Commit 770bc99e by Alan Mishchenko

Version abc90315

parent 81b51657
......@@ -3651,6 +3651,14 @@ SOURCE=.\src\aig\gia\giaCof.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\gia\giaCSat0.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\gia\giaCSat2.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\gia\giaDfs.c
# End Source File
# Begin Source File
......
......@@ -282,6 +282,9 @@ p->timeSim += clock() - clk;
// Gia_ManEquivTransform( p->pAig, 1 );
}
pSrm = Cec_ManFraSpecReduction( p );
// Gia_WriteAiger( pSrm, "gia_srm.aig", 0, 0 );
if ( pPars->fVeryVerbose )
Gia_ManPrintStats( pSrm );
if ( Gia_ManCoNum(pSrm) == 0 )
......
......@@ -435,14 +435,15 @@ static inline int * Gia_ObjGateFanins( Gia_Man_t * p, int Id ) { re
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*=== giaAig.c ============================================================*/
/*=== giaAig.c =============================================================*/
extern Gia_Man_t * Gia_ManFromAig( Aig_Man_t * p );
extern Gia_Man_t * Gia_ManFromAigSwitch( Aig_Man_t * p );
extern Aig_Man_t * Gia_ManToAig( Gia_Man_t * p );
/*=== giaAiger.c ==========================================================*/
/*=== giaAiger.c ===========================================================*/
extern Gia_Man_t * Gia_ReadAiger( char * pFileName, int fCheck );
extern void Gia_WriteAiger( Gia_Man_t * p, char * pFileName, int fWriteSymbols, int fCompact );
/*=== giaCof.c ============================================================*/
/*=== giaCsat.c ============================================================*/
/*=== giaCof.c =============================================================*/
extern void Gia_ManPrintFanio( Gia_Man_t * pGia, int nNodes );
extern Gia_Man_t * Gia_ManDupCof( Gia_Man_t * p, int iVar );
extern Gia_Man_t * Gia_ManDupCofAllInt( Gia_Man_t * p, Vec_Int_t * vSigs, int fVerbose );
......
......@@ -122,8 +122,10 @@ void Gia_SatVerifyPattern( Gia_Man_t * p, Gia_Obj_t * pRoot, Vec_Int_t * vCex, V
}
Value = Gia_XsimNotCond( Value, Gia_ObjFaninC0(pRoot) );
if ( Value != GIA_ONE )
printf( "Gia_SatVerifyPattern(): Verification failed.\n" );
assert( Value == GIA_ONE );
printf( "Gia_SatVerifyPattern(): Verification FAILED.\n" );
// else
// printf( "Gia_SatVerifyPattern(): Verification succeeded.\n" );
// assert( Value == GIA_ONE );
// clean the nodes
Gia_ManForEachObjVec( vVisit, p, pObj, i )
Sat_ObjSetXValue( pObj, 0 );
......
/**CFile****************************************************************
FileName [giaCSat2.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [A simple circuit-based solver.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaCSat2.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Cbs_Par_t_ Cbs_Par_t;
struct Cbs_Par_t_
{
// conflict limits
int nBTLimit; // limit on the number of conflicts
int nJustLimit; // limit on the size of justification queue
// current parameters
int nBTThis; // number of conflicts
int nJustThis; // max size of the frontier
int nBTTotal; // total number of conflicts
int nJustTotal; // total size of the frontier
// decision heuristics
int fUseHighest; // use node with the highest ID
int fUseLowest; // use node with the highest ID
int fUseMaxFF; // use node with the largest fanin fanout
// other
int fVerbose;
};
typedef struct Cbs_Que_t_ Cbs_Que_t;
struct Cbs_Que_t_
{
int iHead; // beginning of the queue
int iTail; // end of the queue
int nSize; // allocated size
Gia_Obj_t ** pData; // nodes stored in the queue
};
typedef struct Cbs_Man_t_ Cbs_Man_t;
struct Cbs_Man_t_
{
Cbs_Par_t Pars; // parameters
Gia_Man_t * pAig; // AIG manager
Cbs_Que_t pProp; // propagation queue
Cbs_Que_t pJust; // justification queue
Vec_Int_t * vModel; // satisfying assignment
};
static inline int Cbs_VarIsAssigned( Gia_Obj_t * pVar ) { return pVar->fMark0; }
static inline void Cbs_VarAssign( Gia_Obj_t * pVar ) { assert(!pVar->fMark0); pVar->fMark0 = 1; }
static inline void Cbs_VarUnassign( Gia_Obj_t * pVar ) { assert(pVar->fMark0); pVar->fMark0 = 0; pVar->fMark1 = 0; }
static inline int Cbs_VarValue( Gia_Obj_t * pVar ) { assert(pVar->fMark0); return pVar->fMark1; }
static inline void Cbs_VarSetValue( Gia_Obj_t * pVar, int v ) { assert(pVar->fMark0); pVar->fMark1 = v; }
static inline int Cbs_VarIsJust( Gia_Obj_t * pVar ) { return Gia_ObjIsAnd(pVar) && !Cbs_VarIsAssigned(Gia_ObjFanin0(pVar)) && !Cbs_VarIsAssigned(Gia_ObjFanin1(pVar)); }
static inline int Cbs_VarFanin0Value( Gia_Obj_t * pVar ) { return !Cbs_VarIsAssigned(Gia_ObjFanin0(pVar)) ? 2 : (Cbs_VarValue(Gia_ObjFanin0(pVar)) ^ Gia_ObjFaninC0(pVar)); }
static inline int Cbs_VarFanin1Value( Gia_Obj_t * pVar ) { return !Cbs_VarIsAssigned(Gia_ObjFanin1(pVar)) ? 2 : (Cbs_VarValue(Gia_ObjFanin1(pVar)) ^ Gia_ObjFaninC1(pVar)); }
#define Cbs_QueForEachEntry( Que, pObj, i ) \
for ( i = (Que).iHead; (i < (Que).iTail) && ((pObj) = (Que).pData[i]); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Sets default values of the parameters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Cbs_SetDefaultParams( Cbs_Par_t * pPars )
{
memset( pPars, 0, sizeof(Cbs_Par_t) );
pPars->nBTLimit = 1000; // limit on the number of conflicts
pPars->nJustLimit = 100; // limit on the size of justification queue
pPars->fUseHighest = 1; // use node with the highest ID
pPars->fUseLowest = 0; // use node with the highest ID
pPars->fUseMaxFF = 0; // use node with the largest fanin fanout
pPars->fVerbose = 1; // print detailed statistics
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Cbs_Man_t * Cbs_ManAlloc()
{
Cbs_Man_t * p;
p = ABC_CALLOC( Cbs_Man_t, 1 );
p->pProp.nSize = p->pJust.nSize = 10000;
p->pProp.pData = ABC_ALLOC( Gia_Obj_t *, p->pProp.nSize );
p->pJust.pData = ABC_ALLOC( Gia_Obj_t *, p->pJust.nSize );
p->vModel = Vec_IntAlloc( 1000 );
Cbs_SetDefaultParams( &p->Pars );
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Cbs_ManStop( Cbs_Man_t * p )
{
Vec_IntFree( p->vModel );
ABC_FREE( p->pProp.pData );
ABC_FREE( p->pJust.pData );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Returns satisfying assignment.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Cbs_ReadModel( Cbs_Man_t * p )
{
return p->vModel;
}
/**Function*************************************************************
Synopsis [Returns 1 if the solver is out of limits.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_ManCheckLimits( Cbs_Man_t * p )
{
return p->Pars.nJustThis > p->Pars.nJustLimit || p->Pars.nBTThis > p->Pars.nBTLimit;
}
/**Function*************************************************************
Synopsis [Saves the satisfying assignment as an array of literals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_ManSaveModel( Cbs_Man_t * p, Vec_Int_t * vCex )
{
Gia_Obj_t * pVar;
int i;
Vec_IntClear( vCex );
p->pProp.iHead = 0;
Cbs_QueForEachEntry( p->pProp, pVar, i )
if ( Gia_ObjIsCi(pVar) )
Vec_IntPush( vCex, Gia_Var2Lit(Gia_ObjId(p->pAig,pVar), !Cbs_VarValue(pVar)) );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_QueIsEmpty( Cbs_Que_t * p )
{
return p->iHead == p->iTail;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_QuePush( Cbs_Que_t * p, Gia_Obj_t * pObj )
{
if ( p->iTail == p->nSize )
{
p->nSize *= 2;
p->pData = ABC_REALLOC( Gia_Obj_t *, p->pData, p->nSize );
}
p->pData[p->iTail++] = pObj;
}
/**Function*************************************************************
Synopsis [Returns 1 if the object in the queue.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_QueHasNode( Cbs_Que_t * p, Gia_Obj_t * pObj )
{
Gia_Obj_t * pTemp;
int i;
Cbs_QueForEachEntry( *p, pTemp, i )
if ( pTemp == pObj )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_QueStore( Cbs_Que_t * p, int * piHeadOld, int * piTailOld )
{
int i;
*piHeadOld = p->iHead;
*piTailOld = p->iTail;
for ( i = *piHeadOld; i < *piTailOld; i++ )
Cbs_QuePush( p, p->pData[i] );
p->iHead = *piTailOld;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_QueRestore( Cbs_Que_t * p, int iHeadOld, int iTailOld )
{
p->iHead = iHeadOld;
p->iTail = iTailOld;
}
/**Function*************************************************************
Synopsis [Max number of fanins fanouts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_VarFaninFanoutMax( Cbs_Man_t * p, Gia_Obj_t * pObj )
{
int Count0, Count1;
assert( !Gia_IsComplement(pObj) );
assert( Gia_ObjIsAnd(pObj) );
Count0 = Gia_ObjRefs( p->pAig, Gia_ObjFanin0(pObj) );
Count1 = Gia_ObjRefs( p->pAig, Gia_ObjFanin1(pObj) );
return ABC_MAX( Count0, Count1 );
}
/**Function*************************************************************
Synopsis [Find variable with the highest ID.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Gia_Obj_t * Cbs_ManDecideHighest( Cbs_Man_t * p )
{
Gia_Obj_t * pObj, * pObjMax = NULL;
int i;
Cbs_QueForEachEntry( p->pJust, pObj, i )
if ( pObjMax == NULL || pObjMax < pObj )
pObjMax = pObj;
return pObjMax;
}
/**Function*************************************************************
Synopsis [Find variable with the lowest ID.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Gia_Obj_t * Cbs_ManDecideLowest( Cbs_Man_t * p )
{
Gia_Obj_t * pObj, * pObjMin = NULL;
int i;
Cbs_QueForEachEntry( p->pJust, pObj, i )
if ( pObjMin == NULL || pObjMin > pObj )
pObjMin = pObj;
return pObjMin;
}
/**Function*************************************************************
Synopsis [Find variable with the maximum number of fanin fanouts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Gia_Obj_t * Cbs_ManDecideMaxFF( Cbs_Man_t * p )
{
Gia_Obj_t * pObj, * pObjMax = NULL;
int i, iMaxFF = 0, iCurFF;
assert( p->pAig->pRefs != NULL );
Cbs_QueForEachEntry( p->pJust, pObj, i )
{
iCurFF = Cbs_VarFaninFanoutMax( p, pObj );
assert( iCurFF > 0 );
if ( iMaxFF < iCurFF )
{
iMaxFF = iCurFF;
pObjMax = pObj;
}
}
return pObjMax;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_ManCancelUntil( Cbs_Man_t * p, int iBound )
{
Gia_Obj_t * pVar;
int i;
assert( iBound <= p->pProp.iTail );
p->pProp.iHead = iBound;
Cbs_QueForEachEntry( p->pProp, pVar, i )
Cbs_VarUnassign( pVar );
p->pProp.iTail = iBound;
}
/**Function*************************************************************
Synopsis [Assigns the variables a value.]
Description [Returns 1 if conflict; 0 if no conflict.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Cbs_ManAssign( Cbs_Man_t * p, Gia_Obj_t * pObj )
{
Gia_Obj_t * pObjR = Gia_Regular(pObj);
assert( Gia_ObjIsCand(pObjR) );
assert( !Cbs_VarIsAssigned(pObjR) );
Cbs_VarAssign( pObjR );
Cbs_VarSetValue( pObjR, !Gia_IsComplement(pObj) );
Cbs_QuePush( &p->pProp, pObjR );
}
/**Function*************************************************************
Synopsis [Propagates a variable.]
Description [Returns 1 if conflict; 0 if no conflict.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_ManPropagateOne( Cbs_Man_t * p, Gia_Obj_t * pVar )
{
int Value0, Value1;
assert( !Gia_IsComplement(pVar) );
assert( Cbs_VarIsAssigned(pVar) );
if ( Gia_ObjIsCi(pVar) )
return 0;
assert( Gia_ObjIsAnd(pVar) );
Value0 = Cbs_VarFanin0Value(pVar);
Value1 = Cbs_VarFanin1Value(pVar);
if ( Cbs_VarValue(pVar) )
{ // value is 1
if ( Value0 == 0 || Value1 == 0 ) // one is 0
return 1;
if ( Value0 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_ObjChild0(pVar) );
if ( Value1 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_ObjChild1(pVar) );
return 0;
}
// value is 0
if ( Value0 == 0 || Value1 == 0 ) // one is 0
return 0;
if ( Value0 == 1 && Value1 == 1 ) // both are 1
return 1;
if ( Value0 == 1 || Value1 == 1 ) // one is 1
{
if ( Value0 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild0(pVar)) );
if ( Value1 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild1(pVar)) );
return 0;
}
assert( Cbs_VarIsJust(pVar) );
assert( !Cbs_QueHasNode( &p->pJust, pVar ) );
Cbs_QuePush( &p->pJust, pVar );
return 0;
}
/**Function*************************************************************
Synopsis [Propagates a variable.]
Description [Returns 1 if conflict; 0 if no conflict.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Cbs_ManPropagateTwo( Cbs_Man_t * p, Gia_Obj_t * pVar )
{
int Value0, Value1;
assert( !Gia_IsComplement(pVar) );
assert( Gia_ObjIsAnd(pVar) );
assert( Cbs_VarIsAssigned(pVar) );
assert( !Cbs_VarValue(pVar) );
Value0 = Cbs_VarFanin0Value(pVar);
Value1 = Cbs_VarFanin1Value(pVar);
// value is 0
if ( Value0 == 0 || Value1 == 0 ) // one is 0
return 0;
if ( Value0 == 1 && Value1 == 1 ) // both are 1
return 1;
assert( Value0 == 1 || Value1 == 1 );
if ( Value0 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild0(pVar)) );
if ( Value1 == 2 ) // first is unassigned
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild1(pVar)) );
return 0;
}
/**Function*************************************************************
Synopsis [Propagates all variables.]
Description [Returns 1 if conflict; 0 if no conflict.]
SideEffects []
SeeAlso []
***********************************************************************/
int Cbs_ManPropagate( Cbs_Man_t * p )
{
Gia_Obj_t * pVar;
int i, k;
while ( 1 )
{
Cbs_QueForEachEntry( p->pProp, pVar, i )
{
if ( Cbs_ManPropagateOne( p, pVar ) )
return 1;
}
p->pProp.iHead = p->pProp.iTail;
k = p->pJust.iHead;
Cbs_QueForEachEntry( p->pJust, pVar, i )
{
if ( Cbs_VarIsJust( pVar ) )
p->pJust.pData[k++] = pVar;
else if ( Cbs_ManPropagateTwo( p, pVar ) )
return 1;
}
if ( k == p->pJust.iTail )
break;
p->pJust.iTail = k;
}
return 0;
}
/**Function*************************************************************
Synopsis [Solve the problem recursively.]
Description [Returns 1 if unsat or undecided; 0 if satisfiable.]
SideEffects []
SeeAlso []
***********************************************************************/
int Cbs_ManSolve_rec( Cbs_Man_t * p )
{
Gia_Obj_t * pVar;
int iPropHead, iJustHead, iJustTail;
// propagate assignments
assert( !Cbs_QueIsEmpty(&p->pProp) );
if ( Cbs_ManPropagate( p ) )
return 1;
// check for satisfying assignment
assert( Cbs_QueIsEmpty(&p->pProp) );
if ( Cbs_QueIsEmpty(&p->pJust) )
return 0;
// quit using resource limits
p->Pars.nBTThis++;
p->Pars.nJustThis = ABC_MAX( p->Pars.nJustThis, p->pJust.iTail - p->pJust.iHead );
if ( Cbs_ManCheckLimits( p ) )
return 1;
// remember the state before branching
iPropHead = p->pProp.iHead;
Cbs_QueStore( &p->pJust, &iJustHead, &iJustTail );
// find the decision variable
if ( p->Pars.fUseHighest )
pVar = Cbs_ManDecideHighest( p );
else if ( p->Pars.fUseLowest )
pVar = Cbs_ManDecideLowest( p );
else if ( p->Pars.fUseMaxFF )
pVar = Cbs_ManDecideMaxFF( p );
else assert( 0 );
assert( Cbs_VarIsJust( pVar ) );
// decide using fanout count!
if ( Gia_ObjRefs(p->pAig, Gia_ObjFanin0(pVar)) < Gia_ObjRefs(p->pAig, Gia_ObjFanin1(pVar)) )
{
// decide on first fanin
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild0(pVar)) );
if ( !Cbs_ManSolve_rec( p ) )
return 0;
if ( Cbs_ManCheckLimits( p ) )
return 1;
Cbs_ManCancelUntil( p, iPropHead );
Cbs_QueRestore( &p->pJust, iJustHead, iJustTail );
// decide on second fanin
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild1(pVar)) );
}
else
{
// decide on first fanin
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild1(pVar)) );
if ( !Cbs_ManSolve_rec( p ) )
return 0;
if ( Cbs_ManCheckLimits( p ) )
return 1;
Cbs_ManCancelUntil( p, iPropHead );
Cbs_QueRestore( &p->pJust, iJustHead, iJustTail );
// decide on second fanin
Cbs_ManAssign( p, Gia_Not(Gia_ObjChild0(pVar)) );
}
if ( !Cbs_ManSolve_rec( p ) )
return 0;
if ( Cbs_ManCheckLimits( p ) )
return 1;
return 1;
}
/**Function*************************************************************
Synopsis [Looking for a satisfying assignment of the node.]
Description [Assumes that each node has flag pObj->fMark0 set to 0.
Returns 1 if unsatisfiable, 0 if satisfiable, and -1 if undecided.
The node may be complemented. ]
SideEffects []
SeeAlso []
***********************************************************************/
int Cbs_ManSolve( Cbs_Man_t * p, Gia_Obj_t * pObj )
{
// Gia_Obj_t * pTemp;
// int i;
int RetValue;
// Gia_ManForEachObj( p->pAig, pTemp, i )
// assert( pTemp->fMark0 == 0 );
assert( !p->pProp.iHead && !p->pProp.iTail );
assert( !p->pJust.iHead && !p->pJust.iTail );
p->Pars.nBTThis = p->Pars.nJustThis = 0;
Cbs_ManAssign( p, pObj );
RetValue = Cbs_ManSolve_rec( p );
if ( RetValue == 0 )
Cbs_ManSaveModel( p, p->vModel );
Cbs_ManCancelUntil( p, 0 );
p->pJust.iHead = p->pJust.iTail = 0;
p->Pars.nBTTotal += p->Pars.nBTThis;
p->Pars.nJustTotal = ABC_MAX( p->Pars.nJustTotal, p->Pars.nJustThis );
if ( Cbs_ManCheckLimits( p ) )
return -1;
return RetValue;
}
/**Function*************************************************************
Synopsis [Procedure to test the new SAT solver.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Cbs_ManSolveTest( Gia_Man_t * pGia )
{
extern void Gia_SatVerifyPattern( Gia_Man_t * p, Gia_Obj_t * pRoot, Vec_Int_t * vCex, Vec_Int_t * vVisit );
int nConfsMax = 1000;
int CountUnsat, CountSat, CountUndec;
Cbs_Man_t * p;
Vec_Int_t * vCex;
Vec_Int_t * vVisit;
Gia_Obj_t * pRoot;
int i, RetValue, clk = clock();
Gia_ManCreateRefs( pGia );
// create logic network
p = Cbs_ManAlloc();
p->pAig = pGia;
// prepare AIG
Gia_ManCleanValue( pGia );
Gia_ManCleanMark0( pGia );
Gia_ManCleanMark1( pGia );
// vCex = Vec_IntAlloc( 100 );
vVisit = Vec_IntAlloc( 100 );
// solve for each output
CountUnsat = CountSat = CountUndec = 0;
Gia_ManForEachCo( pGia, pRoot, i )
{
if ( Gia_ObjIsConst0(Gia_ObjFanin0(pRoot)) )
continue;
// Gia_ManIncrementTravId( pGia );
//printf( "Output %6d : ", i );
// iLit = Gia_Var2Lit( Gia_ObjHandle(Gia_ObjFanin0(pRoot)), Gia_ObjFaninC0(pRoot) );
// RetValue = Cbs_ManSolve( p, &iLit, 1, nConfsMax, vCex );
RetValue = Cbs_ManSolve( p, Gia_ObjChild0(pRoot) );
if ( RetValue == 1 )
CountUnsat++;
else if ( RetValue == -1 )
CountUndec++;
else
{
int iLit, k;
vCex = Cbs_ReadModel( p );
// printf( "complemented = %d. ", Gia_ObjFaninC0(pRoot) );
//printf( "conflicts = %6d max-frontier = %6d \n", p->Pars.nBTThis, p->Pars.nJustThis );
// Vec_IntForEachEntry( vCex, iLit, k )
// printf( "%s%d ", Gia_LitIsCompl(iLit)? "!": "", Gia_ObjCioId(Gia_ManObj(pGia,Gia_Lit2Var(iLit))) );
// printf( "\n" );
Gia_SatVerifyPattern( pGia, pRoot, vCex, vVisit );
assert( RetValue == 0 );
CountSat++;
}
// Gia_ManCheckMark0( p );
// Gia_ManCheckMark1( p );
}
Cbs_ManStop( p );
// Vec_IntFree( vCex );
Vec_IntFree( vVisit );
printf( "Unsat = %d. Sat = %d. Undec = %d. ", CountUnsat, CountSat, CountUndec );
ABC_PRT( "Time", clock() - clk );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -3729,8 +3729,8 @@ int Abc_CommandLutmin( Abc_Frame_t * pAbc, int argc, char ** argv )
pErr = Abc_FrameReadErr(pAbc);
// set defaults
nLutSize = 6;
fVerbose = 1;
nLutSize = 4;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "Kvh" ) ) != EOF )
{
......@@ -3744,8 +3744,6 @@ int Abc_CommandLutmin( Abc_Frame_t * pAbc, int argc, char ** argv )
}
nLutSize = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nLutSize > 1 )
goto usage;
break;
case 'v':
fVerbose ^= 1;
......@@ -23956,6 +23954,7 @@ int Abc_CommandAbc9Test( Abc_Frame_t * pAbc, int argc, char ** argv )
Gia_Man_t * pTemp = NULL;
int c, fVerbose = 0;
extern void Gia_SatSolveTest( Gia_Man_t * p );
extern void Cbs_ManSolveTest( Gia_Man_t * pGia );
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "vh" ) ) != EOF )
......@@ -23983,8 +23982,9 @@ int Abc_CommandAbc9Test( Abc_Frame_t * pAbc, int argc, char ** argv )
// Gia_SatSolveTest( pAbc->pAig );
// For_ManExperiment( pAbc->pAig, 20, 1, 1 );
// Gia_ManUnrollSpecial( pAbc->pAig, 5, 100, 1 );
pAbc->pAig = Gia_ManDupSelf( pTemp = pAbc->pAig );
Gia_ManStop( pTemp );
// pAbc->pAig = Gia_ManDupSelf( pTemp = pAbc->pAig );
// Gia_ManStop( pTemp );
// Cbs_ManSolveTest( pAbc->pAig );
return 0;
usage:
......
......@@ -19,7 +19,7 @@
***********************************************************************/
#include "abc.h"
#include "cut.h"
#include "cut.h"
#define LARGE_LEVEL 1000000
......
......@@ -20,6 +20,12 @@
#include "abc.h"
/*
Implememented here is the algorithm for minimal-LUT decomposition
described in the paper: T. Sasao et al. "On the number of LUTs
to implement logic functions", To appear in Proc. IWLS'09.
*/
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
......@@ -30,6 +36,254 @@
/**Function*************************************************************
Synopsis [Implements 2:1 MUX using one 3-LUT.]
Description [The fanins are (c, d0, d1).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux21( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = pNtkNew->pManFunc;
Abc_Obj_t * pNode;
DdNode * bSpin, * bCof0, * bCof1;
pNode = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNode, pFanins[0] );
Abc_ObjAddFanin( pNode, pFanins[1] );
Abc_ObjAddFanin( pNode, pFanins[2] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIthVar(dd, 2);
pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNode->pData );
return pNode;
}
/**Function*************************************************************
Synopsis [Implements 4:1 MUX using one 6-LUT.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux411( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = pNtkNew->pManFunc;
Abc_Obj_t * pNode;
DdNode * bSpin, * bCof0, * bCof1;
pNode = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNode, pFanins[0] );
Abc_ObjAddFanin( pNode, pFanins[1] );
Abc_ObjAddFanin( pNode, pFanins[2] );
Abc_ObjAddFanin( pNode, pFanins[3] );
Abc_ObjAddFanin( pNode, pFanins[4] );
Abc_ObjAddFanin( pNode, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 1);
bCof0 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 5), Cudd_bddIthVar(dd, 4) ); Cudd_Ref( bCof1 );
bSpin = Cudd_bddIthVar(dd, 0);
pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNode->pData );
Cudd_RecursiveDeref( dd, bCof0 );
Cudd_RecursiveDeref( dd, bCof1 );
return pNode;
}
/**Function*************************************************************
Synopsis [Implementes 4:1 MUX using two 4-LUTs.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux412( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = pNtkNew->pManFunc;
Abc_Obj_t * pNodeBot, * pNodeTop;
DdNode * bSpin, * bCof0, * bCof1;
// bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeBot, pFanins[0] );
Abc_ObjAddFanin( pNodeBot, pFanins[1] );
Abc_ObjAddFanin( pNodeBot, pFanins[2] );
Abc_ObjAddFanin( pNodeBot, pFanins[3] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_bddIthVar(dd, 1);
pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNodeBot->pData );
Cudd_RecursiveDeref( dd, bCof0 );
// top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeTop, pFanins[0] );
Abc_ObjAddFanin( pNodeTop, pNodeBot );
Abc_ObjAddFanin( pNodeTop, pFanins[4] );
Abc_ObjAddFanin( pNodeTop, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof1 );
pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNodeTop->pData );
Cudd_RecursiveDeref( dd, bCof1 );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Implementes 4:1 MUX using two 4-LUTs.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux412a( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = pNtkNew->pManFunc;
Abc_Obj_t * pNodeBot, * pNodeTop;
DdNode * bSpin, * bCof0, * bCof1;
// bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeBot, pFanins[1] );
Abc_ObjAddFanin( pNodeBot, pFanins[2] );
Abc_ObjAddFanin( pNodeBot, pFanins[3] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIthVar(dd, 2);
pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNodeBot->pData );
// top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeTop, pFanins[0] );
Abc_ObjAddFanin( pNodeTop, pFanins[1] );
Abc_ObjAddFanin( pNodeTop, pNodeBot );
Abc_ObjAddFanin( pNodeTop, pFanins[4] );
Abc_ObjAddFanin( pNodeTop, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 2);
bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 4), Cudd_bddIthVar(dd, 3) ); Cudd_Ref( bCof1 );
pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( pNodeTop->pData );
Cudd_RecursiveDeref( dd, bCof1 );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Implements 4:1 MUX using three 2:1 MUXes.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux413( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
Abc_Obj_t * pNodesBot[3], * pNodesTop[3];
// left bottom
pNodesBot[0] = pFanins[1];
pNodesBot[1] = pFanins[2];
pNodesBot[2] = pFanins[3];
pNodesTop[1] = Abc_NtkBddMux21( pNtkNew, pNodesBot );
// right bottom
pNodesBot[0] = pFanins[1];
pNodesBot[1] = pFanins[4];
pNodesBot[2] = pFanins[5];
pNodesTop[2] = Abc_NtkBddMux21( pNtkNew, pNodesBot );
// top node
pNodesTop[0] = pFanins[0];
return Abc_NtkBddMux21( pNtkNew, pNodesTop );
}
/**Function*************************************************************
Synopsis [Finds unique cofactors of the function on the given level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Abc_NtkBddCofactors_rec( DdManager * dd, DdNode * bNode, int iCof, int iLevel, int nLevels )
{
DdNode * bNode0, * bNode1;
if ( Cudd_IsConstant(bNode) || iLevel == nLevels )
return bNode;
if ( Cudd_ReadPerm( dd, Cudd_NodeReadIndex(bNode) ) > iLevel )
{
bNode0 = bNode;
bNode1 = bNode;
}
else if ( Cudd_IsComplement(bNode) )
{
bNode0 = Cudd_Not(cuddE(Cudd_Regular(bNode)));
bNode1 = Cudd_Not(cuddT(Cudd_Regular(bNode)));
}
else
{
bNode0 = cuddE(bNode);
bNode1 = cuddT(bNode);
}
if ( (iCof >> (nLevels-1-iLevel)) & 1 )
return Abc_NtkBddCofactors_rec( dd, bNode1, iCof, iLevel + 1, nLevels );
return Abc_NtkBddCofactors_rec( dd, bNode0, iCof, iLevel + 1, nLevels );
}
/**Function*************************************************************
Synopsis [Finds unique cofactors of the function on the given level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkBddCofactors( DdManager * dd, DdNode * bNode, int Level )
{
Vec_Ptr_t * vCofs;
int i, nCofs = (1<<Level);
assert( Level > 0 && Level < 10 );
vCofs = Vec_PtrAlloc( 8 );
for ( i = 0; i < nCofs; i++ )
Vec_PtrPush( vCofs, Abc_NtkBddCofactors_rec( dd, bNode, i, 0, Level ) );
return vCofs;
}
/**Function*************************************************************
Synopsis [Comparison procedure for two integers.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static int Vec_PtrSortCompare( void ** pp1, void ** pp2 )
{
if ( *pp1 < *pp2 )
return -1;
if ( *pp1 > *pp2 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Converts the node to MUXes.]
Description []
......@@ -39,27 +293,43 @@
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkCreateNodeLut( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bFunc, Abc_Obj_t * pNode, int nLutSize )
Abc_Obj_t * Abc_NtkCreateCofLut( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bCof, Abc_Obj_t * pNode, int Level )
{
int fVerbose = 0;
DdNode * bFuncNew;
Abc_Obj_t * pNodeNew;
int i, nStart = ABC_MIN( 0, Abc_ObjFaninNum(pNode) - nLutSize );
int i;
assert( Abc_ObjFaninNum(pNode) > Level );
// create a new node
pNodeNew = Abc_NtkCreateNode( pNtkNew );
// add the fanins in the order, in which they appear in the reordered manager
for ( i = nStart; i < Abc_ObjFaninNum(pNode); i++ )
for ( i = Level; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy );
if ( fVerbose )
{
Extra_bddPrint( dd, bCof );
printf( "\n" );
printf( "\n" );
}
// transfer the function
bFuncNew = Extra_bddMove( dd, bFunc, nStart ); Cudd_Ref( bFuncNew );
assert( Cudd_SupportSize(dd, bFuncNew) <= nLutSize );
bFuncNew = Extra_bddMove( dd, bCof, -Level ); Cudd_Ref( bFuncNew );
if ( fVerbose )
{
Extra_bddPrint( dd, bFuncNew );
printf( "\n" );
printf( "\n" );
}
pNodeNew->pData = Extra_TransferLevelByLevel( dd, pNtkNew->pManFunc, bFuncNew ); Cudd_Ref( pNodeNew->pData );
//Extra_bddPrint( pNtkNew->pManFunc, pNodeNew->pData );
//printf( "\n" );
//printf( "\n" );
Cudd_RecursiveDeref( dd, bFuncNew );
return pNodeNew;
}
/**Function*************************************************************
Synopsis [Converts the node to MUXes.]
Synopsis [Performs one step of Ashenhurst-Curtis decomposition.]
Description []
......@@ -68,36 +338,164 @@ Abc_Obj_t * Abc_NtkCreateNodeLut( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode *
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeBddToMuxesLut_rec( DdManager * dd, DdNode * bFunc, Abc_Ntk_t * pNtkNew, st_table * tBdd2Node, Abc_Obj_t * pNode, int nLutSize )
{
Abc_Obj_t * pNodeNew, * pNodeNew0, * pNodeNew1, * pNodeNewC;
assert( !Cudd_IsComplement(bFunc) );
if ( bFunc == b1 )
return Abc_NtkCreateNodeConst1(pNtkNew);
if ( st_lookup( tBdd2Node, (char *)bFunc, (char **)&pNodeNew ) )
return pNodeNew;
if ( dd->perm[bFunc->index] >= Abc_ObjFaninNum(pNode) - nLutSize )
{
pNodeNew = Abc_NtkCreateNodeLut( pNtkNew, dd, bFunc, pNode, nLutSize );
st_insert( tBdd2Node, (char *)bFunc, (char *)pNodeNew );
return pNodeNew;
}
// solve for the children nodes
pNodeNew0 = Abc_NodeBddToMuxesLut_rec( dd, Cudd_Regular(cuddE(bFunc)), pNtkNew, tBdd2Node, pNode, nLutSize );
if ( Cudd_IsComplement(cuddE(bFunc)) )
pNodeNew0 = Abc_NtkCreateNodeInv( pNtkNew, pNodeNew0 );
pNodeNew1 = Abc_NodeBddToMuxesLut_rec( dd, cuddT(bFunc), pNtkNew, tBdd2Node, pNode, nLutSize );
if ( !st_lookup( tBdd2Node, (char *)Cudd_bddIthVar(dd, bFunc->index), (char **)&pNodeNewC ) )
assert( 0 );
// create the MUX node
pNodeNew = Abc_NtkCreateNodeMux( pNtkNew, pNodeNewC, pNodeNew1, pNodeNew0 );
st_insert( tBdd2Node, (char *)bFunc, (char *)pNodeNew );
Abc_Obj_t * Abc_NtkBddCurtis( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, Vec_Ptr_t * vCofs, Vec_Ptr_t * vUniq )
{
DdManager * ddOld = pNode->pNtk->pManFunc;
DdManager * ddNew = pNtkNew->pManFunc;
DdNode * bCof, * bUniq, * bMint, * bTemp, * bFunc, * bBits[10], ** pbCodeVars;
Abc_Obj_t * pNodeNew = NULL, * pNodeBS[10];
int nLutSize = Extra_Base2Log( Vec_PtrSize(vCofs) );
int nBits = Extra_Base2Log( Vec_PtrSize(vUniq) );
int b, c, u, i;
assert( nBits + 2 <= nLutSize );
assert( nLutSize < Abc_ObjFaninNum(pNode) );
// start BDDs for the decompoosed blocks
for ( b = 0; b < nBits; b++ )
bBits[b] = Cudd_ReadLogicZero(ddNew), Cudd_Ref( bBits[b] );
// add each bound set minterm to one of the blccks
Vec_PtrForEachEntry( vCofs, bCof, c )
{
Vec_PtrForEachEntry( vUniq, bUniq, u )
if ( bUniq == bCof )
break;
assert( u < Vec_PtrSize(vUniq) );
for ( b = 0; b < nBits; b++ )
{
if ( ((u >> b) & 1) == 0 )
continue;
bMint = Extra_bddBitsToCube( ddNew, c, nLutSize, ddNew->vars, 1 ); Cudd_Ref( bMint );
bBits[b] = Cudd_bddOr( ddNew, bTemp = bBits[b], bMint ); Cudd_Ref( bBits[b] );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bMint );
}
}
// create bound set nodes
for ( b = 0; b < nBits; b++ )
{
pNodeBS[b] = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < nLutSize; i++ )
Abc_ObjAddFanin( pNodeBS[b], Abc_ObjFanin(pNode, i)->pCopy );
pNodeBS[b]->pData = bBits[b]; // takes ref
}
// create composition node
pNodeNew = Abc_NtkCreateNode( pNtkNew );
// add free set variables first
for ( i = nLutSize; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy );
// add code bit variables next
for ( b = 0; b < nBits; b++ )
Abc_ObjAddFanin( pNodeNew, pNodeBS[b] );
// derive function of the composition node
bFunc = Cudd_ReadLogicZero(ddNew); Cudd_Ref( bFunc );
pbCodeVars = ddNew->vars + Abc_ObjFaninNum(pNode) - nLutSize;
Vec_PtrForEachEntry( vUniq, bUniq, u )
{
bUniq = Extra_bddMove( ddOld, bUniq, -nLutSize ); Cudd_Ref( bUniq );
bUniq = Extra_TransferLevelByLevel( ddOld, ddNew, bTemp = bUniq ); Cudd_Ref( bUniq );
Cudd_RecursiveDeref( ddOld, bTemp );
bMint = Extra_bddBitsToCube( ddNew, u, nBits, pbCodeVars, 0 ); Cudd_Ref( bMint );
bMint = Cudd_bddAnd( ddNew, bTemp = bMint, bUniq ); Cudd_Ref( bMint );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bUniq );
bFunc = Cudd_bddOr( ddNew, bTemp = bFunc, bMint ); Cudd_Ref( bFunc );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bMint );
}
pNodeNew->pData = bFunc; // takes ref
return pNodeNew;
}
/**Function*************************************************************
Synopsis [Converts the node to MUXes.]
Synopsis [Tries to decompose using cofactoring into two LUTs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddFindCofactor( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize )
{
Abc_Obj_t * pNodeBot, * pNodeTop;
DdManager * ddOld = pNode->pNtk->pManFunc;
DdManager * ddNew = pNtkNew->pManFunc;
DdNode * bCof0, * bCof1, * bSupp, * bTemp, * bVar;
DdNode * bCof0n, * bCof1n;
int i, iCof, iFreeVar, fCof1Smaller = -1;
assert( Abc_ObjFaninNum(pNode) == nLutSize + 1 );
for ( iCof = 0; iCof < Abc_ObjFaninNum(pNode); iCof++ )
{
bVar = Cudd_bddIthVar( ddOld, iCof );
bCof0 = Cudd_Cofactor( ddOld, pNode->pData, Cudd_Not(bVar) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_Cofactor( ddOld, pNode->pData, bVar ); Cudd_Ref( bCof1 );
if ( Cudd_SupportSize( ddOld, bCof0 ) <= nLutSize - 2 )
{
fCof1Smaller = 0;
break;
}
if ( Cudd_SupportSize( ddOld, bCof1 ) <= nLutSize - 2 )
{
fCof1Smaller = 1;
break;
}
Cudd_RecursiveDeref( ddOld, bCof0 );
Cudd_RecursiveDeref( ddOld, bCof1 );
}
if ( iCof == Abc_ObjFaninNum(pNode) )
return NULL;
// find unused variable
bSupp = Cudd_Support( ddOld, fCof1Smaller? bCof1 : bCof0 ); Cudd_Ref( bSupp );
iFreeVar = -1;
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
{
assert( i == Cudd_ReadPerm(ddOld, i) );
if ( i == iCof )
continue;
for ( bTemp = bSupp; !Cudd_IsConstant(bTemp); bTemp = cuddT(bTemp) )
if ( i == (int)Cudd_NodeReadIndex(bTemp) )
break;
if ( Cudd_IsConstant(bTemp) )
{
iFreeVar = i;
break;
}
}
assert( iFreeVar != iCof && iFreeVar < Abc_ObjFaninNum(pNode) );
Cudd_RecursiveDeref( ddOld, bSupp );
// transfer the cofactors
bCof0n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof0 ); Cudd_Ref( bCof0n );
bCof1n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof1 ); Cudd_Ref( bCof1n );
Cudd_RecursiveDeref( ddOld, bCof0 );
Cudd_RecursiveDeref( ddOld, bCof1 );
// create bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeBot, Abc_ObjFanin(pNode, i)->pCopy );
pNodeBot->pData = fCof1Smaller? bCof0n : bCof1n;
// create top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
if ( i == iFreeVar )
Abc_ObjAddFanin( pNodeTop, pNodeBot );
else
Abc_ObjAddFanin( pNodeTop, Abc_ObjFanin(pNode, i)->pCopy );
// derive the new function
pNodeTop->pData = Cudd_bddIte( ddNew,
Cudd_bddIthVar(ddNew, iCof),
fCof1Smaller? bCof1n : Cudd_bddIthVar(ddNew, iFreeVar),
fCof1Smaller? Cudd_bddIthVar(ddNew, iFreeVar) : bCof0n );
Cudd_Ref( pNodeTop->pData );
Cudd_RecursiveDeref( ddNew, fCof1Smaller? bCof1n : bCof0n );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Decompose the function once.]
Description []
......@@ -106,23 +504,64 @@ Abc_Obj_t * Abc_NodeBddToMuxesLut_rec( DdManager * dd, DdNode * bFunc, Abc_Ntk_t
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeBddToMuxesLut( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNodeOld, int nLutSize )
Abc_Obj_t * Abc_NtkBddDecompose( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize, int fVerbose )
{
DdManager * dd = pNodeOld->pNtk->pManFunc;
DdNode * bFunc = pNodeOld->pData;
Abc_Obj_t * pFaninOld, * pNodeNew;
st_table * tBdd2Node;
Vec_Ptr_t * vCofs, * vUniq;
DdManager * dd = pNode->pNtk->pManFunc;
DdNode * bCof;
Abc_Obj_t * pNodeNew = NULL;
Abc_Obj_t * pCofs[20];
int i;
// create the table mapping BDD nodes into the ABC nodes
tBdd2Node = st_init_table( st_ptrcmp, st_ptrhash );
// add the constant and the elementary vars
Abc_ObjForEachFanin( pNodeOld, pFaninOld, i )
st_insert( tBdd2Node, (char *)Cudd_bddIthVar(dd, i), (char *)pFaninOld->pCopy );
// create the new nodes recursively
pNodeNew = Abc_NodeBddToMuxesLut_rec( dd, Cudd_Regular(bFunc), pNtkNew, tBdd2Node, pNodeOld, nLutSize );
st_free_table( tBdd2Node );
if ( Cudd_IsComplement(bFunc) )
pNodeNew = Abc_NtkCreateNodeInv( pNtkNew, pNodeNew );
assert( Abc_ObjFaninNum(pNode) > nLutSize );
// try to decompose with two LUTs (the best case for Supp = LutSize + 1)
if ( Abc_ObjFaninNum(pNode) == nLutSize + 1 )
{
pNodeNew = Abc_NtkBddFindCofactor( pNtkNew, pNode, nLutSize );
if ( pNodeNew != NULL )
{
if ( fVerbose )
printf( "Decomposing %d-input node %d using MUX.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode) );
return pNodeNew;
}
}
// cofactor w.r.t. the bound set variables
vCofs = Abc_NtkBddCofactors( dd, pNode->pData, nLutSize );
vUniq = Vec_PtrDup( vCofs );
Vec_PtrUniqify( vUniq, (int (*)())Vec_PtrSortCompare );
// only perform decomposition with it is support reduring with two less vars
if( Vec_PtrSize(vUniq) > (1 << (nLutSize-2)) )
{
Vec_PtrFree( vCofs );
vCofs = Abc_NtkBddCofactors( dd, pNode->pData, 2 );
if ( fVerbose )
printf( "Decomposing %d-input node %d using cofactoring with %d cofactors.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vCofs) );
// implement the cofactors
pCofs[0] = Abc_ObjFanin(pNode, 0)->pCopy;
pCofs[1] = Abc_ObjFanin(pNode, 1)->pCopy;
Vec_PtrForEachEntry( vCofs, bCof, i )
pCofs[2+i] = Abc_NtkCreateCofLut( pNtkNew, dd, bCof, pNode, 2 );
if ( nLutSize == 4 )
pNodeNew = Abc_NtkBddMux412( pNtkNew, pCofs );
else if ( nLutSize == 5 )
pNodeNew = Abc_NtkBddMux412a( pNtkNew, pCofs );
else if ( nLutSize == 6 )
pNodeNew = Abc_NtkBddMux411( pNtkNew, pCofs );
else assert( 0 );
}
// alternative decompose using MUX-decomposition
else
{
if ( fVerbose )
printf( "Decomposing %d-input node %d using Curtis with %d unique columns.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vUniq) );
pNodeNew = Abc_NtkBddCurtis( pNtkNew, pNode, vCofs, vUniq );
}
Vec_PtrFree( vCofs );
Vec_PtrFree( vUniq );
return pNodeNew;
}
......@@ -137,20 +576,24 @@ Abc_Obj_t * Abc_NodeBddToMuxesLut( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNodeOld, in
SeeAlso []
***********************************************************************/
void Abc_NtkLutminConstruct( Abc_Ntk_t * pNtkClp, Abc_Ntk_t * pNtkDec, int nLutSize )
void Abc_NtkLutminConstruct( Abc_Ntk_t * pNtkClp, Abc_Ntk_t * pNtkDec, int nLutSize, int fVerbose )
{
Abc_Obj_t * pObj, * pDriver;
int i;
Abc_NtkForEachCo( pNtkClp, pObj, i )
Vec_Ptr_t * vNodes;
Abc_Obj_t * pNode, * pFanin;
int i, k;
vNodes = Abc_NtkDfs( pNtkClp, 0 );
Vec_PtrForEachEntry( vNodes, pNode, i )
{
pDriver = Abc_ObjFanin0( pObj );
if ( !Abc_ObjIsNode(pDriver) )
continue;
if ( Abc_ObjFaninNum(pDriver) == 0 )
pDriver->pCopy = Abc_NtkDupObj( pNtkDec, pDriver, 0 );
if ( Abc_ObjFaninNum(pNode) <= nLutSize )
{
pNode->pCopy = Abc_NtkDupObj( pNtkDec, pNode, 0 );
Abc_ObjForEachFanin( pNode, pFanin, k )
Abc_ObjAddFanin( pNode->pCopy, pFanin->pCopy );
}
else
pDriver->pCopy = Abc_NodeBddToMuxesLut( pNtkDec, pDriver, nLutSize );
pNode->pCopy = Abc_NtkBddDecompose( pNtkDec, pNode, nLutSize, fVerbose );
}
Vec_PtrFree( vNodes );
}
/**Function*************************************************************
......@@ -164,42 +607,87 @@ void Abc_NtkLutminConstruct( Abc_Ntk_t * pNtkClp, Abc_Ntk_t * pNtkDec, int nLutS
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkLutmin( Abc_Ntk_t * pNtk, int nLutSize, int fVerbose )
Abc_Ntk_t * Abc_NtkLutminInt( Abc_Ntk_t * pNtk, int nLutSize, int fVerbose )
{
extern void Abc_NtkBddReorder( Abc_Ntk_t * pNtk, int fVerbose );
Abc_Ntk_t * pNtkDec, * pNtkClp, * pTemp;
// collapse the network and reorder BDDs
if ( Abc_NtkIsStrash(pNtk) )
pTemp = Abc_NtkDup( pNtk );
else
pTemp = Abc_NtkStrash( pNtk, 0, 1, 0 );
pNtkClp = Abc_NtkCollapse( pTemp, 10000, 0, 1, 0 );
Abc_NtkDelete( pTemp );
if ( pNtkClp == NULL )
return NULL;
if ( !Abc_NtkIsBddLogic(pNtkClp) )
Abc_NtkToBdd( pNtkClp );
Abc_NtkBddReorder( pNtkClp, fVerbose );
Abc_Ntk_t * pNtkDec;
// minimize BDDs
// Abc_NtkBddReorder( pNtk, fVerbose );
Abc_NtkBddReorder( pNtk, 0 );
// decompose one output at a time
pNtkDec = Abc_NtkStartFrom( pNtkClp, ABC_NTK_LOGIC, ABC_FUNC_BDD );
pNtkDec = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
// make sure the new manager has enough inputs
Cudd_bddIthVar( pNtkDec->pManFunc, nLutSize );
Cudd_bddIthVar( pNtkDec->pManFunc, Abc_NtkGetFaninMax(pNtk) );
// put the results into the new network (save new CO drivers in old CO drivers)
Abc_NtkLutminConstruct( pNtkClp, pNtkDec, nLutSize );
Abc_NtkLutminConstruct( pNtk, pNtkDec, nLutSize, fVerbose );
// finalize the new network
Abc_NtkFinalize( pNtkClp, pNtkDec );
Abc_NtkDelete( pNtkClp );
Abc_NtkFinalize( pNtk, pNtkDec );
// make the network minimum base
Abc_NtkMinimumBase( pNtkDec );
return pNtkDec;
}
/**Function*************************************************************
Synopsis [Performs minimum-LUT decomposition of the network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkLutmin( Abc_Ntk_t * pNtkInit, int nLutSize, int fVerbose )
{
extern bool Abc_NtkFraigSweep( Abc_Ntk_t * pNtk, int fUseInv, int fExdc, int fVerbose, int fVeryVerbose );
Abc_Ntk_t * pNtkNew, * pTemp;
int i;
if ( nLutSize < 4 )
{
printf( "The LUT count (%d) should be at least 4.\n", nLutSize );
return NULL;
}
if ( nLutSize > 6 )
{
printf( "The LUT count (%d) should not exceed 6.\n", nLutSize );
return NULL;
}
// create internal representation
if ( Abc_NtkIsStrash(pNtkInit) )
pNtkNew = Abc_NtkDup( pNtkInit );
else
pNtkNew = Abc_NtkStrash( pNtkInit, 0, 1, 0 );
// collapse the network
pNtkNew = Abc_NtkCollapse( pTemp = pNtkNew, 10000, 0, 1, 0 );
Abc_NtkDelete( pTemp );
if ( pNtkNew == NULL )
return NULL;
// convert it to BDD
if ( !Abc_NtkIsBddLogic(pNtkNew) )
Abc_NtkToBdd( pNtkNew );
// iterate decomposition
for ( i = 0; Abc_NtkGetFaninMax(pNtkNew) > nLutSize; i++ )
{
if ( fVerbose )
printf( "*** Iteration %d:\n", i+1 );
if ( fVerbose )
printf( "Decomposing network with %d nodes and %d max fanin count for K = %d.\n",
Abc_NtkNodeNum(pNtkNew), Abc_NtkGetFaninMax(pNtkNew), nLutSize );
pNtkNew = Abc_NtkLutminInt( pTemp = pNtkNew, nLutSize, fVerbose );
Abc_NtkDelete( pTemp );
}
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkDec, 0 );
Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
// merge functionally equivalent nodes
Abc_NtkFraigSweep( pNtkNew, 1, 0, 0, 0 );
// make sure everything is okay
if ( !Abc_NtkCheck( pNtkDec ) )
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkLutmin: The network check has failed.\n" );
return 0;
}
return pNtkDec;
return pNtkNew;
}
////////////////////////////////////////////////////////////////////////
......
......@@ -169,7 +169,7 @@ extern DdNode * Extra_bddImageRead2( Extra_ImageTree2_t * pTree );
extern DdNode * Extra_TransferPermute( DdManager * ddSource, DdManager * ddDestination, DdNode * f, int * Permute );
extern DdNode * Extra_TransferLevelByLevel( DdManager * ddSource, DdManager * ddDestination, DdNode * f );
extern DdNode * Extra_bddRemapUp( DdManager * dd, DdNode * bF );
extern DdNode * Extra_bddMove( DdManager * dd, DdNode * bF, int fShiftUp );
extern DdNode * Extra_bddMove( DdManager * dd, DdNode * bF, int nVars );
extern DdNode * extraBddMove( DdManager * dd, DdNode * bF, DdNode * bFlag );
extern void Extra_StopManager( DdManager * dd );
extern void Extra_bddPrint( DdManager * dd, DdNode * F );
......
......@@ -221,6 +221,7 @@ void Extra_StopManager( DdManager * dd )
// check for remaining references in the package
RetValue = Cudd_CheckZeroRef( dd );
if ( RetValue > 10 )
// if ( RetValue )
printf( "\nThe number of referenced nodes = %d\n\n", RetValue );
// Cudd_PrintInfo( dd, stdout );
Cudd_Quit( dd );
......
......@@ -43,11 +43,16 @@ int Abc_NtkMfsSolveSat_iter( Mfs_Man_t * p )
{
int Lits[MFS_FANIN_MAX];
int RetValue, nBTLimit, iVar, b, Mint;
// int nConfs = p->pSat->stats.conflicts;
if ( p->nTotConfLim && p->nTotConfLim <= p->pSat->stats.conflicts )
return -1;
nBTLimit = p->nTotConfLim? p->nTotConfLim - p->pSat->stats.conflicts : 0;
RetValue = sat_solver_solve( p->pSat, NULL, NULL, (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
assert( RetValue == l_Undef || RetValue == l_True || RetValue == l_False );
//printf( "%c", RetValue==l_Undef ? '?' : (RetValue==l_False ? '-' : '+') );
//printf( "%d ", p->pSat->stats.conflicts-nConfs );
//if ( RetValue==l_False )
//printf( "\n" );
if ( RetValue == l_Undef )
return -1;
if ( RetValue == l_False )
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment