Commit 735bca16 by Alan Mishchenko

Version abc60824

parent 7b09d2d2
......@@ -322,14 +322,6 @@ SOURCE=.\src\base\abci\abcUnreach.c
# End Source File
# Begin Source File
SOURCE=.\src\base\abci\abcVanEijk.c
# End Source File
# Begin Source File
SOURCE=.\src\base\abci\abcVanImp.c
# End Source File
# Begin Source File
SOURCE=.\src\base\abci\abcVerify.c
# End Source File
# End Group
......@@ -482,10 +474,6 @@ SOURCE=.\src\base\io\ioReadPla.c
# End Source File
# Begin Source File
SOURCE=.\src\base\io\ioReadVerilog.c
# End Source File
# Begin Source File
SOURCE=.\src\base\io\ioUtil.c
# End Source File
# Begin Source File
......
......@@ -99,6 +99,6 @@ alias src_rws "st; rw -l; rs -K 6 -N 2 -l; rwz -l; rs -K 9 -N 2 -l; rwz -l;
alias compress2rs "b -l; rs -K 6 -l; rw -l; rs -K 6 -N 2 -l; rf -l; rs -K 8 -l; b -l; rs -K 8 -N 2 -l; rw -l; rs -K 10 -l; rwz -l; rs -K 10 -N 2 -l; b -l; rs -K 12 -l; rfz -l; rs -K 12 -N 2 -l; rwz -l; b -l"
# temporaries
alias test "rvl th/lib.v; rvv th/t1.v"
alias test "rvl th/lib.v; rvv th/t2.v"
......@@ -90,12 +90,14 @@ typedef enum {
ABC_OBJ_PO, // 4: primary output terminal
ABC_OBJ_BI, // 5: box input terminal
ABC_OBJ_BO, // 6: box output terminal
ABC_OBJ_ASSERT, // 7: assertion output
ABC_OBJ_ASSERT, // 7: assertion terminal
ABC_OBJ_NET, // 8: net
ABC_OBJ_NODE, // 9: node
ABC_OBJ_LATCH, // 10: latch
ABC_OBJ_BOX, // 11: box
ABC_OBJ_NUMBER // 12: unused
ABC_OBJ_GATE, // 10: mapped node
ABC_OBJ_LATCH, // 11: latch
ABC_OBJ_TRI, // 12: tristate element
ABC_OBJ_BLACKBOX, // 13: box with unknown contents
ABC_OBJ_NUMBER // 14: unused
} Abc_ObjType_t;
// latch initial values
......@@ -138,6 +140,7 @@ struct Abc_Obj_t_ // 12 words
// high-level information
Abc_Ntk_t * pNtk; // the host network
int Id; // the object ID
int TravId; // the traversal ID (if changed, update Abc_NtkIncrementTravId)
// internal information
unsigned Type : 4; // the object type
unsigned fMarkA : 1; // the multipurpose mark
......@@ -148,8 +151,7 @@ struct Abc_Obj_t_ // 12 words
unsigned fPersist: 1; // marks the persistant AIG node
unsigned fCompl0 : 1; // complemented attribute of the first fanin in the AIG
unsigned fCompl1 : 1; // complemented attribute of the second fanin in the AIG
unsigned TravId : 8; // the traversal ID (if changed, update Abc_NtkIncrementTravId)
unsigned Level : 12; // the level of the node
unsigned Level : 20; // the level of the node
// connectivity
Vec_Int_t vFanins; // the array of fanins
Vec_Int_t vFanouts; // the array of fanouts
......@@ -169,12 +171,11 @@ struct Abc_Ntk_t_
Nm_Man_t * pManName; // name manager (stores names of objects)
// components of the network
Vec_Ptr_t * vObjs; // the array of all objects (net, nodes, latches, etc)
Vec_Ptr_t * vPis; // the array of primary inputs
Vec_Ptr_t * vPos; // the array of primary outputs
Vec_Ptr_t * vCis; // the array of combinational inputs (PIs, latches)
Vec_Ptr_t * vCos; // the array of combinational outputs (POs, asserts, latches)
Vec_Ptr_t * vPis; // the array of PIs
Vec_Ptr_t * vPos; // the array of POs
Vec_Ptr_t * vPios; // the array of PIOs
Vec_Ptr_t * vLatches; // the array of latches (or the cutset in the sequential network)
Vec_Ptr_t * vAsserts; // the array of assertions
Vec_Ptr_t * vBoxes; // the array of boxes
Vec_Ptr_t * vCutSet; // the array of cutset nodes (used in the sequential AIG)
......@@ -190,7 +191,7 @@ struct Abc_Ntk_t_
short fHieVisited; // flag to mark the visited network
short fHiePath; // flag to mark the network on the path
// miscellaneous data members
unsigned nTravIds; // the unique traversal IDs of nodes
int nTravIds; // the unique traversal IDs of nodes
Extra_MmFixed_t * pMmObj; // memory manager for objects
Extra_MmStep_t * pMmStep; // memory manager for arrays
void * pManFunc; // functionality manager (AIG manager, BDD manager, or memory manager for SOPs)
......@@ -257,7 +258,6 @@ static inline bool Abc_NtkIsSopLogic( Abc_Ntk_t * pNtk ) { return pN
static inline bool Abc_NtkIsBddLogic( Abc_Ntk_t * pNtk ) { return pNtk->ntkFunc == ABC_FUNC_BDD && pNtk->ntkType == ABC_NTK_LOGIC ; }
static inline bool Abc_NtkIsAigLogic( Abc_Ntk_t * pNtk ) { return pNtk->ntkFunc == ABC_FUNC_AIG && pNtk->ntkType == ABC_NTK_LOGIC ; }
static inline bool Abc_NtkIsMappedLogic( Abc_Ntk_t * pNtk ) { return pNtk->ntkFunc == ABC_FUNC_MAP && pNtk->ntkType == ABC_NTK_LOGIC ; }
static inline bool Abc_NtkIsComb( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vLatches) == 0; }
// reading data members of the network
static inline char * Abc_NtkName( Abc_Ntk_t * pNtk ) { return pNtk->pName; }
......@@ -274,29 +274,48 @@ static inline void Abc_NtkSetBackup( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNetBa
static inline void Abc_NtkSetStep ( Abc_Ntk_t * pNtk, int iStep ) { pNtk->iStep = iStep; }
// getting the number of objects
static inline int Abc_NtkObjNumMax( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vObjs); }
static inline int Abc_NtkObjNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjs; }
static inline int Abc_NtkNetNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_NET]; }
static inline int Abc_NtkNodeNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_NODE]; }
static inline int Abc_NtkBoxNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_BOX]; }
static inline int Abc_NtkObjNumMax( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vObjs); }
static inline int Abc_NtkPiNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vPis); }
static inline int Abc_NtkPoNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vPos); }
static inline int Abc_NtkCiNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vCis); }
static inline int Abc_NtkCoNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vCos); }
static inline int Abc_NtkLatchNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vLatches); }
static inline int Abc_NtkAssertNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vAsserts); }
static inline int Abc_NtkBoxNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vBoxes); }
static inline int Abc_NtkCutSetNodeNum( Abc_Ntk_t * pNtk ) { return Vec_PtrSize(pNtk->vCutSet); }
static inline int Abc_NtkBiNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_BI]; }
static inline int Abc_NtkBoNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_BO]; }
static inline int Abc_NtkNetNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_NET]; }
static inline int Abc_NtkNodeNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_NODE]; }
static inline int Abc_NtkGateNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_GATE]; }
static inline int Abc_NtkLatchNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_LATCH]; }
static inline int Abc_NtkTriNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_TRI]; }
static inline int Abc_NtkBlackboxNum( Abc_Ntk_t * pNtk ) { return pNtk->nObjCounts[ABC_OBJ_BLACKBOX]; }
static inline bool Abc_NtkIsComb( Abc_Ntk_t * pNtk ) { return Abc_NtkLatchNum(pNtk) == 0; }
static inline bool Abc_NtkHasOnlyLatchBoxes(Abc_Ntk_t * pNtk ){ return Abc_NtkLatchNum(pNtk) == Abc_NtkBoxNum(pNtk); }
// creating simple objects
extern inline Abc_Obj_t * Abc_NtkCreateObj( Abc_Ntk_t * pNtk, Abc_ObjType_t Type );
static inline Abc_Obj_t * Abc_NtkCreatePi( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_PI ); }
static inline Abc_Obj_t * Abc_NtkCreatePo( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_PO ); }
static inline Abc_Obj_t * Abc_NtkCreateBi( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_BI ); }
static inline Abc_Obj_t * Abc_NtkCreateBo( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_BO ); }
static Abc_Obj_t * Abc_NtkCreateAssert( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_ASSERT ); }
static inline Abc_Obj_t * Abc_NtkCreateNode( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_NODE ); }
static inline Abc_Obj_t * Abc_NtkCreateLatch( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_LATCH ); }
static inline Abc_Obj_t * Abc_NtkCreateGate( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_GATE ); }
static inline Abc_Obj_t * Abc_NtkCreateTri( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_TRI ); }
static inline Abc_Obj_t * Abc_NtkCreateBlackbox( Abc_Ntk_t * pNtk ) { return Abc_NtkCreateObj( pNtk, ABC_OBJ_BLACKBOX ); }
// reading objects
static inline Abc_Obj_t * Abc_NtkObj( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vObjs, i ); }
static inline Abc_Obj_t * Abc_NtkBox( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vBoxes, i ); }
static inline Abc_Obj_t * Abc_NtkLatch( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vLatches, i );}
static inline Abc_Obj_t * Abc_NtkAssert( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vAsserts, i );}
static inline Abc_Obj_t * Abc_NtkCutSetNode( Abc_Ntk_t * pNtk, int i){ return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCutSet, i ); }
static inline Abc_Obj_t * Abc_NtkCi( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCis, i ); }
static inline Abc_Obj_t * Abc_NtkCo( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCos, i ); }
static inline Abc_Obj_t * Abc_NtkPi( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vPis, i ); }
static inline Abc_Obj_t * Abc_NtkPo( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vPos, i ); }
static inline Abc_Obj_t * Abc_NtkCi( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCis, i ); }
static inline Abc_Obj_t * Abc_NtkCo( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCos, i ); }
static inline Abc_Obj_t * Abc_NtkAssert( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vAsserts, i );}
static inline Abc_Obj_t * Abc_NtkBox( Abc_Ntk_t * pNtk, int i ) { return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vBoxes, i ); }
static inline Abc_Obj_t * Abc_NtkCutSetNode( Abc_Ntk_t * pNtk, int i){ return (Abc_Obj_t *)Vec_PtrEntry( pNtk->vCutSet, i ); }
// reading data members of the object
static inline unsigned Abc_ObjType( Abc_Obj_t * pObj ) { return pObj->Type; }
......@@ -319,19 +338,22 @@ static inline Abc_Obj_t * Abc_ObjNot( Abc_Obj_t * p ) { return (A
static inline Abc_Obj_t * Abc_ObjNotCond( Abc_Obj_t * p, int c ) { return (Abc_Obj_t *)((unsigned long)p ^ (unsigned long)(c!=0)); }
// checking the object type
static inline bool Abc_ObjIsPio( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PIO; }
static inline bool Abc_ObjIsPi( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PI; }
static inline bool Abc_ObjIsPo( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PO; }
static inline bool Abc_ObjIsBi( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_BI; }
static inline bool Abc_ObjIsBo( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_BO; }
static inline bool Abc_ObjIsPio( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PI || pObj->Type == ABC_OBJ_PO; }
static inline bool Abc_ObjIsCi( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PI || pObj->Type == ABC_OBJ_BI || pObj->Type == ABC_OBJ_LATCH; }
static inline bool Abc_ObjIsCo( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PO || pObj->Type == ABC_OBJ_BO || pObj->Type == ABC_OBJ_LATCH || pObj->Type == ABC_OBJ_ASSERT; }
static inline bool Abc_ObjIsCio( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PI || pObj->Type == ABC_OBJ_PO || pObj->Type == ABC_OBJ_LATCH || pObj->Type == ABC_OBJ_ASSERT; }
static inline bool Abc_ObjIsAssert( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_ASSERT; }
static inline bool Abc_ObjIsCi( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PI || pObj->Type == ABC_OBJ_BI; }
static inline bool Abc_ObjIsCo( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_PO || pObj->Type == ABC_OBJ_BO || pObj->Type == ABC_OBJ_ASSERT; }
static inline bool Abc_ObjIsTerm( Abc_Obj_t * pObj ) { return Abc_ObjIsCi(pObj) || Abc_ObjIsCo(pObj); }
static inline bool Abc_ObjIsNet( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_NET; }
static inline bool Abc_ObjIsNode( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_NODE; }
static inline bool Abc_ObjIsGate( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_GATE; }
static inline bool Abc_ObjIsLatch( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_LATCH; }
static inline bool Abc_ObjIsBox( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_BOX; }
static inline bool Abc_ObjIsTri( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_TRI; }
static inline bool Abc_ObjIsBlackbox( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_BLACKBOX;}
static inline bool Abc_ObjIsBox( Abc_Obj_t * pObj ) { return pObj->Type == ABC_OBJ_LATCH || pObj->Type == ABC_OBJ_TRI || pObj->Type == ABC_OBJ_BLACKBOX; }
// working with fanin/fanout edges
static inline int Abc_ObjFaninNum( Abc_Obj_t * pObj ) { return pObj->vFanins.nSize; }
......@@ -359,18 +381,6 @@ static inline Abc_Obj_t * Abc_ObjChildCopy( Abc_Obj_t * pObj, int i ){ return Ab
static inline Abc_Obj_t * Abc_ObjChild0Copy( Abc_Obj_t * pObj ) { return Abc_ObjNotCond( Abc_ObjFanin0(pObj)->pCopy, Abc_ObjFaninC0(pObj) ); }
static inline Abc_Obj_t * Abc_ObjChild1Copy( Abc_Obj_t * pObj ) { return Abc_ObjNotCond( Abc_ObjFanin1(pObj)->pCopy, Abc_ObjFaninC1(pObj) ); }
// creating simple objects
extern inline Abc_Obj_t * Abc_NtkObjAdd( Abc_Ntk_t * pNtk, Abc_ObjType_t Type );
static inline Abc_Obj_t * Abc_NtkCreateObj( Abc_Ntk_t * pNtk, Abc_ObjType_t Type ) { return Abc_NtkObjAdd( pNtk, Type ); }
static inline Abc_Obj_t * Abc_NtkCreateNode( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_NODE ); }
static inline Abc_Obj_t * Abc_NtkCreateBox( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_BOX ); }
static inline Abc_Obj_t * Abc_NtkCreatePi( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_PI ); }
static inline Abc_Obj_t * Abc_NtkCreatePo( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_PO ); }
static inline Abc_Obj_t * Abc_NtkCreateBi( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_BI ); }
static inline Abc_Obj_t * Abc_NtkCreateBo( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_BO ); }
static inline Abc_Obj_t * Abc_NtkCreateLatch( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_LATCH ); }
static Abc_Obj_t * Abc_NtkCreateAssert( Abc_Ntk_t * pNtk ) { return Abc_NtkObjAdd( pNtk, ABC_OBJ_ASSERT ); }
// checking the AIG node types
static inline bool Abc_AigNodeIsConst( Abc_Obj_t * pNode ) { assert(Abc_NtkIsStrash(Abc_ObjRegular(pNode)->pNtk)||Abc_NtkIsSeq(Abc_ObjRegular(pNode)->pNtk)); return Abc_ObjRegular(pNode)->Type == ABC_OBJ_CONST1; }
static inline bool Abc_AigNodeIsAnd( Abc_Obj_t * pNode ) { assert(!Abc_ObjIsComplement(pNode)); assert(Abc_NtkIsStrash(pNode->pNtk)||Abc_NtkIsSeq(pNode->pNtk)); return Abc_ObjFaninNum(pNode) == 2; }
......@@ -420,15 +430,33 @@ static inline float Abc_NtkGetLatSkew ( Abc_Ntk_t * pNtk, int lat )
#define Abc_NtkForEachNode( pNtk, pNode, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vObjs)) && (((pNode) = Abc_NtkObj(pNtk, i)), 1); i++ ) \
if ( (pNode) == NULL || !Abc_ObjIsNode(pNode) ) {} else
#define Abc_NtkForEachGate( pNtk, pNode, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vObjs)) && (((pNode) = Abc_NtkObj(pNtk, i)), 1); i++ ) \
if ( (pNode) == NULL || !Abc_ObjIsGate(pNode) ) {} else
#define Abc_AigForEachAnd( pNtk, pNode, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vObjs)) && (((pNode) = Abc_NtkObj(pNtk, i)), 1); i++ ) \
if ( (pNode) == NULL || !Abc_AigNodeIsAnd(pNode) ) {} else
#define Abc_NtkForEachBox( pNtk, pNode, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pNode) = Abc_NtkBox(pNtk, i)), 1); i++ ) \
if ( (pNode) == NULL ) {} else
#define Abc_SeqForEachCutsetNode( pNtk, pNode, i ) \
for ( i = 0; (i < Abc_NtkCutSetNodeNum(pNtk)) && (((pNode) = Abc_NtkCutSetNode(pNtk, i)), 1); i++ )\
if ( (pNode) == NULL ) {} else
// various boxes
#define Abc_NtkForEachBox( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_NtkBox(pNtk, i)), 1); i++ )
#define Abc_NtkForEachLatch( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_NtkBox(pNtk, i)), 1); i++ ) \
if ( !Abc_ObjIsLatch(pObj) ) {} else
#define Abc_NtkForEachLatchInput( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_ObjFanin0(Abc_NtkBox(pNtk, i))), 1); i++ ) \
if ( !Abc_ObjIsLatch(Abc_NtkBox(pNtk, i)) ) {} else
#define Abc_NtkForEachLatchOutput( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_ObjFanout0(Abc_NtkBox(pNtk, i))), 1); i++ ) \
if ( !Abc_ObjIsLatch(Abc_NtkBox(pNtk, i)) ) {} else
#define Abc_NtkForEachTri( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_NtkBox(pNtk, i)), 1); i++ ) \
if ( !Abc_ObjIsTri(pObj) ) {} else
#define Abc_NtkForEachBlackbox( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vBoxes)) && (((pObj) = Abc_NtkBox(pNtk, i)), 1); i++ ) \
if ( !Abc_ObjIsBlackbox(pObj) ) {} else
// inputs and outputs
#define Abc_NtkForEachPi( pNtk, pPi, i ) \
for ( i = 0; (i < Abc_NtkPiNum(pNtk)) && (((pPi) = Abc_NtkPi(pNtk, i)), 1); i++ )
......@@ -436,12 +464,10 @@ static inline float Abc_NtkGetLatSkew ( Abc_Ntk_t * pNtk, int lat )
for ( i = 0; (i < Abc_NtkCiNum(pNtk)) && (((pCi) = Abc_NtkCi(pNtk, i)), 1); i++ )
#define Abc_NtkForEachPo( pNtk, pPo, i ) \
for ( i = 0; (i < Abc_NtkPoNum(pNtk)) && (((pPo) = Abc_NtkPo(pNtk, i)), 1); i++ )
#define Abc_NtkForEachAssert( pNtk, pAssert, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vAsserts)) && (((pAssert) = Abc_NtkAssert(pNtk, i)), 1); i++ )
#define Abc_NtkForEachLatch( pNtk, pLatch, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vLatches)) && (((pLatch) = Abc_NtkLatch(pNtk, i)), 1); i++ )
#define Abc_NtkForEachCo( pNtk, pCo, i ) \
for ( i = 0; (i < Abc_NtkCoNum(pNtk)) && (((pCo) = Abc_NtkCo(pNtk, i)), 1); i++ )
#define Abc_NtkForEachAssert( pNtk, pObj, i ) \
for ( i = 0; (i < Vec_PtrSize((pNtk)->vAsserts)) && (((pObj) = Abc_NtkAssert(pNtk, i)), 1); i++ )
// fanin and fanouts
#define Abc_ObjForEachFanin( pObj, pFanin, i ) \
for ( i = 0; (i < Abc_ObjFaninNum(pObj)) && (((pFanin) = Abc_ObjFanin(pObj, i)), 1); i++ )
......@@ -568,14 +594,16 @@ extern Abc_Ntk_t * Abc_NtkFrames( Abc_Ntk_t * pNtk, int nFrames, int fIni
/*=== abcObj.c ==========================================================*/
extern Abc_Obj_t * Abc_ObjAlloc( Abc_Ntk_t * pNtk, Abc_ObjType_t Type );
extern void Abc_ObjRecycle( Abc_Obj_t * pObj );
extern Abc_Obj_t * Abc_NtkObjAdd( Abc_Ntk_t * pNtk, Abc_ObjType_t Type );
extern Abc_Obj_t * Abc_NtkCreateObj( Abc_Ntk_t * pNtk, Abc_ObjType_t Type );
extern void Abc_NtkDeleteObj( Abc_Obj_t * pObj );
extern void Abc_NtkDeleteObj_rec( Abc_Obj_t * pObj );
extern Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj );
extern Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj, int fCopyName );
extern Abc_Obj_t * Abc_NtkDupBox( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pBox, int fCopyName );
extern Abc_Obj_t * Abc_NtkCloneObj( Abc_Obj_t * pNode );
extern Abc_Obj_t * Abc_NtkFindNode( Abc_Ntk_t * pNtk, char * pName );
extern Abc_Obj_t * Abc_NtkFindNet( Abc_Ntk_t * pNtk, char * pName );
extern Abc_Obj_t * Abc_NtkFindTerm( Abc_Ntk_t * pNtk, char * pName );
extern Abc_Obj_t * Abc_NtkFindCi( Abc_Ntk_t * pNtk, char * pName );
extern Abc_Obj_t * Abc_NtkFindOrCreateNet( Abc_Ntk_t * pNtk, char * pName );
extern Abc_Obj_t * Abc_NodeCreateConst0( Abc_Ntk_t * pNtk );
extern Abc_Obj_t * Abc_NodeCreateConst1( Abc_Ntk_t * pNtk );
......@@ -593,13 +621,11 @@ extern bool Abc_NodeIsInv( Abc_Obj_t * pNode );
extern void Abc_NodeComplement( Abc_Obj_t * pNode );
/*=== abcNames.c ====================================================*/
extern char * Abc_ObjName( Abc_Obj_t * pNode );
extern char * Abc_ObjAssignName( Abc_Obj_t * pObj, char * pName, char * pSuffix );
extern char * Abc_ObjNameSuffix( Abc_Obj_t * pObj, char * pSuffix );
extern char * Abc_ObjNameDummy( char * pPrefix, int Num, int nDigits );
extern char * Abc_NtkLogicStoreName( Abc_Obj_t * pNodeNew, char * pNameOld );
extern char * Abc_NtkLogicStoreNamePlus( Abc_Obj_t * pNodeNew, char * pNameOld, char * pSuffix );
extern void Abc_NtkDupCioNamesTable( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern void Abc_NtkDupCioNamesTableNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern void Abc_NtkDupCioNamesTableDual( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern void Abc_NtkTrasferNames( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern void Abc_NtkTrasferNamesNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern Vec_Ptr_t * Abc_NodeGetFaninNames( Abc_Obj_t * pNode );
extern Vec_Ptr_t * Abc_NodeGetFakeNames( int nNames );
extern void Abc_NodeFreeNames( Vec_Ptr_t * vNames );
......@@ -609,7 +635,7 @@ extern void Abc_NtkOrderObjsByName( Abc_Ntk_t * pNtk, int fComb );
extern void Abc_NtkAddDummyPiNames( Abc_Ntk_t * pNtk );
extern void Abc_NtkAddDummyPoNames( Abc_Ntk_t * pNtk );
extern void Abc_NtkAddDummyAssertNames( Abc_Ntk_t * pNtk );
extern void Abc_NtkAddDummyLatchNames( Abc_Ntk_t * pNtk );
extern void Abc_NtkAddDummyBoxNames( Abc_Ntk_t * pNtk );
extern void Abc_NtkShortNames( Abc_Ntk_t * pNtk );
/*=== abcNetlist.c ==========================================================*/
extern Abc_Ntk_t * Abc_NtkNetlistToLogic( Abc_Ntk_t * pNtk );
......@@ -627,7 +653,6 @@ extern void Abc_NtkFreeGlobalBdds( Abc_Ntk_t * pNtk );
extern Abc_Ntk_t * Abc_NtkAlloc( Abc_NtkType_t Type, Abc_NtkFunc_t Func, int fUseMemMan );
extern Abc_Ntk_t * Abc_NtkStartFrom( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func );
extern Abc_Ntk_t * Abc_NtkStartFromNoLatches( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func );
extern Abc_Ntk_t * Abc_NtkStartFromDual( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func );
extern void Abc_NtkFinalize( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew );
extern Abc_Ntk_t * Abc_NtkStartRead( char * pName );
extern void Abc_NtkFinalizeRead( Abc_Ntk_t * pNtk );
......@@ -762,6 +787,7 @@ extern int Abc_NtkGetFaninMax( Abc_Ntk_t * pNtk );
extern void Abc_NtkCleanCopy( Abc_Ntk_t * pNtk );
extern void Abc_NtkCleanNext( Abc_Ntk_t * pNtk );
extern void Abc_NtkCleanMarkA( Abc_Ntk_t * pNtk );
extern Abc_Obj_t * Abc_NodeHasCoFanout( Abc_Obj_t * pNode );
extern Abc_Obj_t * Abc_NodeHasUniqueCoFanout( Abc_Obj_t * pNode );
extern bool Abc_NtkLogicHasSimpleCos( Abc_Ntk_t * pNtk );
extern int Abc_NtkLogicMakeSimpleCos( Abc_Ntk_t * pNtk, bool fDuplicate );
......
......@@ -137,7 +137,7 @@ Abc_Aig_t * Abc_AigAlloc( Abc_Ntk_t * pNtkAig )
pMan->vStackReplaceNew = Vec_PtrAlloc( 100 );
// create the constant node
assert( pNtkAig->vObjs->nSize == 0 );
pMan->pConst1 = Abc_NtkObjAdd( pNtkAig, ABC_OBJ_NODE );
pMan->pConst1 = Abc_NtkCreateObj( pNtkAig, ABC_OBJ_NODE );
pMan->pConst1->Type = ABC_OBJ_CONST1;
pNtkAig->nObjCounts[ABC_OBJ_NODE]--;
// save the current network
......@@ -1329,16 +1329,16 @@ void Abc_AigSetNodePhases( Abc_Ntk_t * pNtk )
int i;
assert( Abc_NtkIsDfsOrdered(pNtk) );
Abc_AigConst1(pNtk)->fPhase = 1;
// Abc_NtkForEachCi( pNtk, pObj, i )
// pObj->fPhase = 0;
Abc_NtkForEachPi( pNtk, pObj, i )
pObj->fPhase = 0;
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkForEachLatchOutput( pNtk, pObj, i )
pObj->fPhase = Abc_LatchIsInit1(pObj);
Abc_AigForEachAnd( pNtk, pObj, i )
pObj->fPhase = (Abc_ObjFanin0(pObj)->fPhase ^ Abc_ObjFaninC0(pObj)) & (Abc_ObjFanin1(pObj)->fPhase ^ Abc_ObjFaninC1(pObj));
Abc_NtkForEachPo( pNtk, pObj, i )
pObj->fPhase = (Abc_ObjFanin0(pObj)->fPhase ^ Abc_ObjFaninC0(pObj));
Abc_NtkForEachLatchInput( pNtk, pObj, i )
pObj->fPhase = (Abc_ObjFanin0(pObj)->fPhase ^ Abc_ObjFaninC0(pObj));
}
////////////////////////////////////////////////////////////////////////
......
......@@ -111,23 +111,23 @@ bool Abc_NtkDoCheck( Abc_Ntk_t * pNtk )
return 0;
}
}
/*
// check CI/CO numbers
if ( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCiNum(pNtk) )
{
fprintf( stdout, "NetworkCheck: Number of CIs does not match number of PIs and latches.\n" );
fprintf( stdout, "One possible reason is that latches are added twice:\n" );
fprintf( stdout, "in procedure Abc_NtkObjAdd() and in the user's code.\n" );
fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" );
return 0;
}
if ( Abc_NtkPoNum(pNtk) + Abc_NtkAssertNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCoNum(pNtk) )
{
fprintf( stdout, "NetworkCheck: Number of COs does not match number of POs, asserts, and latches.\n" );
fprintf( stdout, "One possible reason is that latches are added twice:\n" );
fprintf( stdout, "in procedure Abc_NtkObjAdd() and in the user's code.\n" );
fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" );
return 0;
}
*/
// check the names
if ( !Abc_NtkCheckNames( pNtk ) )
return 0;
......@@ -241,6 +241,20 @@ bool Abc_NtkCheckNames( Abc_Ntk_t * pNtk )
char * pName;
int i, NameId;
if ( Abc_NtkIsNetlist(pNtk) )
{
// check that each net has a name
Abc_NtkForEachNet( pNtk, pObj, i )
{
if ( Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id) )
{
fprintf( stdout, "NetworkCheck: Net \"%s\" has different name in the name table and at the data pointer.\n", pObj->pData );
return 0;
}
}
}
else
{
// check that each CI/CO has a name
Abc_NtkForEachCi( pNtk, pObj, i )
{
......@@ -253,8 +267,6 @@ bool Abc_NtkCheckNames( Abc_Ntk_t * pNtk )
}
Abc_NtkForEachCo( pNtk, pObj, i )
{
if ( Abc_ObjIsLatch(pObj) )
continue;
pObj = Abc_ObjFanin0Ntk(pObj);
if ( Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id) == NULL )
{
......@@ -262,18 +274,6 @@ bool Abc_NtkCheckNames( Abc_Ntk_t * pNtk )
return 0;
}
}
if ( Abc_NtkIsNetlist(pNtk) )
{
Abc_NtkForEachNet( pNtk, pObj, i )
{
pName = Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id);
if ( pObj->pData && strcmp( pName, pObj->pData ) != 0 )
{
fprintf( stdout, "NetworkCheck: Net \"%s\" has different name in the name table and at the data pointer.\n", pObj->pData );
return 0;
}
}
}
// return the array of all IDs, which have names
......@@ -543,7 +543,7 @@ bool Abc_NtkCheckNode( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode )
return 0;
}
}
else if ( !Abc_NtkHasMapping(pNtk) )
else if ( !Abc_NtkHasMapping(pNtk) && !Abc_NtkHasAig(pNtk) )
{
assert( 0 );
}
......@@ -564,15 +564,10 @@ bool Abc_NtkCheckNode( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode )
bool Abc_NtkCheckLatch( Abc_Ntk_t * pNtk, Abc_Obj_t * pLatch )
{
int Value = 1;
if ( pNtk->vLatches->nSize != Abc_NtkLatchNum(pNtk) )
{
fprintf( stdout, "NetworkCheck: Incorrect size of the latch array.\n" );
return 0;
}
// check whether the object is a latch
if ( !Abc_ObjIsLatch(pLatch) )
{
fprintf( stdout, "NodeCheck: Latch \"%s\" is in a latch list but has not latch label.\n", Abc_ObjName(pLatch) );
fprintf( stdout, "NodeCheck: Latch \"%s\" is in a latch list but is not a latch.\n", Abc_ObjName(pLatch) );
Value = 0;
}
// make sure the latch has a reasonable return value
......@@ -588,6 +583,12 @@ bool Abc_NtkCheckLatch( Abc_Ntk_t * pNtk, Abc_Obj_t * pLatch )
fprintf( stdout, "NodeCheck: Latch \"%s\" has wrong number (%d) of fanins.\n", Abc_ObjName(pLatch), Abc_ObjFaninNum(pLatch) );
Value = 0;
}
// make sure the latch has only one fanin
if ( Abc_ObjFanoutNum(pLatch) != 1 )
{
fprintf( stdout, "NodeCheck: Latch \"%s\" has wrong number (%d) of fanouts.\n", Abc_ObjName(pLatch), Abc_ObjFanoutNum(pLatch) );
Value = 0;
}
return Value;
}
......@@ -671,24 +672,26 @@ bool Abc_NtkComparePos( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb )
SeeAlso []
***********************************************************************/
bool Abc_NtkCompareLatches( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb )
bool Abc_NtkCompareBoxes( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb )
{
Abc_Obj_t * pObj1;
int i;
assert( Abc_NtkHasOnlyLatchBoxes(pNtk1) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk2) );
if ( !fComb )
return 1;
if ( Abc_NtkLatchNum(pNtk1) != Abc_NtkLatchNum(pNtk2) )
if ( Abc_NtkBoxNum(pNtk1) != Abc_NtkBoxNum(pNtk2) )
{
printf( "Networks have different number of latches.\n" );
return 0;
}
// for each PI of pNet1 find corresponding PI of pNet2 and reorder them
Abc_NtkForEachLatch( pNtk1, pObj1, i )
Abc_NtkForEachBox( pNtk1, pObj1, i )
{
if ( strcmp( Abc_ObjName(pObj1), Abc_ObjName(Abc_NtkLatch(pNtk2,i)) ) != 0 )
if ( strcmp( Abc_ObjName(pObj1), Abc_ObjName(Abc_NtkBox(pNtk2,i)) ) != 0 )
{
printf( "Latch #%d is different in network 1 ( \"%s\") and in network 2 (\"%s\").\n",
i, Abc_ObjName(pObj1), Abc_ObjName(Abc_NtkLatch(pNtk2,i)) );
printf( "Box #%d is different in network 1 ( \"%s\") and in network 2 (\"%s\").\n",
i, Abc_ObjName(pObj1), Abc_ObjName(Abc_NtkBox(pNtk2,i)) );
return 0;
}
}
......@@ -710,7 +713,7 @@ bool Abc_NtkCompareSignals( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb )
{
Abc_NtkOrderObjsByName( pNtk1, fComb );
Abc_NtkOrderObjsByName( pNtk2, fComb );
if ( !Abc_NtkCompareLatches( pNtk1, pNtk2, fComb ) )
if ( !Abc_NtkCompareBoxes( pNtk1, pNtk2, fComb ) )
return 0;
if ( !Abc_NtkComparePis( pNtk1, pNtk2, fComb ) )
return 0;
......
......@@ -45,10 +45,10 @@ bool Abc_NtkLatchIsSelfFeed_rec( Abc_Obj_t * pLatch, Abc_Obj_t * pLatchRoot )
assert( Abc_ObjIsLatch(pLatch) );
if ( pLatch == pLatchRoot )
return 1;
pFanin = Abc_ObjFanin0(pLatch);
if ( !Abc_ObjIsLatch(pFanin) )
pFanin = Abc_ObjFanin0(Abc_ObjFanin0(pLatch));
if ( !Abc_ObjIsBi(pFanin) || !Abc_ObjIsLatch(Abc_ObjFanin0(pFanin)) )
return 0;
return Abc_NtkLatchIsSelfFeed_rec( pFanin, pLatch );
return Abc_NtkLatchIsSelfFeed_rec( Abc_ObjFanin0(pFanin), pLatch );
}
/**Function*************************************************************
......@@ -66,10 +66,10 @@ bool Abc_NtkLatchIsSelfFeed( Abc_Obj_t * pLatch )
{
Abc_Obj_t * pFanin;
assert( Abc_ObjIsLatch(pLatch) );
pFanin = Abc_ObjFanin0(pLatch);
if ( !Abc_ObjIsLatch(pFanin) )
pFanin = Abc_ObjFanin0(Abc_ObjFanin0(pLatch));
if ( !Abc_ObjIsBi(pFanin) || !Abc_ObjIsLatch(Abc_ObjFanin0(pFanin)) )
return 0;
return Abc_NtkLatchIsSelfFeed_rec( pFanin, pLatch );
return Abc_NtkLatchIsSelfFeed_rec( Abc_ObjFanin0(pFanin), pLatch );
}
/**Function*************************************************************
......@@ -121,7 +121,7 @@ int Abc_NtkRemoveSelfFeedLatches( Abc_Ntk_t * pNtk )
pConst1 = Abc_AigConst1(pNtk);
else
pConst1 = Abc_NodeCreateConst1(pNtk);
Abc_ObjPatchFanin( pLatch, Abc_ObjFanin0(pLatch), pConst1 );
Abc_ObjPatchFanin( pLatch, Abc_ObjFanin0(Abc_ObjFanin0(pLatch)), pConst1 );
Counter++;
}
}
......@@ -160,7 +160,7 @@ void Abc_NtkLatchPipe( Abc_Ntk_t * pNtk, int nLatches )
Abc_ObjAddFanin( pLatch, pFanin );
Abc_LatchSetInitDc( pLatch );
// create the name of the new latch
Abc_NtkLogicStoreName( pLatch, Abc_ObjNameDummy("LL", i*nLatches + k, nDigits) );
Abc_ObjAssignName( pLatch, Abc_ObjNameDummy("LL", i*nLatches + k, nDigits), NULL );
}
// patch the PI fanouts
Vec_PtrForEachEntry( vNodes, pFanout, k )
......
......@@ -125,6 +125,7 @@ Abc_Ntk_t * Abc_LibDeriveRoot( Abc_Lib_t * pLib )
***********************************************************************/
int Abc_LibDeriveBlackBoxes( Abc_Ntk_t * pNtk, Abc_Lib_t * pLib )
{
/*
Abc_Obj_t * pObj, * pFanin, * pFanout;
int i, k;
assert( Abc_NtkIsNetlist(pNtk) );
......@@ -161,6 +162,8 @@ int Abc_LibDeriveBlackBoxes( Abc_Ntk_t * pNtk, Abc_Lib_t * pLib )
}
}
return Vec_PtrSize(pNtk->vBoxes);
*/
return 1;
}
/**Function*************************************************************
......
......@@ -30,11 +30,12 @@
/**Function*************************************************************
Synopsis [Gets the long name of the object.]
Synopsis [Returns the unique name for the object.]
Description [The temporary name is stored in a static buffer inside this
procedure. It is important that the name is used before the function is
called again!]
Description [If the name previously did not exist, creates a new unique
name but does not assign this name to the object. The temporary unique
name is stored in a static buffer inside this procedure. It is important
that the name is used before the function is called again!]
SideEffects []
......@@ -43,103 +44,51 @@
***********************************************************************/
char * Abc_ObjName( Abc_Obj_t * pObj )
{
static char Buffer[500];
char * pName;
int Counter;
// check if the object is in the lookup table
// if ( stmm_lookup( pObj->pNtk->tObj2Name, (char *)pObj, &pName ) )
// return pName;
if ( pName = Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id) )
return pName;
// consider network types
if ( Abc_NtkIsNetlist(pObj->pNtk) )
{
// in a netlist, nets have names, nodes have no names
if ( Abc_ObjIsNode(pObj) )
pObj = Abc_ObjFanout0(pObj);
assert( Abc_ObjIsNet(pObj) );
// if the name is not given, invent it
if ( pObj->pData )
sprintf( Buffer, "%s", pObj->pData );
else
{
sprintf( Buffer, "[%d]", pObj->Id ); // make sure this name is unique!!!
for ( Counter = 1; Nm_ManFindIdByName(pObj->pNtk->pManName, Buffer, NULL) >= 0; Counter++ )
sprintf( Buffer, "[%d]_%d", pObj->Id, Counter );
}
}
else
{
// in a logic network, PI/PO/latch names are stored in the hash table
// internal nodes have made up names
assert( Abc_ObjIsNode(pObj) || Abc_ObjIsLatch(pObj) );
sprintf( Buffer, "[%d]", pObj->Id );
for ( Counter = 1; Nm_ManFindIdByName(pObj->pNtk->pManName, Buffer, NULL) >= 0; Counter++ )
sprintf( Buffer, "[%d]_%d", pObj->Id, Counter );
}
return Buffer;
return Nm_ManCreateUniqueName( pObj->pNtk->pManName, pObj->Id );
}
/**Function*************************************************************
Synopsis [Gets the long name of the node.]
Synopsis [Assigns the given name to the object.]
Description [This name is the output net's name.]
Description [The object should not have a name assigned. The same
name may be used for several objects, which they share the same net
in the original netlist. (For example, latch output and primary output
may have the same name.) This procedure returns the pointer to the
internally stored representation of the given name.]
SideEffects []
SeeAlso []
***********************************************************************/
char * Abc_ObjNameSuffix( Abc_Obj_t * pObj, char * pSuffix )
char * Abc_ObjAssignName( Abc_Obj_t * pObj, char * pName, char * pSuffix )
{
static char Buffer[500];
sprintf( Buffer, "%s%s", Abc_ObjName(pObj), pSuffix );
return Buffer;
assert( pName != NULL );
return Nm_ManStoreIdName( pObj->pNtk->pManName, pObj->Id, pObj->Type, pName, pSuffix );
}
/**Function*************************************************************
Synopsis [Returns the dummy PI name.]
Synopsis [Gets the long name of the node.]
Description []
Description [This name is the output net's name.]
SideEffects []
SeeAlso []
***********************************************************************/
char * Abc_ObjNameDummy( char * pPrefix, int Num, int nDigits )
char * Abc_ObjNameSuffix( Abc_Obj_t * pObj, char * pSuffix )
{
static char Buffer[100];
sprintf( Buffer, "%s%0*d", pPrefix, nDigits, Num );
static char Buffer[500];
sprintf( Buffer, "%s%s", Abc_ObjName(pObj), pSuffix );
return Buffer;
}
/**Function*************************************************************
Synopsis [Adds new name to the network.]
Description [The new object (pObjNew) is a PI, PO or latch. The name
is registered and added to the hash table.]
SideEffects []
SeeAlso []
***********************************************************************/
char * Abc_NtkLogicStoreName( Abc_Obj_t * pObjNew, char * pNameOld )
{
return Nm_ManStoreIdName( pObjNew->pNtk->pManName, pObjNew->Id, pNameOld, NULL );
}
/**Function*************************************************************
Synopsis [Adds new name to the network.]
Synopsis [Returns the dummy PI name.]
Description []
......@@ -148,63 +97,55 @@ char * Abc_NtkLogicStoreName( Abc_Obj_t * pObjNew, char * pNameOld )
SeeAlso []
***********************************************************************/
char * Abc_NtkLogicStoreNamePlus( Abc_Obj_t * pObjNew, char * pNameOld, char * pSuffix )
char * Abc_ObjNameDummy( char * pPrefix, int Num, int nDigits )
{
return Nm_ManStoreIdName( pObjNew->pNtk->pManName, pObjNew->Id, pNameOld, pSuffix );
static char Buffer[100];
sprintf( Buffer, "%s%0*d", pPrefix, nDigits, Num );
return Buffer;
}
/**Function*************************************************************
Synopsis [Duplicates the name arrays.]
Synopsis [Tranfers names to the old network.]
Description []
Description [Assumes that the new nodes are attached using pObj->pCopy.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDupCioNamesTable( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
void Abc_NtkTrasferNames( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
Abc_Obj_t * pObj, * pTerm;
int i, k;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
assert( Abc_NtkPoNum(pNtk) == Abc_NtkPoNum(pNtkNew) );
assert( Abc_NtkBoxNum(pNtk) == Abc_NtkBoxNum(pNtkNew) );
assert( Abc_NtkAssertNum(pNtk) == Abc_NtkAssertNum(pNtkNew) );
assert( Abc_NtkLatchNum(pNtk) == Abc_NtkLatchNum(pNtkNew) );
assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
// copy the CI/CO names if given
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkPi(pNtkNew,i), Abc_ObjName(Abc_ObjFanout0Ntk(pObj)) );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkPo(pNtkNew,i), Abc_ObjName(Abc_ObjFanin0Ntk(pObj)) );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkAssert(pNtkNew,i), Abc_ObjName(Abc_ObjFanin0Ntk(pObj)) );
// copy the CI/CO/box names
Abc_NtkForEachCi( pNtk, pObj, i )
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
Abc_NtkForEachCo( pNtk, pObj, i )
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
Abc_NtkForEachBox( pNtk, pObj, i )
{
Abc_ObjForEachFanin( pObj, pTerm, k )
Abc_NtkLogicStoreName( pTerm->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pTerm)) );
Abc_ObjForEachFanout( pObj, pTerm, k )
Abc_NtkLogicStoreName( pTerm->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pTerm)) );
}
if ( !Abc_NtkIsSeq(pNtk) )
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkLatch(pNtkNew,i), Abc_ObjName(Abc_ObjFanout0Ntk(pObj)) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
/**Function*************************************************************
Synopsis [Duplicates the name arrays.]
Synopsis [Tranfers names to the old network.]
Description []
Description [Assumes that the new nodes are attached using pObj->pCopy.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDupCioNamesTableNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
void Abc_NtkTrasferNamesNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
Abc_Obj_t * pObj;
int i;
......@@ -213,48 +154,16 @@ void Abc_NtkDupCioNamesTableNoLatches( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
assert( Abc_NtkAssertNum(pNtk) == Abc_NtkAssertNum(pNtkNew) );
assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
// copy the CI/CO names if given
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkPi(pNtkNew,i), Abc_ObjName(Abc_ObjFanout0Ntk(pObj)) );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkPo(pNtkNew,i), Abc_ObjName(Abc_ObjFanin0Ntk(pObj)) );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkAssert(pNtkNew,i), Abc_ObjName(Abc_ObjFanin0Ntk(pObj)) );
}
/**Function*************************************************************
Synopsis [Duplicates the name arrays.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDupCioNamesTableDual( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkNew )
{
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
assert( Abc_NtkPoNum(pNtk) * 2 == Abc_NtkPoNum(pNtkNew) );
assert( Abc_NtkLatchNum(pNtk) == Abc_NtkLatchNum(pNtkNew) );
assert( Nm_ManNumEntries(pNtk->pManName) > 0 );
assert( Nm_ManNumEntries(pNtkNew->pManName) == 0 );
// copy the CI/CO names if given
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkPi(pNtkNew,i), Abc_ObjName(pObj) );
Abc_NtkForEachPo( pNtk, pObj, i )
{
Abc_NtkLogicStoreNamePlus( Abc_NtkPo(pNtkNew,2*i+0), Abc_ObjName(pObj), "_pos" );
Abc_NtkLogicStoreNamePlus( Abc_NtkPo(pNtkNew,2*i+1), Abc_ObjName(pObj), "_neg" );
}
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkAssert(pNtkNew,i), Abc_ObjName(pObj) );
if ( !Abc_NtkIsSeq(pNtk) )
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( Abc_NtkLatch(pNtkNew,i), Abc_ObjName(pObj) );
// copy the CI/CO/box name and skip latches and theirs inputs/outputs
Abc_NtkForEachCi( pNtk, pObj, i )
if ( Abc_ObjFaninNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanin0(pObj)) )
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
Abc_NtkForEachCo( pNtk, pObj, i )
if ( Abc_ObjFanoutNum(pObj) == 0 || !Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
Abc_NtkForEachBox( pNtk, pObj, i )
if ( !Abc_ObjIsLatch(pObj) )
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
/**Function*************************************************************
......@@ -403,12 +312,14 @@ void Abc_NtkOrderObjsByName( Abc_Ntk_t * pNtk, int fComb )
{
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkAssertNum(pNtk) == 0 );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
// temporarily store the names in the copy field
Abc_NtkForEachPi( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)Abc_ObjName(pObj);
Abc_NtkForEachPo( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)Abc_ObjName(pObj);
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkForEachBox( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)Abc_ObjName(pObj);
// order objects alphabetically
qsort( (void *)Vec_PtrArray(pNtk->vPis), Vec_PtrSize(pNtk->vPis), sizeof(Abc_Obj_t *),
......@@ -417,7 +328,7 @@ void Abc_NtkOrderObjsByName( Abc_Ntk_t * pNtk, int fComb )
(int (*)(const void *, const void *)) Abc_NodeCompareNames );
// if the comparison if combinational (latches as PIs/POs), order them too
if ( fComb )
qsort( (void *)Vec_PtrArray(pNtk->vLatches), Vec_PtrSize(pNtk->vLatches), sizeof(Abc_Obj_t *),
qsort( (void *)Vec_PtrArray(pNtk->vBoxes), Vec_PtrSize(pNtk->vBoxes), sizeof(Abc_Obj_t *),
(int (*)(const void *, const void *)) Abc_NodeCompareNames );
// order CIs/COs first PIs/POs(Asserts) then latches
Abc_NtkOrderCisCos( pNtk );
......@@ -426,7 +337,7 @@ void Abc_NtkOrderObjsByName( Abc_Ntk_t * pNtk, int fComb )
pObj->pCopy = NULL;
Abc_NtkForEachPo( pNtk, pObj, i )
pObj->pCopy = NULL;
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkForEachBox( pNtk, pObj, i )
pObj->pCopy = NULL;
}
......@@ -447,7 +358,7 @@ void Abc_NtkAddDummyPiNames( Abc_Ntk_t * pNtk )
int nDigits, i;
nDigits = Extra_Base10Log( Abc_NtkPiNum(pNtk) );
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, Abc_ObjNameDummy("pi", i, nDigits) );
Abc_ObjAssignName( pObj, Abc_ObjNameDummy("pi", i, nDigits), NULL );
}
/**Function*************************************************************
......@@ -467,7 +378,7 @@ void Abc_NtkAddDummyPoNames( Abc_Ntk_t * pNtk )
int nDigits, i;
nDigits = Extra_Base10Log( Abc_NtkPoNum(pNtk) );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, Abc_ObjNameDummy("po", i, nDigits) );
Abc_ObjAssignName( pObj, Abc_ObjNameDummy("po", i, nDigits), NULL );
}
/**Function*************************************************************
......@@ -487,7 +398,7 @@ void Abc_NtkAddDummyAssertNames( Abc_Ntk_t * pNtk )
int nDigits, i;
nDigits = Extra_Base10Log( Abc_NtkAssertNum(pNtk) );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, Abc_ObjNameDummy("a", i, nDigits) );
Abc_ObjAssignName( pObj, Abc_ObjNameDummy("a", i, nDigits), NULL );
}
/**Function*************************************************************
......@@ -501,13 +412,37 @@ void Abc_NtkAddDummyAssertNames( Abc_Ntk_t * pNtk )
SeeAlso []
***********************************************************************/
void Abc_NtkAddDummyLatchNames( Abc_Ntk_t * pNtk )
void Abc_NtkAddDummyBoxNames( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
int nDigits, i;
Abc_Obj_t * pObj, * pTerm;
int nDigits, nDigitsF, i, k;
char * pName;
nDigits = Extra_Base10Log( Abc_NtkLatchNum(pNtk) );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, Abc_ObjNameDummy("L", i, nDigits) );
{
Abc_ObjAssignName( pObj, Abc_ObjNameDummy("L", i, nDigits), NULL );
Abc_ObjAssignName( Abc_ObjFanin0(pObj), Abc_ObjNameDummy("Li", i, nDigits), NULL );
Abc_ObjAssignName( Abc_ObjFanout0(pObj), Abc_ObjNameDummy("Lo", i, nDigits), NULL );
}
nDigits = Extra_Base10Log( Abc_NtkTriNum(pNtk) );
Abc_NtkForEachTri( pNtk, pObj, i )
{
Abc_ObjAssignName( pObj, Abc_ObjNameDummy("T", i, nDigits), NULL );
Abc_ObjAssignName( Abc_ObjFanin0(pObj), Abc_ObjNameDummy("Ti0", i, nDigits), NULL );
Abc_ObjAssignName( Abc_ObjFanin1(pObj), Abc_ObjNameDummy("Ti1", i, nDigits), NULL );
Abc_ObjAssignName( Abc_ObjFanout0(pObj), Abc_ObjNameDummy("To", i, nDigits), NULL );
}
nDigits = Extra_Base10Log( Abc_NtkBlackboxNum(pNtk) );
Abc_NtkForEachBlackbox( pNtk, pObj, i )
{
pName = Abc_ObjAssignName( pObj, Abc_ObjNameDummy("B", i, nDigits), NULL );
nDigitsF = Extra_Base10Log( Abc_ObjFaninNum(pObj) );
Abc_ObjForEachFanin( pObj, pTerm, k )
Abc_ObjAssignName( Abc_ObjFanin0(pObj), pName, Abc_ObjNameDummy("i", k, nDigitsF) );
nDigitsF = Extra_Base10Log( Abc_ObjFanoutNum(pObj) );
Abc_ObjForEachFanout( pObj, pTerm, k )
Abc_ObjAssignName( Abc_ObjFanin0(pObj), pName, Abc_ObjNameDummy("o", k, nDigitsF) );
}
}
/**Function*************************************************************
......@@ -524,11 +459,11 @@ void Abc_NtkAddDummyLatchNames( Abc_Ntk_t * pNtk )
void Abc_NtkShortNames( Abc_Ntk_t * pNtk )
{
Nm_ManFree( pNtk->pManName );
pNtk->pManName = Nm_ManCreate( Abc_NtkCiNum(pNtk) + Abc_NtkCoNum(pNtk) - Abc_NtkLatchNum(pNtk) + 10 );
pNtk->pManName = Nm_ManCreate( Abc_NtkCiNum(pNtk) + Abc_NtkCoNum(pNtk) + Abc_NtkBoxNum(pNtk) );
Abc_NtkAddDummyPiNames( pNtk );
Abc_NtkAddDummyPoNames( pNtk );
Abc_NtkAddDummyAssertNames( pNtk );
Abc_NtkAddDummyLatchNames( pNtk );
Abc_NtkAddDummyBoxNames( pNtk );
}
////////////////////////////////////////////////////////////////////////
......
......@@ -60,7 +60,7 @@ Abc_Ntk_t * Abc_NtkNetlistToLogic( Abc_Ntk_t * pNtk )
pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, pNtk->ntkFunc );
// duplicate the nodes
Abc_NtkForEachNode( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
// reconnect the internal nodes in the new network
Abc_NtkForEachNode( pNtk, pObj, i )
Abc_ObjForEachFanin( pObj, pFanin, k )
......@@ -109,13 +109,13 @@ Abc_Ntk_t * Abc_NtkNetlistToLogicHie( Abc_Ntk_t * pNtk )
// clone PIs/POs/latches and make old nets point to new terminals; create names
Abc_NtkForEachCi( pNtk, pObj, i )
{
Abc_ObjFanout0(pObj)->pCopy = Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0(pObj)) );
Abc_ObjFanout0(pObj)->pCopy = Abc_NtkDupObj(pNtkNew, pObj, 0);
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanout0(pObj)), NULL );
}
Abc_NtkForEachPo( pNtk, pObj, i )
{
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0(pObj)) );
Abc_NtkDupObj(pNtkNew, pObj, 0);
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(Abc_ObjFanin0(pObj)), NULL );
}
// recursively flatten hierarchy, create internal logic, add new PI/PO names if there are black boxes
Abc_NtkNetlistToLogicHie_rec( pNtkNew, pNtk, &Counter );
......@@ -164,7 +164,7 @@ void Abc_NtkNetlistToLogicHie_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtkOld, int
if ( Abc_ObjIsNode(pNode) )
{
// duplicate the node and save it in the fanout net
Abc_NtkDupObj( pNtkNew, pNode );
Abc_NtkDupObj( pNtkNew, pNode, 0 );
Abc_ObjFanout0(pNode)->pCopy = pNode->pCopy;
continue;
}
......@@ -184,14 +184,14 @@ void Abc_NtkNetlistToLogicHie_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtkOld, int
{
pObj->pCopy = Abc_NtkCreatePi( pNtkNew );
Abc_ObjFanout(pNode, k)->pCopy = pObj->pCopy;
Abc_NtkLogicStoreNamePlus( pObj->pCopy, Prefix, Abc_ObjName(Abc_ObjFanin0(pObj)) );
Abc_ObjAssignName( pObj->pCopy, Prefix, Abc_ObjName(Abc_ObjFanin0(pObj)) );
}
// create new POs from the PIs of the box
Abc_NtkForEachPi( pNtkModel, pObj, k )
{
pObj->pCopy = Abc_NtkCreatePo( pNtkNew );
// Abc_ObjAddFanin( pObj->pCopy, Abc_ObjFanin(pNode, k)->pCopy );
Abc_NtkLogicStoreNamePlus( pObj->pCopy, Prefix, Abc_ObjName(Abc_ObjFanout0(pObj)) );
Abc_ObjAssignName( pObj->pCopy, Prefix, Abc_ObjName(Abc_ObjFanout0(pObj)) );
}
(*pCounter)++;
Vec_IntPush( pNtkNew->pBlackBoxes, (Abc_NtkPiNum(pNtkNew) << 16) | Abc_NtkPoNum(pNtkNew) );
......@@ -319,12 +319,10 @@ Abc_Ntk_t * Abc_NtkLogicSopToNetlist( Abc_Ntk_t * pNtk )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pObj, * pNet, * pDriver, * pFanin;
char * pNameCo;
int i, k;
assert( Abc_NtkIsLogic(pNtk) );
assert( Abc_NtkLogicHasSimpleCos(pNtk) );
if ( Abc_NtkIsBddLogic(pNtk) )
{
if ( !Abc_NtkBddToSop(pNtk,0) )
......@@ -333,22 +331,19 @@ Abc_Ntk_t * Abc_NtkLogicSopToNetlist( Abc_Ntk_t * pNtk )
// start the netlist by creating PI/PO/Latch objects
pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_NETLIST, pNtk->ntkFunc );
// create the CI nets and remember them in the new CI nodes
Abc_NtkForEachCi( pNtk, pObj, i )
{
pNet = Abc_NtkFindOrCreateNet( pNtkNew, Abc_ObjName(pObj) );
Abc_ObjAddFanin( pNet, pObj->pCopy );
pObj->pCopy->pCopy = pNet;
//printf( "%s ", Abc_ObjName(pObj) );
}
//printf( "\n" );
// duplicate all nodes
Abc_NtkForEachNode( pNtk, pObj, i )
{
if ( Abc_ObjFaninNum(pObj) == 0 && Abc_ObjFanoutNum(pObj) == 0 )
continue;
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
}
// first add the nets to the CO drivers
Abc_NtkForEachCo( pNtk, pObj, i )
......@@ -361,19 +356,19 @@ Abc_Ntk_t * Abc_NtkLogicSopToNetlist( Abc_Ntk_t * pNtk )
continue;
}
assert( Abc_ObjIsNode(pDriver) );
// the driver is a node
// get the CO name
pNameCo = Abc_ObjIsLatch(pObj)? Abc_ObjNameSuffix( pObj, "_in" ) : Abc_ObjName(pObj);
// make sure CO has a unique name
assert( Abc_NtkFindNet( pNtkNew, pNameCo ) == NULL );
// if the CO drive has no net, create it
if ( pDriver->pCopy->pCopy == NULL )
{
// create the CO net and connect it to CO
pNet = Abc_NtkFindOrCreateNet( pNtkNew, pNameCo );
pNet = Abc_NtkFindOrCreateNet( pNtkNew, Abc_ObjName(pObj) );
Abc_ObjAddFanin( pObj->pCopy, pNet );
// connect the CO net to the new driver and remember it in the new driver
Abc_ObjAddFanin( pNet, pDriver->pCopy );
pDriver->pCopy->pCopy = pNet;
}
else
assert( !strcmp( Abc_ObjName(pDriver->pCopy->pCopy), Abc_ObjName(pObj) ) );
}
// create the missing nets
Abc_NtkForEachNode( pNtk, pObj, i )
{
......@@ -425,7 +420,7 @@ Abc_Ntk_t * Abc_NtkAigToLogicSop( Abc_Ntk_t * pNtk )
// duplicate the nodes and create node functions
Abc_NtkForEachNode( pNtk, pObj, i )
{
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
}
// create the choice nodes
......@@ -519,7 +514,7 @@ Abc_Ntk_t * Abc_NtkAigToLogicSopBench( Abc_Ntk_t * pNtk )
// duplicate the nodes, create node functions, and inverters
Vec_PtrForEachEntry( vNodes, pObj, i )
{
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
pObj->pCopy->pData = Abc_SopCreateAnd( pNtkNew->pManFunc, 2, NULL );
if ( Abc_AigNodeHasComplFanoutEdgeTrav(pObj) )
pObj->pCopy->pCopy = Abc_NodeCreateInv( pNtkNew, pObj->pCopy );
......
......@@ -52,7 +52,6 @@ Abc_Ntk_t * Abc_NtkAlloc( Abc_NtkType_t Type, Abc_NtkFunc_t Func, int fUseMemMan
pNtk->ntkFunc = Func;
// start the object storage
pNtk->vObjs = Vec_PtrAlloc( 100 );
pNtk->vLatches = Vec_PtrAlloc( 100 );
pNtk->vAsserts = Vec_PtrAlloc( 100 );
pNtk->vPios = Vec_PtrAlloc( 100 );
pNtk->vPis = Vec_PtrAlloc( 100 );
......@@ -83,7 +82,7 @@ Abc_Ntk_t * Abc_NtkAlloc( Abc_NtkType_t Type, Abc_NtkFunc_t Func, int fUseMemMan
else if ( !Abc_NtkHasBlackbox(pNtk) )
assert( 0 );
// name manager
pNtk->pManName = Nm_ManCreate( 1000 );
pNtk->pManName = Nm_ManCreate( 200 );
return pNtk;
}
......@@ -101,43 +100,33 @@ Abc_Ntk_t * Abc_NtkAlloc( Abc_NtkType_t Type, Abc_NtkFunc_t Func, int fUseMemMan
Abc_Ntk_t * Abc_NtkStartFrom( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pObj, * pTerm;
int i, k;
Abc_Obj_t * pObj;
int fCopyNames, i;
if ( pNtk == NULL )
return NULL;
// decide whether to copy the names
fCopyNames = ( Type != ABC_NTK_NETLIST );
// start the network
pNtkNew = Abc_NtkAlloc( Type, Func, 1 );
// duplicate the name and the spec
pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
// clean the node copy fields
Abc_NtkForEachNode( pNtk, pObj, i )
pObj->pCopy = NULL;
Abc_NtkCleanCopy( pNtk );
// map the constant nodes
if ( Abc_NtkIsStrash(pNtk) && Abc_NtkIsStrash(pNtkNew) )
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// clone the PIs/POs/latches
// clone CIs/CIs/boxes
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, fCopyNames );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, fCopyNames );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, fCopyNames );
Abc_NtkForEachBox( pNtk, pObj, i )
{
Abc_NtkDupObj(pNtkNew, pObj);
if ( Abc_NtkIsNetlist(pNtk) )
continue;
Abc_ObjForEachFanin( pObj, pTerm, k )
Abc_NtkDupObj(pNtkNew, pTerm);
Abc_ObjForEachFanout( pObj, pTerm, k )
Abc_NtkDupObj(pNtkNew, pTerm);
}
Abc_NtkDupBox( pNtkNew, pObj, fCopyNames );
// transfer the names
if ( Type != ABC_NTK_NETLIST )
Abc_NtkDupCioNamesTable( pNtk, pNtkNew );
// Abc_NtkTrasferNames( pNtk, pNtkNew );
Abc_ManTimeDup( pNtk, pNtkNew );
// check that the CI/CO/latches are copied correctly
assert( Abc_NtkCiNum(pNtk) == Abc_NtkCiNum(pNtkNew) );
......@@ -164,29 +153,32 @@ Abc_Ntk_t * Abc_NtkStartFromNoLatches( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc
int i;
if ( pNtk == NULL )
return NULL;
assert( Type != ABC_NTK_NETLIST );
// start the network
pNtkNew = Abc_NtkAlloc( Type, Func, 1 );
// duplicate the name and the spec
pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
// clean the node copy fields
Abc_NtkForEachNode( pNtk, pObj, i )
pObj->pCopy = NULL;
Abc_NtkCleanCopy( pNtk );
// map the constant nodes
if ( Abc_NtkIsStrash(pNtk) && Abc_NtkIsStrash(pNtkNew) )
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// clone the PIs/POs/latches
// clone CIs/CIs/boxes
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, 1 );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, 1 );
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj( pNtkNew, pObj, 1 );
Abc_NtkForEachBox( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
{
if ( Abc_ObjIsLatch(pObj) )
continue;
Abc_NtkDupBox(pNtkNew, pObj, 1);
}
// transfer the names
if ( Type != ABC_NTK_NETLIST )
Abc_NtkDupCioNamesTableNoLatches( pNtk, pNtkNew );
// Abc_NtkTrasferNamesNoLatches( pNtk, pNtkNew );
Abc_ManTimeDup( pNtk, pNtkNew );
// check that the CI/CO/latches are copied correctly
assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
......@@ -196,63 +188,6 @@ Abc_Ntk_t * Abc_NtkStartFromNoLatches( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc
/**Function*************************************************************
Synopsis [Starts a new network using existing network as a model.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkStartFromDual( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pObj, * pObjNew;
int i;
if ( pNtk == NULL )
return NULL;
// start the network
pNtkNew = Abc_NtkAlloc( Type, Func, 1 );
// duplicate the name and the spec
pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
pNtkNew->pSpec = NULL;
// clean the node copy fields
Abc_NtkForEachNode( pNtk, pObj, i )
pObj->pCopy = NULL;
// map the constant nodes
if ( Abc_NtkIsStrash(pNtk) && Abc_NtkIsStrash(pNtkNew) )
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// clone the PIs/POs/latches
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkForEachPo( pNtk, pObj, i )
{
Abc_NtkDupObj(pNtkNew, pObj);
pObjNew = pObj->pCopy;
Abc_NtkDupObj(pNtkNew, pObj);
// connect second to the first
pObjNew->pCopy = pObj->pCopy;
// collect first to old
pObj->pCopy = pObjNew;
}
Abc_NtkForEachAssert( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkForEachBox( pNtk, pObj, i )
Abc_NtkDupObj(pNtkNew, pObj);
// transfer the names
Abc_NtkDupCioNamesTableDual( pNtk, pNtkNew );
// check that the CI/CO/latches are copied correctly
assert( Abc_NtkCiNum(pNtk) == Abc_NtkCiNum(pNtkNew) );
assert( Abc_NtkCoNum(pNtk)* 2 == Abc_NtkCoNum(pNtkNew) );
assert( Abc_NtkLatchNum(pNtk) == Abc_NtkLatchNum(pNtkNew) );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Finalizes the network using the existing network as a model.]
Description []
......@@ -314,7 +249,7 @@ void Abc_NtkFinalizeRead( Abc_Ntk_t * pNtk )
int i;
if ( Abc_NtkHasBlackbox(pNtk) )
{
pBox = Abc_NtkCreateBox(pNtk);
pBox = Abc_NtkCreateBlackbox(pNtk);
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjAddFanin( pBox, Abc_ObjFanout0(pObj) );
Abc_NtkForEachPo( pNtk, pObj, i )
......@@ -374,7 +309,7 @@ Abc_Ntk_t * Abc_NtkDup( Abc_Ntk_t * pNtk )
Abc_NtkForEachObj( pNtk, pObj, i )
if ( pObj->pCopy == NULL )
{
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
pObj->pCopy->Level = pObj->Level;
pObj->pCopy->fPhase = pObj->fPhase;
}
......@@ -403,9 +338,10 @@ Abc_Ntk_t * Abc_NtkDup( Abc_Ntk_t * pNtk )
// duplicate the nets and nodes (CIs/COs/latches already dupped)
Abc_NtkForEachObj( pNtk, pObj, i )
if ( pObj->pCopy == NULL )
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
// reconnect all objects (no need to transfer attributes on edges)
Abc_NtkForEachObj( pNtk, pObj, i )
if ( !Abc_ObjIsBox(pObj) && !Abc_ObjIsBi(pObj) )
Abc_ObjForEachFanin( pObj, pFanin, k )
Abc_ObjAddFanin( pObj->pCopy, pFanin->pCopy );
}
......@@ -457,12 +393,12 @@ Abc_Ntk_t * Abc_NtkCreateCone( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNode
if ( fUseAllCis || Abc_NodeIsTravIdCurrent(pObj) ) // TravId is set by DFS
{
pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
}
// add the PO corresponding to this output
pNodeCoNew = Abc_NtkCreatePo( pNtkNew );
Abc_NtkLogicStoreName( pNodeCoNew, pNodeName );
Abc_ObjAssignName( pNodeCoNew, pNodeName, NULL );
// copy the nodes
Vec_PtrForEachEntry( vNodes, pObj, i )
{
......@@ -473,7 +409,7 @@ Abc_Ntk_t * Abc_NtkCreateCone( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNode
}
else
{
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
Abc_ObjForEachFanin( pObj, pFanin, k )
Abc_ObjAddFanin( pObj->pCopy, pFanin->pCopy );
}
......@@ -529,11 +465,11 @@ Abc_Ntk_t * Abc_NtkCreateMffc( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNode
Vec_PtrForEachEntry( vSupp, pObj, i )
{
pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
// create the PO
pNodeCoNew = Abc_NtkCreatePo( pNtkNew );
Abc_NtkLogicStoreName( pNodeCoNew, pNodeName );
Abc_ObjAssignName( pNodeCoNew, pNodeName, NULL );
// copy the nodes
Vec_PtrForEachEntry( vCone, pObj, i )
{
......@@ -544,7 +480,7 @@ Abc_Ntk_t * Abc_NtkCreateMffc( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, char * pNode
}
else
{
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
Abc_ObjForEachFanin( pObj, pFanin, k )
Abc_ObjAddFanin( pObj->pCopy, pFanin->pCopy );
}
......@@ -594,7 +530,7 @@ Abc_Ntk_t * Abc_NtkCreateTarget( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, Vec_Int_t
Abc_NtkForEachCi( pNtk, pObj, i )
{
pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
// copy the nodes
Vec_PtrForEachEntry( vNodes, pObj, i )
......@@ -617,7 +553,7 @@ Abc_Ntk_t * Abc_NtkCreateTarget( Abc_Ntk_t * pNtk, Vec_Ptr_t * vRoots, Vec_Int_t
// add the PO corresponding to this output
pNodePo = Abc_NtkCreatePo( pNtkNew );
Abc_ObjAddFanin( pNodePo, pFinal );
Abc_NtkLogicStoreName( pNodePo, "miter" );
Abc_ObjAssignName( pNodePo, "miter", NULL );
if ( !Abc_NtkCheck( pNtkNew ) )
fprintf( stdout, "Abc_NtkCreateTarget(): Network check has failed.\n" );
return pNtkNew;
......@@ -646,16 +582,16 @@ Abc_Ntk_t * Abc_NtkCreateFromNode( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode )
Abc_ObjForEachFanin( pNode, pFanin, i )
{
pFanin->pCopy = Abc_NtkCreatePi( pNtkNew );
Abc_NtkLogicStoreName( pFanin->pCopy, Abc_ObjName(pFanin) );
Abc_ObjAssignName( pFanin->pCopy, Abc_ObjName(pFanin), NULL );
}
// duplicate and connect the node
pNode->pCopy = Abc_NtkDupObj( pNtkNew, pNode );
pNode->pCopy = Abc_NtkDupObj( pNtkNew, pNode, 0 );
Abc_ObjForEachFanin( pNode, pFanin, i )
Abc_ObjAddFanin( pNode->pCopy, pFanin->pCopy );
// create the only PO
pNodePo = Abc_NtkCreatePo( pNtkNew );
Abc_ObjAddFanin( pNodePo, pNode->pCopy );
Abc_NtkLogicStoreName( pNodePo, Abc_ObjName(pNode) );
Abc_ObjAssignName( pNodePo, Abc_ObjName(pNode), NULL );
if ( !Abc_NtkCheck( pNtkNew ) )
fprintf( stdout, "Abc_NtkCreateFromNode(): Network check has failed.\n" );
return pNtkNew;
......@@ -686,7 +622,7 @@ Abc_Ntk_t * Abc_NtkCreateWithNode( char * pSop )
nVars = Abc_SopGetVarNum( pSop );
vNames = Abc_NodeGetFakeNames( nVars );
for ( i = 0; i < nVars; i++ )
Abc_NtkLogicStoreName( Abc_NtkCreatePi(pNtkNew), Vec_PtrEntry(vNames, i) );
Abc_ObjAssignName( Abc_NtkCreatePi(pNtkNew), Vec_PtrEntry(vNames, i), NULL );
Abc_NodeFreeNames( vNames );
// create the node, add PIs as fanins, set the function
pNode = Abc_NtkCreateNode( pNtkNew );
......@@ -696,7 +632,7 @@ Abc_Ntk_t * Abc_NtkCreateWithNode( char * pSop )
// create the only PO
pNodePo = Abc_NtkCreatePo(pNtkNew);
Abc_ObjAddFanin( pNodePo, pNode );
Abc_NtkLogicStoreName( pNodePo, "F" );
Abc_ObjAssignName( pNodePo, "F", NULL );
if ( !Abc_NtkCheck( pNtkNew ) )
fprintf( stdout, "Abc_NtkCreateWithNode(): Network check has failed.\n" );
return pNtkNew;
......@@ -765,7 +701,6 @@ void Abc_NtkDelete( Abc_Ntk_t * pNtk )
Vec_PtrFree( pNtk->vCis );
Vec_PtrFree( pNtk->vCos );
Vec_PtrFree( pNtk->vAsserts );
Vec_PtrFree( pNtk->vLatches );
Vec_PtrFree( pNtk->vObjs );
Vec_PtrFree( pNtk->vCutSet );
Vec_PtrFree( pNtk->vBoxes );
......
......@@ -99,7 +99,7 @@ void Abc_ObjRecycle( Abc_Obj_t * pObj )
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkObjAdd( Abc_Ntk_t * pNtk, Abc_ObjType_t Type )
Abc_Obj_t * Abc_NtkCreateObj( Abc_Ntk_t * pNtk, Abc_ObjType_t Type )
{
Abc_Obj_t * pObj;
// create new object, assign ID, and add to the array
......@@ -139,16 +139,14 @@ Abc_Obj_t * Abc_NtkObjAdd( Abc_Ntk_t * pNtk, Abc_ObjType_t Type )
Vec_PtrPush( pNtk->vCos, pObj );
break;
case ABC_OBJ_NET:
break;
case ABC_OBJ_NODE:
case ABC_OBJ_GATE:
break;
case ABC_OBJ_LATCH:
pObj->pData = (void *)ABC_INIT_NONE;
Vec_PtrPush( pNtk->vLatches, pObj );
Vec_PtrPush( pNtk->vCis, pObj );
Vec_PtrPush( pNtk->vCos, pObj );
break;
case ABC_OBJ_BOX:
case ABC_OBJ_TRI:
case ABC_OBJ_BLACKBOX:
Vec_PtrPush( pNtk->vBoxes, pObj );
break;
default:
assert(0);
......@@ -189,8 +187,8 @@ void Abc_NtkDeleteObj( Abc_Obj_t * pObj )
pNtk->nObjCounts[pObj->Type]--;
pNtk->nObjs--;
// remove from the table of names
// if ( Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id) )
// Nm_ManDeleteIdName(pObj->pNtk->pManName, pObj->Id);
if ( Nm_ManFindNameById(pObj->pNtk->pManName, pObj->Id) )
Nm_ManDeleteIdName(pObj->pNtk->pManName, pObj->Id);
// perform specialized operations depending on the object type
switch (pObj->Type)
{
......@@ -222,7 +220,7 @@ void Abc_NtkDeleteObj( Abc_Obj_t * pObj )
Vec_PtrRemove( pNtk->vCos, pObj );
break;
case ABC_OBJ_NET:
pObj->pData = NULL;
case ABC_OBJ_GATE:
break;
case ABC_OBJ_NODE:
if ( Abc_NtkHasBdd(pNtk) )
......@@ -230,11 +228,9 @@ void Abc_NtkDeleteObj( Abc_Obj_t * pObj )
pObj->pData = NULL;
break;
case ABC_OBJ_LATCH:
Vec_PtrRemove( pNtk->vLatches, pObj );
Vec_PtrRemove( pNtk->vCis, pObj );
Vec_PtrRemove( pNtk->vCos, pObj );
break;
case ABC_OBJ_BOX:
case ABC_OBJ_TRI:
case ABC_OBJ_BLACKBOX:
Vec_PtrRemove( pNtk->vBoxes, pObj );
break;
default:
assert(0);
......@@ -283,11 +279,21 @@ void Abc_NtkDeleteObj_rec( Abc_Obj_t * pObj )
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj )
Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj, int fCopyName )
{
Abc_Obj_t * pObjNew;
// create the new object
pObjNew = Abc_NtkObjAdd( pNtkNew, pObj->Type );
pObjNew = Abc_NtkCreateObj( pNtkNew, pObj->Type );
// transfer names of the terminal objects
if ( fCopyName )
{
if ( Abc_ObjIsCi(pObj) )
Abc_ObjAssignName( pObjNew, Abc_ObjName(Abc_ObjFanout0Ntk(pObj)), NULL );
else if ( Abc_ObjIsCo(pObj) )
Abc_ObjAssignName( pObjNew, Abc_ObjName(Abc_ObjFanin0Ntk(pObj)), NULL );
else if ( Abc_ObjIsBox(pObj) )
Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), NULL );
}
// copy functionality/names
if ( Abc_ObjIsNode(pObj) ) // copy the function if functionality is compatible
{
......@@ -308,7 +314,8 @@ Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj )
}
else if ( Abc_ObjIsNet(pObj) ) // copy the name
{
pObjNew->pData = Nm_ManStoreIdName( pNtkNew->pManName, pObjNew->Id, pObj->pData, NULL );
assert( 0 );
// pObjNew->pData = Nm_ManStoreIdName( pNtkNew->pManName, pObjNew->Id, pObj->pData, NULL );
}
else if ( Abc_ObjIsLatch(pObj) ) // copy the reset value
pObjNew->pData = pObj->pData;
......@@ -318,6 +325,33 @@ Abc_Obj_t * Abc_NtkDupObj( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj )
/**Function*************************************************************
Synopsis [Duplicates the latch with its input/output terminals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkDupBox( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pBox, int fCopyName )
{
Abc_Obj_t * pTerm, * pBoxNew;
int i;
assert( Abc_ObjIsBox(pBox) );
// duplicate the box
pBoxNew = Abc_NtkDupObj( pNtkNew, pBox, fCopyName );
// duplicate the fanins and connect them
Abc_ObjForEachFanin( pBox, pTerm, i )
Abc_ObjAddFanin( pBoxNew, Abc_NtkDupObj(pNtkNew, pTerm, fCopyName) );
// duplicate the fanouts and connect them
Abc_ObjForEachFanout( pBox, pTerm, i )
Abc_ObjAddFanin( Abc_NtkDupObj(pNtkNew, pTerm, fCopyName), pBoxNew );
return pBoxNew;
}
/**Function*************************************************************
Synopsis [Clones the objects in the same network but does not assign its function.]
Description []
......@@ -331,7 +365,7 @@ Abc_Obj_t * Abc_NtkCloneObj( Abc_Obj_t * pObj )
{
Abc_Obj_t * pClone, * pFanin;
int i;
pClone = Abc_NtkObjAdd( pObj->pNtk, pObj->Type );
pClone = Abc_NtkCreateObj( pObj->pNtk, pObj->Type );
Abc_ObjForEachFanin( pObj, pFanin, i )
Abc_ObjAddFanin( pClone, pFanin );
return pClone;
......@@ -351,34 +385,18 @@ Abc_Obj_t * Abc_NtkCloneObj( Abc_Obj_t * pObj )
***********************************************************************/
Abc_Obj_t * Abc_NtkFindNode( Abc_Ntk_t * pNtk, char * pName )
{
Abc_Obj_t * pObj, * pDriver;
int i, Num;
// check if the node is among CIs
Abc_NtkForEachCi( pNtk, pObj, i )
{
if ( strcmp( Abc_ObjName(pObj), pName ) == 0 )
{
if ( i < Abc_NtkPiNum(pNtk) )
printf( "Node \"%s\" is a primary input.\n", pName );
else
printf( "Node \"%s\" is a latch output.\n", pName );
return NULL;
}
}
// search the node among COs
Abc_NtkForEachCo( pNtk, pObj, i )
{
if ( strcmp( Abc_ObjName(pObj), pName ) == 0 )
{
pDriver = Abc_ObjFanin0(pObj);
if ( !Abc_ObjIsNode(pDriver) )
{
printf( "Node \"%s\" does not have logic associated with it.\n", pName );
return NULL;
}
return pDriver;
}
}
Abc_Obj_t * pObj;
int Num;
// try to find the terminal
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_PO );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_BO );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_NODE );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
// find the internal node
if ( pName[0] != '[' || pName[strlen(pName)-1] != ']' )
{
......@@ -421,7 +439,7 @@ Abc_Obj_t * Abc_NtkFindNet( Abc_Ntk_t * pNtk, char * pName )
Abc_Obj_t * pNet;
int ObjId;
assert( Abc_NtkIsNetlist(pNtk) );
ObjId = Nm_ManFindIdByName( pNtk->pManName, pName, NULL );
ObjId = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_NET );
if ( ObjId == -1 )
return NULL;
pNet = Abc_NtkObj( pNtk, ObjId );
......@@ -430,7 +448,7 @@ Abc_Obj_t * Abc_NtkFindNet( Abc_Ntk_t * pNtk, char * pName )
/**Function*************************************************************
Synopsis [Returns the CI/CO terminal with the given name.]
Synopsis [Returns CI with the given name.]
Description []
......@@ -439,18 +457,44 @@ Abc_Obj_t * Abc_NtkFindNet( Abc_Ntk_t * pNtk, char * pName )
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkFindTerm( Abc_Ntk_t * pNtk, char * pName )
Abc_Obj_t * Abc_NtkFindCi( Abc_Ntk_t * pNtk, char * pName )
{
Abc_Obj_t * pNet;
int ObjId;
int Num;
assert( !Abc_NtkIsNetlist(pNtk) );
ObjId = Nm_ManFindIdByName( pNtk->pManName, pName, NULL );
if ( ObjId == -1 )
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_PI );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_BI );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
return NULL;
}
/**Function*************************************************************
Synopsis [Returns CO with the given name.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkFindCo( Abc_Ntk_t * pNtk, char * pName )
{
int Num;
assert( !Abc_NtkIsNetlist(pNtk) );
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_PO );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
Num = Nm_ManFindIdByName( pNtk->pManName, pName, ABC_OBJ_BO );
if ( Num >= 0 )
return Abc_NtkObj( pNtk, Num );
return NULL;
pNet = Abc_NtkObj( pNtk, ObjId );
return pNet;
}
/**Function*************************************************************
Synopsis [Finds or creates the net.]
......@@ -469,8 +513,9 @@ Abc_Obj_t * Abc_NtkFindOrCreateNet( Abc_Ntk_t * pNtk, char * pName )
if ( pName && (pNet = Abc_NtkFindNet( pNtk, pName )) )
return pNet;
// create a new net
pNet = Abc_NtkObjAdd( pNtk, ABC_OBJ_NET );
pNet->pData = pName? Nm_ManStoreIdName( pNtk->pManName, pNet->Id, pName, NULL ) : NULL;
pNet = Abc_NtkCreateObj( pNtk, ABC_OBJ_NET );
if ( pName )
Nm_ManStoreIdName( pNtk->pManName, pNet->Id, pNet->Type, pName, NULL );
return pNet;
}
......
......@@ -47,7 +47,7 @@ void Abc_NtkIncrementTravId( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
int i;
if ( pNtk->nTravIds == (1<<8)-1 )
if ( pNtk->nTravIds == (1<<30)-1 )
{
pNtk->nTravIds = 0;
Abc_NtkForEachObj( pNtk, pObj, i )
......@@ -69,8 +69,8 @@ void Abc_NtkIncrementTravId( Abc_Ntk_t * pNtk )
***********************************************************************/
void Abc_NtkOrderCisCos( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
int i;
Abc_Obj_t * pObj, * pTerm;
int i, k;
Vec_PtrClear( pNtk->vCis );
Vec_PtrClear( pNtk->vCos );
Abc_NtkForEachPi( pNtk, pObj, i )
......@@ -79,10 +79,12 @@ void Abc_NtkOrderCisCos( Abc_Ntk_t * pNtk )
Vec_PtrPush( pNtk->vCos, pObj );
Abc_NtkForEachAssert( pNtk, pObj, i )
Vec_PtrPush( pNtk->vCos, pObj );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkForEachBox( pNtk, pObj, i )
{
Vec_PtrPush( pNtk->vCis, pObj );
Vec_PtrPush( pNtk->vCos, pObj );
Abc_ObjForEachFanin( pObj, pTerm, k )
Vec_PtrPush( pNtk->vCos, pTerm );
Abc_ObjForEachFanout( pObj, pTerm, k )
Vec_PtrPush( pNtk->vCis, pTerm );
}
}
......@@ -433,11 +435,34 @@ void Abc_NtkCleanMarkA( Abc_Ntk_t * pNtk )
/**Function*************************************************************
Synopsis [Checks if the internal node has a unique CO.]
Synopsis [Checks if the internal node has CO fanout.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeHasCoFanout( Abc_Obj_t * pNode )
{
Abc_Obj_t * pFanout;
int i;
if ( !Abc_ObjIsNode(pNode) )
return NULL;
Abc_ObjForEachFanout( pNode, pFanout, i )
if ( Abc_ObjIsCo(pFanout) )
return pFanout;
return NULL;
}
/**Function*************************************************************
Synopsis [Checks if the internal node has CO drivers with the same name.]
Description [Checks if the internal node can borrow a name from a CO
fanout. This is possible if there is only one CO with non-complemented
fanin edge pointing to this node.]
Description [Checks if the internal node can borrow a name from CO fanouts.
This is possible if all COs with non-complemented fanin edge pointing to this
node have the same name.]
SideEffects []
......@@ -447,23 +472,27 @@ void Abc_NtkCleanMarkA( Abc_Ntk_t * pNtk )
Abc_Obj_t * Abc_NodeHasUniqueCoFanout( Abc_Obj_t * pNode )
{
Abc_Obj_t * pFanout, * pFanoutCo;
int i, Counter;
int i;
if ( !Abc_ObjIsNode(pNode) )
return NULL;
Counter = 0;
pFanoutCo = NULL;
Abc_ObjForEachFanout( pNode, pFanout, i )
{
if ( Abc_ObjIsCo(pFanout) && !Abc_ObjFaninC0(pFanout) )
if ( !Abc_ObjIsCo(pFanout) )
continue;
if ( Abc_ObjFaninC0(pFanout) )
continue;
if ( pFanoutCo == NULL )
{
assert( Abc_ObjFaninNum(pFanout) == 1 );
assert( Abc_ObjFanin0(pFanout) == pNode );
pFanoutCo = pFanout;
Counter++;
continue;
}
if ( strcmp( Abc_ObjName(pFanoutCo), Abc_ObjName(pFanout) ) ) // they have diff names
return NULL;
}
if ( Counter == 1 )
return pFanoutCo;
return NULL;
}
/**Function*************************************************************
......@@ -508,7 +537,7 @@ bool Abc_NtkLogicHasSimpleCos( Abc_Ntk_t * pNtk )
Description [The COs of a logic network are simple under three conditions:
(1) The edge from the CO to its driver is not complemented.
(2) No two COs share the same driver.
(2) No two COs share the same driver (unless they have the same name!).
(3) The driver is not a CI unless the CI and the CO have the same name
(and so the inv/buf should not be written into a file).
In some cases, such as FPGA mapping, we prevent the increase in delay
......@@ -537,15 +566,15 @@ int Abc_NtkLogicMakeSimpleCos( Abc_Ntk_t * pNtk, bool fDuplicate )
continue;
}
}
else
else if ( !Abc_ObjFaninC0(pNode) )
{
// skip the case when the driver's unique CO fanout is this CO
if ( Abc_NodeHasUniqueCoFanout(pDriver) == pNode )
// skip the case when all CO fanouts of the driver have the same name
if ( Abc_NodeHasUniqueCoFanout(pDriver) )
continue;
}
if ( fDuplicate && !Abc_ObjIsCi(pDriver) )
{
pDriverNew = Abc_NtkDupObj( pNtk, pDriver );
pDriverNew = Abc_NtkDupObj( pNtk, pDriver, 0 );
Abc_ObjForEachFanin( pDriver, pFanin, k )
Abc_ObjAddFanin( pDriverNew, pFanin );
if ( Abc_ObjFaninC0(pNode) )
......@@ -1091,11 +1120,21 @@ void Abc_NtkReassignIds( Abc_Ntk_t * pNtk )
pNode->Id = Vec_PtrSize( vObjsNew );
Vec_PtrPush( vObjsNew, pNode );
}
// put latches next
Abc_NtkForEachLatch( pNtk, pNode, i )
// put latches and their inputs/outputs next
Abc_NtkForEachBox( pNtk, pNode, i )
{
pNode->Id = Vec_PtrSize( vObjsNew );
Vec_PtrPush( vObjsNew, pNode );
Abc_ObjForEachFanin( pNode, pTemp, k )
{
pTemp->Id = Vec_PtrSize( vObjsNew );
Vec_PtrPush( vObjsNew, pTemp );
}
Abc_ObjForEachFanout( pNode, pTemp, k )
{
pTemp->Id = Vec_PtrSize( vObjsNew );
Vec_PtrPush( vObjsNew, pTemp );
}
}
// finally, internal nodes in the DFS order
vNodes = Abc_AigDfs( pNtk, 1, 0 );
......@@ -1139,6 +1178,7 @@ void Abc_NtkReassignIds( Abc_Ntk_t * pNtk )
***********************************************************************/
void Abc_NtkDetectMatching( Abc_Ntk_t * pNtk )
{
/*
Abc_Obj_t * pLatch, * pFanin;
int i, nTFFs, nJKFFs;
nTFFs = nJKFFs = 0;
......@@ -1157,13 +1197,6 @@ void Abc_NtkDetectMatching( Abc_Ntk_t * pNtk )
Abc_ObjFaninNum( Abc_ObjFanin1(pFanin) ) != 2 )
continue;
/*
if ( !Abc_ObjFaninC0(pLatch) ||
!Abc_ObjFaninC0( Abc_ObjFanin0(pFanin) ) ||
!Abc_ObjFaninC1( Abc_ObjFanin0(pFanin) ) )
continue;
*/
if ( (Abc_ObjFanin0(Abc_ObjFanin0(pFanin)) == pLatch ||
Abc_ObjFanin1(Abc_ObjFanin0(pFanin)) == pLatch) &&
(Abc_ObjFanin0(Abc_ObjFanin1(pFanin)) == pLatch ||
......@@ -1174,6 +1207,7 @@ void Abc_NtkDetectMatching( Abc_Ntk_t * pNtk )
}
printf( "D = %6d. T = %6d. JK = %6d. (%6.2f %%)\n",
Abc_NtkLatchNum(pNtk), nTFFs, nJKFFs, 100.0 * nJKFFs / Abc_NtkLatchNum(pNtk) );
*/
}
......
......@@ -3901,7 +3901,6 @@ int Abc_CommandOneOutput( Abc_Frame_t * pAbc, int argc, char ** argv )
if ( argc == globalUtilOptind + 1 )
{
pNodeCo = Abc_NtkFindTerm( pNtk, argv[globalUtilOptind] );
pNode = Abc_NtkFindNode( pNtk, argv[globalUtilOptind] );
if ( pNode == NULL )
{
......@@ -7433,6 +7432,8 @@ int Abc_CommandSeqSweep( Abc_Frame_t * pAbc, int argc, char ** argv )
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
printf( "This command is not implemented\n" );
// set defaults
nFrames = 1;
fExdc = 1;
......@@ -7495,10 +7496,11 @@ int Abc_CommandSeqSweep( Abc_Frame_t * pAbc, int argc, char ** argv )
}
// get the new network
if ( fImp )
pNtkRes = Abc_NtkVanImp( pNtk, nFrames, fExdc, fVerbose );
else
pNtkRes = Abc_NtkVanEijk( pNtk, nFrames, fExdc, fVerbose );
// if ( fImp )
// pNtkRes = Abc_NtkVanImp( pNtk, nFrames, fExdc, fVerbose );
// else
// pNtkRes = Abc_NtkVanEijk( pNtk, nFrames, fExdc, fVerbose );
pNtkRes = NULL;
if ( pNtkRes == NULL )
{
fprintf( pErr, "Sequential FPGA mapping has failed.\n" );
......
......@@ -25,7 +25,6 @@
////////////////////////////////////////////////////////////////////////
static Abc_Ntk_t * Abc_NtkFromGlobalBdds( Abc_Ntk_t * pNtk );
static Abc_Ntk_t * Abc_NtkFromGlobalBddsDual( Abc_Ntk_t * pNtk );
static Abc_Obj_t * Abc_NodeFromGlobalBdds( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bFunc );
////////////////////////////////////////////////////////////////////////
......@@ -59,9 +58,6 @@ Abc_Ntk_t * Abc_NtkCollapse( Abc_Ntk_t * pNtk, int fBddSizeMax, int fDualRail, i
}
// create the new network
if ( fDualRail )
pNtkNew = Abc_NtkFromGlobalBddsDual( pNtk );
else
pNtkNew = Abc_NtkFromGlobalBdds( pNtk );
Abc_NtkFreeGlobalBdds( pNtk );
if ( pNtkNew == NULL )
......@@ -134,42 +130,6 @@ Abc_Ntk_t * Abc_NtkFromGlobalBdds( Abc_Ntk_t * pNtk )
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkFromGlobalBddsDual( Abc_Ntk_t * pNtk )
{
ProgressBar * pProgress;
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pNode, * pNodeNew;
DdManager * dd = pNtk->pManGlob;
int i;
// start the new network
pNtkNew = Abc_NtkStartFromDual( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
// make sure the new manager has the same number of inputs
Cudd_bddIthVar( pNtkNew->pManFunc, dd->size-1 );
// process the POs
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkCoNum(pNtk) );
Abc_NtkForEachCo( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
pNodeNew = Abc_NodeFromGlobalBdds( pNtkNew, dd, Cudd_Not( Vec_PtrEntry(pNtk->vFuncsGlob, i) ) );
Abc_ObjAddFanin( pNode->pCopy->pCopy, pNodeNew );
pNodeNew = Abc_NodeFromGlobalBdds( pNtkNew, dd, Vec_PtrEntry(pNtk->vFuncsGlob, i) );
Abc_ObjAddFanin( pNode->pCopy, pNodeNew );
}
Extra_ProgressBarStop( pProgress );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Derives the network with the given global BDD.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeFromGlobalBdds( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bFunc )
{
Abc_Obj_t * pNodeNew, * pTemp;
......
......@@ -502,6 +502,10 @@ Abc_Ntk_t * Abc_NtkFromAigSeq( Abc_Ntk_t * pNtkOld, Ivy_Man_t * pMan, int fHaig
Ivy_ManForEachNodeVec( pMan, vLatches, pNode, i )
{
pObjNew = Abc_NtkCreateLatch( pNtk );
pFaninNew0 = Abc_NtkCreateBo( pNtk );
pFaninNew1 = Abc_NtkCreateBi( pNtk );
Abc_ObjAddFanin( pObjNew, pFaninNew0 );
Abc_ObjAddFanin( pFaninNew1, pObjNew );
if ( fHaig || Ivy_ObjInit(pNode) == IVY_INIT_DC )
Abc_LatchSetInitDc( pObjNew );
else if ( Ivy_ObjInit(pNode) == IVY_INIT_1 )
......@@ -509,8 +513,9 @@ Abc_Ntk_t * Abc_NtkFromAigSeq( Abc_Ntk_t * pNtkOld, Ivy_Man_t * pMan, int fHaig
else if ( Ivy_ObjInit(pNode) == IVY_INIT_0 )
Abc_LatchSetInit0( pObjNew );
else assert( 0 );
pNode->TravId = Abc_EdgeFromNode( pObjNew );
pNode->TravId = Abc_EdgeFromNode( pFaninNew1 );
}
Abc_NtkAddDummyBoxNames( pNtk );
// rebuild the AIG
Ivy_ManForEachNodeVec( pMan, vNodes, pNode, i )
{
......@@ -556,7 +561,7 @@ Abc_Ntk_t * Abc_NtkFromAigSeq( Abc_Ntk_t * pNtkOld, Ivy_Man_t * pMan, int fHaig
Ivy_ManForEachNodeVec( pMan, vLatches, pNode, i )
{
pFaninNew = Abc_ObjFanin0Ivy( pNtk, pNode );
Abc_ObjAddFanin( Abc_NtkLatch(pNtk, i), pFaninNew );
Abc_ObjAddFanin( Abc_ObjFanin0(Abc_NtkBox(pNtk, i)), pFaninNew );
}
Vec_IntFree( vLatches );
Vec_IntFree( vNodes );
......
......@@ -54,6 +54,8 @@ Abc_Ntk_t * Abc_NtkMiter( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb )
{
Abc_Ntk_t * pTemp = NULL;
int fRemove1, fRemove2;
assert( Abc_NtkHasOnlyLatchBoxes(pNtk1) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk2) );
// check that the networks have the same PIs/POs/latches
if ( !Abc_NtkCompareSignals( pNtk1, pNtk2, fComb ) )
return NULL;
......@@ -139,12 +141,12 @@ void Abc_NtkMiterPrepare( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, Abc_Ntk_t * pNtk
pObj = Abc_NtkCi(pNtk2, i);
pObj->pCopy = pObjNew;
// add name
Abc_NtkLogicStoreName( pObjNew, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), NULL );
}
// create the only PO
pObjNew = Abc_NtkCreatePo( pNtkMiter );
// add the PO name
Abc_NtkLogicStoreName( pObjNew, "miter" );
Abc_ObjAssignName( pObjNew, "miter", NULL );
}
else
{
......@@ -157,24 +159,28 @@ void Abc_NtkMiterPrepare( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, Abc_Ntk_t * pNtk
pObj = Abc_NtkPi(pNtk2, i);
pObj->pCopy = pObjNew;
// add name
Abc_NtkLogicStoreName( pObjNew, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), NULL );
}
// create the only PO
pObjNew = Abc_NtkCreatePo( pNtkMiter );
// add the PO name
Abc_NtkLogicStoreName( pObjNew, "miter" );
Abc_ObjAssignName( pObjNew, "miter", NULL );
// create the latches
Abc_NtkForEachLatch( pNtk1, pObj, i )
{
pObjNew = Abc_NtkDupObj( pNtkMiter, pObj );
// add name
Abc_NtkLogicStoreNamePlus( pObjNew, Abc_ObjName(pObj), "_1" );
pObjNew = Abc_NtkDupBox( pNtkMiter, pObj, 0 );
// add names
Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), "_1" );
Abc_ObjAssignName( Abc_ObjFanin0(pObjNew), Abc_ObjName(Abc_ObjFanin0(pObj)), "_1" );
Abc_ObjAssignName( Abc_ObjFanout0(pObjNew), Abc_ObjName(Abc_ObjFanout0(pObj)), "_1" );
}
Abc_NtkForEachLatch( pNtk2, pObj, i )
{
pObjNew = Abc_NtkDupObj( pNtkMiter, pObj );
pObjNew = Abc_NtkDupBox( pNtkMiter, pObj, 0 );
// add name
Abc_NtkLogicStoreNamePlus( pObjNew, Abc_ObjName(pObj), "_2" );
Abc_ObjAssignName( pObjNew, Abc_ObjName(pObj), "_2" );
Abc_ObjAssignName( Abc_ObjFanin0(pObjNew), Abc_ObjName(Abc_ObjFanin0(pObj)), "_2" );
Abc_ObjAssignName( Abc_ObjFanout0(pObjNew), Abc_ObjName(Abc_ObjFanout0(pObj)), "_2" );
}
}
}
......@@ -265,9 +271,9 @@ void Abc_NtkMiterFinalize( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, Abc_Ntk_t * pNt
}
// connect new latches
Abc_NtkForEachLatch( pNtk1, pNode, i )
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
Abc_ObjAddFanin( Abc_ObjFanin0(pNode)->pCopy, Abc_ObjChild0Copy(Abc_ObjFanin0(pNode)) );
Abc_NtkForEachLatch( pNtk2, pNode, i )
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
Abc_ObjAddFanin( Abc_ObjFanin0(pNode)->pCopy, Abc_ObjChild0Copy(Abc_ObjFanin0(pNode)) );
}
// add the miter
pMiter = Abc_AigMiter( pNtkMiter->pManFunc, vPairs );
......@@ -302,6 +308,8 @@ Abc_Ntk_t * Abc_NtkMiterAnd( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2 )
assert( 0 == Abc_NtkLatchNum(pNtk1) );
assert( 0 == Abc_NtkLatchNum(pNtk2) );
assert( Abc_NtkCiNum(pNtk1) == Abc_NtkCiNum(pNtk2) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk1) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk2) );
// start the new network
pNtkMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
......@@ -354,6 +362,7 @@ Abc_Ntk_t * Abc_NtkMiterCofactor( Abc_Ntk_t * pNtk, Vec_Int_t * vPiValues )
assert( Abc_NtkIsStrash(pNtk) );
assert( 1 == Abc_NtkCoNum(pNtk) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
// start the new network
pNtkMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
......@@ -421,6 +430,7 @@ Abc_Ntk_t * Abc_NtkMiterForCofactors( Abc_Ntk_t * pNtk, int Out, int In1, int In
assert( Out < Abc_NtkCoNum(pNtk) );
assert( In1 < Abc_NtkCiNum(pNtk) );
assert( In2 < Abc_NtkCiNum(pNtk) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
// start the new network
pNtkMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
......@@ -486,6 +496,7 @@ Abc_Ntk_t * Abc_NtkMiterQuantify( Abc_Ntk_t * pNtk, int In, int fExist )
assert( Abc_NtkIsStrash(pNtk) );
assert( 1 == Abc_NtkCoNum(pNtk) );
assert( In < Abc_NtkCiNum(pNtk) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
// start the new network
pNtkMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
......@@ -545,6 +556,7 @@ Abc_Ntk_t * Abc_NtkMiterQuantifyPis( Abc_Ntk_t * pNtk )
Abc_Ntk_t * pNtkTemp;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
Abc_NtkForEachPi( pNtk, pObj, i )
{
......@@ -663,34 +675,38 @@ Abc_Ntk_t * Abc_NtkFrames( Abc_Ntk_t * pNtk, int nFrames, int fInitial )
char Buffer[1000];
ProgressBar * pProgress;
Abc_Ntk_t * pNtkFrames;
Abc_Obj_t * pLatch, * pLatchNew;
Abc_Obj_t * pLatch, * pLatchOut;
int i, Counter;
assert( nFrames > 0 );
assert( Abc_NtkIsStrash(pNtk) );
assert( Abc_NtkIsDfsOrdered(pNtk) );
assert( Abc_NtkHasOnlyLatchBoxes(pNtk) );
// start the new network
pNtkFrames = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
sprintf( Buffer, "%s_%d_frames", pNtk->pName, nFrames );
pNtkFrames->pName = Extra_UtilStrsav(Buffer);
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkFrames);
// create new latches (or their initial values) and remember them in the new latches
if ( !fInitial )
{
Abc_NtkForEachLatch( pNtk, pLatch, i )
Abc_NtkDupObj( pNtkFrames, pLatch );
Abc_NtkDupBox( pNtkFrames, pLatch, 1 );
}
else
{
Counter = 0;
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pLatchOut = Abc_ObjFanout0(pLatch);
if ( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) ) // don't-care initial value - create a new PI
{
pLatch->pCopy = Abc_NtkCreatePi(pNtkFrames);
Abc_NtkLogicStoreName( pLatch->pCopy, Abc_ObjName(pLatch) );
pLatchOut->pCopy = Abc_NtkCreatePi(pNtkFrames);
Abc_ObjAssignName( pLatchOut->pCopy, Abc_ObjName(pLatchOut), NULL );
Counter++;
}
else
pLatch->pCopy = Abc_ObjNotCond( Abc_AigConst1(pNtkFrames), Abc_LatchIsInit0(pLatch) );
pLatchOut->pCopy = Abc_ObjNotCond( Abc_AigConst1(pNtkFrames), Abc_LatchIsInit0(pLatch) );
}
if ( Counter )
printf( "Warning: %d uninitialized latches are replaced by free PI variables.\n", Counter );
......@@ -708,22 +724,15 @@ Abc_Ntk_t * Abc_NtkFrames( Abc_Ntk_t * pNtk, int nFrames, int fInitial )
// connect the new latches to the outputs of the last frame
if ( !fInitial )
{
// we cannot use pLatch->pCopy here because pLatch->pCopy is used for temporary storage of strashed values
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pLatchNew = Abc_NtkLatch(pNtkFrames, i);
Abc_ObjAddFanin( pLatchNew, pLatch->pCopy );
Abc_NtkLogicStoreName( pLatchNew, Abc_ObjName(pLatch) );
Abc_ObjAddFanin( Abc_ObjFanin0(pLatch)->pCopy, Abc_ObjFanout0(pLatch)->pCopy );
}
}
Abc_NtkForEachLatch( pNtk, pLatch, i )
pLatch->pNext = NULL;
// remove dangling nodes
Abc_AigCleanup( pNtkFrames->pManFunc );
// reorder the latches
Abc_NtkOrderCisCos( pNtkFrames );
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtkFrames ) )
{
......@@ -755,31 +764,29 @@ void Abc_NtkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame )
int i;
// create the prefix to be added to the node names
sprintf( Buffer, "_%02d", iFrame );
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkFrames);
// add the new PI nodes
Abc_NtkForEachPi( pNtk, pNode, i )
Abc_NtkLogicStoreNamePlus( Abc_NtkDupObj(pNtkFrames, pNode), Abc_ObjName(pNode), Buffer );
Abc_ObjAssignName( Abc_NtkDupObj(pNtkFrames, pNode, 0), Abc_ObjName(pNode), Buffer );
// add the internal nodes
Abc_AigForEachAnd( pNtk, pNode, i )
pNode->pCopy = Abc_AigAnd( pNtkFrames->pManFunc, Abc_ObjChild0Copy(pNode), Abc_ObjChild1Copy(pNode) );
// add the new POs
Abc_NtkForEachPo( pNtk, pNode, i )
{
Abc_NtkLogicStoreNamePlus( Abc_NtkDupObj(pNtkFrames, pNode), Abc_ObjName(pNode), Buffer );
Abc_ObjAssignName( Abc_NtkDupObj(pNtkFrames, pNode, 0), Abc_ObjName(pNode), Buffer );
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
}
// add the new asserts
Abc_NtkForEachAssert( pNtk, pNode, i )
{
Abc_NtkLogicStoreNamePlus( Abc_NtkDupObj(pNtkFrames, pNode), Abc_ObjName(pNode), Buffer );
Abc_ObjAssignName( Abc_NtkDupObj(pNtkFrames, pNode, 0), Abc_ObjName(pNode), Buffer );
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
}
// transfer the implementation of the latch drivers to the latches
// transfer the implementation of the latch inputs to the latch outputs
Abc_NtkForEachLatch( pNtk, pLatch, i )
pLatch->pNext = Abc_ObjChild0Copy(pLatch);
pLatch->pCopy = Abc_ObjChild0Copy(Abc_ObjFanin0(pLatch));
Abc_NtkForEachLatch( pNtk, pLatch, i )
pLatch->pCopy = pLatch->pNext;
Abc_ObjFanout0(pLatch)->pCopy = pLatch->pCopy;
}
......@@ -797,6 +804,7 @@ void Abc_NtkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame )
***********************************************************************/
Abc_Ntk_t * Abc_NtkFrames2( Abc_Ntk_t * pNtk, int nFrames, int fInitial, AddFrameMapping addFrameMapping, void* arg )
{
/*
char Buffer[1000];
ProgressBar * pProgress;
Abc_Ntk_t * pNtkFrames;
......@@ -825,7 +833,7 @@ Abc_Ntk_t * Abc_NtkFrames2( Abc_Ntk_t * pNtk, int nFrames, int fInitial, AddFram
if ( Abc_LatchIsInitDc(pLatch) ) // don't-care initial value - create a new PI
{
pLatch->pCopy = Abc_NtkCreatePi(pNtkFrames);
Abc_NtkLogicStoreName( pLatch->pCopy, Abc_ObjName(pLatch) );
Abc_ObjAssignName( pLatch->pCopy, Abc_ObjName(pLatch), NULL );
Counter++;
}
else {
......@@ -854,9 +862,9 @@ Abc_Ntk_t * Abc_NtkFrames2( Abc_Ntk_t * pNtk, int nFrames, int fInitial, AddFram
{
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pLatchNew = Abc_NtkLatch(pNtkFrames, i);
pLatchNew = Abc_NtkBox(pNtkFrames, i);
Abc_ObjAddFanin( pLatchNew, pLatch->pCopy );
Abc_NtkLogicStoreName( pLatchNew, Abc_ObjName(pLatch) );
Abc_ObjAssignName( pLatchNew, Abc_ObjName(pLatch), NULL );
}
}
Abc_NtkForEachLatch( pNtk, pLatch, i )
......@@ -876,6 +884,8 @@ Abc_Ntk_t * Abc_NtkFrames2( Abc_Ntk_t * pNtk, int nFrames, int fInitial, AddFram
return NULL;
}
return pNtkFrames;
*/
return NULL;
}
/**Function*************************************************************
......@@ -894,6 +904,7 @@ Abc_Ntk_t * Abc_NtkFrames2( Abc_Ntk_t * pNtk, int nFrames, int fInitial, AddFram
***********************************************************************/
void Abc_NtkAddFrame2( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vNodes, AddFrameMapping addFrameMapping, void* arg )
{
/*
char Buffer[10];
Abc_Obj_t * pNode, * pNodeNew, * pLatch;
Abc_Obj_t * pConst1, * pConst1New;
......@@ -907,7 +918,7 @@ void Abc_NtkAddFrame2( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec
Abc_NtkForEachPi( pNtk, pNode, i )
{
pNodeNew = Abc_NtkDupObj( pNtkFrames, pNode );
Abc_NtkLogicStoreNamePlus( pNodeNew, Abc_ObjName(pNode), Buffer );
Abc_ObjAssignName( pNodeNew, Abc_ObjName(pNode), Buffer );
if (addFrameMapping) addFrameMapping(pNodeNew, pNode, iFrame, arg);
}
// add the internal nodes
......@@ -925,7 +936,7 @@ void Abc_NtkAddFrame2( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec
{
pNodeNew = Abc_NtkDupObj( pNtkFrames, pNode );
Abc_ObjAddFanin( pNodeNew, Abc_ObjChild0Copy(pNode) );
Abc_NtkLogicStoreNamePlus( pNodeNew, Abc_ObjName(pNode), Buffer );
Abc_ObjAssignName( pNodeNew, Abc_ObjName(pNode), Buffer );
if (addFrameMapping) addFrameMapping(pNodeNew, pNode, iFrame, arg);
}
// transfer the implementation of the latch drivers to the latches
......@@ -953,6 +964,7 @@ void Abc_NtkAddFrame2( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec
addFrameMapping(pLatch->pCopy, pLatch, iFrame+1, arg);
}
}
*/
}
......@@ -993,12 +1005,12 @@ int Abc_NtkDemiter( Abc_Ntk_t * pNtk )
// add the PO corresponding to control input
pPoNew = Abc_NtkCreatePo( pNtk );
Abc_ObjAddFanin( pPoNew, pNodeC );
Abc_NtkLogicStoreName( pPoNew, "addOut1" );
Abc_ObjAssignName( pPoNew, "addOut1", NULL );
// add the PO corresponding to other input
pPoNew = Abc_NtkCreatePo( pNtk );
Abc_ObjAddFanin( pPoNew, pNodeB );
Abc_NtkLogicStoreName( pPoNew, "addOut2" );
Abc_ObjAssignName( pPoNew, "addOut2", NULL );
// mark the nodes in the first cone
pNodeB = Abc_ObjRegular(pNodeB);
......@@ -1047,7 +1059,7 @@ int Abc_NtkOrPos( Abc_Ntk_t * pNtk )
// create the new PO
pNode = Abc_NtkCreatePo( pNtk );
Abc_ObjAddFanin( pNode, pMiter );
Abc_NtkLogicStoreName( pNode, "miter" );
Abc_ObjAssignName( pNode, "miter", NULL );
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtk ) )
{
......
......@@ -84,7 +84,7 @@ Abc_Ntk_t * Abc_NtkDeriveFromBdd( DdManager * dd, DdNode * bFunc, char * pNamePo
Cudd_bddIthVar( pNtk->pManFunc, Vec_PtrSize(vNamesPi) );
// add the PIs corresponding to the names
Vec_PtrForEachEntry( vNamesPi, pName, i )
Abc_NtkLogicStoreName( Abc_NtkCreatePi(pNtk), pName );
Abc_ObjAssignName( Abc_NtkCreatePi(pNtk), pName, NULL );
// create the node
pNode = Abc_NtkCreateNode( pNtk );
pNode->pData = Cudd_bddTransfer( dd, pNtk->pManFunc, bFunc ); Cudd_Ref(pNode->pData);
......@@ -93,7 +93,7 @@ Abc_Ntk_t * Abc_NtkDeriveFromBdd( DdManager * dd, DdNode * bFunc, char * pNamePo
// create the only PO
pNodePo = Abc_NtkCreatePo( pNtk );
Abc_ObjAddFanin( pNodePo, pNode );
Abc_NtkLogicStoreName( pNodePo, pNamePo );
Abc_ObjAssignName( pNodePo, pNamePo, NULL );
// make the network minimum base
Abc_NtkMinimumBase( pNtk );
if ( vNamesPiFake )
......@@ -246,7 +246,7 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
{
ProgressBar * pProgress;
Vec_Ptr_t * vFuncsGlob;
Abc_Obj_t * pNode, * pFanin;
Abc_Obj_t * pObj, * pFanin;
DdNode * bFunc;
DdManager * dd;
int i, k, Counter;
......@@ -264,17 +264,17 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
// clean storage for local BDDs
Abc_NtkCleanCopy( pNtk );
// set the elementary variables
Abc_NtkForEachCi( pNtk, pNode, i )
if ( Abc_ObjFanoutNum(pNode) > 0 )
Abc_NtkForEachCi( pNtk, pObj, i )
if ( Abc_ObjFanoutNum(pObj) > 0 )
{
pNode->pCopy = (Abc_Obj_t *)dd->vars[i];
pObj->pCopy = (Abc_Obj_t *)dd->vars[i];
Cudd_Ref( dd->vars[i] );
}
// assign the constant node BDD
pNode = Abc_AigConst1(pNtk);
if ( Abc_ObjFanoutNum(pNode) > 0 )
pObj = Abc_AigConst1(pNtk);
if ( Abc_ObjFanoutNum(pObj) > 0 )
{
pNode->pCopy = (Abc_Obj_t *)dd->one;
pObj->pCopy = (Abc_Obj_t *)dd->one;
Cudd_Ref( dd->one );
}
......@@ -285,9 +285,9 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
{
// construct the BDDs
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkNodeNum(pNtk) );
Abc_NtkForEachLatch( pNtk, pNode, i )
Abc_NtkForEachLatchInput( pNtk, pObj, i )
{
bFunc = Abc_NodeGlobalBdds_rec( dd, Abc_ObjFanin0(pNode), nBddSizeMax, pProgress, &Counter, fVerbose );
bFunc = Abc_NodeGlobalBdds_rec( dd, Abc_ObjFanin0(pObj), nBddSizeMax, pProgress, &Counter, fVerbose );
if ( bFunc == NULL )
{
if ( fVerbose )
......@@ -296,7 +296,7 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
Cudd_Quit( dd );
return NULL;
}
bFunc = Cudd_NotCond( bFunc, Abc_ObjFaninC0(pNode) ); Cudd_Ref( bFunc );
bFunc = Cudd_NotCond( bFunc, Abc_ObjFaninC0(pObj) ); Cudd_Ref( bFunc );
Vec_PtrPush( vFuncsGlob, bFunc );
}
Extra_ProgressBarStop( pProgress );
......@@ -305,9 +305,9 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
{
// construct the BDDs
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkNodeNum(pNtk) );
Abc_NtkForEachCo( pNtk, pNode, i )
Abc_NtkForEachCo( pNtk, pObj, i )
{
bFunc = Abc_NodeGlobalBdds_rec( dd, Abc_ObjFanin0(pNode), nBddSizeMax, pProgress, &Counter, fVerbose );
bFunc = Abc_NodeGlobalBdds_rec( dd, Abc_ObjFanin0(pObj), nBddSizeMax, pProgress, &Counter, fVerbose );
if ( bFunc == NULL )
{
if ( fVerbose )
......@@ -316,33 +316,34 @@ DdManager * Abc_NtkGlobalBdds( Abc_Ntk_t * pNtk, int nBddSizeMax, int fLatchOnly
Cudd_Quit( dd );
return NULL;
}
bFunc = Cudd_NotCond( bFunc, Abc_ObjFaninC0(pNode) ); Cudd_Ref( bFunc );
bFunc = Cudd_NotCond( bFunc, Abc_ObjFaninC0(pObj) ); Cudd_Ref( bFunc );
Vec_PtrPush( vFuncsGlob, bFunc );
}
Extra_ProgressBarStop( pProgress );
}
/*
// derefence the intermediate BDDs
Abc_NtkForEachNode( pNtk, pNode, i )
if ( pNode->pCopy )
Abc_NtkForEachNode( pNtk, pObj, i )
if ( pObj->pCopy )
{
Cudd_RecursiveDeref( dd, (DdNode *)pNode->pCopy );
pNode->pCopy = NULL;
Cudd_RecursiveDeref( dd, (DdNode *)pObj->pCopy );
pObj->pCopy = NULL;
}
*/
/*
// make sure all nodes are derefed
Abc_NtkForEachObj( pNtk, pNode, i )
Abc_NtkForEachObj( pNtk, pObj, i )
{
if ( pNode->pCopy != NULL )
printf( "Abc_NtkGlobalBdds() error: Node %d has BDD assigned\n", pNode->Id );
if ( pNode->vFanouts.nSize > 0 )
printf( "Abc_NtkGlobalBdds() error: Node %d has refs assigned\n", pNode->Id );
if ( pObj->pCopy != NULL )
printf( "Abc_NtkGlobalBdds() error: Node %d has BDD assigned\n", pObj->Id );
if ( pObj->vFanouts.nSize > 0 )
printf( "Abc_NtkGlobalBdds() error: Node %d has refs assigned\n", pObj->Id );
}
*/
// reset references
Abc_NtkForEachObj( pNtk, pNode, i )
Abc_ObjForEachFanin( pNode, pFanin, k )
Abc_NtkForEachObj( pNtk, pObj, i )
if ( !Abc_ObjIsBox(pObj) && !Abc_ObjIsBi(pObj) )
Abc_ObjForEachFanin( pObj, pFanin, k )
pFanin->vFanouts.nSize++;
// reorder one more time
......
......@@ -70,7 +70,7 @@ void Abc_NtkImplementCiOrder( Abc_Ntk_t * pNtk, char * pFileName, int fReverse,
vSupp = Vec_PtrAlloc( Abc_NtkCiNum(pNtk) );
while ( fscanf( pFile, "%s", Buffer ) == 1 )
{
pObj = Abc_NtkFindTerm( pNtk, Buffer );
pObj = Abc_NtkFindCi( pNtk, Buffer );
if ( pObj == NULL || !Abc_ObjIsCi(pObj) )
{
printf( "Name \"%s\" is not a PI name. Cannot use this order.\n", Buffer );
......
......@@ -247,7 +247,7 @@ void Abc_NtkPrintLatch( FILE * pFile, Abc_Ntk_t * pNtk )
assert( Init < 4 );
InitNums[Init]++;
pFanin = Abc_ObjFanin0(pLatch);
pFanin = Abc_ObjFanin0(Abc_ObjFanin0(pLatch));
if ( !Abc_ObjIsNode(pFanin) || !Abc_NodeIsConst(pFanin) )
continue;
......
......@@ -147,9 +147,9 @@ int Abc_NtkResubstitute( Abc_Ntk_t * pNtk, int nCutMax, int nStepsMax, bool fUpd
if ( fUpdateLevel )
Abc_NtkStartReverseLevels( pNtk );
if ( Abc_NtkLatchNum(pNtk) )
Abc_NtkForEachLatch(pNtk, pNode, i)
pNode->pNext = pNode->pData;
// if ( Abc_NtkLatchNum(pNtk) )
// Abc_NtkForEachLatch(pNtk, pNode, i)
// pNode->pNext = pNode->pData;
// resynthesize each node once
nNodes = Abc_NtkObjNumMax(pNtk);
......@@ -221,9 +221,9 @@ pManRes->timeTotal = clock() - clkStart;
Abc_NtkForEachObj( pNtk, pNode, i )
pNode->pData = NULL;
if ( Abc_NtkLatchNum(pNtk) )
Abc_NtkForEachLatch(pNtk, pNode, i)
pNode->pData = pNode->pNext, pNode->pNext = NULL;
// if ( Abc_NtkLatchNum(pNtk) )
// Abc_NtkForEachLatch(pNtk, pNode, i)
// pNode->pData = pNode->pNext, pNode->pNext = NULL;
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
......
......@@ -106,8 +106,8 @@ int Abc_NtkRR( Abc_Ntk_t * pNtk, int nFaninLevels, int nFanoutLevels, int fUseFa
p->nNodesOld = Abc_NtkNodeNum(pNtk);
p->nLevelsOld = Abc_AigGetLevelNum(pNtk);
// remember latch values
Abc_NtkForEachLatch( pNtk, pNode, i )
pNode->pNext = pNode->pData;
// Abc_NtkForEachLatch( pNtk, pNode, i )
// pNode->pNext = pNode->pData;
// go through the nodes
Abc_NtkCleanCopy(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
......@@ -216,8 +216,8 @@ int Abc_NtkRR( Abc_Ntk_t * pNtk, int nFaninLevels, int nFanoutLevels, int fUseFa
Abc_RRManPrintStats( p );
Abc_RRManStop( p );
// restore latch values
Abc_NtkForEachLatch( pNtk, pNode, i )
pNode->pData = pNode->pNext, pNode->pNext = NULL;
// Abc_NtkForEachLatch( pNtk, pNode, i )
// pNode->pData = pNode->pNext, pNode->pNext = NULL;
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
Abc_NtkGetLevelNum( pNtk );
......
......@@ -327,7 +327,7 @@ Abc_Ntk_t * Abc_NtkTopmost( Abc_Ntk_t * pNtk, int nLevels )
pPoNew = Abc_NtkCreatePo(pNtkNew);
Abc_ObjAddFanin( pPoNew, pObjNew );
Abc_NtkAddDummyPiNames( pNtkNew );
Abc_NtkLogicStoreName( pPoNew, Abc_ObjName(Abc_NtkPo(pNtk, 0)) );
Abc_ObjAssignName( pPoNew, Abc_ObjName(Abc_NtkPo(pNtk, 0)), NULL );
// make sure everything is okay
if ( !Abc_NtkCheck( pNtkNew ) )
{
......
......@@ -59,11 +59,31 @@ bool Abc_NtkFraigSweep( Abc_Ntk_t * pNtk, int fUseInv, int fExdc, int fVerbose )
Abc_Ntk_t * pNtkAig;
Fraig_Man_t * pMan;
stmm_table * tEquiv;
Abc_Obj_t * pObj;
int i, fUseTrick;
assert( !Abc_NtkIsStrash(pNtk) );
// save gate assignments
fUseTrick = 0;
if ( Abc_NtkIsMappedLogic(pNtk) )
{
fUseTrick = 1;
Abc_NtkForEachNode( pNtk, pObj, i )
pObj->pNext = pObj->pData;
}
// derive the AIG
pNtkAig = Abc_NtkStrash( pNtk, 0, 1 );
// reconstruct gate assignments
if ( fUseTrick )
{
extern void * Abc_FrameReadLibGen();
Aig_ManStop( pNtk->pManFunc );
pNtk->pManFunc = Abc_FrameReadLibGen();
pNtk->ntkFunc = ABC_FUNC_MAP;
Abc_NtkForEachNode( pNtk, pObj, i )
pObj->pData = pObj->pNext, pObj->pNext = NULL;
}
// perform fraiging of the AIG
Fraig_ParamsSetDefault( &Params );
......@@ -176,8 +196,8 @@ stmm_table * Abc_NtkFraigEquiv( Abc_Ntk_t * pNtk, int fUseInv, bool fVerbose )
// skip the dangling nodes
if ( pNodeAig == NULL )
continue;
// skip the nodes that fanout into POs
if ( Abc_NodeHasUniqueCoFanout(pNode) )
// skip the nodes that fanout into COs
if ( Abc_NodeHasCoFanout(pNode) )
continue;
// get the FRAIG node
gNode = Fraig_NotCond( Abc_ObjRegular(pNodeAig)->pCopy, Abc_ObjIsComplement(pNodeAig) );
......
......@@ -254,9 +254,9 @@ void Abc_NtkTimeInitialize( Abc_Ntk_t * pNtk )
continue;
*pTime = pNtk->pManTime->tReqDef;
}
// set the 0 arrival times for latches and constant nodes
// set the 0 arrival times for latch outputs and constant nodes
ppTimes = (Abc_Time_t **)pNtk->pManTime->vArrs->pArray;
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkForEachLatchOutput( pNtk, pObj, i )
{
pTime = ppTimes[pObj->Id];
pTime->Fall = pTime->Rise = pTime->Worst = 0.0;
......
......@@ -278,6 +278,7 @@ DdNode * Abc_NtkComputeUnreachable( DdManager * dd, Abc_Ntk_t * pNtk, DdNode * b
***********************************************************************/
Abc_Ntk_t * Abc_NtkConstructExdc( DdManager * dd, Abc_Ntk_t * pNtk, DdNode * bUnreach )
{
/*
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pNode, * pNodeNew;
int * pPermute;
......@@ -290,7 +291,7 @@ Abc_Ntk_t * Abc_NtkConstructExdc( DdManager * dd, Abc_Ntk_t * pNtk, DdNode * bUn
// create PIs corresponding to LOs
Abc_NtkForEachLatch( pNtk, pNode, i )
Abc_NtkLogicStoreName( pNode->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pNode) );
Abc_ObjAssignName( pNode->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pNode), NULL );
// cannot ADD POs here because pLatch->pCopy point to the PIs
// create a new node
......@@ -313,9 +314,9 @@ Abc_Ntk_t * Abc_NtkConstructExdc( DdManager * dd, Abc_Ntk_t * pNtk, DdNode * bUn
// for each CO, create PO (skip POs equal to CIs because of name conflict)
Abc_NtkForEachPo( pNtk, pNode, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pNode)) )
Abc_NtkLogicStoreName( pNode->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pNode) );
Abc_ObjAssignName( pNode->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pNode), NULL );
Abc_NtkForEachLatch( pNtk, pNode, i )
Abc_NtkLogicStoreName( pNode->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix(pNode, "_in") );
Abc_ObjAssignName( pNode->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix(pNode, "_in"), NULL );
// link to the POs of the network
Abc_NtkForEachPo( pNtk, pNode, i )
......@@ -337,6 +338,8 @@ Abc_Ntk_t * Abc_NtkConstructExdc( DdManager * dd, Abc_Ntk_t * pNtk, DdNode * bUn
return NULL;
}
return pNtkNew;
*/
return NULL;
}
////////////////////////////////////////////////////////////////////////
......
/**CFile****************************************************************
FileName [abcVanEijk.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Implementation of van Eijk's method for finding
signal correspondence: C. A. J. van Eijk. "Sequential equivalence
checking based on structural similarities", IEEE Trans. CAD,
vol. 19(7), July 2000, pp. 814-819.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - October 2, 2005.]
Revision [$Id: abcVanEijk.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "fraig.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Vec_Ptr_t * Abc_NtkVanEijkClasses( Abc_Ntk_t * pNtk, int nFrames, int fVerbose );
static Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveBase( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames );
static Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveFirst( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame );
static int Abc_NtkVanEijkClassesRefine( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame, Vec_Ptr_t * vClasses );
static void Abc_NtkVanEijkClassesOrder( Vec_Ptr_t * vClasses );
static int Abc_NtkVanEijkClassesCountPairs( Vec_Ptr_t * vClasses );
static void Abc_NtkVanEijkClassesTest( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vClasses );
extern Abc_Ntk_t * Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames );
extern void Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames );
extern Fraig_Man_t * Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit );
static Abc_Ntk_t * Abc_NtkVanEijkDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vClasses );
////////////////////////////////////////////////////////////////////////
/// INLINED FUNCTIONS ///
////////////////////////////////////////////////////////////////////////
// sets the correspondence of the node in the frame
static inline void Abc_NodeVanEijkWriteCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame, Abc_Obj_t * pEntry )
{
Vec_PtrWriteEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id, pEntry );
}
// returns the correspondence of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanEijkReadCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame )
{
return Vec_PtrEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id );
}
// returns the hash value of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanEijkHash( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame )
{
return Abc_ObjRegular( Abc_NodeVanEijkReadCorresp(pNode, vCorresp, iFrame)->pCopy );
}
// returns the representative node of the class to which the node belongs
static inline Abc_Obj_t * Abc_NodeVanEijkRepr( Abc_Obj_t * pNode )
{
if ( pNode->pNext == NULL )
return NULL;
while ( pNode->pNext )
pNode = pNode->pNext;
return pNode;
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Derives classes of sequentially equivalent nodes.]
Description [Performs sequential sweep by combining the equivalent
nodes. Adds EXDC network to the current network to record the subset
of unreachable states computed by identifying the equivalent nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijk( Abc_Ntk_t * pNtk, int nFrames, int fExdc, int fVerbose )
{
Fraig_Params_t Params;
Abc_Ntk_t * pNtkSingle;
Vec_Ptr_t * vClasses;
Abc_Ntk_t * pNtkNew;
assert( Abc_NtkIsStrash(pNtk) );
// FRAIG the network to get rid of combinational equivalences
Fraig_ParamsSetDefaultFull( &Params );
pNtkSingle = Abc_NtkFraig( pNtk, &Params, 0, 0 );
Abc_AigSetNodePhases( pNtkSingle );
Abc_NtkCleanNext(pNtkSingle);
// get the equivalence classes
vClasses = Abc_NtkVanEijkClasses( pNtkSingle, nFrames, fVerbose );
if ( Vec_PtrSize(vClasses) > 0 )
{
// transform the network by merging nodes in the equivalence classes
pNtkNew = Abc_NtkVanEijkFrames( pNtkSingle, NULL, 1, 0, 1 );
// pNtkNew = Abc_NtkDup( pNtkSingle );
// derive the EXDC network if asked
if ( fExdc )
pNtkNew->pExdc = Abc_NtkVanEijkDeriveExdc( pNtkSingle, vClasses );
}
else
pNtkNew = Abc_NtkDup( pNtkSingle );
Abc_NtkVanEijkClassesTest( pNtkSingle, vClasses );
Vec_PtrFree( vClasses );
Abc_NtkDelete( pNtkSingle );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Derives the classes of sequentially equivalent nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClasses( Abc_Ntk_t * pNtkSingle, int nFrames, int fVerbose )
{
Fraig_Man_t * pFraig;
Abc_Ntk_t * pNtkMulti;
Vec_Ptr_t * vCorresp, * vClasses;
int nIter, RetValue;
int nAddFrames = 0;
if ( fVerbose )
printf( "The number of ANDs after FRAIGing = %d.\n", Abc_NtkNodeNum(pNtkSingle) );
// get the AIG of the base case
vCorresp = Vec_PtrAlloc( 100 );
pNtkMulti = Abc_NtkVanEijkFrames( pNtkSingle, vCorresp, nFrames + nAddFrames, 0, 0 );
if ( fVerbose )
printf( "The number of ANDs in %d timeframes = %d.\n", nFrames + nAddFrames, Abc_NtkNodeNum(pNtkMulti) );
// FRAIG the initialized frames (labels the nodes of pNtkMulti with FRAIG nodes to be used as hash keys)
pFraig = Abc_NtkVanEijkFraig( pNtkMulti, 1 );
Fraig_ManFree( pFraig );
// find initial equivalence classes
vClasses = Abc_NtkVanEijkClassesDeriveBase( pNtkSingle, vCorresp, nFrames + nAddFrames );
if ( fVerbose )
printf( "The number of classes in the base case = %5d. Pairs = %8d.\n", Vec_PtrSize(vClasses), Abc_NtkVanEijkClassesCountPairs(vClasses) );
Abc_NtkDelete( pNtkMulti );
// refine the classes using iterative FRAIGing
for ( nIter = 1; Vec_PtrSize(vClasses) > 0; nIter++ )
{
// derive the network with equivalence classes
Abc_NtkVanEijkClassesOrder( vClasses );
pNtkMulti = Abc_NtkVanEijkFrames( pNtkSingle, vCorresp, nFrames, 1, 0 );
// simulate with classes (TO DO)
// FRAIG the unitialized frames (labels the nodes of pNtkMulti with FRAIG nodes to be used as hash keys)
pFraig = Abc_NtkVanEijkFraig( pNtkMulti, 0 );
Fraig_ManFree( pFraig );
// refine the classes
RetValue = Abc_NtkVanEijkClassesRefine( pNtkSingle, vCorresp, nFrames, vClasses );
Abc_NtkDelete( pNtkMulti );
if ( fVerbose )
printf( "The number of classes after %2d iterations = %5d. Pairs = %8d.\n", nIter, Vec_PtrSize(vClasses), Abc_NtkVanEijkClassesCountPairs(vClasses) );
// quit if there is no change
if ( RetValue == 0 )
break;
}
Vec_PtrFree( vCorresp );
if ( fVerbose )
{
Abc_Obj_t * pObj, * pClass;
int i, Counter;
printf( "The classes are: " );
Vec_PtrForEachEntry( vClasses, pClass, i )
{
Counter = 0;
for ( pObj = pClass; pObj; pObj = pObj->pNext )
Counter++;
printf( " %d", Counter );
/*
printf( " = {" );
for ( pObj = pClass; pObj; pObj = pObj->pNext )
printf( " %d", pObj->Id );
printf( " } " );
*/
}
printf( "\n" );
}
return vClasses;
}
/**Function*************************************************************
Synopsis [Computes the equivalence classes of nodes using the base case.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveBase( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vCorresp, int nFrames )
{
Vec_Ptr_t * vClasses;
int i, RetValue;
// derive the classes for the last frame
vClasses = Abc_NtkVanEijkClassesDeriveFirst( pNtkSingle, vCorresp, nFrames - 1 );
// refine the classes using other timeframes
for ( i = 0; i < nFrames - 1; i++ )
{
if ( Vec_PtrSize(vClasses) == 0 )
break;
RetValue = Abc_NtkVanEijkClassesRefine( pNtkSingle, vCorresp, i, vClasses );
// if ( RetValue )
// printf( " yes%s", (i==nFrames-2 ? "\n":"") );
// else
// printf( " no%s", (i==nFrames-2 ? "\n":"") );
}
return vClasses;
}
/**Function*************************************************************
Synopsis [Computes the equivalence classes of nodes.]
Description [Original network (pNtk) is mapped into the unfolded frames
using given array of nodes (vCorresp). Each node in the unfolded frames
is mapped into a FRAIG node (pNode->pCopy). This procedure uses next
pointers (pNode->pNext) to combine the nodes into equivalence classes.
Each class is represented by its representative node with the minimum level.
Only the last frame is considered.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkClassesDeriveFirst( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame )
{
Abc_Obj_t * pNode, * pKey, ** ppSlot;
stmm_table * tTable;
stmm_generator * gen;
Vec_Ptr_t * vClasses;
int i;
// start the table hashing FRAIG nodes into classes of original network nodes
tTable = stmm_init_table( st_ptrcmp, st_ptrhash );
// create the table
Abc_NtkCleanNext( pNtk );
Abc_NtkForEachObj( pNtk, pNode, i )
{
if ( Abc_ObjIsPo(pNode) )
continue;
pKey = Abc_NodeVanEijkHash( pNode, vCorresp, iFrame );
if ( !stmm_find_or_add( tTable, (char *)pKey, (char ***)&ppSlot ) )
*ppSlot = NULL;
pNode->pNext = *ppSlot;
*ppSlot = pNode;
}
// collect only non-trivial classes
vClasses = Vec_PtrAlloc( 100 );
stmm_foreach_item( tTable, gen, (char **)&pKey, (char **)&pNode )
if ( pNode->pNext )
Vec_PtrPush( vClasses, pNode );
stmm_free_table( tTable );
return vClasses;
}
/**Function*************************************************************
Synopsis [Refines the classes using one frame.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkVanEijkClassesRefine( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int iFrame, Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pHeadSame, ** ppTailSame;
Abc_Obj_t * pHeadDiff, ** ppTailDiff;
Abc_Obj_t * pNode, * pClass, * pKey;
int i, k, fChange = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
{
// assert( pClass->pNext );
pKey = Abc_NodeVanEijkHash( pClass, vCorresp, iFrame );
for ( pNode = pClass->pNext; pNode; pNode = pNode->pNext )
if ( Abc_NodeVanEijkHash(pNode, vCorresp, iFrame) != pKey )
break;
if ( pNode == NULL )
continue;
fChange = 1;
// create two classes
pHeadSame = NULL; ppTailSame = &pHeadSame;
pHeadDiff = NULL; ppTailDiff = &pHeadDiff;
for ( pNode = pClass; pNode; pNode = pNode->pNext )
if ( Abc_NodeVanEijkHash(pNode, vCorresp, iFrame) != pKey )
*ppTailDiff = pNode, ppTailDiff = &pNode->pNext;
else
*ppTailSame = pNode, ppTailSame = &pNode->pNext;
*ppTailSame = NULL;
*ppTailDiff = NULL;
assert( pHeadSame && pHeadDiff );
// put the updated class back
Vec_PtrWriteEntry( vClasses, i, pHeadSame );
// append the new class to be processed later
Vec_PtrPush( vClasses, pHeadDiff );
}
// remove trivial classes
k = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
if ( pClass->pNext )
Vec_PtrWriteEntry( vClasses, k++, pClass );
Vec_PtrShrink( vClasses, k );
return fChange;
}
/**Function*************************************************************
Synopsis [Orders nodes in the equivalence classes.]
Description [Finds a min-level representative of each class and puts it last.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkClassesOrder( Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pNode, * pPrev, * pNodeMin, * pPrevMin;
int i;
// go through the classes
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
pPrevMin = NULL;
pNodeMin = pClass;
for ( pPrev = pClass, pNode = pClass->pNext; pNode; pPrev = pNode, pNode = pNode->pNext )
if ( pNodeMin->Level >= pNode->Level )
{
pPrevMin = pPrev;
pNodeMin = pNode;
}
if ( pNodeMin->pNext == NULL ) // already last
continue;
// update the class
if ( pNodeMin == pClass )
Vec_PtrWriteEntry( vClasses, i, pNodeMin->pNext );
else
pPrevMin->pNext = pNodeMin->pNext;
// attach the min node
assert( pPrev->pNext == NULL );
pPrev->pNext = pNodeMin;
pNodeMin->pNext = NULL;
}
Vec_PtrForEachEntry( vClasses, pClass, i )
assert( pClass->pNext );
}
/**Function*************************************************************
Synopsis [Counts pairs of equivalent nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkVanEijkClassesCountPairs( Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pNode;
int i, nPairs = 0;
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
for ( pNode = pClass->pNext; pNode; pNode = pNode->pNext )
nPairs++;
}
return nPairs;
}
/**Function*************************************************************
Synopsis [Sanity check for the class representation.]
Description [Checks that pNode->pNext is only used in the classes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkClassesTest( Abc_Ntk_t * pNtkSingle, Vec_Ptr_t * vClasses )
{
Abc_Obj_t * pClass, * pObj;
int i;
Abc_NtkCleanCopy( pNtkSingle );
Vec_PtrForEachEntry( vClasses, pClass, i )
for ( pObj = pClass; pObj; pObj = pObj->pNext )
if ( pObj->pNext )
pObj->pCopy = (Abc_Obj_t *)1;
Abc_NtkForEachObj( pNtkSingle, pObj, i )
assert( (pObj->pCopy != NULL) == (pObj->pNext != NULL) );
Abc_NtkCleanCopy( pNtkSingle );
}
/**Function*************************************************************
Synopsis [Performs DFS for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkDfs_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
Abc_Obj_t * pRepr;
// skip CI and const
if ( Abc_ObjFaninNum(pNode) < 2 )
return;
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
// mark the node as visited
Abc_NodeSetTravIdCurrent( pNode );
assert( Abc_ObjIsNode( pNode ) );
// check if the node belongs to the class
if ( pRepr = Abc_NodeVanEijkRepr(pNode) )
Abc_NtkVanEijkDfs_rec( pRepr, vNodes );
else
{
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin0(pNode), vNodes );
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin1(pNode), vNodes );
}
// add the node after the fanins have been added
Vec_PtrPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Finds DFS ordering of nodes using equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanEijkDfs( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pObj;
int i;
vNodes = Vec_PtrAlloc( 100 );
Abc_NtkIncrementTravId( pNtk );
Abc_NtkForEachCo( pNtk, pObj, i )
Abc_NtkVanEijkDfs_rec( Abc_ObjFanin0(pObj), vNodes );
return vNodes;
}
/**Function*************************************************************
Synopsis [Derives the timeframes of the network.]
Description [Returns mapping of the orig nodes into the frame nodes (vCorresp).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames )
{
char Buffer[100];
Abc_Ntk_t * pNtkFrames;
Abc_Obj_t * pLatch, * pLatchNew;
Vec_Ptr_t * vOrder;
int i;
assert( nFrames > 0 );
assert( Abc_NtkIsStrash(pNtk) );
assert( Abc_NtkIsDfsOrdered(pNtk) );
// clean the array of connections
if ( vCorresp )
Vec_PtrFill( vCorresp, (nFrames + fAddLast)*Abc_NtkObjNumMax(pNtk), NULL );
// start the new network
pNtkFrames = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
if ( fShortNames )
{
pNtkFrames->pName = Extra_UtilStrsav(pNtk->pName);
pNtkFrames->pSpec = Extra_UtilStrsav(pNtk->pSpec);
}
else
{
sprintf( Buffer, "%s_%d_frames", pNtk->pName, nFrames + fAddLast );
pNtkFrames->pName = Extra_UtilStrsav(Buffer);
}
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkFrames);
// create new latches and remember them in the new latches
Abc_NtkForEachLatch( pNtk, pLatch, i )
Abc_NtkDupObj( pNtkFrames, pLatch );
// collect nodes in such a way each class representative goes first
vOrder = Abc_NtkVanEijkDfs( pNtk );
// create the timeframes
for ( i = 0; i < nFrames; i++ )
Abc_NtkVanEijkAddFrame( pNtkFrames, pNtk, i, vCorresp, vOrder, fShortNames );
Vec_PtrFree( vOrder );
// add one more timeframe without class info
if ( fAddLast )
Abc_NtkVanEijkAddFrame( pNtkFrames, pNtk, nFrames, vCorresp, NULL, fShortNames );
// connect the new latches to the outputs of the last frame
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pLatchNew = Abc_NtkLatch(pNtkFrames, i);
Abc_ObjAddFanin( pLatchNew, pLatch->pCopy );
Abc_NtkLogicStoreName( pLatchNew, Abc_ObjName(pLatch) );
pLatch->pNext = NULL;
}
// remove dangling nodes
// Abc_AigCleanup( pNtkFrames->pManFunc );
// otherwise some external nodes may have dandling pointers
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtkFrames ) )
printf( "Abc_NtkVanEijkFrames: The network check has failed.\n" );
return pNtkFrames;
}
/**Function*************************************************************
Synopsis [Adds one time frame to the new network.]
Description [If the ordering of nodes is given, uses it. Otherwise,
uses the DSF order of the nodes in the network.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames )
{
char Buffer[10];
Abc_Obj_t * pNode, * pLatch, * pRepr;
Vec_Ptr_t * vTemp;
int i;
// create the prefix to be added to the node names
sprintf( Buffer, "_%02d", iFrame );
// add the new PI nodes
Abc_NtkForEachPi( pNtk, pNode, i )
{
pNode->pCopy = Abc_NtkCreatePi(pNtkFrames);
if ( fShortNames )
Abc_NtkLogicStoreName( pNode->pCopy, Abc_ObjName(pNode) );
else
Abc_NtkLogicStoreNamePlus( pNode->pCopy, Abc_ObjName(pNode), Buffer );
}
// remember the CI mapping
if ( vCorresp )
{
pNode = Abc_AigConst1(pNtk);
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
Abc_NtkForEachCi( pNtk, pNode, i )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
// go through the nodes in the given order or in the natural order
if ( vOrder )
{
// add the internal nodes
Vec_PtrForEachEntry( vOrder, pNode, i )
{
if ( pRepr = Abc_NodeVanEijkRepr(pNode) )
pNode->pCopy = Abc_ObjNotCond( pRepr->pCopy, pNode->fPhase ^ pRepr->fPhase );
else
pNode->pCopy = Abc_AigAnd( pNtkFrames->pManFunc, Abc_ObjChild0Copy(pNode), Abc_ObjChild1Copy(pNode) );
assert( Abc_ObjRegular(pNode->pCopy) != NULL );
if ( vCorresp )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
}
else
{
// add the internal nodes
Abc_AigForEachAnd( pNtk, pNode, i )
{
pNode->pCopy = Abc_AigAnd( pNtkFrames->pManFunc, Abc_ObjChild0Copy(pNode), Abc_ObjChild1Copy(pNode) );
assert( Abc_ObjRegular(pNode->pCopy) != NULL );
if ( vCorresp )
Abc_NodeVanEijkWriteCorresp( pNode, vCorresp, iFrame, Abc_ObjRegular(pNode->pCopy) );
}
}
// add the new POs
Abc_NtkForEachPo( pNtk, pNode, i )
{
pNode->pCopy = Abc_NtkCreatePo(pNtkFrames);
Abc_ObjAddFanin( pNode->pCopy, Abc_ObjChild0Copy(pNode) );
if ( fShortNames )
Abc_NtkLogicStoreName( pNode->pCopy, Abc_ObjName(pNode) );
else
Abc_NtkLogicStoreNamePlus( pNode->pCopy, Abc_ObjName(pNode), Buffer );
}
// transfer the implementation of the latch drivers to the latches
vTemp = Vec_PtrAlloc( 100 );
Abc_NtkForEachLatch( pNtk, pLatch, i )
Vec_PtrPush( vTemp, Abc_ObjChild0Copy(pLatch) );
Abc_NtkForEachLatch( pNtk, pLatch, i )
pLatch->pCopy = Vec_PtrEntry( vTemp, i );
Vec_PtrFree( vTemp );
Abc_AigForEachAnd( pNtk, pNode, i )
pNode->pCopy = NULL;
}
/**Function*************************************************************
Synopsis [Fraigs the network with or without initialization.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fraig_Man_t * Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit )
{
Fraig_Man_t * pMan;
Fraig_Params_t Params;
ProgressBar * pProgress;
Abc_Obj_t * pNode;
int i;
assert( Abc_NtkIsStrash(pMulti) );
// create the FRAIG manager
Fraig_ParamsSetDefaultFull( &Params );
pMan = Fraig_ManCreate( &Params );
// clean the copy fields in the old network
Abc_NtkCleanCopy( pMulti );
// map the constant nodes
Abc_AigConst1(pMulti)->pCopy = (Abc_Obj_t *)Fraig_ManReadConst1(pMan);
if ( fInit )
{
// map the PI nodes
Abc_NtkForEachPi( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_ManReadIthVar(pMan, i);
// map the latches
Abc_NtkForEachLatch( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_NotCond( Fraig_ManReadConst1(pMan), !Abc_LatchIsInit1(pNode) );
}
else
{
// map the CI nodes
Abc_NtkForEachCi( pMulti, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Fraig_ManReadIthVar(pMan, i);
}
// perform fraiging
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pMulti) );
Abc_AigForEachAnd( pMulti, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
pNode->pCopy = (Abc_Obj_t *)Fraig_NodeAnd( pMan,
Fraig_NotCond( Abc_ObjFanin0(pNode)->pCopy, Abc_ObjFaninC0(pNode) ),
Fraig_NotCond( Abc_ObjFanin1(pNode)->pCopy, Abc_ObjFaninC1(pNode) ) );
}
Extra_ProgressBarStop( pProgress );
return pMan;
}
/**Function*************************************************************
Synopsis [Create EXDC from the equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanEijkDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vClasses )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pClass, * pNode, * pRepr, * pObj;//, *pObjNew;
Abc_Obj_t * pMiter, * pTotal;
Vec_Ptr_t * vCone;
int i, k;
assert( Abc_NtkIsStrash(pNtk) );
// start the network
pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc, 1 );
pNtkNew->pName = Extra_UtilStrsav("exdc");
pNtkNew->pSpec = NULL;
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// for each CI, create PI
Abc_NtkForEachCi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pObj) );
// cannot add latches here because pLatch->pCopy pointers are used
// create the cones for each pair of nodes in an equivalence class
pTotal = Abc_ObjNot( Abc_AigConst1(pNtkNew) );
Vec_PtrForEachEntry( vClasses, pClass, i )
{
assert( pClass->pNext );
// get the cone for the representative node
pRepr = Abc_NodeVanEijkRepr( pClass );
if ( Abc_ObjFaninNum(pRepr) == 2 )
{
vCone = Abc_NtkDfsNodes( pNtk, &pRepr, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pRepr );
}
// go through the node pairs (representative is last in the list)
for ( pNode = pClass; pNode != pRepr; pNode = pNode->pNext )
{
// get the cone for the node
assert( Abc_ObjFaninNum(pNode) == 2 );
vCone = Abc_NtkDfsNodes( pNtk, &pNode, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pNode );
// complement if there is phase difference
pNode->pCopy = Abc_ObjNotCond( pNode->pCopy, pNode->fPhase ^ pRepr->fPhase );
// add the miter
pMiter = Abc_AigXor( pNtkNew->pManFunc, pRepr->pCopy, pNode->pCopy );
}
// add the miter to the final
pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pMiter );
}
/*
// create the only PO
pObjNew = Abc_NtkCreatePo( pNtkNew );
// add the PO name
Abc_NtkLogicStoreName( pObjNew, "DC" );
// add the PO
Abc_ObjAddFanin( pObjNew, pTotal );
// quontify the PIs existentially
pNtkNew = Abc_NtkMiterQuantifyPis( pNtkNew );
// get the new PO
pObjNew = Abc_NtkPo( pNtkNew, 0 );
// remember the miter output
pTotal = Abc_ObjChild0( pObjNew );
// remove the PO
Abc_NtkDeleteObj( pObjNew );
// make the old network point to the new things
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = Abc_NtkPi( pNtkNew, i );
*/
// for each CO, create PO (skip POs equal to CIs because of name conflict)
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pObj) );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix( pObj, "_in") );
// link to the POs of the network
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
// remove the extra nodes
Abc_AigCleanup( pNtkNew->pManFunc );
// check the result
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkVanEijkDeriveExdc: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
/**CFile****************************************************************
FileName [abcVanImp.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Implementation of van Eijk's method for implications.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - October 2, 2005.]
Revision [$Id: abcVanImp.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "fraig.h"
#include "sim.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Van_Man_t_ Van_Man_t;
struct Van_Man_t_
{
// single frame representation
Abc_Ntk_t * pNtkSingle; // single frame
Vec_Int_t * vCounters; // the counters of 1s in the simulation info
Vec_Ptr_t * vZeros; // the set of constant 0 candidates
Vec_Int_t * vImps; // the set of all implications
Vec_Int_t * vImpsMis; // the minimum independent set of implications
// multiple frame representation
Abc_Ntk_t * pNtkMulti; // multiple frame
Vec_Ptr_t * vCorresp; // the correspondence between single frame and multiple frames
// parameters
int nFrames; // the number of timeframes
int nWords; // the number of simulation words
int nIdMax; // the maximum ID in the single frame
int fVerbose; // the verbosiness flag
// statistics
int nPairsAll;
int nImpsAll;
int nEquals;
int nZeros;
// runtime
int timeAll;
int timeSim;
int timeAdd;
int timeCheck;
int timeInfo;
int timeMis;
};
static void Abc_NtkVanImpCompute( Van_Man_t * p );
static Vec_Ptr_t * Abc_NtkVanImpSortByOnes( Van_Man_t * p );
static void Abc_NtkVanImpComputeAll( Van_Man_t * p );
static Vec_Int_t * Abc_NtkVanImpComputeMis( Van_Man_t * p );
static void Abc_NtkVanImpManFree( Van_Man_t * p );
static void Abc_NtkVanImpFilter( Van_Man_t * p, Fraig_Man_t * pFraig, Vec_Ptr_t * vZeros, Vec_Int_t * vImps );
static int Abc_NtkVanImpCountEqual( Van_Man_t * p );
static Abc_Ntk_t * Abc_NtkVanImpDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vZeros, Vec_Int_t * vImps );
extern Abc_Ntk_t * Abc_NtkVanEijkFrames( Abc_Ntk_t * pNtk, Vec_Ptr_t * vCorresp, int nFrames, int fAddLast, int fShortNames );
extern void Abc_NtkVanEijkAddFrame( Abc_Ntk_t * pNtkFrames, Abc_Ntk_t * pNtk, int iFrame, Vec_Ptr_t * vCorresp, Vec_Ptr_t * vOrder, int fShortNames );
extern Fraig_Man_t * Abc_NtkVanEijkFraig( Abc_Ntk_t * pMulti, int fInit );
////////////////////////////////////////////////////////////////////////
/// INLINED FUNCTIONS ///
////////////////////////////////////////////////////////////////////////
// returns the correspondence of the node in the frame
static inline Abc_Obj_t * Abc_NodeVanImpReadCorresp( Abc_Obj_t * pNode, Vec_Ptr_t * vCorresp, int iFrame )
{
return Vec_PtrEntry( vCorresp, iFrame * Abc_NtkObjNumMax(pNode->pNtk) + pNode->Id );
}
// returns the left node of the implication
static inline Abc_Obj_t * Abc_NodeVanGetLeft( Abc_Ntk_t * pNtk, unsigned Imp )
{
return Abc_NtkObj( pNtk, Imp >> 16 );
}
// returns the right node of the implication
static inline Abc_Obj_t * Abc_NodeVanGetRight( Abc_Ntk_t * pNtk, unsigned Imp )
{
return Abc_NtkObj( pNtk, Imp & 0xFFFF );
}
// returns the implication
static inline unsigned Abc_NodeVanGetImp( Abc_Obj_t * pLeft, Abc_Obj_t * pRight )
{
return (pLeft->Id << 16) | pRight->Id;
}
// returns the right node of the implication
static inline void Abc_NodeVanPrintImp( unsigned Imp )
{
printf( "%d -> %d ", Imp >> 16, Imp & 0xFFFF );
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Derives implications that hold sequentially.]
Description [Adds EXDC network to the current network to record the
set of computed sequentially equivalence implications, representing
a subset of unreachable states.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanImp( Abc_Ntk_t * pNtk, int nFrames, int fExdc, int fVerbose )
{
Fraig_Params_t Params;
Abc_Ntk_t * pNtkNew;
Van_Man_t * p;
assert( Abc_NtkIsStrash(pNtk) );
// start the manager
p = ALLOC( Van_Man_t, 1 );
memset( p, 0, sizeof(Van_Man_t) );
p->nFrames = nFrames;
p->fVerbose = fVerbose;
p->vCorresp = Vec_PtrAlloc( 100 );
// FRAIG the network to get rid of combinational equivalences
Fraig_ParamsSetDefaultFull( &Params );
p->pNtkSingle = Abc_NtkFraig( pNtk, &Params, 0, 0 );
p->nIdMax = Abc_NtkObjNumMax( p->pNtkSingle );
Abc_AigSetNodePhases( p->pNtkSingle );
Abc_NtkCleanNext( p->pNtkSingle );
// if ( fVerbose )
// printf( "The number of ANDs in 1 timeframe = %d.\n", Abc_NtkNodeNum(p->pNtkSingle) );
// derive multiple time-frames and node correspondence (to be used in the inductive case)
p->pNtkMulti = Abc_NtkVanEijkFrames( p->pNtkSingle, p->vCorresp, nFrames, 1, 0 );
// if ( fVerbose )
// printf( "The number of ANDs in %d timeframes = %d.\n", nFrames + 1, Abc_NtkNodeNum(p->pNtkMulti) );
// get the implications
Abc_NtkVanImpCompute( p );
// create the new network with EXDC correspondingn to the computed implications
if ( fExdc && (Vec_PtrSize(p->vZeros) > 0 || Vec_IntSize(p->vImpsMis) > 0) )
{
if ( p->pNtkSingle->pExdc )
{
printf( "The old EXDC network is thrown away.\n" );
Abc_NtkDelete( p->pNtkSingle->pExdc );
p->pNtkSingle->pExdc = NULL;
}
pNtkNew = Abc_NtkDup( p->pNtkSingle );
pNtkNew->pExdc = Abc_NtkVanImpDeriveExdc( p->pNtkSingle, p->vZeros, p->vImpsMis );
}
else
pNtkNew = Abc_NtkDup( p->pNtkSingle );
// free stuff
Abc_NtkVanImpManFree( p );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Frees the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanImpManFree( Van_Man_t * p )
{
Abc_NtkDelete( p->pNtkMulti );
Abc_NtkDelete( p->pNtkSingle );
Vec_PtrFree( p->vCorresp );
Vec_PtrFree( p->vZeros );
Vec_IntFree( p->vCounters );
Vec_IntFree( p->vImpsMis );
Vec_IntFree( p->vImps );
free( p );
}
/**Function*************************************************************
Synopsis [Derives the minimum independent set of sequential implications.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanImpCompute( Van_Man_t * p )
{
Fraig_Man_t * pFraig;
Vec_Ptr_t * vZeros;
Vec_Int_t * vImps, * vImpsTemp;
int nIters, clk;
// compute all implications and count 1s in the simulation info
clk = clock();
Abc_NtkVanImpComputeAll( p );
p->timeAll += clock() - clk;
// compute the MIS
clk = clock();
p->vImpsMis = Abc_NtkVanImpComputeMis( p );
p->timeMis += clock() - clk;
if ( p->fVerbose )
{
printf( "Pairs = %8d. Imps = %8d. Seq = %7d. MIS = %7d. Equ = %5d. Const = %5d.\n",
p->nPairsAll, p->nImpsAll, Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), p->nEquals, p->nZeros );
PRT( "Visiting all nodes pairs while preparing for the inductive case", p->timeAll );
printf( "Start : Seq = %7d. MIS = %7d. Const = %5d.\n", Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(p->vZeros) );
}
// iterate to perform the iterative filtering of implications
for ( nIters = 1; Vec_PtrSize(p->vZeros) > 0 || Vec_IntSize(p->vImps) > 0; nIters++ )
{
// FRAIG the ununitialized frames
pFraig = Abc_NtkVanEijkFraig( p->pNtkMulti, 0 );
// assuming that zeros and imps hold in the first k-1 frames
// check if they hold in the k-th frame
vZeros = Vec_PtrAlloc( 100 );
vImps = Vec_IntAlloc( 100 );
Abc_NtkVanImpFilter( p, pFraig, vZeros, vImps );
Fraig_ManFree( pFraig );
clk = clock();
vImpsTemp = p->vImps;
p->vImps = vImps;
Vec_IntFree( p->vImpsMis );
p->vImpsMis = Abc_NtkVanImpComputeMis( p );
p->vImps = vImpsTemp;
p->timeMis += clock() - clk;
// report the results
if ( p->fVerbose )
printf( "Iter = %2d: Seq = %7d. MIS = %7d. Const = %5d.\n", nIters, Vec_IntSize(vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(vZeros) );
// if the fixed point is reaches, quit the loop
if ( Vec_PtrSize(vZeros) == Vec_PtrSize(p->vZeros) && Vec_IntSize(vImps) == Vec_IntSize(p->vImps) )
{ // no change
Vec_PtrFree(vZeros);
Vec_IntFree(vImps);
break;
}
// update the sets
Vec_PtrFree( p->vZeros ); p->vZeros = vZeros;
Vec_IntFree( p->vImps ); p->vImps = vImps;
}
// compute the MIS
clk = clock();
Vec_IntFree( p->vImpsMis );
p->vImpsMis = Abc_NtkVanImpComputeMis( p );
// p->vImpsMis = Vec_IntDup( p->vImps );
p->timeMis += clock() - clk;
if ( p->fVerbose )
printf( "Final : Seq = %7d. MIS = %7d. Const = %5d.\n", Vec_IntSize(p->vImps), Vec_IntSize(p->vImpsMis), Vec_PtrSize(p->vZeros) );
/*
if ( p->fVerbose )
{
PRT( "All ", p->timeAll );
PRT( "Sim ", p->timeSim );
PRT( "Add ", p->timeAdd );
PRT( "Check ", p->timeCheck );
PRT( "Mis ", p->timeMis );
}
*/
/*
// print the implications in the MIS
if ( p->fVerbose )
{
Abc_Obj_t * pNode, * pNode1, * pNode2;
unsigned Imp;
int i;
if ( Vec_PtrSize(p->vZeros) )
{
printf( "The const nodes are: " );
Vec_PtrForEachEntry( p->vZeros, pNode, i )
printf( "%d(%d) ", pNode->Id, pNode->fPhase );
printf( "\n" );
}
if ( Vec_IntSize(p->vImpsMis) )
{
printf( "The implications are: " );
Vec_IntForEachEntry( p->vImpsMis, Imp, i )
{
pNode1 = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
pNode2 = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
printf( "%d(%d)=>%d(%d) ", pNode1->Id, pNode1->fPhase, pNode2->Id, pNode2->fPhase );
}
printf( "\n" );
}
}
*/
}
/**Function*************************************************************
Synopsis [Filters zeros and implications by performing one inductive step.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanImpFilter( Van_Man_t * p, Fraig_Man_t * pFraig, Vec_Ptr_t * vZeros, Vec_Int_t * vImps )
{
ProgressBar * pProgress;
Abc_Obj_t * pNode, * pNodeM1, * pNodeM2, * pNode1, * pNode2, * pObj;
Fraig_Node_t * pFNode1, * pFNode2;
Fraig_Node_t * ppFNodes[2];
unsigned Imp;
int i, f, k, clk;
clk = clock();
for ( f = 0; f < p->nFrames; f++ )
{
// add new clauses for zeros
Vec_PtrForEachEntry( p->vZeros, pNode, i )
{
pNodeM1 = Abc_NodeVanImpReadCorresp( pNode, p->vCorresp, f );
pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
pFNode1 = Fraig_NotCond( pFNode1, !pNode->fPhase );
Fraig_ManAddClause( pFraig, &pFNode1, 1 );
}
// add new clauses for imps
Vec_IntForEachEntry( p->vImps, Imp, i )
{
pNode1 = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
pNode2 = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
pNodeM1 = Abc_NodeVanImpReadCorresp( pNode1, p->vCorresp, f );
pNodeM2 = Abc_NodeVanImpReadCorresp( pNode2, p->vCorresp, f );
pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
pFNode2 = Fraig_NotCond( Abc_ObjRegular(pNodeM2)->pCopy, Abc_ObjIsComplement(pNodeM2) );
ppFNodes[0] = Fraig_NotCond( pFNode1, !pNode1->fPhase );
ppFNodes[1] = Fraig_NotCond( pFNode2, pNode2->fPhase );
// assert( Fraig_Regular(ppFNodes[0]) != Fraig_Regular(ppFNodes[1]) );
Fraig_ManAddClause( pFraig, ppFNodes, 2 );
}
}
p->timeAdd += clock() - clk;
// check the zero nodes
clk = clock();
Vec_PtrClear( vZeros );
Vec_PtrForEachEntry( p->vZeros, pNode, i )
{
pNodeM1 = Abc_NodeVanImpReadCorresp( pNode, p->vCorresp, p->nFrames );
pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
pFNode1 = Fraig_Regular(pFNode1);
pFNode2 = Fraig_ManReadConst1(pFraig);
if ( pFNode1 == pFNode2 || Fraig_NodeIsEquivalent( pFraig, pFNode1, pFNode2, -1, 100 ) )
Vec_PtrPush( vZeros, pNode );
else
{
// since we disproved this zero, we should add all possible implications to p->vImps
// these implications will be checked below and only correct ones will remain
Abc_NtkForEachObj( p->pNtkSingle, pObj, k )
{
if ( Abc_ObjIsPo(pObj) )
continue;
if ( Vec_IntEntry( p->vCounters, pObj->Id ) > 0 )
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode, pObj) );
}
}
}
// check implications
pProgress = Extra_ProgressBarStart( stdout, p->vImps->nSize );
Vec_IntClear( vImps );
Vec_IntForEachEntry( p->vImps, Imp, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
pNode1 = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
pNode2 = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
pNodeM1 = Abc_NodeVanImpReadCorresp( pNode1, p->vCorresp, p->nFrames );
pNodeM2 = Abc_NodeVanImpReadCorresp( pNode2, p->vCorresp, p->nFrames );
pFNode1 = Fraig_NotCond( Abc_ObjRegular(pNodeM1)->pCopy, Abc_ObjIsComplement(pNodeM1) );
pFNode2 = Fraig_NotCond( Abc_ObjRegular(pNodeM2)->pCopy, Abc_ObjIsComplement(pNodeM2) );
pFNode1 = Fraig_NotCond( pFNode1, !pNode1->fPhase );
pFNode2 = Fraig_NotCond( pFNode2, pNode2->fPhase );
if ( pFNode1 == Fraig_Not(pFNode2) )
{
Vec_IntPush( vImps, Imp );
continue;
}
if ( pFNode1 == pFNode2 )
{
if ( pFNode1 == Fraig_Not( Fraig_ManReadConst1(pFraig) ) )
continue;
if ( pFNode1 == Fraig_ManReadConst1(pFraig) )
{
Vec_IntPush( vImps, Imp );
continue;
}
pFNode1 = Fraig_Regular(pFNode1);
pFNode2 = Fraig_ManReadConst1(pFraig);
if ( Fraig_NodeIsEquivalent( pFraig, pFNode1, pFNode2, -1, 100 ) )
Vec_IntPush( vImps, Imp );
continue;
}
if ( Fraig_ManCheckClauseUsingSat( pFraig, pFNode1, pFNode2, -1 ) )
Vec_IntPush( vImps, Imp );
}
Extra_ProgressBarStop( pProgress );
p->timeCheck += clock() - clk;
}
/**Function*************************************************************
Synopsis [Computes all implications.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanImpComputeAll( Van_Man_t * p )
{
ProgressBar * pProgress;
Fraig_Man_t * pManSingle;
Vec_Ptr_t * vInfo;
Abc_Obj_t * pObj, * pNode1, * pNode2, * pConst1;
Fraig_Node_t * pFNode1, * pFNode2;
unsigned * pPats1, * pPats2;
int nFrames, nUnsigned, RetValue;
int clk, i, k, Count1, Count2;
// decide how many frames to simulate
nFrames = 32;
nUnsigned = 32;
p->nWords = nFrames * nUnsigned;
// simulate randomly the initialized frames
clk = clock();
vInfo = Sim_SimulateSeqRandom( p->pNtkSingle, nFrames, nUnsigned );
// complement the info for those nodes whose phase is 1
Abc_NtkForEachObj( p->pNtkSingle, pObj, i )
if ( pObj->fPhase )
Sim_UtilSetCompl( Sim_SimInfoGet(vInfo, pObj), p->nWords );
// compute the number of ones for each node
p->vCounters = Sim_UtilCountOnesArray( vInfo, p->nWords );
p->timeSim += clock() - clk;
// FRAIG the uninitialized frame
pManSingle = Abc_NtkVanEijkFraig( p->pNtkSingle, 0 );
// now pNode->pCopy are assigned the pointers to the corresponding FRAIG nodes
/*
Abc_NtkForEachPi( p->pNtkSingle, pNode1, i )
printf( "PI = %d\n", pNode1->Id );
Abc_NtkForEachLatch( p->pNtkSingle, pNode1, i )
printf( "Latch = %d\n", pNode1->Id );
Abc_NtkForEachPo( p->pNtkSingle, pNode1, i )
printf( "PO = %d\n", pNode1->Id );
*/
// go through the pairs of signals in the frames
pProgress = Extra_ProgressBarStart( stdout, p->nIdMax );
pConst1 = Abc_AigConst1(p->pNtkSingle);
p->vImps = Vec_IntAlloc( 100 );
p->vZeros = Vec_PtrAlloc( 100 );
Abc_NtkForEachObj( p->pNtkSingle, pNode1, i )
{
if ( Abc_ObjIsPo(pNode1) )
continue;
if ( pNode1 == pConst1 )
continue;
Extra_ProgressBarUpdate( pProgress, i, NULL );
// get the number of zeros of this node
Count1 = Vec_IntEntry( p->vCounters, pNode1->Id );
if ( Count1 == 0 )
{
Vec_PtrPush( p->vZeros, pNode1 );
p->nZeros++;
continue;
}
pPats1 = Sim_SimInfoGet(vInfo, pNode1);
Abc_NtkForEachObj( p->pNtkSingle, pNode2, k )
{
if ( k >= i )
break;
if ( Abc_ObjIsPo(pNode2) )
continue;
if ( pNode2 == pConst1 )
continue;
p->nPairsAll++;
// here we have a pair of nodes (pNode1 and pNode2)
// such that Id(pNode1) < Id(pNode2)
assert( pNode2->Id < pNode1->Id );
// get the number of zeros of this node
Count2 = Vec_IntEntry( p->vCounters, pNode2->Id );
if ( Count2 == 0 )
continue;
pPats2 = Sim_SimInfoGet(vInfo, pNode2);
// check for implications
if ( Count1 < Count2 )
{
//clk = clock();
RetValue = Sim_UtilInfoIsImp( pPats1, pPats2, p->nWords );
//p->timeInfo += clock() - clk;
if ( !RetValue )
continue;
p->nImpsAll++;
// pPats1 => pPats2 or pPats1' v pPats2
pFNode1 = Fraig_NotCond( pNode1->pCopy, !pNode1->fPhase );
pFNode2 = Fraig_NotCond( pNode2->pCopy, pNode2->fPhase );
// check if this implication is combinational
if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, pFNode2 ) )
continue;
// otherwise record it
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode1, pNode2) );
}
else if ( Count2 < Count1 )
{
//clk = clock();
RetValue = Sim_UtilInfoIsImp( pPats2, pPats1, p->nWords );
//p->timeInfo += clock() - clk;
if ( !RetValue )
continue;
p->nImpsAll++;
// pPats2 => pPats2 or pPats2' v pPats1
pFNode2 = Fraig_NotCond( pNode2->pCopy, !pNode2->fPhase );
pFNode1 = Fraig_NotCond( pNode1->pCopy, pNode1->fPhase );
// check if this implication is combinational
if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, pFNode2 ) )
continue;
// otherwise record it
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
}
else
{
//clk = clock();
RetValue = Sim_UtilInfoIsEqual(pPats1, pPats2, p->nWords);
//p->timeInfo += clock() - clk;
if ( !RetValue )
continue;
p->nEquals++;
// get the FRAIG nodes
pFNode1 = Fraig_NotCond( pNode1->pCopy, pNode1->fPhase );
pFNode2 = Fraig_NotCond( pNode2->pCopy, pNode2->fPhase );
// check if this implication is combinational
if ( Fraig_ManCheckClauseUsingSimInfo( pManSingle, Fraig_Not(pFNode1), pFNode2 ) )
{
if ( !Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, Fraig_Not(pFNode2) ) )
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
else
assert( 0 ); // impossible for FRAIG
}
else
{
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode1, pNode2) );
if ( !Fraig_ManCheckClauseUsingSimInfo( pManSingle, pFNode1, Fraig_Not(pFNode2) ) )
Vec_IntPush( p->vImps, Abc_NodeVanGetImp(pNode2, pNode1) );
}
}
// printf( "Implication %d %d -> %d %d \n", pNode1->Id, pNode1->fPhase, pNode2->Id, pNode2->fPhase );
}
}
Fraig_ManFree( pManSingle );
Sim_UtilInfoFree( vInfo );
Extra_ProgressBarStop( pProgress );
}
/**Function*************************************************************
Synopsis [Sorts the nodes.]
Description [Sorts the nodes appearing in the left-hand sides of the
implications by the number of 1s in their simulation info.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkVanImpSortByOnes( Van_Man_t * p )
{
Abc_Obj_t * pNode, * pList;
Vec_Ptr_t * vSorted;
unsigned Imp;
int i, nOnes;
// start the sorted array
vSorted = Vec_PtrStart( p->nWords * 32 );
// go through the implications
Abc_NtkIncrementTravId( p->pNtkSingle );
Vec_IntForEachEntry( p->vImps, Imp, i )
{
pNode = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
assert( !Abc_ObjIsPo(pNode) );
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pNode ) )
continue;
// mark the node as visited
Abc_NodeSetTravIdCurrent( pNode );
// add the node to the list
nOnes = Vec_IntEntry( p->vCounters, pNode->Id );
pList = Vec_PtrEntry( vSorted, nOnes );
pNode->pNext = pList;
Vec_PtrWriteEntry( vSorted, nOnes, pNode );
}
return vSorted;
}
/**Function*************************************************************
Synopsis [Computes the array of beginnings.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_NtkVanImpComputeBegs( Van_Man_t * p )
{
Vec_Int_t * vBegins;
unsigned Imp;
int i, ItemLast, ItemCur;
// sort the implications (by the number of the left-hand-side node)
Vec_IntSort( p->vImps, 0 );
// start the array of beginnings
vBegins = Vec_IntStart( p->nIdMax + 1 );
// mark the begining of each node's implications
ItemLast = 0;
Vec_IntForEachEntry( p->vImps, Imp, i )
{
ItemCur = (Imp >> 16);
if ( ItemCur == ItemLast )
continue;
Vec_IntWriteEntry( vBegins, ItemCur, i );
ItemLast = ItemCur;
}
// fill in the empty spaces
ItemLast = Vec_IntSize(p->vImps);
Vec_IntWriteEntry( vBegins, p->nIdMax, ItemLast );
Vec_IntForEachEntryReverse( vBegins, ItemCur, i )
{
if ( ItemCur == 0 )
Vec_IntWriteEntry( vBegins, i, ItemLast );
else
ItemLast = ItemCur;
}
Imp = Vec_IntEntry( p->vImps, 0 );
ItemCur = (Imp >> 16);
for ( i = 0; i <= ItemCur; i++ )
Vec_IntWriteEntry( vBegins, i, 0 );
return vBegins;
}
/**Function*************************************************************
Synopsis [Derives the minimum subset of implications.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkVanImpMark_rec( Abc_Obj_t * pNode, Vec_Vec_t * vImpsMis )
{
Vec_Int_t * vNexts;
int i, Next;
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
// mark the node as visited
Abc_NodeSetTravIdCurrent( pNode );
// mark the children
vNexts = Vec_VecEntry( vImpsMis, pNode->Id );
Vec_IntForEachEntry( vNexts, Next, i )
Abc_NtkVanImpMark_rec( Abc_NtkObj(pNode->pNtk, Next), vImpsMis );
}
/**Function*************************************************************
Synopsis [Derives the minimum subset of implications.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_NtkVanImpComputeMis( Van_Man_t * p )
{
Abc_Obj_t * pNode, * pNext, * pList;
Vec_Vec_t * vMatrix;
Vec_Ptr_t * vSorted;
Vec_Int_t * vBegins;
Vec_Int_t * vImpsMis;
int i, k, iStart, iStop;
void * pEntry;
unsigned Imp;
if ( Vec_IntSize(p->vImps) == 0 )
return Vec_IntAlloc(0);
// compute the sorted list of nodes by the number of 1s
Abc_NtkCleanNext( p->pNtkSingle );
vSorted = Abc_NtkVanImpSortByOnes( p );
// compute the array of beginnings
vBegins = Abc_NtkVanImpComputeBegs( p );
/*
Vec_IntForEachEntry( p->vImps, Imp, i )
{
printf( "%d: ", i );
Abc_NodeVanPrintImp( Imp );
}
printf( "\n\n" );
Vec_IntForEachEntry( vBegins, Imp, i )
printf( "%d=%d ", i, Imp );
printf( "\n\n" );
*/
// compute the MIS by considering nodes in the reverse order of ones
vMatrix = Vec_VecStart( p->nIdMax );
Vec_PtrForEachEntryReverse( vSorted, pList, i )
{
for ( pNode = pList; pNode; pNode = pNode->pNext )
{
// get the starting and stopping implication of this node
iStart = Vec_IntEntry( vBegins, pNode->Id );
iStop = Vec_IntEntry( vBegins, pNode->Id + 1 );
if ( iStart == iStop )
continue;
assert( iStart < iStop );
// go through all the implications of this node
Abc_NtkIncrementTravId( p->pNtkSingle );
Abc_NodeIsTravIdCurrent( pNode );
Vec_IntForEachEntryStartStop( p->vImps, Imp, k, iStart, iStop )
{
assert( pNode == Abc_NodeVanGetLeft(p->pNtkSingle, Imp) );
pNext = Abc_NodeVanGetRight(p->pNtkSingle, Imp);
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pNext ) )
continue;
assert( pNode->Id != pNext->Id );
// add implication
Vec_VecPush( vMatrix, pNode->Id, (void *)pNext->Id );
// recursively mark dependent nodes
Abc_NtkVanImpMark_rec( pNext, vMatrix );
}
}
}
Vec_IntFree( vBegins );
Vec_PtrFree( vSorted );
// transfer the MIS into the normal array
vImpsMis = Vec_IntAlloc( 100 );
Vec_VecForEachEntry( vMatrix, pEntry, i, k )
{
assert( (i << 16) != ((int)pEntry) );
Vec_IntPush( vImpsMis, (i << 16) | ((int)pEntry) );
}
Vec_VecFree( vMatrix );
return vImpsMis;
}
/**Function*************************************************************
Synopsis [Count equal pairs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkVanImpCountEqual( Van_Man_t * p )
{
Abc_Obj_t * pNode1, * pNode2, * pNode3;
Vec_Int_t * vBegins;
int iStart, iStop;
unsigned Imp, ImpR;
int i, k, Counter;
// compute the array of beginnings
vBegins = Abc_NtkVanImpComputeBegs( p );
// go through each node and out
Counter = 0;
Vec_IntForEachEntry( p->vImps, Imp, i )
{
pNode1 = Abc_NodeVanGetLeft( p->pNtkSingle, Imp );
pNode2 = Abc_NodeVanGetRight( p->pNtkSingle, Imp );
if ( pNode1->Id > pNode2->Id )
continue;
iStart = Vec_IntEntry( vBegins, pNode2->Id );
iStop = Vec_IntEntry( vBegins, pNode2->Id + 1 );
Vec_IntForEachEntryStartStop( p->vImps, ImpR, k, iStart, iStop )
{
assert( pNode2 == Abc_NodeVanGetLeft(p->pNtkSingle, ImpR) );
pNode3 = Abc_NodeVanGetRight(p->pNtkSingle, ImpR);
if ( pNode1 == pNode3 )
{
Counter++;
break;
}
}
}
Vec_IntFree( vBegins );
return Counter;
}
/**Function*************************************************************
Synopsis [Create EXDC from the equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkVanImpDeriveExdc( Abc_Ntk_t * pNtk, Vec_Ptr_t * vZeros, Vec_Int_t * vImps )
{
Abc_Ntk_t * pNtkNew;
Vec_Ptr_t * vCone;
Abc_Obj_t * pObj, * pMiter, * pTotal, * pNode, * pNode1, * pNode2;//, * pObjNew;
unsigned Imp;
int i, k;
assert( Abc_NtkIsStrash(pNtk) );
// start the network
pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc, 1 );
pNtkNew->pName = Extra_UtilStrsav( "exdc" );
pNtkNew->pSpec = NULL;
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// for each CI, create PI
Abc_NtkForEachCi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePi(pNtkNew), Abc_ObjName(pObj) );
// cannot add latches here because pLatch->pCopy pointers are used
// build logic cone for zero nodes
pTotal = Abc_ObjNot( Abc_AigConst1(pNtkNew) );
Vec_PtrForEachEntry( vZeros, pNode, i )
{
// build the logic cone for the node
if ( Abc_ObjFaninNum(pNode) == 2 )
{
vCone = Abc_NtkDfsNodes( pNtk, &pNode, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pNode );
}
// complement if there is phase difference
pNode->pCopy = Abc_ObjNotCond( pNode->pCopy, pNode->fPhase );
// add it to the EXDC
pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pNode->pCopy );
}
// create logic cones for the implications
Vec_IntForEachEntry( vImps, Imp, i )
{
pNode1 = Abc_NtkObj(pNtk, Imp >> 16);
pNode2 = Abc_NtkObj(pNtk, Imp & 0xFFFF);
// build the logic cone for the first node
if ( Abc_ObjFaninNum(pNode1) == 2 )
{
vCone = Abc_NtkDfsNodes( pNtk, &pNode1, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pNode1 );
}
// complement if there is phase difference
pNode1->pCopy = Abc_ObjNotCond( pNode1->pCopy, pNode1->fPhase );
// build the logic cone for the second node
if ( Abc_ObjFaninNum(pNode2) == 2 )
{
vCone = Abc_NtkDfsNodes( pNtk, &pNode2, 1 );
Vec_PtrForEachEntry( vCone, pObj, k )
pObj->pCopy = Abc_AigAnd( pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
Vec_PtrFree( vCone );
assert( pObj == pNode2 );
}
// complement if there is phase difference
pNode2->pCopy = Abc_ObjNotCond( pNode2->pCopy, pNode2->fPhase );
// build the implication and add it to the EXDC
pMiter = Abc_AigAnd( pNtkNew->pManFunc, pNode1->pCopy, Abc_ObjNot(pNode2->pCopy) );
pTotal = Abc_AigOr( pNtkNew->pManFunc, pTotal, pMiter );
}
/*
// create the only PO
pObjNew = Abc_NtkCreatePo( pNtkNew );
// add the PO name
Abc_NtkLogicStoreName( pObjNew, "DC" );
// add the PO
Abc_ObjAddFanin( pObjNew, pTotal );
// quontify the PIs existentially
pNtkNew = Abc_NtkMiterQuantifyPis( pNtkNew );
// get the new PO
pObjNew = Abc_NtkPo( pNtkNew, 0 );
// remember the miter output
pTotal = Abc_ObjChild0( pObjNew );
// remove the PO
Abc_NtkDeleteObj( pObjNew );
// make the old network point to the new things
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = Abc_NtkPi( pNtkNew, i );
*/
// for each CO, create PO (skip POs equal to CIs because of name conflict)
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjName(pObj) );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy = Abc_NtkCreatePo(pNtkNew), Abc_ObjNameSuffix(pObj, "_in") );
// link to the POs of the network
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !Abc_ObjIsCi(Abc_ObjFanin0(pObj)) )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
Abc_NtkForEachLatch( pNtk, pObj, i )
Abc_ObjAddFanin( pObj->pCopy, pTotal );
// remove the extra nodes
Abc_AigCleanup( pNtkNew->pManFunc );
// check the result
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkVanImpDeriveExdc: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -544,7 +544,7 @@ void Abc_NtkGetSeqPoSupp( Abc_Ntk_t * pNtk, int iFrame, int iNumPo )
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = NULL;
Abc_NtkForEachLatch( pNtk, pObj, i )
if ( Abc_NtkLatch(pFrames, i)->pCopy )
if ( Abc_NtkBox(pFrames, i)->pCopy )
pObj->pCopy = (void *)1;
Abc_NtkForEachPi( pNtk, pObj, i )
for ( k = 0; k <= iFrame; k++ )
......
......@@ -33,6 +33,4 @@ SRC += src/base/abci/abc.c \
src/base/abci/abcTiming.c \
src/base/abci/abcUnate.c \
src/base/abci/abcUnreach.c \
src/base/abci/abcVanEijk.c \
src/base/abci/abcVanImp.c \
src/base/abci/abcVerify.c
......@@ -595,6 +595,9 @@ int IoCommandReadVerilog( Abc_Frame_t * pAbc, int argc, char ** argv )
int fCheck;
int c;
printf( "Stand-alone structural Verilog reader is now available as command \"read_ver\".\n" );
return 0;
fCheck = 1;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "ch" ) ) != EOF )
......@@ -629,7 +632,8 @@ int IoCommandReadVerilog( Abc_Frame_t * pAbc, int argc, char ** argv )
fclose( pFile );
// set the new network
pNtk = Io_ReadVerilog( FileName, fCheck );
// pNtk = Io_ReadVerilog( FileName, fCheck );
pNtk = NULL;
if ( pNtk == NULL )
{
fprintf( pAbc->Err, "Reading network from the verilog file has failed.\n" );
......
......@@ -49,7 +49,7 @@ Abc_Ntk_t * Io_Read( char * pFileName, int fCheck )
if ( Extra_FileNameCheckExtension( pFileName, "blif" ) )
pNtk = Io_ReadBlif( pFileName, fCheck );
else if ( Extra_FileNameCheckExtension( pFileName, "v" ) )
pNtk = Io_ReadVerilog( pFileName, fCheck );
pNtk = NULL; //Io_ReadVerilog( pFileName, fCheck );
else if ( Extra_FileNameCheckExtension( pFileName, "bench" ) )
pNtk = Io_ReadBench( pFileName, fCheck );
else if ( Extra_FileNameCheckExtension( pFileName, "edf" ) )
......
......@@ -85,21 +85,30 @@ Abc_Ntk_t * Io_ReadBaf( char * pFileName, int fCheck )
for ( i = 0; i < nInputs; i++ )
{
pObj = Abc_NtkCreatePi(pNtkNew);
Abc_NtkLogicStoreName( pObj, pCur ); while ( *pCur++ );
Abc_ObjAssignName( pObj, pCur, NULL ); while ( *pCur++ );
Vec_PtrPush( vNodes, pObj );
}
// create the POs
for ( i = 0; i < nOutputs; i++ )
{
pObj = Abc_NtkCreatePo(pNtkNew);
Abc_NtkLogicStoreName( pObj, pCur ); while ( *pCur++ );
Abc_ObjAssignName( pObj, pCur, NULL ); while ( *pCur++ );
}
// create the latches
for ( i = 0; i < nLatches; i++ )
{
pObj = Abc_NtkCreateLatch(pNtkNew);
Abc_NtkLogicStoreName( pObj, pCur ); while ( *pCur++ );
Vec_PtrPush( vNodes, pObj );
Abc_ObjAssignName( pObj, pCur, NULL ); while ( *pCur++ );
pNode0 = Abc_NtkCreateBo(pNtkNew);
Abc_ObjAssignName( pNode0, pCur, NULL ); while ( *pCur++ );
pNode1 = Abc_NtkCreateBi(pNtkNew);
Abc_ObjAssignName( pNode1, pCur, NULL ); while ( *pCur++ );
Vec_PtrPush( vNodes, pNode1 );
Abc_ObjAddFanin( pObj, pNode0 );
Abc_ObjAddFanin( pNode1, pObj );
}
// get the pointer to the beginning of the node array
......@@ -129,9 +138,9 @@ Abc_Ntk_t * Io_ReadBaf( char * pFileName, int fCheck )
Abc_NtkForEachCo( pNtkNew, pObj, i )
{
Num = pBufferNode[2*nAnds+i];
if ( Abc_ObjIsLatch(pObj) )
if ( Abc_ObjFanoutNum(pObj) > 0 && Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
{
Abc_ObjSetData( pObj, (void *)(Num & 3) );
Abc_ObjSetData( Abc_ObjFanout0(pObj), (void *)(Num & 3) );
Num >>= 2;
}
pNode0 = Abc_ObjNotCond( Vec_PtrEntry(vNodes, Num >> 1), Num & 1 );
......
......@@ -621,7 +621,7 @@ int Io_ReadBlifNetworkSubcircuit( Io_ReadBlif_t * p, Vec_Ptr_t * vTokens )
Vec_PtrPush( vNames, Extra_UtilStrsav(pName) ); // memory leak!!!
// create a new box and add it to the network
pBox = Abc_NtkCreateBox( p->pNtkCur );
pBox = Abc_NtkCreateBlackbox( p->pNtkCur );
// set the pointer to the node names
Abc_ObjSetData( pBox, vNames );
// remember the line of the file
......
......@@ -46,6 +46,9 @@ Abc_Ntk_t * Io_ReadEdif( char * pFileName, int fCheck )
Extra_FileReader_t * p;
Abc_Ntk_t * pNtk;
printf( "Currently this parser does not work!\n" );
return NULL;
// start the file
p = Extra_FileReaderAlloc( pFileName, "#", "\n\r", " \t()" );
if ( p == NULL )
......
......@@ -116,15 +116,23 @@ Abc_Obj_t * Io_ReadCreateAssert( Abc_Ntk_t * pNtk, char * pName )
***********************************************************************/
Abc_Obj_t * Io_ReadCreateLatch( Abc_Ntk_t * pNtk, char * pNetLI, char * pNetLO )
{
Abc_Obj_t * pLatch, * pNet;
// create a new latch and add it to the network
pLatch = Abc_NtkCreateLatch( pNtk );
Abc_Obj_t * pLatch, * pTerm, * pNet;
// get the LI net
pNet = Abc_NtkFindOrCreateNet( pNtk, pNetLI );
Abc_ObjAddFanin( pLatch, pNet );
// add the BO terminal
pTerm = Abc_NtkCreateBo( pNtk );
Abc_ObjAddFanin( pTerm, pNet );
// add the latch box
pLatch = Abc_NtkCreateLatch( pNtk );
Abc_ObjAddFanin( pLatch, pTerm );
// add the BI terminal
pTerm = Abc_NtkCreateBi( pNtk );
Abc_ObjAddFanin( pTerm, pLatch );
// get the LO net
pNet = Abc_NtkFindOrCreateNet( pNtk, pNetLO );
Abc_ObjAddFanin( pNet, pLatch );
Abc_ObjAddFanin( pNet, pTerm );
// set latch name
Abc_ObjAssignName( pLatch, pNetLO, "_latch" );
return pLatch;
}
......
......@@ -116,7 +116,11 @@ void Io_WriteBaf( Abc_Ntk_t * pNtk, char * pFileName )
fprintf( pFile, "%s%c", Abc_ObjName(pObj), 0 );
// write latches
Abc_NtkForEachLatch( pNtk, pObj, i )
{
fprintf( pFile, "%s%c", Abc_ObjName(pObj), 0 );
fprintf( pFile, "%s%c", Abc_ObjName(Abc_ObjFanin0(pObj)), 0 );
fprintf( pFile, "%s%c", Abc_ObjName(Abc_ObjFanout0(pObj)), 0 );
}
// set the node numbers to be used in the output file
Abc_NtkCleanCopy( pNtk );
......@@ -143,8 +147,8 @@ void Io_WriteBaf( Abc_Ntk_t * pNtk, char * pFileName )
{
Extra_ProgressBarUpdate( pProgress, nAnds, NULL );
pBufferNode[nAnds] = (((int)Abc_ObjFanin0(pObj)->pCopy) << 1) | Abc_ObjFaninC0(pObj);
if ( Abc_ObjIsLatch(pObj) )
pBufferNode[nAnds] = (pBufferNode[nAnds] << 2) | ((unsigned)Abc_ObjData(pObj) & 3);
if ( Abc_ObjFanoutNum(pObj) > 0 && Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
pBufferNode[nAnds] = (pBufferNode[nAnds] << 2) | ((unsigned)Abc_ObjData(Abc_ObjFanout0(pObj)) & 3);
nAnds++;
}
Extra_ProgressBarStop( pProgress );
......
......@@ -89,7 +89,7 @@ int Io_WriteBenchOne( FILE * pFile, Abc_Ntk_t * pNtk )
fprintf( pFile, "OUTPUT(%s)\n", Abc_ObjName(Abc_ObjFanin0(pNode)) );
Abc_NtkForEachLatch( pNtk, pNode, i )
fprintf( pFile, "%-11s = DFF(%s)\n",
Abc_ObjName(pNode), Abc_ObjName(Abc_ObjFanin0(pNode)) );
Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pNode))), Abc_ObjName(Abc_ObjFanin0(Abc_ObjFanin0(pNode))) );
// write internal nodes
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
......
......@@ -379,8 +379,8 @@ void Io_NtkWriteLatch( FILE * pFile, Abc_Obj_t * pLatch )
{
Abc_Obj_t * pNetLi, * pNetLo;
int Reset;
pNetLi = Abc_ObjFanin0( pLatch );
pNetLo = Abc_ObjFanout0( pLatch );
pNetLi = Abc_ObjFanin0( Abc_ObjFanin0(pLatch) );
pNetLo = Abc_ObjFanout0( Abc_ObjFanout0(pLatch) );
Reset = (int)Abc_ObjData( pLatch );
// write the latch line
fprintf( pFile, ".latch" );
......
......@@ -331,7 +331,7 @@ void Io_WriteVerilogWires( FILE * pFile, Abc_Ntk_t * pNtk, int Start )
}
Abc_NtkForEachLatch( pNtk, pTerm, i )
{
pNet = Abc_ObjFanin0(pTerm);
pNet = Abc_ObjFanin0(Abc_ObjFanin0(pTerm));
Counter++;
// get the line length after this name is written
AddedLength = strlen(Abc_ObjName(pNet)) + 2;
......@@ -377,7 +377,7 @@ void Io_WriteVerilogRegs( FILE * pFile, Abc_Ntk_t * pNtk, int Start )
NameCounter = 0;
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pNet = Abc_ObjFanout0(pLatch);
pNet = Abc_ObjFanout0(Abc_ObjFanout0(pLatch));
Counter++;
// get the line length after this name is written
AddedLength = strlen(Abc_ObjName(pNet)) + 2;
......@@ -412,14 +412,14 @@ void Io_WriteVerilogLatches( FILE * pFile, Abc_Ntk_t * pNtk )
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
// fprintf( pFile, " always@(posedge gclk) begin %s", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " always begin %s", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " = %s; end\n", Abc_ObjName(Abc_ObjFanin0(pLatch)) );
fprintf( pFile, " always begin %s", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
fprintf( pFile, " = %s; end\n", Abc_ObjName(Abc_ObjFanin0(Abc_ObjFanin0(pLatch))) );
if ( Abc_LatchInit(pLatch) == ABC_INIT_ZERO )
// fprintf( pFile, " initial begin %s = 1\'b0; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " initial begin %s = 0; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " initial begin %s = 0; end\n", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
else if ( Abc_LatchInit(pLatch) == ABC_INIT_ONE )
// fprintf( pFile, " initial begin %s = 1\'b1; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " initial begin %s = 1; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " initial begin %s = 1; end\n", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
}
}
......@@ -431,11 +431,11 @@ void Io_WriteVerilogLatches( FILE * pFile, Abc_Ntk_t * pNtk )
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
if ( Abc_LatchInit(pLatch) == ABC_INIT_ZERO )
fprintf( pFile, " initial begin %s <= 1\'b0; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " initial begin %s <= 1\'b0; end\n", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
else if ( Abc_LatchInit(pLatch) == ABC_INIT_ONE )
fprintf( pFile, " initial begin %s <= 1\'b1; end\n", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " always@(posedge gclk) begin %s", Abc_ObjName(Abc_ObjFanout0(pLatch)) );
fprintf( pFile, " <= %s; end\n", Abc_ObjName(Abc_ObjFanin0(pLatch)) );
fprintf( pFile, " initial begin %s <= 1\'b1; end\n", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
fprintf( pFile, " always@(posedge gclk) begin %s", Abc_ObjName(Abc_ObjFanout0(Abc_ObjFanout0(pLatch))) );
fprintf( pFile, " <= %s; end\n", Abc_ObjName(Abc_ObjFanin0(Abc_ObjFanin0(pLatch))) );
}
}
*/
......
......@@ -116,19 +116,19 @@ Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
{
Vec_PtrPush( pNtkNew->vPis, pObj->pCopy );
Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
Abc_NtkForEachPo( pNtk, pObj, i )
{
Vec_PtrPush( pNtkNew->vPos, pObj->pCopy );
Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
Abc_NtkForEachAssert( pNtk, pObj, i )
{
Vec_PtrPush( pNtkNew->vAsserts, pObj->pCopy );
Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
}
// relink the choice nodes
......@@ -268,7 +268,7 @@ Abc_Ntk_t * Abc_NtkSeqToLogicSop( Abc_Ntk_t * pNtk )
// duplicate the nodes
Abc_AigForEachAnd( pNtk, pObj, i )
{
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
}
// share and create the latches
......@@ -302,7 +302,7 @@ Abc_Ntk_t * Abc_NtkSeqToLogicSop( Abc_Ntk_t * pNtk )
Seq_NtkShareLatchesClean( pNtk );
// add the latches and their names
Abc_NtkAddDummyLatchNames( pNtkNew );
Abc_NtkAddDummyBoxNames( pNtkNew );
Abc_NtkOrderCisCos( pNtkNew );
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
......@@ -340,7 +340,7 @@ Abc_Ntk_t * Abc_NtkSeqToLogicSop_old( Abc_Ntk_t * pNtk )
if ( Abc_ObjFaninNum(pObj) == 0 )
continue;
// duplicate the node
Abc_NtkDupObj(pNtkNew, pObj);
Abc_NtkDupObj(pNtkNew, pObj, 0);
if ( Abc_ObjFaninNum(pObj) == 1 )
{
assert( !Abc_ObjFaninC0(pObj) );
......@@ -372,7 +372,7 @@ Abc_Ntk_t * Abc_NtkSeqToLogicSop_old( Abc_Ntk_t * pNtk )
// the complemented edges are subsumed by the node function
}
// add the latches and their names
Abc_NtkAddDummyLatchNames( pNtkNew );
Abc_NtkAddDummyBoxNames( pNtkNew );
Abc_NtkOrderCisCos( pNtkNew );
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
......
......@@ -126,7 +126,7 @@ Abc_Ntk_t * Seq_NtkFpgaDup( Abc_Ntk_t * pNtk )
// duplicate the nodes in the mapping
Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
// recursively construct the internals of each node
Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
......@@ -321,7 +321,7 @@ Abc_Ntk_t * Seq_NtkSeqFpgaMapped( Abc_Ntk_t * pNtk )
}
// add the latches and their names
Abc_NtkAddDummyLatchNames( pNtkMap );
Abc_NtkAddDummyBoxNames( pNtkMap );
Abc_NtkOrderCisCos( pNtkMap );
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkMap, 1 );
......
......@@ -412,7 +412,7 @@ Abc_Ntk_t * Seq_NtkSeqMapMapped( Abc_Ntk_t * pNtk )
}
// add the latches and their names
Abc_NtkAddDummyLatchNames( pNtkMap );
Abc_NtkAddDummyBoxNames( pNtkMap );
Abc_NtkOrderCisCos( pNtkMap );
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkMap, 1 );
......
......@@ -125,14 +125,14 @@ Abc_Ntk_t * Seq_NtkRetimeDerive( Abc_Ntk_t * pNtk, int fVerbose )
Abc_NtkCleanCopy( pNtk );
// clone the PIs/POs/latches
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
// copy the names
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj->pCopy, Abc_ObjName(pObj) );
Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
// create one AND for each logic node in the topological order
vMapAnds = Abc_NtkDfs( pNtk, 0 );
......@@ -354,7 +354,7 @@ Abc_Ntk_t * Seq_NtkRetimeReconstruct( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkSeq )
Abc_NtkForEachNode( pNtkOld, pObj, i )
{
if ( i == 0 ) continue;
Abc_NtkDupObj( pNtkNew, pObj );
Abc_NtkDupObj( pNtkNew, pObj, 0 );
pObj->pNext->pCopy = pObj->pCopy;
}
Abc_NtkForEachLatch( pNtkOld, pObj, i )
......@@ -407,7 +407,7 @@ Abc_Ntk_t * Seq_NtkRetimeReconstruct( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkSeq )
Seq_NtkShareLatchesClean( pNtkSeq );
// add the latches and their names
Abc_NtkAddDummyLatchNames( pNtkNew );
Abc_NtkAddDummyBoxNames( pNtkNew );
Abc_NtkOrderCisCos( pNtkNew );
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkNew, 1 );
......
......@@ -25,6 +25,27 @@
extern "C" {
#endif
/*
This manager is designed to store ID-to-name and name-to-ID mapping
for Boolean networks and And-Inverter Graphs.
In a netlist, net names are unique. In this case, there is a one-to-one
mapping between IDs and names.
In a logic network, which do not have nets, several objects may have
the same name. For example, a latch output and a primary output.
Another example, a primary input and an input to a black box.
In this case, for each ID on an object there is only one name,
but for each name may be several IDs of objects having this name.
The name manager maps ID-to-name uniquely but it allows one name to
be mapped into several IDs. When a query to find an ID of the object
by its name is submitted, it is possible to specify the object type,
which will help select one of several IDs. If the type is -1, and
there is more than one object with the given name, any object with
the given name is returned.
*/
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
......@@ -51,12 +72,11 @@ typedef struct Nm_Man_t_ Nm_Man_t;
extern Nm_Man_t * Nm_ManCreate( int nSize );
extern void Nm_ManFree( Nm_Man_t * p );
extern int Nm_ManNumEntries( Nm_Man_t * p );
extern char * Nm_ManStoreIdName( Nm_Man_t * p, int ObjId, char * pName, char * pSuffix );
extern char * Nm_ManStoreIdName( Nm_Man_t * p, int ObjId, int Type, char * pName, char * pSuffix );
extern void Nm_ManDeleteIdName( Nm_Man_t * p, int ObjId );
extern char * Nm_ManCreateUniqueName( Nm_Man_t * p, int ObjId );
extern char * Nm_ManFindNameById( Nm_Man_t * p, int ObjId );
extern int Nm_ManFindIdByName( Nm_Man_t * p, char * pName, int * pSecond );
extern void Nm_ManPrintTables( Nm_Man_t * p );
extern int Nm_ManFindIdByName( Nm_Man_t * p, char * pName, int Type );
extern Vec_Int_t * Nm_ManReturnNameIds( Nm_Man_t * p );
#ifdef __cplusplus
......
......@@ -46,7 +46,7 @@ Nm_Man_t * Nm_ManCreate( int nSize )
p = ALLOC( Nm_Man_t, 1 );
memset( p, 0, sizeof(Nm_Man_t) );
// set the parameters
p->nSizeFactor = 2; // determined how much larger the table should be compared to data in it
p->nSizeFactor = 2; // determined the limit on the grow of data before the table resizes
p->nGrowthFactor = 3; // determined how much the table grows after resizing
// allocate and clean the bins
p->nBins = Cudd_PrimeNm(nSize);
......@@ -106,29 +106,23 @@ int Nm_ManNumEntries( Nm_Man_t * p )
SeeAlso []
***********************************************************************/
char * Nm_ManStoreIdName( Nm_Man_t * p, int ObjId, char * pName, char * pSuffix )
char * Nm_ManStoreIdName( Nm_Man_t * p, int ObjId, int Type, char * pName, char * pSuffix )
{
Nm_Entry_t * pEntry, * pEntry2;
Nm_Entry_t * pEntry;
int RetValue, nEntrySize;
// check if the object with this ID is already stored
if ( pEntry = Nm_ManTableLookupId(p, ObjId) )
{
if ( strcmp(pEntry->Name, pName) == 0 )
printf( "Nm_ManStoreIdName(): Entry with the same ID and name already exists.\n" );
else
printf( "Nm_ManStoreIdName(): Entry with the same ID and different name already exists.\n" );
printf( "Nm_ManStoreIdName(): Entry with the same ID already exists.\n" );
return NULL;
}
if ( pSuffix == NULL && (pEntry = Nm_ManTableLookupName(p, pName, &pEntry2)) && pEntry2 )
{
printf( "Nm_ManStoreIdName(): Two entries with the same name already exist.\n" );
return NULL;
}
// create the entry
// create a new entry
nEntrySize = sizeof(Nm_Entry_t) + strlen(pName) + (pSuffix?strlen(pSuffix):0) + 1;
nEntrySize = (nEntrySize / 4 + ((nEntrySize % 4) > 0)) * 4;
pEntry = (Nm_Entry_t *)Extra_MmFlexEntryFetch( p->pMem, nEntrySize );
pEntry->pNextI2N = pEntry->pNextN2I = NULL;
pEntry->ObjId = ObjId;
pEntry->Type = Type;
sprintf( pEntry->Name, "%s%s", pName, pSuffix? pSuffix : "" );
// add the entry to the hash table
RetValue = Nm_ManTableAdd( p, pEntry );
......@@ -158,7 +152,7 @@ void Nm_ManDeleteIdName( Nm_Man_t * p, int ObjId )
return;
}
// remove entry from the table
Nm_ManTableDelete( p, pEntry );
Nm_ManTableDelete( p, ObjId );
}
......@@ -167,7 +161,7 @@ void Nm_ManDeleteIdName( Nm_Man_t * p, int ObjId )
Synopsis [Finds a unique name for the node.]
Description [If the name exists, tries appending numbers to it until
it becomes unique.]
it becomes unique. The name is not added to the table.]
SideEffects []
......@@ -182,9 +176,9 @@ char * Nm_ManCreateUniqueName( Nm_Man_t * p, int ObjId )
if ( pEntry = Nm_ManTableLookupId(p, ObjId) )
return pEntry->Name;
sprintf( NameStr, "[%d]", ObjId );
for ( i = 1; Nm_ManTableLookupName(p, NameStr, NULL); i++ )
for ( i = 1; Nm_ManTableLookupName(p, NameStr, -1); i++ )
sprintf( NameStr, "[%d]_%d", ObjId, i );
return Nm_ManStoreIdName( p, ObjId, NameStr, NULL );
return NameStr;
}
/**Function*************************************************************
......@@ -218,69 +212,14 @@ char * Nm_ManFindNameById( Nm_Man_t * p, int ObjId )
SeeAlso []
***********************************************************************/
int Nm_ManFindIdByName( Nm_Man_t * p, char * pName, int * pSecond )
int Nm_ManFindIdByName( Nm_Man_t * p, char * pName, int Type )
{
Nm_Entry_t * pEntry, * pEntry2;
if ( pEntry = Nm_ManTableLookupName(p, pName, &pEntry2) )
{
if ( pSecond )
*pSecond = pEntry2? pEntry2->ObjId : -1;
Nm_Entry_t * pEntry;
if ( pEntry = Nm_ManTableLookupName(p, pName, Type) )
return pEntry->ObjId;
}
return -1;
}
/**Function*************************************************************
Synopsis [Prints distribution of entries in the bins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nm_ManPrintTables( Nm_Man_t * p )
{
int i, Counter;
// rehash the entries from the old table
Counter = 0;
printf( "Int2Name: " );
for ( i = 0; i < p->nBins; i++ )
{
if ( Counter == 0 && p->pBinsI2N[i] == NULL )
continue;
if ( p->pBinsI2N[i] )
Counter++;
else
{
printf( "%d ", Counter );
Counter = 0;
}
}
printf( "\n" );
// rehash the entries from the old table
Counter = 0;
printf( "Name2Int: " );
for ( i = 0; i < p->nBins; i++ )
{
if ( Counter == 0 && p->pBinsN2I[i] == NULL )
continue;
if ( p->pBinsN2I[i] )
Counter++;
else
{
printf( "%d ", Counter );
Counter = 0;
}
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Return the IDs of objects with names.]
......
......@@ -44,9 +44,11 @@ extern "C" {
typedef struct Nm_Entry_t_ Nm_Entry_t;
struct Nm_Entry_t_
{
int ObjId; // object ID
unsigned Type : 4; // object type
unsigned ObjId : 28; // object ID
Nm_Entry_t * pNextI2N; // the next entry in the ID hash table
Nm_Entry_t * pNextN2I; // the next entry in the name hash table
Nm_Entry_t * pNameSake; // the next entry with the same name
char Name[0]; // name of the object
};
......@@ -71,9 +73,9 @@ struct Nm_Man_t_
/*=== nmTable.c ==========================================================*/
extern int Nm_ManTableAdd( Nm_Man_t * p, Nm_Entry_t * pEntry );
extern int Nm_ManTableDelete( Nm_Man_t * p, Nm_Entry_t * pEntry );
extern int Nm_ManTableDelete( Nm_Man_t * p, int ObjId );
extern Nm_Entry_t * Nm_ManTableLookupId( Nm_Man_t * p, int ObjId );
extern Nm_Entry_t * Nm_ManTableLookupName( Nm_Man_t * p, char * pName, Nm_Entry_t ** ppSecond );
extern Nm_Entry_t * Nm_ManTableLookupName( Nm_Man_t * p, char * pName, int Type );
extern unsigned int Cudd_PrimeNm( unsigned int p );
#ifdef __cplusplus
......
......@@ -67,37 +67,29 @@ static void Nm_ManResize( Nm_Man_t * p );
***********************************************************************/
int Nm_ManTableAdd( Nm_Man_t * p, Nm_Entry_t * pEntry )
{
Nm_Entry_t ** ppSpot;
// int i;
Nm_Entry_t ** ppSpot, * pOther;
// resize the tables if needed
// if ( p->nEntries * p->nSizeFactor > p->nBins )
if ( p->nEntries > p->nBins * p->nSizeFactor )
{
// Nm_ManPrintTables( p );
Nm_ManResize( p );
}
/*
// hash it by ID
for ( i = Nm_HashNumber(pEntry->ObjId, p->nBins); p->pBinsI2N[i]; i = (i+1) % p->nBins )
if ( p->pBinsI2N[i] == pEntry )
return 0;
assert( p->pBinsI2N[i] == NULL );
p->pBinsI2N[i] = pEntry;
// hash it by Name
for ( i = Nm_HashString(pEntry->Name, p->nBins); p->pBinsN2I[i]; i = (i+1) % p->nBins )
if ( p->pBinsN2I[i] == pEntry )
return 0;
assert( p->pBinsN2I[i] == NULL );
p->pBinsN2I[i] = pEntry;
*/
// add the entry to the table Id->Name
assert( Nm_ManTableLookupId(p, pEntry->ObjId) == NULL );
ppSpot = p->pBinsI2N + Nm_HashNumber(pEntry->ObjId, p->nBins);
pEntry->pNextI2N = *ppSpot;
*ppSpot = pEntry;
// check if an entry with the same name already exists
if ( pOther = Nm_ManTableLookupName(p, pEntry->Name, -1) )
{
// entry with the same name already exists - add it to the ring
pEntry->pNameSake = pOther->pNameSake? pOther->pNameSake : pOther;
pOther->pNameSake = pEntry;
}
else
{
// entry with the same name does not exist - add it to the table
ppSpot = p->pBinsN2I + Nm_HashString(pEntry->Name, p->nBins);
pEntry->pNextN2I = *ppSpot;
*ppSpot = pEntry;
}
// report successfully added entry
p->nEntries++;
return 1;
......@@ -114,10 +106,51 @@ int Nm_ManTableAdd( Nm_Man_t * p, Nm_Entry_t * pEntry )
SeeAlso []
***********************************************************************/
int Nm_ManTableDelete( Nm_Man_t * p, Nm_Entry_t * pEntry )
int Nm_ManTableDelete( Nm_Man_t * p, int ObjId )
{
assert( 0 );
return 0;
Nm_Entry_t ** ppSpot, * pEntry, * pPrev;
int fRemoved;
// remove the entry from the table Id->Name
assert( Nm_ManTableLookupId(p, ObjId) != NULL );
ppSpot = p->pBinsI2N + Nm_HashNumber(ObjId, p->nBins);
while ( (*ppSpot)->ObjId != (unsigned)ObjId )
ppSpot = &(*ppSpot)->pNextI2N;
pEntry = *ppSpot;
*ppSpot = (*ppSpot)->pNextI2N;
// remove the entry from the table Name->Id
ppSpot = p->pBinsN2I + Nm_HashString(pEntry->Name, p->nBins);
while ( *ppSpot && *ppSpot != pEntry )
ppSpot = &(*ppSpot)->pNextN2I;
// remember if we found this one in the list
fRemoved = (*ppSpot != NULL);
if ( *ppSpot )
{
assert( *ppSpot == pEntry );
*ppSpot = (*ppSpot)->pNextN2I;
}
// quit if this entry has no namesakes
if ( pEntry->pNameSake == NULL )
{
assert( fRemoved );
return 1;
}
// remove entry from the ring of namesakes
assert( pEntry->pNameSake != pEntry );
for ( pPrev = pEntry; pPrev->pNameSake != pEntry; pPrev = pPrev->pNameSake );
assert( !strcmp(pPrev->Name, pEntry->Name) );
assert( pPrev->pNameSake == pEntry );
if ( pEntry->pNameSake == pPrev ) // two entries in the ring
pPrev->pNameSake = NULL;
else
pPrev->pNameSake = pEntry->pNameSake;
// reinsert the ring back if we removed its connection with the list in the table
if ( fRemoved )
{
assert( pPrev->pNextN2I == NULL );
pPrev->pNextN2I = *ppSpot;
*ppSpot = pPrev;
}
return 1;
}
/**Function*************************************************************
......@@ -134,21 +167,15 @@ int Nm_ManTableDelete( Nm_Man_t * p, Nm_Entry_t * pEntry )
Nm_Entry_t * Nm_ManTableLookupId( Nm_Man_t * p, int ObjId )
{
Nm_Entry_t * pEntry;
// int i;
/*
for ( i = Nm_HashNumber(ObjId, p->nBins); p->pBinsI2N[i]; i = (i+1) % p->nBins )
if ( p->pBinsI2N[i]->ObjId == ObjId )
return p->pBinsI2N[i];
*/
for ( pEntry = p->pBinsI2N[ Nm_HashNumber(ObjId, p->nBins) ]; pEntry; pEntry = pEntry->pNextI2N )
if ( pEntry->ObjId == ObjId )
if ( pEntry->ObjId == (unsigned)ObjId )
return pEntry;
return NULL;
}
/**Function*************************************************************
Synopsis [Looks up the entry by name. May return two entries.]
Synopsis [Looks up the entry by name and type.]
Description []
......@@ -157,42 +184,14 @@ Nm_Entry_t * Nm_ManTableLookupId( Nm_Man_t * p, int ObjId )
SeeAlso []
***********************************************************************/
Nm_Entry_t * Nm_ManTableLookupName( Nm_Man_t * p, char * pName, Nm_Entry_t ** ppSecond )
Nm_Entry_t * Nm_ManTableLookupName( Nm_Man_t * p, char * pName, int Type )
{
Nm_Entry_t * pFirst, * pSecond, * pEntry;
Nm_Entry_t * pEntry;
int Counter = 0;
pFirst = pSecond = NULL;
/*
for ( i = Nm_HashString(pName, p->nBins); p->pBinsN2I[i]; i = (i+1) % p->nBins )
if ( strcmp(p->pBinsN2I[i]->Name, pName) == 0 )
{
if ( pFirst == NULL )
pFirst = p->pBinsN2I[i];
else if ( pSecond == NULL )
pSecond = p->pBinsN2I[i];
else
assert( 0 ); // name appears more than 2 times
}
else
Counter++;
if ( Counter > 100 )
printf( "%d ", Counter );
*/
for ( pEntry = p->pBinsN2I[ Nm_HashString(pName, p->nBins) ]; pEntry; pEntry = pEntry->pNextN2I )
if ( strcmp(pEntry->Name, pName) == 0 )
{
if ( pFirst == NULL )
pFirst = pEntry;
else if ( pSecond == NULL )
pSecond = pEntry;
else
assert( 0 ); // name appears more than 2 times
}
// save the names
if ( ppSecond )
*ppSecond = pSecond;
return pFirst;
if ( !strcmp(pEntry->Name, pName) && (Type == -1 || pEntry->Type == (unsigned)Type) )
return pEntry;
return pEntry;
}
/**Function*************************************************************
......@@ -230,8 +229,6 @@ void Nm_ManProfile( Nm_Man_t * p )
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Resizes the table.]
......@@ -256,38 +253,25 @@ clk = clock();
pBinsNewN2I = ALLOC( Nm_Entry_t *, nBinsNew );
memset( pBinsNewI2N, 0, sizeof(Nm_Entry_t *) * nBinsNew );
memset( pBinsNewN2I, 0, sizeof(Nm_Entry_t *) * nBinsNew );
// rehash the entries from the old table
// rehash entries in Id->Name table
Counter = 0;
for ( e = 0; e < p->nBins; e++ )
for ( pEntry = p->pBinsI2N[e], pEntry2 = pEntry? pEntry->pNextI2N : NULL;
pEntry; pEntry = pEntry2, pEntry2 = pEntry? pEntry->pNextI2N : NULL )
{
// pEntry = p->pBinsI2N[e];
// if ( pEntry == NULL )
// continue;
/*
// hash it by ID
for ( i = Nm_HashNumber(pEntry->ObjId, nBinsNew); pBinsNewI2N[i]; i = (i+1) % nBinsNew )
if ( pBinsNewI2N[i] == pEntry )
assert( 0 );
assert( pBinsNewI2N[i] == NULL );
pBinsNewI2N[i] = pEntry;
// hash it by Name
for ( i = Nm_HashString(pEntry->Name, nBinsNew); pBinsNewN2I[i]; i = (i+1) % nBinsNew )
if ( pBinsNewN2I[i] == pEntry )
assert( 0 );
assert( pBinsNewN2I[i] == NULL );
pBinsNewN2I[i] = pEntry;
*/
ppSpot = pBinsNewI2N + Nm_HashNumber(pEntry->ObjId, nBinsNew);
pEntry->pNextI2N = *ppSpot;
*ppSpot = pEntry;
Counter++;
}
// rehash entries in Name->Id table
for ( e = 0; e < p->nBins; e++ )
for ( pEntry = p->pBinsN2I[e], pEntry2 = pEntry? pEntry->pNextN2I : NULL;
pEntry; pEntry = pEntry2, pEntry2 = pEntry? pEntry->pNextN2I : NULL )
{
ppSpot = pBinsNewN2I + Nm_HashString(pEntry->Name, nBinsNew);
pEntry->pNextN2I = *ppSpot;
*ppSpot = pEntry;
Counter++;
}
assert( Counter == p->nEntries );
// printf( "Increasing the structural table size from %6d to %6d. ", p->nBins, nBinsNew );
......
......@@ -304,9 +304,9 @@ void ABC_Network_Finalize( ABC_Manager mng )
Abc_Obj_t * pObj;
int i;
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, ABC_GetNodeName(mng, pObj) );
Abc_ObjAssignName( pObj, ABC_GetNodeName(mng, pObj), NULL );
Abc_NtkForEachPo( pNtk, pObj, i )
Abc_NtkLogicStoreName( pObj, ABC_GetNodeName(mng, pObj) );
Abc_ObjAssignName( pObj, ABC_GetNodeName(mng, pObj), NULL );
assert( Abc_NtkLatchNum(pNtk) == 0 );
}
......
......@@ -752,7 +752,7 @@ int Ver_ParseGate( Ver_Man_t * pMan, Abc_Ntk_t * pNtkGate )
if ( Abc_NtkIsNetlist(pNtkGate) )
pNetFormal = Abc_NtkFindNet( pNtkGate, pWord );
else // if ( Abc_NtkIsStrash(pNtkGate) )
pNetFormal = Abc_NtkFindTerm( pNtkGate, pWord );
assert( 0 );
if ( pNetFormal == NULL )
{
sprintf( pMan->sError, "Formal net is missing in gate %s.", pWord );
......@@ -865,7 +865,7 @@ int Ver_ParseGate( Ver_Man_t * pMan, Abc_Ntk_t * pNtkGate )
memset( pPolarity, 0, nBytes );
}
// create box to represent this gate
pNode = Abc_NtkCreateBox( pMan->pNtkCur );
pNode = Abc_NtkCreateBlackbox( pMan->pNtkCur );
pNode->pNext = (Abc_Obj_t *)pPolarity;
pNode->pData = pNtkGate;
// connect to fanin nets
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment