t * Str_ObjFanin( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Str_NtkObj( p, Str_ObjFaninId(p, pObj, i) ); }
static inline int Str_ObjFaninC( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_LitIsCompl( Vec_IntEntry(&p->vFanins, pObj->iOffset + i) ); }
static inline int Str_ObjFaninCopy( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_LitNotCond( Str_ObjFanin(p, pObj, i)->iCopy, Str_ObjFaninC(p, pObj, i) ); }
static inline int Str_ObjId( Str_Ntk_t * p, Str_Obj_t * pObj ) { return pObj - p->pObjs; }
#define Str_NtkManForEachObj( p, pObj ) \
for ( pObj = p->pObjs; Str_ObjId(p, pObj) < p->nObjs; pObj++ )
#define Str_NtkManForEachObjVec( vVec, p, pObj, i ) \
for ( i = 0; (i < Vec_IntSize(vVec)) && ((pObj) = Str_NtkObj(p, Vec_IntEntry(vVec,i))); i++ )
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS /// /// FUNCTION DEFINITIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Logic network manipulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_ObjCreate( Str_Ntk_t * p, int Type, int nFanins, int * pFanins )
{
Str_Obj_t * pObj = p->pObjs + p->nObjs; int i;
assert( p->nObjs < p->nObjsAlloc );
pObj->Type = Type;
pObj->nFanins = nFanins;
pObj->iOffset = Vec_IntSize(&p->vFanins);
pObj->iTop = pObj->iCopy = -1;
for ( i = 0; i < nFanins; i++ )
{
Vec_IntPush( &p->vFanins, pFanins[i] );
assert( pFanins[i] >= 0 );
}
p->nObjCount[Type]++;
return Abc_Var2Lit( p->nObjs++, 0 );
}
static inline Str_Ntk_t * Str_NtkCreate( int nObjsAlloc, int nFaninsAlloc )
{
Str_Ntk_t * p;
p = ABC_CALLOC( Str_Ntk_t, 1 );
p->pObjs = ABC_ALLOC( Str_Obj_t, nObjsAlloc );
p->nObjsAlloc = nObjsAlloc;
Str_ObjCreate( p, STR_CONST0, 0, NULL );
Vec_IntGrow( &p->vFanins, nFaninsAlloc );
return p;
}
static inline void Str_NtkDelete( Str_Ntk_t * p )
{
// printf( "Total delay gain = %d.\n", p->DelayGain );
ABC_FREE( p->vFanins.pArray );
ABC_FREE( p->pObjs );
ABC_FREE( p );
}
static inline void Str_NtkPs( Str_Ntk_t * p, abctime clk )
{
printf( "Network contains %d ands, %d xors, %d muxes (%d trees in %d groups). ",
p->nObjCount[STR_AND], p->nObjCount[STR_XOR], p->nObjCount[STR_MUX], p->nTrees, p->nGroups );
Abc_PrintTime( 1, "Time", clk );
}
static inline void Str_ObjReadGroup( Str_Ntk_t * p, Str_Obj_t * pObj, int * pnGroups, int * pnMuxes )
{
Str_Obj_t * pObj1, * pObj2;
*pnGroups = *pnMuxes = 0;
if ( pObj->iTop == 0 )
return;
pObj1 = Str_NtkObj( p, pObj->iTop );
pObj2 = Str_NtkObj( p, pObj1->iTop );
*pnMuxes = pObj1 - pObj + 1;
*pnGroups = (pObj2 - pObj + 1) / *pnMuxes;
}
static inline void Str_NtkPrintGroups( Str_Ntk_t * p )
{
Str_Obj_t * pObj;
int nGroups, nMuxes;
Str_NtkManForEachObj( p, pObj )
if ( pObj->Type == STR_MUX && pObj->iTop > 0 )
{
Str_ObjReadGroup( p, pObj, &nGroups, &nMuxes );
pObj += nGroups * nMuxes - 1;
printf( "%d x %d ", nGroups, nMuxes );
}
printf( "\n" );
}
Gia_Man_t * Str_NtkToGia( Gia_Man_t * pGia, Str_Ntk_t * p )
{
Gia_Man_t * pNew, * pTemp;
Str_Obj_t * pObj; int k;
assert( pGia->pMuxes == NULL );
pNew = Gia_ManStart( 3 * Gia_ManObjNum(pGia) / 2 );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
Gia_ManHashStart( pNew );
Str_NtkManForEachObj( p, pObj )
{
if ( pObj->Type == STR_PI )
pObj->iCopy = Gia_ManAppendCi( pNew );
else if ( pObj->Type == STR_AND )
{
pObj->iCopy = 1;
for ( k = 0; k < (int)pObj->nFanins; k++ )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
}
else if ( pObj->Type == STR_XOR )
{
pObj->iCopy = 0;
for ( k = 0; k < (int)pObj->nFanins; k++ )
pObj->iCopy = Gia_ManHashXor( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
}
else if ( pObj->Type == STR_MUX )
pObj->iCopy = Gia_ManHashMux( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
else if ( pObj->Type == STR_PO )
pObj->iCopy = Gia_ManAppendCo( pNew, Str_ObjFaninCopy(p, pObj, 0) );
else if ( pObj->Type == STR_CONST0 )
pObj->iCopy = 0;
else assert( 0 );
}
Gia_ManHashStop( pNew );
// assert( Gia_ManObjNum(pNew) <= Gia_ManObjNum(pGia) );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
pNew = Gia_ManCleanup( pTemp = pNew );
Gia_ManStop( pTemp );
return pNew;
}
/**Function*************************************************************
Synopsis [Constructs a normalized AIG without structural hashing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManDupMuxesNoHash( Gia_Man_t * p )
{
Gia_Man_t * pNew;
Gia_Obj_t * pObj, * pFan0, * pFan1, * pFanC;
int i, iLit0, iLit1, fCompl;
assert( p->pMuxes == NULL );
ABC_FREE( p->pRefs );
Gia_ManCreateRefs( p );
// discount nodes with one fanout pointed to by MUX type
Gia_ManForEachAnd( p, pObj, i )
{
if ( !Gia_ObjIsMuxType(pObj) )
continue;
Gia_ObjRefDec(p, Gia_ObjFanin0(pObj));
Gia_ObjRefDec(p, Gia_ObjFanin1(pObj));
}
// start the new manager
pNew = Gia_ManStart( Gia_ManObjNum(p) );
pNew->pName = Abc_UtilStrsav( p->pName );
pNew->pSpec = Abc_UtilStrsav( p->pSpec );
pNew->pMuxes = ABC_CALLOC( unsigned, pNew->nObjsAlloc );
Gia_ManFillValue(p);
Gia_ManConst0(p)->Value = 0;
Gia_ManForEachCi( p, pObj, i )
pObj->Value = Gia_ManAppendCi( pNew );
Gia_ManForEachAnd( p, pObj, i )
{
if ( !Gia_ObjRefNumId(p, i) )
continue;
if ( !Gia_ObjIsMuxType(pObj) )
pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
else if ( Gia_ObjRecognizeExor(pObj, &pFan0, &pFan1) )
{
iLit0 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0));
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1));
fCompl = Abc_LitIsCompl(iLit0) ^ Abc_LitIsCompl(iLit1);
pObj->Value = fCompl ^ Gia_ManAppendXorReal( pNew, Abc_LitRegular(iLit0), Abc_LitRegular(iLit1) );
}
else
{
pFanC = Gia_ObjRecognizeMux( pObj, &pFan1, &pFan0 );
iLit0 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0));
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1));
if ( iLit0 == iLit1 )
pObj->Value = iLit0;
else if ( Abc_Lit2Var(iLit0) == Abc_Lit2Var(iLit1) )
{
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFanC));
fCompl = Abc_LitIsCompl(iLit0) ^ Abc_LitIsCompl(iLit1);
pObj->Value = fCompl ^ Gia_ManAppendXorReal( pNew, Abc_LitRegular(iLit0), Abc_LitRegular(iLit1) );
}
else
pObj->Value = Gia_ManAppendMuxReal( pNew, Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFanC)), Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1)), Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0)) );
}
}
Gia_ManForEachCo( p, pObj, i )
pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) );
assert( !Gia_ManHasDangling(pNew) );
return pNew;
}
/**Function*************************************************************
Synopsis [Constructs AIG ordered for balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_MuxInputsCollect_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
if ( !pObj->fMark0 )
{
Vec_IntPush( vNodes, Gia_ObjId(p, pObj) );
return;
}
Vec_IntPush( vNodes, Gia_ObjFaninId2p(p, pObj) );
Str_MuxInputsCollect_rec( p, Gia_ObjFanin0(pObj), vNodes );
Str_MuxInputsCollect_rec( p, Gia_ObjFanin1(pObj), vNodes );
}
void Str_MuxInputsCollect( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_IntClear( vNodes );
Str_MuxInputsCollect_rec( p, pObj, vNodes );
pObj->fMark0 = 0;
}
void Str_MuxStructCollect_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
if ( !pObj->fMark0 )
return;
Str_MuxStructCollect_rec( p, Gia_ObjFanin0(pObj), vNodes );
Str_MuxStructCollect_rec( p, Gia_ObjFanin1(pObj), vNodes );
Vec_IntPush( vNodes, Gia_ObjId(p, pObj) );
}
void Str_MuxStructCollect( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_IntClear( vNodes );
Str_MuxStructCollect_rec( p, pObj, vNodes );
pObj->fMark0 = 0;
}
void Str_MuxStructDump_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Str_t * vStr )
{
if ( !pObj->fMark0 )
return;
Vec_StrPush( vStr, '[' );
Vec_StrPush( vStr, '(' );
Vec_StrPrintNum( vStr, Gia_ObjFaninId2p(p, pObj) );
Vec_StrPush( vStr, ')' );
Str_MuxStructDump_rec( p, Gia_ObjFaninC2(p, pObj) ? Gia_ObjFanin0(pObj) : Gia_ObjFanin1(pObj), vStr );
Vec_StrPush( vStr, '|' );
Str_MuxStructDump_rec( p, Gia_ObjFaninC2(p, pObj) ? Gia_ObjFanin1(pObj) : Gia_ObjFanin0(pObj), vStr );
Vec_StrPush( vStr, ']' );
}
void Str_MuxStructDump( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Str_t * vStr )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_StrClear( vStr );
Str_MuxStructDump_rec( p, pObj, vStr );
Vec_StrPush( vStr, '\0' );
pObj->fMark0 = 0;
}
int Str_ManMuxCountOne( char * p )
{
int Count = 0;
for ( ; *p; p++ )
Count += (*p == '[');
return Count;
}
Vec_Wec_t * Str_ManDeriveTrees( Gia_Man_t * p )
{
int fPrintStructs = 0;
Abc_Nam_t * pNames;
Vec_Wec_t * vGroups;
Vec_Str_t * vStr;
Gia_Obj_t * pObj, * pFanin;
int i, iStructId, fFound;
assert( p->pMuxes != NULL );
// mark MUXes whose only fanout is a MUX
ABC_FREE( p->pRefs );
Gia_ManCreateRefs( p );
Gia_ManForEachMuxId( p, i )
{
pObj = Gia_ManObj(p, i);
pFanin = Gia_ObjFanin0(pObj);
if ( Gia_ObjIsMux(p, pFanin) && Gia_ObjRefNum(p, pFanin) == 1 )
pFanin->fMark0 = 1;
pFanin = Gia_ObjFanin1(pObj);
if ( Gia_ObjIsMux(p, pFanin) && Gia_ObjRefNum(p, pFanin) == 1 )
pFanin->fMark0 = 1;
}
// traverse for top level MUXes
vStr = Vec_StrAlloc( 1000 );
pNames = Abc_NamStart( 10000, 50 );
vGroups = Vec_WecAlloc( 1000 );
Vec_WecPushLevel( vGroups );
Gia_ManForEachMuxId( p, i )
{
// skip internal
pObj = Gia_ManObj(p, i);
if ( pObj->fMark0 )
continue;
// skip trees of size one
if ( !Gia_ObjFanin0(pObj)->fMark0 && !Gia_ObjFanin1(pObj)->fMark0 )
continue;
// hash the tree
Str_MuxStructDump( p, pObj, vStr );
iStructId = Abc_NamStrFindOrAdd( pNames, Vec_StrArray(vStr), &fFound );
if ( !fFound ) Vec_WecPushLevel( vGroups );
assert( Abc_NamObjNumMax(pNames) == Vec_WecSize(vGroups) );
Vec_IntPush( Vec_WecEntry(vGroups, iStructId), i );
}
if ( fPrintStructs )
{
char * pTemp;
Abc_NamManForEachObj( pNames, pTemp, i )
{
printf( "%5d : ", i );
printf( "Occur = %4d ", Vec_IntSize(Vec_WecEntry(vGroups,i)) );
printf( "Size = %4d ", Str_ManMuxCountOne(pTemp) );
printf( "%s\n", pTemp );
}
}
Abc_NamStop( pNames );
Vec_StrFree( vStr );
return vGroups;
}
Vec_Int_t * Str_ManCreateRoots( Vec_Wec_t * vGroups, int nObjs )
{ // map tree MUXes into their classes
Vec_Int_t * vRoots;
Vec_Int_t * vGroup;
int i, k, Entry;
vRoots = Vec_IntStartFull( nObjs );
Vec_WecForEachLevel( vGroups, vGroup, i )
Vec_IntForEachEntry( vGroup, Entry, k )
Vec_IntWriteEntry( vRoots, Entry, i );
return vRoots;
}
void Str_MuxTraverse_rec( Gia_Man_t * p, int i )
{
Gia_Obj_t * pObj;
if ( Gia_ObjIsTravIdCurrentId(p, i) )
return;
Gia_ObjSetTravIdCurrentId(p, i);
pObj = Gia_ManObj(p, i);
if ( !Gia_ObjIsAnd(pObj) )
return;
Str_MuxTraverse_rec(p, Gia_ObjFaninId0(pObj, i) );
Str_MuxTraverse_rec(p, Gia_ObjFaninId1(pObj, i) );
if ( Gia_ObjIsMux(p, pObj) )
Str_MuxTraverse_rec(p, Gia_ObjFaninId2(p, i) );
}
void Str_ManCheckOverlap( Gia_Man_t * p, Vec_Wec_t * vGroups )
{ // check that members of each group are not in the TFI of each other
Vec_Int_t * vGroup, * vGroup2;
int i, k, n, iObj, iObj2;
// vGroup = Vec_WecEntry(vGroups, 7);
// Vec_IntForEachEntry( vGroup, iObj, n )
// Gia_ManPrintCone2( p, Gia_ManObj(p, iObj) ), printf( "\n" );
Vec_WecForEachLevel( vGroups, vGroup, i )
Vec_IntForEachEntry( vGroup, iObj, k )
{
if ( Vec_IntSize(vGroup) == 1 )
continue;
// high light the cone
Gia_ManIncrementTravId( p );
Str_MuxTraverse_rec( p, iObj );
// check that none of the others are highlighted
Vec_IntForEachEntry( vGroup, iObj2, n )
if ( iObj != iObj2 && Gia_ObjIsTravIdCurrentId(p, iObj2) )
break;
if ( n == Vec_IntSize(vGroup) )
continue;
// split the group into individual trees
Vec_IntForEachEntryStart( vGroup, iObj2, n, 1 )
{
vGroup2 = Vec_WecPushLevel( vGroups );
vGroup = Vec_WecEntry( vGroups, i );
Vec_IntPush( vGroup2, iObj2 );
}
Vec_IntShrink( vGroup, 1 );
/*
// this does not work because there can be a pair of independent trees
// with another tree squeezed in between them, so that there is a combo loop
// divide this group
nNew = 0;
vGroup2 = Vec_WecPushLevel( vGroups );
vGroup = Vec_WecEntry( vGroups, i );
Vec_IntForEachEntry( vGroup, iObj2, n )
{
if ( iObj != iObj2 && Gia_ObjIsTravIdCurrentId(p, iObj2) )
Vec_IntPush( vGroup2, iObj2 );
else
Vec_IntWriteEntry( vGroup, nNew++, iObj2 );
}
Vec_IntShrink( vGroup, nNew );
i--;
break;
*/
/*
// check that none of the others are highlighted
Vec_IntForEachEntry( vGroup, iObj, n )
if ( n != k && Gia_ObjIsTravIdCurrentId(p, iObj) )
{
printf( "Overlap of TFI cones of trees %d and %d in group %d of size %d!\n", k, n, i, Vec_IntSize(vGroup) );
Vec_IntShrink( vGroup, 1 );
break;
}
*/
}
}
/**Function*************************************************************
Synopsis [Simplify multi-input AND/XOR.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_ManSimplifyXor( Vec_Int_t * vSuper )
{
int i, k = 0, Prev = -1, This, fCompl = 0;
Vec_IntForEachEntry( vSuper, This, i )
{
if ( This == 0 )
continue;
if ( This == 1 )
fCompl ^= 1;
else if ( Prev != This )
Vec_IntWriteEntry( vSuper, k++, This ), Prev = This;
else
Prev = -1, k--;
}
Vec_IntShrink( vSuper, k );
if ( Vec_IntSize( vSuper ) == 0 )
Vec_IntPush( vSuper, fCompl );
else if ( fCompl )
Vec_IntWriteEntry( vSuper, 0, Abc_LitNot(Vec_IntEntry(vSuper, 0)) );
}
static inline void Gia_ManSimplifyAnd( Vec_Int_t * vSuper )
{
int i, k = 0, Prev = -1, This;
Vec_IntForEachEntry( vSuper, This, i )
{
if ( This == 0 )
{ Vec_IntFill(vSuper, 1, 0); return; }
if ( This == 1 )
continue;
if ( Prev == -1 || Abc_Lit2Var(Prev) != Abc_Lit2Var(This) )
Vec_IntWriteEntry( vSuper, k++, This ), Prev = This;
else if ( Prev != This )
{ Vec_IntFill(vSuper, 1, 0); return; }
}
Vec_IntShrink( vSuper, k );
if ( Vec_IntSize( vSuper ) == 0 )
Vec_IntPush( vSuper, 1 );
}
/**Function*************************************************************
Synopsis [Collect multi-input AND/XOR.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_ManSuperCollectXor_rec( Gia_Man_t * p, Gia_Obj_t * pObj )
{
assert( !Gia_IsComplement(pObj) );
if ( !Gia_ObjIsXor(pObj) ||
Gia_ObjRefNum(p, pObj) > 1 ||
// Gia_ObjRefNum(p, pObj) > 3 ||
// (Gia_ObjRefNum(p, pObj) == 2 && (Gia_ObjRefNum(p, Gia_ObjFanin0(pObj)) == 1 || Gia_ObjRefNum(p, Gia_ObjFanin1(pObj)) == 1)) ||
Vec_IntSize(p->vSuper) > STR_SUPER )
{
Vec_IntPush( p->vSuper, Gia_ObjToLit(p, pObj) );
return;
}
assert( !Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin0(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin1(pObj) );
}
static inline void Gia_ManSuperCollectAnd_rec( Gia_Man_t * p, Gia_Obj_t * pObj )
{
if ( Gia_IsComplement(pObj) ||
!Gia_ObjIsAndReal(p, pObj) ||
Gia_ObjRefNum(p, pObj) > 1 ||
// Gia_ObjRefNum(p, pObj) > 3 ||
// (Gia_ObjRefNum(p, pObj) == 2 && (Gia_ObjRefNum(p, Gia_ObjFanin0(pObj)) == 1 || Gia_ObjRefNum(p, Gia_ObjFanin1(pObj)) == 1)) ||
Vec_IntSize(p->vSuper) > STR_SUPER )
{
Vec_IntPush( p->vSuper, Gia_ObjToLit(p, pObj) );
return;
}
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild0(pObj) );
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild1(pObj) );
}
static inline void Gia_ManSuperCollect( Gia_Man_t * p, Gia_Obj_t * pObj )
{
if ( p->vSuper == NULL )
p->vSuper = Vec_IntAlloc( STR_SUPER );
else
Vec_IntClear( p->vSuper );
if ( Gia_ObjIsXor(pObj) )
{
assert( !Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin0(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin1(pObj) );
Vec_IntSort( p->vSuper, 0 );
Gia_ManSimplifyXor( p->vSuper );
}
else if ( Gia_ObjIsAndReal(p, pObj) )
{
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild0(pObj) );
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild1(pObj) );
Vec_IntSort( p->vSuper, 0 );
Gia_ManSimplifyAnd( p->vSuper );
}
else assert( 0 );
assert( Vec_IntSize(p->vSuper) > 0 );
}
/**Function*************************************************************
Synopsis [Constructs AIG ordered for balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_ManNormalize_rec( Str_Ntk_t * pNtk, Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Wec_t * vGroups, Vec_Int_t * vRoots )
{
int i, k, iVar, iLit, iBeg, iEnd;
if ( ~pObj->Value )
return;
pObj->Value = 0;
assert( Gia_ObjIsAnd(pObj) );
if ( Gia_ObjIsMux(p, pObj) )
{
Vec_Int_t * vGroup;
Gia_Obj_t * pRoot, * pMux;
int pFanins[3];
if ( Vec_IntEntry(vRoots, Gia_ObjId(p, pObj)) == -1 )
{
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin0(pObj), vGroups, vRoots );
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin1(pObj), vGroups, vRoots );
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin2(p, pObj), vGroups, vRoots );
pFanins[0] = Gia_ObjFanin0Copy(pObj);
pFanins[1] = Gia_ObjFanin1Copy(pObj);
pFanins[2] = Gia_ObjFanin2Copy(p, pObj);
if ( Abc_LitIsCompl(pFanins[2]) )
{
pFanins[2] = Abc_LitNot(pFanins[2]);
ABC_SWAP( int, pFanins[0], pFanins[1] );
}
pObj->Value = Str_ObjCreate( pNtk, STR_MUX, 3, pFanins );
return;
}
vGroup = Vec_WecEntry( vGroups, Vec_IntEntry(vRoots, Gia_ObjId(p, pObj)) );
// build data-inputs for each tree
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
{
Str_MuxInputsCollect( p, pRoot, p->vSuper );
iBeg = Vec_IntSize( p->vStore );
Vec_IntAppend( p->vStore, p->vSuper );
iEnd = Vec_IntSize( p->vStore );
Vec_IntForEachEntryStartStop( p->vStore, iVar, k, iBeg, iEnd )
Str_ManNormalize_rec( pNtk, p, Gia_ManObj(p, iVar), vGroups, vRoots );
Vec_IntShrink( p->vStore, iBeg );
}
// build internal structures
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
{
Str_MuxStructCollect( p, pRoot, p->vSuper );
Gia_ManForEachObjVec( p->vSuper, p, pMux, k )
{
pFanins[0] = Gia_ObjFanin0Copy(pMux);
pFanins[1] = Gia_ObjFanin1Copy(pMux);
pFanins[2] = Gia_ObjFanin2Copy(p, pMux);
if ( Abc_LitIsCompl(pFanins[2]) )
{
pFanins[2] = Abc_LitNot(pFanins[2]);
ABC_SWAP( int, pFanins[0], pFanins[1] );
}
pMux->Value = Str_ObjCreate( pNtk, STR_MUX, 3, pFanins );
}
assert( ~pRoot->Value );
// set mapping
Gia_ManForEachObjVec( p->vSuper, p, pMux, k )
Str_NtkObj(pNtk, Abc_Lit2Var(pMux->Value))->iTop = Abc_Lit2Var(pRoot->Value);
pNtk->nTrees++;
}
assert( ~pObj->Value );
// set mapping
pObj = Gia_ManObj( p, Vec_IntEntryLast(vGroup) );
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
Str_NtkObj(pNtk, Abc_Lit2Var(pRoot->Value))->iTop = Abc_Lit2Var(pObj->Value);
pNtk->nGroups++;
//printf( "%d x %d ", Vec_IntSize(vGroup), Vec_IntSize(p->vSuper) );
return;
}
// find supergate
Gia_ManSuperCollect( p, pObj );
// save entries
iBeg = Vec_IntSize( p->vStore );
Vec_IntAppend( p->vStore, p->vSuper );
iEnd = Vec_IntSize( p->vStore );
// call recursively
Vec_IntForEachEntryStartStop( p->vStore, iLit, i, iBeg, iEnd )
{
Gia_Obj_t * pTemp = Gia_ManObj( p, Abc_Lit2Var(iLit) );
Str_ManNormalize_rec( pNtk, p, pTemp, vGroups, vRoots );
Vec_IntWriteEntry( p->vStore, i, Abc_LitNotCond(pTemp->Value, Abc_LitIsCompl(iLit)) );
}
assert( Vec_IntSize(p->vStore) == iEnd );
// consider general case
pObj->Value = Str_ObjCreate( pNtk, Gia_ObjIsXor(pObj) ? STR_XOR : STR_AND, iEnd-iBeg, Vec_IntEntryP(p->vStore, iBeg) );
Vec_IntShrink( p->vStore, iBeg );
}
Str_Ntk_t * Str_ManNormalizeInt( Gia_Man_t * p, Vec_Wec_t * vGroups, Vec_Int_t * vRoots )
{
Str_Ntk_t * pNtk;
Gia_Obj_t * pObj;
int i, iFanin;
assert( p->pMuxes != NULL );
if ( p->vSuper == NULL )
p->vSuper = Vec_IntAlloc( STR_SUPER );
if ( p->vStore == NULL )
p->vStore = Vec_IntAlloc( STR_SUPER );
Gia_ManFillValue( p );
pNtk = Str_NtkCreate( Gia_ManObjNum(p), 1 + Gia_ManCoNum(p) + 2 * Gia_ManAndNum(p) + Gia_ManMuxNum(p) );
Gia_ManConst0(p)->Value = 0;
Gia_ManForEachObj1( p, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
pObj->Value = Str_ObjCreate( pNtk, STR_PI, 0, NULL );
else if ( Gia_ObjIsCo(pObj) )
{
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin0(pObj), vGroups, vRoots );
iFanin = Gia_ObjFanin0Copy(pObj);
pObj->Value = Str_ObjCreate( pNtk, STR_PO, 1, &iFanin );
}
}
assert( pNtk->nObjs <= Gia_ManObjNum(p) );
return pNtk;
}
Str_Ntk_t * Str_ManNormalize( Gia_Man_t * p )
{
Str_Ntk_t * pNtk;
Gia_Man_t * pMuxes = Gia_ManDupMuxes( p, 5 );
Vec_Wec_t * vGroups = Str_ManDeriveTrees( pMuxes );
Vec_Int_t * vRoots;
Str_ManCheckOverlap( pMuxes, vGroups );
vRoots = Str_ManCreateRoots( vGroups, Gia_ManObjNum(pMuxes) );
pNtk = Str_ManNormalizeInt( pMuxes, vGroups, vRoots );
Gia_ManCleanMark0( pMuxes );
Gia_ManStop( pMuxes );
Vec_IntFree( vRoots );
Vec_WecFree( vGroups );
return pNtk;
}
/**Function*************************************************************
Synopsis [Delay computation]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_Delay2( int d0, int d1, int nLutSize )
{
int n, d = Abc_MaxInt( d0 >> 4, d1 >> 4 );
n = (d == (d0 >> 4)) ? (d0 & 15) : 1;
n += (d == (d1 >> 4)) ? (d1 & 15) : 1;
return (d << 4) + (n > nLutSize ? 18 : n);
}
static inline int Str_Delay3( int d0, int d1, int d2, int nLutSize )
{
int n, d = Abc_MaxInt( Abc_MaxInt(d0 >> 4, d1 >> 4), d2 >> 4 );
n = (d == (d0 >> 4)) ? (d0 & 15) : 1;
n += (d == (d1 >> 4)) ? (d1 & 15) : 1;
n += (d == (d2 >> 4)) ? (d2 & 15) : 1;
return (d << 4) + (n > nLutSize ? 19 : n);
}
static inline int Str_ObjDelay( Gia_Man_t * pNew, int iObj, int nLutSize, Vec_Int_t * vDelay )
{
int Delay = Vec_IntEntry( vDelay, iObj );
if ( Delay == 0 )
{
if ( Gia_ObjIsMuxId(pNew, iObj) )
{
int d0 = Vec_IntEntry( vDelay, Gia_ObjFaninId0(Gia_ManObj(pNew, iObj), iObj) );
int d1 = Vec_IntEntry( vDelay, Gia_ObjFaninId1(Gia_ManObj(pNew, iObj), iObj) );
int d2 = Vec_IntEntry( vDelay, Gia_ObjFaninId2(pNew, iObj) );
Delay = Str_Delay3( d0, d1, d2, nLutSize );
}
else
{
int d0 = Vec_IntEntry( vDelay, Gia_ObjFaninId0(Gia_ManObj(pNew, iObj), iObj) );
int d1 = Vec_IntEntry( vDelay, Gia_ObjFaninId1(Gia_ManObj(pNew, iObj), iObj) );
Delay = Str_Delay2( d0, d1, nLutSize );
}
Vec_IntWriteEntry( vDelay, iObj, Delay );
}
return Delay;
}
/**Function*************************************************************
Synopsis [Transposing 64-bit matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void transpose64( word A[64] )
{
int j, k;
word t, m = 0x00000000FFFFFFFF;
for ( j = 32; j != 0; j = j >> 1, m = m ^ (m << j) )
{
for ( k = 0; k < 64; k = (k + j + 1) & ~j )
{
t = (A[k] ^ (A[k+j] >> j)) & m;
A[k] = A[k] ^ t;
A[k+j] = A[k+j] ^ (t << j);
}
}
}
/**Function*************************************************************
Synopsis [Perform affinity computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_ManNum( Gia_Man_t * p, int iObj ) { return Vec_IntEntry(&p->vCopies, iObj); }
static inline void Str_ManSetNum( Gia_Man_t * p, int iObj, int Num ) { Vec_IntWriteEntry(&p->vCopies, iObj, Num); }
int Str_ManVectorAffinity( Gia_Man_t * p, Vec_Int_t * vSuper, Vec_Int_t * vDelay, word Matrix[256], int nLimit )
{
int fVerbose = 0;
int Levels[256];
int nSize = Vec_IntSize(vSuper);
int Prev = nSize, nLevels = 1;
int i, k, iLit, iFanin, nSizeNew;
word Mask;
assert( nSize > 2 );
if ( nSize > 64 )
{
for ( i = 0; i < 64; i++ )
Matrix[i] = 0;
return 0;
}
// mark current nodes
Gia_ManIncrementTravId( p );
Vec_IntForEachEntry( vSuper, iLit, i )
{
Gia_ObjSetTravIdCurrentId( p, Abc_Lit2Var(iLit) );
Str_ManSetNum( p, Abc_Lit2Var(iLit), i );
Matrix[i] = ((word)1) << (63-i);
Levels[i] = 0;
}
// collect 64 nodes
Vec_IntForEachEntry( vSuper, iLit, i )
{
Gia_Obj_t * pObj = Gia_ManObj( p, Abc_Lit2Var(iLit) );
if ( Gia_ObjIsAnd(pObj) )
{
for ( k = 0; k < 2; k++ )
{
iFanin = k ? Gia_ObjFaninId1p(p, pObj) : Gia_ObjFaninId0p(p, pObj);
if ( !Gia_ObjIsTravIdCurrentId(p, iFanin) )
{
if ( Vec_IntSize(vSuper) == nLimit )
break;
Gia_ObjSetTravIdCurrentId( p, iFanin );
Matrix[Vec_IntSize(vSuper)] = 0;
Levels[Vec_IntSize(vSuper)] = nLevels;
Str_ManSetNum( p, iFanin, Vec_IntSize(vSuper) );
Vec_IntPush( vSuper, Abc_Var2Lit(iFanin, 0) );
}
Matrix[Str_ManNum(p, iFanin)] |= Matrix[i];
}
}
if ( Gia_ObjIsMux(p, pObj) )
{
iFanin = Gia_ObjFaninId2p(p, pObj);
if ( !Gia_ObjIsTravIdCurrentId(p, iFanin) )
{
if ( Vec_IntSize(vSuper) == nLimit )
break;
Gia_ObjSetTravIdCurrentId( p, iFanin );
Matrix[Vec_IntSize(vSuper)] = 0;
Levels[Vec_IntSize(vSuper)] = nLevels;
Str_ManSetNum( p, iFanin, Vec_IntSize(vSuper) );
Vec_IntPush( vSuper, Abc_Var2Lit(iFanin, 0) );
}
Matrix[Str_ManNum(p, iFanin)] |= Matrix[i];
}
if ( Prev == i )
Prev = Vec_IntSize(vSuper), nLevels++;
if ( nLevels == 8 )
break;
}
// remove those that have all 1s or only one 1
Mask = (~(word)0) << (64 - nSize);
for ( k = i = 0; i < Vec_IntSize(vSuper); i++ )
{
assert( Matrix[i] );
if ( (Matrix[i] & (Matrix[i] - 1)) == 0 )
continue;
if ( Matrix[i] == Mask )
continue;
Matrix[k] = Matrix[i];
Levels[k] = Levels[i];
k++;
if ( k == 64 )
break;
}
// clean the remaining ones
for ( i = k; i < 64; i++ )
Matrix[i] = 0;
nSizeNew = k;
if ( nSizeNew == 0 )
{
Vec_IntShrink( vSuper, nSize );
return 0;
}
/*
// report
if ( fVerbose && nSize > 20 )
{
for ( i = 0; i < nSizeNew; i++ )
Extra_PrintBinary( stdout, Matrix+i, 64 ), printf( "\n" );
printf( "\n" );
}
*/
transpose64( Matrix );
// report
if ( fVerbose && nSize > 10 )
{
printf( "Gate inputs = %d. Collected fanins = %d. All = %d. Good = %d. Levels = %d\n",
nSize, Vec_IntSize(vSuper) - nSize, Vec_IntSize(vSuper), nSizeNew, nLevels );
printf( " " );
for ( i = 0; i < nSizeNew; i++ )
printf( "%d", Levels[i] );
printf( "\n" );
for ( i = 0; i < nSize; i++ )
{
printf( "%6d : ", Abc_Lit2Var(Vec_IntEntry(vSuper, i)) );
printf( "%3d ", Vec_IntEntry(vDelay, i) >> 4 );
printf( "%3d ", Vec_IntEntry(vDelay, i) & 15 );
// Extra_PrintBinary( stdout, Matrix+i, 64 ), printf( "\n" );
}
i = 0;
}
Vec_IntShrink( vSuper, nSize );
return nSizeNew;
}
/**Function*************************************************************
Synopsis [Count 1s.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_CountBits( word i )
{
if ( i == 0 )
return 0;
i = (i & (i - 1));
if ( i == 0 )
return 1;
i = (i & (i - 1));
if ( i == 0 )
return 2;
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline void Str_PrintState( int * pCost, int * pSuper, word * pMatrix, int nSize )
{
int i;
for ( i = 0; i < nSize; i++ )
{
printf( "%6d : ", i );
printf( "%6d : ", Abc_Lit2Var(pSuper[i]) );
printf( "%3d ", pCost[i] >> 4 );
printf( "%3d ", pCost[i] & 15 );
// Extra_PrintBinary( stdout, pMatrix+i, 64 ), printf( "\n" );
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Perform balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_NtkBalanceMulti2( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize )
{
int k;
pObj->iCopy = (pObj->Type == STR_AND);
for ( k = 0; k < (int)pObj->nFanins; k++ )
{
if ( pObj->Type == STR_AND )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
else
pObj->iCopy = Gia_ManHashXorReal( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
int Str_NtkBalanceTwo( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, int i, int j, Vec_Int_t * vDelay, int * pCost, int * pSuper, word * pMatrix, int nSize, int nLutSize, int CostBest )
{
int k, iLitRes, Delay;
assert( i < j );
// printf( "Merging node %d and %d\n", i, j );
if ( pObj->Type == STR_AND )
iLitRes = Gia_ManHashAnd( pNew, pSuper[i], pSuper[j] );
else
iLitRes = Gia_ManHashXorReal( pNew, pSuper[i], pSuper[j] );
Delay = Str_ObjDelay( pNew, Abc_Lit2Var(iLitRes), nLutSize, vDelay );
// update
pCost[i] = Delay;
pSuper[i] = iLitRes;
pMatrix[i] |= pMatrix[j];
// assert( (pCost[i] & 15) == CostBest || CostBest == -1 );
// remove entry j
nSize--;
for ( k = j; k < nSize; k++ )
{
pCost[k] = pCost[k+1];
pSuper[k] = pSuper[k+1];
pMatrix[k] = pMatrix[k+1];
}
// move up the first one
nSize--;
for ( k = 0; k < nSize; k++ )
{
if ( pCost[k] <= pCost[k+1] )
break;
ABC_SWAP( int, pCost[k], pCost[k+1] );
ABC_SWAP( int, pSuper[k], pSuper[k+1] );
ABC_SWAP( word, pMatrix[k], pMatrix[k+1] );
}
return iLitRes;
}
void Str_NtkBalanceMulti( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize )
{
word pMatrix[256];
int Limit = 256;
Vec_Int_t * vSuper = pNew->vSuper;
Vec_Int_t * vCosts = pNew->vStore;
int * pSuper = Vec_IntArray(vSuper);
int * pCost = Vec_IntArray(vCosts);
int k, iLit, MatrixSize = 0;
assert( Limit <= Vec_IntCap(vSuper) );
assert( Limit <= Vec_IntCap(vCosts) );
// collect nodes
Vec_IntClear( vSuper );
for ( k = 0; k < (int)pObj->nFanins; k++ )
Vec_IntPush( vSuper, Str_ObjFaninCopy(p, pObj, k) );
Vec_IntSort( vSuper, 0 );
if ( pObj->Type == STR_AND )
Gia_ManSimplifyAnd( vSuper );
else
Gia_ManSimplifyXor( vSuper );
assert( Vec_IntSize(vSuper) > 0 );
if ( Vec_IntSize(vSuper) == 1 )
{
pObj->iCopy = Vec_IntEntry(vSuper, 0);
return;
}
if ( Vec_IntSize(vSuper) == 2 )
{
pObj->iCopy = Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, 2, nLutSize, -1 );
return;
}
// sort by cost
Vec_IntClear( vCosts );
Vec_IntForEachEntry( vSuper, iLit, k )
Vec_IntPush( vCosts, Vec_IntEntry(vDelay, Abc_Lit2Var(iLit)) );
Vec_IntSelectSortCost2( pSuper, Vec_IntSize(vSuper), pCost );
// compute affinity
if ( Vec_IntSize(vSuper) < 64 )
MatrixSize = Str_ManVectorAffinity( pNew, vSuper, vCosts, pMatrix, Limit );
// start the new product
while ( Vec_IntSize(vSuper) > 2 )
{
// pair the first entry with another one on the same level
int i, iStop, iBest,iBest2;
int CostNew, CostBest, CostBest2;
int OccurNew, OccurBest, OccurBest2;
if ( Vec_IntSize(vSuper) > 64 )
{
Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// compute affinity
if ( Vec_IntSize(vSuper) == 64 )
MatrixSize = Str_ManVectorAffinity( pNew, vSuper, vCosts, pMatrix, Limit );
assert( Vec_IntSize(vSuper) <= 64 );
// Str_PrintState( pCost, pSuper, pMatrix, Vec_IntSize(vSuper) );
// if the first two are PIs group them
if ( pCost[0] == 17 && pCost[1] == 17 )
{
Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, 2 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// find the end of the level
for ( iStop = 0; iStop < Vec_IntSize(vSuper); iStop++ )
if ( (pCost[iStop] >> 4) != (pCost[0] >> 4) )
break;
// if there is only one this level, pair it with the best match in the next level
if ( iStop == 1 )
{
iBest = iStop, OccurBest = Str_CountBits(pMatrix[0] & pMatrix[iStop]);
for ( i = iStop + 1; i < Vec_IntSize(vSuper); i++ )
{
if ( (pCost[i] >> 4) != (pCost[iStop] >> 4) )
break;
OccurNew = Str_CountBits(pMatrix[0] & pMatrix[i]);
if ( OccurBest < OccurNew )
iBest = i, OccurBest = OccurNew;
}
assert( iBest > 0 && iBest < Vec_IntSize(vSuper) );
Str_NtkBalanceTwo( pNew, p, pObj, 0, iBest, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// pair the first entry with another one on the same level
iBest = -1; CostBest = -1; OccurBest2 = -1; OccurBest = -1;
for ( i = 1; i < iStop; i++ )
{
CostNew = (pCost[0] & 15) + (pCost[i] & 15);
if ( CostNew > nLutSize )
continue;
OccurNew = Str_CountBits(pMatrix[0] & pMatrix[i]);
if ( CostBest < CostNew || (CostBest == CostNew && OccurBest < OccurNew) )
CostBest = CostNew, iBest = i, OccurBest = OccurNew;
}
// if the best found is perfect, take it
if ( CostBest == nLutSize )
{
assert( iBest > 0 && iBest < Vec_IntSize(vSuper) );
Str_NtkBalanceTwo( pNew, p, pObj, 0, iBest, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, CostBest );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// find the best pair on this level
iBest = iBest2 = -1; CostBest = CostBest2 = -1, OccurBest = OccurBest2 = -1;
for ( i = 0; i < iStop; i++ )
for ( k = i+1; k < iStop; k++ )
{
CostNew = (pCost[i] & 15) + (pCost[k] & 15);
OccurNew = Str_CountBits(pMatrix[i] & pMatrix[k]);
if ( CostNew <= nLutSize ) // the same level
{
if ( OccurBest < OccurNew || (OccurBest == OccurNew && CostBest < CostNew ))
CostBest = CostNew, iBest = (i << 16) | k, OccurBest = OccurNew;
}
else // overflow to the next level
{
if ( OccurBest2 < OccurNew || (OccurBest2 == OccurNew && CostBest2 < CostNew) )
CostBest2 = CostNew, iBest2 = (i << 16) | k, OccurBest2 = OccurNew;
}
}
if ( iBest >= 0 )
{
assert( iBest > 0 );
Str_NtkBalanceTwo( pNew, p, pObj, iBest>>16, iBest&0xFFFF, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, CostBest );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// take any remaining pair
assert( iBest2 > 0 );
Str_NtkBalanceTwo( pNew, p, pObj, iBest2>>16, iBest2&0xFFFF, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
pObj->iCopy = Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, 2, nLutSize, -1 );
/*
// simple
pObj->iCopy = (pObj->Type == STR_AND);
for ( k = 0; k < Vec_IntSize(vSuper); k++ )
{
if ( pObj->Type == STR_AND )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Vec_IntEntry(vSuper, k) );
else
pObj->iCopy = Gia_ManHashXorReal( pNew, pObj->iCopy, Vec_IntEntry(vSuper, k) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
*/
}
void Str_NtkBalanceMux( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize, int nGroups, int nMuxes, int fRecursive, int fOptArea, int fVerbose )
{
extern int Str_MuxRestructure( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fRecursive, int fOptArea, int fVerbose );
int n, m, iRes, fUseRestruct = 1;
if ( fUseRestruct )
{
for ( n = 0; n < nGroups; n++ )
{
iRes = Str_MuxRestructure( pNew, p, Str_ObjId(p, pObj), nMuxes, vDelay, nLutSize, fRecursive, fOptArea, fVerbose );
if ( iRes == -1 )
{
for ( m = 0; m < nMuxes; m++, pObj++ )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
else
{
pObj += nMuxes - 1;
pObj->iCopy = iRes;
pObj++;
}
}
}
else
{
for ( n = 0; n < nGroups * nMuxes; n++, pObj++ )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
}
Gia_Man_t * Str_NtkBalance( Gia_Man_t * pGia, Str_Ntk_t * p, int nLutSize, int fUseMuxes, int fRecursive, int fOptArea, int fVerbose )
{
Gia_Man_t * pNew, * pTemp;
Vec_Int_t * vDelay;
Str_Obj_t * pObj;
int nGroups, nMuxes, CioId;
int arrTime, Delay = 0;
assert( nLutSize < 16 );
assert( pGia->pMuxes == NULL );
pNew = Gia_ManStart( Gia_ManObjNum(pGia) );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
pNew->pMuxes = ABC_CALLOC( unsigned, pNew->nObjsAlloc );
Vec_IntFill( &pNew->vCopies, pNew->nObjsAlloc, -1 );
if ( pNew->vSuper == NULL )
pNew->vSuper = Vec_IntAlloc( 1000 );
if ( pNew->vStore == NULL )
pNew->vStore = Vec_IntAlloc( 1000 );
vDelay = Vec_IntStart( pNew->nObjsAlloc );
Gia_ManHashStart( pNew );
if ( pGia->pManTime != NULL ) // Tim_Man with unit delay 16
{
Tim_ManInitPiArrivalAll( (Tim_Man_t *)pGia->pManTime, 17 );
Tim_ManIncrementTravId( (Tim_Man_t *)pGia->pManTime );
}
Str_NtkManForEachObj( p, pObj )
{
if ( pObj->Type == STR_PI )
{
pObj->iCopy = Gia_ManAppendCi( pNew );
arrTime = 17;
if ( pGia->pManTime != NULL )
{
CioId = Gia_ObjCioId( Gia_ManObj(pNew, Abc_Lit2Var(pObj->iCopy)) );
arrTime = (int)Tim_ManGetCiArrival( (Tim_Man_t *)pGia->pManTime, CioId );
}
Vec_IntWriteEntry( vDelay, Abc_Lit2Var(pObj->iCopy), arrTime );
}
else if ( pObj->Type == STR_AND || pObj->Type == STR_XOR )
Str_NtkBalanceMulti( pNew, p, pObj, vDelay, nLutSize );
else if ( pObj->Type == STR_MUX && pObj->iTop >= 0 && fUseMuxes )
{
Str_ObjReadGroup( p, pObj, &nGroups, &nMuxes );
assert( nGroups * nMuxes >= 2 );
Str_NtkBalanceMux( pNew, p, pObj, vDelay, nLutSize, nGroups, nMuxes, fRecursive, fOptArea, fVerbose );
pObj += nGroups * nMuxes - 1;
}
else if ( pObj->Type == STR_MUX )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
else if ( pObj->Type == STR_PO )
{
pObj->iCopy = Gia_ManAppendCo( pNew, Str_ObjFaninCopy(p, pObj, 0) );
arrTime = Vec_IntEntry(vDelay, Abc_Lit2Var(Str_ObjFaninCopy(p, pObj, 0)) );
Delay = Abc_MaxInt( Delay, arrTime );
if ( pGia->pManTime != NULL )
{
CioId = Gia_ObjCioId( Gia_ManObj(pNew, Abc_Lit2Var(pObj->iCopy)) );
Tim_ManSetCoArrival( (Tim_Man_t *)pGia->pManTime, CioId, (float)arrTime );
}
}
else if ( pObj->Type == STR_CONST0 )
pObj->iCopy = 0, Vec_IntWriteEntry(vDelay, 0, 17);
else assert( 0 );
}
if ( fVerbose )
printf( "Max delay = %d. Old objs = %d. New objs = %d.\n", Delay >> 4, Gia_ManObjNum(pGia), Gia_ManObjNum(pNew) );
Vec_IntFree( vDelay );
ABC_FREE( pNew->vCopies.pArray );
Gia_ManHashStop( pNew );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
pNew = Gia_ManDupNoMuxes( pTemp = pNew );
Gia_ManStop( pTemp );
// if ( pGia->pManTime != NULL )
// pNew->pManTime = Tim_ManDup( (Tim_Man_t *)pGia->pManTime, 0 );
return pNew;
}
/**Function************************************************************* /**Function*************************************************************
Synopsis [] Synopsis [Test normalization procedure.]
Description [] Description []
...@@ -45,10 +1376,485 @@ ABC_NAMESPACE_IMPL_START ...@@ -45,10 +1376,485 @@ ABC_NAMESPACE_IMPL_START
***********************************************************************/ ***********************************************************************/
Gia_Man_t * Gia_ManLutBalance( Gia_Man_t * p, int nLutSize, int fUseMuxes, int fRecursive, int fOptArea, int fVerbose ) Gia_Man_t * Gia_ManLutBalance( Gia_Man_t * p, int nLutSize, int fUseMuxes, int fRecursive, int fOptArea, int fVerbose )
{ {
return Gia_ManDup(p); Str_Ntk_t * pNtk;
Gia_Man_t * pNew;
abctime clk = Abc_Clock();
if ( p->pManTime && Tim_ManBoxNum(p->pManTime) && Gia_ManIsNormalized(p) )
{
Tim_Man_t * pTimOld = (Tim_Man_t *)p->pManTime;
p->pManTime = Tim_ManDup( pTimOld, 16 );
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// optimize
pNtk = Str_ManNormalize( p );
pNew = Str_NtkBalance( p, pNtk, nLutSize, fUseMuxes, fRecursive, fOptArea, fVerbose );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
// normalize
pNew = Gia_ManDupNormalize( p = pNew );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
// cleanup
Tim_ManStop( (Tim_Man_t *)pNew->pManTime );
pNew->pManTime = pTimOld;
assert( Gia_ManIsNormalized(pNew) );
}
else
{
pNtk = Str_ManNormalize( p );
// Str_NtkPrintGroups( pNtk );
pNew = Str_NtkBalance( p, pNtk, nLutSize, fUseMuxes, fRecursive, fOptArea, fVerbose );
Gia_ManTransferTiming( pNew, p );
}
if ( fVerbose )
Str_NtkPs( pNtk, Abc_Clock() - clk );
Str_NtkDelete( pNtk );
return pNew;
} }
/**Function*************************************************************
Synopsis [Perform MUX restructuring.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
typedef struct Str_Edg_t_ Str_Edg_t;
struct Str_Edg_t_
{
int Fan; // fanin ID
int fCompl; // fanin complement
int FanDel; // fanin delay
int Copy; // fanin copy
};
typedef struct Str_Mux_t_ Str_Mux_t; // 64 bytes
struct Str_Mux_t_
{
int Id; // node ID
int Delay; // node delay
int Copy; // node copy
int nLutSize; // LUT size
Str_Edg_t Edge[3]; // fanins
};
static inline Str_Mux_t * Str_MuxFanin( Str_Mux_t * pMux, int i ) { return pMux - pMux->Id + pMux->Edge[i].Fan; }
static inline int Str_MuxHasFanin( Str_Mux_t * pMux, int i ) { return pMux->Edge[i].Fan > 0 && Str_MuxFanin(pMux, i)->Copy != -2; }
void Str_MuxDelayPrint_rec( Str_Mux_t * pMux, int i )
{
int fShowDelay = 1;
Str_Mux_t * pFanin;
if ( pMux->Edge[i].Fan <= 0 )
{
printf( "%d", -pMux->Edge[i].Fan );
if ( fShowDelay )
printf( "{%d}", pMux->Edge[i].FanDel );
return;
}
pFanin = Str_MuxFanin( pMux, i );
printf( "[ " );
if ( pFanin->Edge[0].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 0 );
printf( "|" );
if ( pFanin->Edge[1].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 1 );
printf( "(" );
if ( pFanin->Edge[2].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 2 );
printf( ")" );
printf( " ]" );
}
int Str_MuxDelayEdge_rec( Str_Mux_t * pMux, int i )
{
if ( pMux->Edge[i].Fan > 0 )
{
Str_Mux_t * pFanin = Str_MuxFanin( pMux, i );
Str_MuxDelayEdge_rec( pFanin, 0 );
Str_MuxDelayEdge_rec( pFanin, 1 );
pMux->Edge[i].FanDel = Str_Delay3( pFanin->Edge[0].FanDel, pFanin->Edge[1].FanDel, pFanin->Edge[2].FanDel, pFanin->nLutSize );
}
return pMux->Edge[i].FanDel;
}
void Str_MuxCreate( Str_Mux_t * pTree, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize )
{
Str_Obj_t * pObj;
Str_Mux_t * pMux;
int i, k, nPis = 0;
assert( nMuxes >= 2 );
memset( pTree, 0, sizeof(Str_Mux_t) * (nMuxes + 1) );
pTree->nLutSize = nLutSize;
pTree->Edge[0].Fan = 1;
for ( i = 1; i <= nMuxes; i++ )
{
pMux = pTree + i;
pMux->Id = i;
pMux->nLutSize = nLutSize;
pMux->Delay = pMux->Copy = -1;
// assign fanins
pObj = Str_NtkObj( pNtk, iMux + nMuxes - i );
assert( pObj->Type == STR_MUX );
for ( k = 0; k < 3; k++ )
{
pMux->Edge[k].fCompl = Str_ObjFaninC(pNtk, pObj, k);
if ( Str_ObjFaninId(pNtk, pObj, k) >= iMux )
pMux->Edge[k].Fan = iMux + nMuxes - Str_ObjFaninId(pNtk, pObj, k);
else
{
pMux->Edge[k].Fan = -nPis++; // count external inputs, including controls
pMux->Edge[k].Copy = Str_ObjFanin(pNtk, pObj, k)->iCopy;
pMux->Edge[k].FanDel = Vec_IntEntry( vDelay, Abc_Lit2Var(pMux->Edge[k].Copy) );
}
}
}
}
int Str_MuxToGia_rec( Gia_Man_t * pNew, Str_Mux_t * pMux, int i, Vec_Int_t * vDelay )
{
if ( pMux->Edge[i].Fan > 0 )
{
Str_Mux_t * pFanin = Str_MuxFanin( pMux, i );
int iLit0 = Str_MuxToGia_rec( pNew, pFanin, 0, vDelay );
int iLit1 = Str_MuxToGia_rec( pNew, pFanin, 1, vDelay );
assert( pFanin->Edge[2].Fan <= 0 );
assert( pFanin->Edge[2].fCompl == 0 );
pMux->Edge[i].Copy = Gia_ManHashMuxReal( pNew, pFanin->Edge[2].Copy, iLit1, iLit0 );
Str_ObjDelay( pNew, Abc_Lit2Var(pMux->Edge[i].Copy), pFanin->nLutSize, vDelay );
}
return Abc_LitNotCond( pMux->Edge[i].Copy, pMux->Edge[i].fCompl );
}
void Str_MuxChangeOnce( Str_Mux_t * pTree, int * pPath, int i, int k, Str_Mux_t * pBackup, Gia_Man_t * pNew, Vec_Int_t * vDelay )
{
Str_Mux_t * pSpots[3];
int pInds[3], MidFan, MidCom, MidDel, MidCop, c;
int iRes, iCond, fCompl;
// save backup
assert( i + 1 < k );
if ( pBackup )
{
pBackup[0] = pTree[ Abc_Lit2Var(pPath[k]) ];
pBackup[1] = pTree[ Abc_Lit2Var(pPath[i+1])];
pBackup[2] = pTree[ Abc_Lit2Var(pPath[i]) ];
}
// perform changes
pSpots[0] = pTree + Abc_Lit2Var(pPath[k]);
pSpots[1] = pTree + Abc_Lit2Var(pPath[i+1]);
pSpots[2] = pTree + Abc_Lit2Var(pPath[i]);
pInds[0] = Abc_LitIsCompl(pPath[k]);
pInds[1] = Abc_LitIsCompl(pPath[i+1]);
pInds[2] = Abc_LitIsCompl(pPath[i]);
// check
assert( pSpots[0]->Edge[pInds[0]].Fan > 0 );
assert( pSpots[1]->Edge[pInds[1]].Fan > 0 );
// collect complement
fCompl = 0;
for ( c = i+1; c < k; c++ )
fCompl ^= pTree[Abc_Lit2Var(pPath[c])].Edge[Abc_LitIsCompl(pPath[c])].fCompl;
// remember bottom side
MidFan = pSpots[2]->Edge[!pInds[2]].Fan;
MidCom = pSpots[2]->Edge[!pInds[2]].fCompl;
MidDel = pSpots[2]->Edge[!pInds[2]].FanDel;
MidCop = pSpots[2]->Edge[!pInds[2]].Copy;
// update bottom
pSpots[2]->Edge[!pInds[2]].Fan = pSpots[0]->Edge[pInds[0]].Fan;
pSpots[2]->Edge[!pInds[2]].fCompl = 0;
// update top
pSpots[0]->Edge[pInds[0]].Fan = pSpots[2]->Id;
// update middle
pSpots[1]->Edge[pInds[1]].Fan = MidFan;
pSpots[1]->Edge[pInds[1]].fCompl ^= MidCom;
pSpots[1]->Edge[pInds[1]].FanDel = MidDel;
pSpots[1]->Edge[pInds[1]].Copy = MidCop;
// update delay of the control
for ( c = i + 1; c < k; c++ )
pSpots[2]->Edge[2].FanDel = Str_Delay2( pSpots[2]->Edge[2].FanDel, pTree[Abc_Lit2Var(pPath[c])].Edge[2].FanDel, pTree->nLutSize );
if ( pNew == NULL )
return;
// create AND gates
iRes = 1;
for ( c = i; c < k; c++ )
{
assert( pTree[Abc_Lit2Var(pPath[c])].Edge[2].fCompl == 0 );
iCond = pTree[Abc_Lit2Var(pPath[c])].Edge[2].Copy;
iCond = Abc_LitNotCond( iCond, !Abc_LitIsCompl(pPath[c]) );
iRes = Gia_ManHashAnd( pNew, iRes, iCond );
Str_ObjDelay( pNew, Abc_Lit2Var(iRes), pTree->nLutSize, vDelay );
}
// complement the condition
pSpots[2]->Edge[2].Copy = Abc_LitNotCond( iRes, !Abc_LitIsCompl(pPath[i]) );
// complement the path
pSpots[2]->Edge[pInds[2]].fCompl ^= fCompl;
}
void Str_MuxChangeUndo( Str_Mux_t * pTree, int * pPath, int i, int k, Str_Mux_t * pBackup )
{
pTree[ Abc_Lit2Var(pPath[k]) ] = pBackup[0];
pTree[ Abc_Lit2Var(pPath[i+1])] = pBackup[1];
pTree[ Abc_Lit2Var(pPath[i]) ] = pBackup[2];
}
int Str_MuxFindPathEdge_rec( Str_Mux_t * pMux, int i, int * pPath, int * pnLength )
{
extern int Str_MuxFindPath_rec( Str_Mux_t * pMux, int * pPath, int * pnLength );
if ( pMux->Edge[i].Fan > 0 && !Str_MuxFindPath_rec(Str_MuxFanin(pMux, i), pPath, pnLength) )
return 0;
pPath[ (*pnLength)++ ] = Abc_Var2Lit(pMux->Id, i);
return 1;
}
int Str_MuxFindPath_rec( Str_Mux_t * pMux, int * pPath, int * pnLength )
{
int i, DelayMax = Abc_MaxInt( pMux->Edge[0].FanDel, Abc_MaxInt(pMux->Edge[1].FanDel, pMux->Edge[2].FanDel) );
for ( i = 0; i < 2; i++ )
if ( pMux->Edge[i].FanDel == DelayMax )
return Str_MuxFindPathEdge_rec( pMux, i, pPath, pnLength );
if ( pMux->Edge[2].FanDel == DelayMax )
return 0;
assert( 0 );
return -1;
}
// return node whose both branches are non-trivial
Str_Mux_t * Str_MuxFindBranching( Str_Mux_t * pRoot, int i )
{
Str_Mux_t * pMux;
if ( pRoot->Edge[i].Fan <= 0 )
return NULL;
pMux = Str_MuxFanin( pRoot, i );
while ( 1 )
{
if ( pMux->Edge[0].Fan <= 0 && pMux->Edge[1].Fan <= 0 )
return NULL;
if ( pMux->Edge[0].Fan > 0 && pMux->Edge[1].Fan > 0 )
return pMux;
if ( pMux->Edge[0].Fan > 0 )
pMux = Str_MuxFanin( pMux, 0 );
if ( pMux->Edge[1].Fan > 0 )
pMux = Str_MuxFanin( pMux, 1 );
}
assert( 0 );
return NULL;
}
int Str_MuxTryOnce( Gia_Man_t * pNew, Str_Ntk_t * pNtk, Str_Mux_t * pTree, Str_Mux_t * pRoot, int Edge, Vec_Int_t * vDelay, int fVerbose )
{
int pPath[500];
Str_Mux_t pBackup[3];
int Delay, DelayBest = Str_MuxDelayEdge_rec( pRoot, Edge ), DelayInit = DelayBest;
int i, k, nLength = 0, ForkBest = -1, nChecks = 0;
int RetValue = Str_MuxFindPathEdge_rec( pRoot, Edge, pPath, &nLength );
if ( RetValue == 0 )
return 0;
if ( fVerbose )
printf( "Trying node %d with path of length %d.\n", pRoot->Id, nLength );
for ( i = 0; i < nLength; i++ )
for ( k = i+2; k < nLength; k++ )
{
Str_MuxChangeOnce( pTree, pPath, i, k, pBackup, NULL, NULL );
Delay = Str_MuxDelayEdge_rec( pRoot, Edge );
Str_MuxChangeUndo( pTree, pPath, i, k, pBackup );
if ( DelayBest > Delay || (ForkBest > 0 && DelayBest == Delay) )
DelayBest = Delay, ForkBest = (i << 16) | k;
if ( fVerbose )
printf( "%2d %2d -> %3d (%3d)\n", i, k, Delay, DelayBest );
nChecks++;
}
if ( ForkBest == -1 )
{
if ( fVerbose )
printf( "Did not find!\n" );
return 0;
}
// Str_MuxDelayPrint_rec( pRoot, Edge ); printf( "\n" );
Str_MuxChangeOnce( pTree, pPath, ForkBest >> 16, ForkBest & 0xFFFF, NULL, pNew, vDelay );
// Str_MuxDelayPrint_rec( pRoot, Edge ); printf( "\n" );
if ( fVerbose )
printf( "Node %6d (%3d %3d) : Checks = %d. Delay: %d -> %d.\n",
pRoot->Id, ForkBest >> 16, ForkBest & 0xFFFF, nChecks, DelayInit, DelayBest );
if ( fVerbose )
printf( "\n" );
return 1;
}
int Str_MuxRestruct_rec( Gia_Man_t * pNew, Str_Ntk_t * pNtk, Str_Mux_t * pTree, Str_Mux_t * pRoot, int Edge, Vec_Int_t * vDelay, int fVerbose )
{
int fChanges = 0;
Str_Mux_t * pMux = Str_MuxFindBranching( pRoot, Edge );
if ( pMux != NULL )
fChanges |= Str_MuxRestruct_rec( pNew, pNtk, pTree, pMux, 0, vDelay, fVerbose );
if ( pMux != NULL )
fChanges |= Str_MuxRestruct_rec( pNew, pNtk, pTree, pMux, 1, vDelay, fVerbose );
fChanges |= Str_MuxTryOnce( pNew, pNtk, pTree, pRoot, Edge, vDelay, fVerbose );
return fChanges;
}
int Str_MuxRestructure2( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = 500;
Str_Mux_t pTree[500];
int Delay, Delay2, fChanges = 0;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Delay = Str_MuxDelayEdge_rec( pTree, 0 );
while ( 1 )
{
if ( !Str_MuxRestruct_rec(pNew, pNtk, pTree, pTree, 0, vDelay, fVerbose) )
break;
fChanges = 1;
}
if ( !fChanges )
return -1;
Delay2 = Str_MuxDelayEdge_rec( pTree, 0 );
// printf( "Improved delay for tree %d with %d MUXes (%d -> %d).\n", iMux, nMuxes, Delay, Delay2 );
pNtk->DelayGain += Delay - Delay2;
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
int Str_MuxRestructure1( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = 500;
Str_Mux_t pTree[500];
int Delay, Delay2, fChanges = 0;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Delay = Str_MuxDelayEdge_rec( pTree, 0 );
while ( 1 )
{
if ( !Str_MuxTryOnce(pNew, pNtk, pTree, pTree, 0, vDelay, fVerbose) )
break;
fChanges = 1;
}
if ( !fChanges )
return -1;
Delay2 = Str_MuxDelayEdge_rec( pTree, 0 );
// printf( "Improved delay for tree %d with %d MUXes (%d -> %d).\n", iMux, nMuxes, Delay, Delay2 );
pNtk->DelayGain += Delay - Delay2;
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
int Str_MuxRestructure( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fRecursive, int fOptArea, int fVerbose )
{
extern int Str_MuxRestructureArea( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose );
if ( fOptArea )
{
if ( nMuxes < 2 )
return Str_MuxRestructure1( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
return Str_MuxRestructureArea( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
}
if ( fRecursive )
return Str_MuxRestructure2( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
return Str_MuxRestructure1( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
}
/**Function*************************************************************
Synopsis [Perform MUX restructuring for area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Str_MuxRestructAreaThree( Gia_Man_t * pNew, Str_Mux_t * pMux, Vec_Int_t * vDelay, int fVerbose )
{
int iRes;
Str_Mux_t * pFanin0 = Str_MuxFanin( pMux, 0 );
Str_Mux_t * pFanin1 = Str_MuxFanin( pMux, 1 );
assert( pMux->Copy == -1 );
pMux->Copy = -2;
if ( pFanin0->Edge[2].Copy == pFanin1->Edge[2].Copy )
return 0;
iRes = Gia_ManHashMuxReal( pNew, pMux->Edge[2].Copy, pFanin1->Edge[2].Copy, pFanin0->Edge[2].Copy );
Str_ObjDelay( pNew, Abc_Lit2Var(iRes), pMux->nLutSize, vDelay );
pFanin0->Edge[2].Copy = pFanin1->Edge[2].Copy = iRes;
// printf( "Created triple\n" );
return 0;
}
int Str_MuxRestructArea_rec( Gia_Man_t * pNew, Str_Mux_t * pTree, Str_Mux_t * pRoot, int i, Vec_Int_t * vDelay, int fVerbose )
{
int Path[4];
int fSkipMoving = 1;
Str_Mux_t * pMux, * pFanin0, * pFanin1;
int nMuxes0, nMuxes1;
if ( pRoot->Edge[i].Fan <= 0 )
return 0;
pMux = Str_MuxFanin( pRoot, i );
nMuxes0 = Str_MuxRestructArea_rec( pNew, pTree, pMux, 0, vDelay, fVerbose );
nMuxes1 = Str_MuxRestructArea_rec( pNew, pTree, pMux, 1, vDelay, fVerbose );
if ( nMuxes0 + nMuxes1 < 2 )
return 1 + nMuxes0 + nMuxes1;
if ( nMuxes0 + nMuxes1 == 2 )
{
if ( nMuxes0 == 2 || nMuxes1 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, (int)(nMuxes1 == 2) );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[2] = Abc_Var2Lit(pRoot->Id, i);
Path[1] = Abc_Var2Lit(pMux->Id, (int)(nMuxes1 == 2) );
Path[0] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
Str_MuxChangeOnce( pTree, Path, 0, 2, NULL, pNew, vDelay );
}
Str_MuxRestructAreaThree( pNew, Str_MuxFanin(pRoot, i), vDelay, fVerbose );
return 0;
}
assert( nMuxes0 + nMuxes1 == 3 || nMuxes0 + nMuxes1 == 4 );
assert( nMuxes0 == 2 || nMuxes1 == 2 );
if ( fSkipMoving )
{
Str_MuxRestructAreaThree( pNew, pMux, vDelay, fVerbose );
return 0;
}
if ( nMuxes0 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, 0 );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[3] = Abc_Var2Lit(pRoot->Id, i);
Path[2] = Abc_Var2Lit(pMux->Id, 0 );
Path[1] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
pFanin1 = Str_MuxFanin( pFanin0, Str_MuxHasFanin(pFanin0, 1) );
assert( !Str_MuxHasFanin(pFanin1, 0) && !Str_MuxHasFanin(pFanin1, 1) );
Path[0] = Abc_Var2Lit(pFanin1->Id, 0);
Str_MuxChangeOnce( pTree, Path, 0, 3, NULL, pNew, vDelay );
}
if ( nMuxes1 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, 1 );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[3] = Abc_Var2Lit(pRoot->Id, i);
Path[2] = Abc_Var2Lit(pMux->Id, 1 );
Path[1] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
pFanin1 = Str_MuxFanin( pFanin0, Str_MuxHasFanin(pFanin0, 1) );
assert( !Str_MuxHasFanin(pFanin1, 0) && !Str_MuxHasFanin(pFanin1, 1) );
Path[0] = Abc_Var2Lit(pFanin1->Id, 0);
Str_MuxChangeOnce( pTree, Path, 0, 3, NULL, pNew, vDelay );
}
Str_MuxRestructAreaThree( pNew, pMux, vDelay, fVerbose );
return nMuxes0 + nMuxes1 - 2;
}
int Str_MuxRestructureArea( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = 500;
Str_Mux_t pTree[500];
int Result;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Result = Str_MuxRestructArea_rec( pNew, pTree, pTree, 0, vDelay, fVerbose );
assert( Result >= 0 && Result <= 2 );
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// END OF FILE /// /// END OF FILE ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment