Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
abc
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
abc
Commits
6da21b8b
Commit
6da21b8b
authored
Mar 05, 2015
by
Alan Mishchenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Experiments with SAT-based cube enumeration.
parent
ddc522a0
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
816 additions
and
33 deletions
+816
-33
abclib.dsp
+4
-0
src/aig/gia/giaDup.c
+33
-0
src/aig/gia/giaMf.c
+2
-2
src/aig/gia/giaQbf.c
+3
-3
src/base/abci/abc.c
+68
-0
src/map/if/ifSat.c
+4
-3
src/sat/bmc/bmcEco.c
+0
-6
src/sat/bmc/bmcFx.c
+683
-0
src/sat/bsat/satSolver.h
+19
-19
No files found.
abclib.dsp
View file @
6da21b8b
...
...
@@ -1583,6 +1583,10 @@ SOURCE=.\src\sat\bmc\bmcFault.c
# End Source File
# Begin Source File
SOURCE=.\src\sat\bmc\bmcFx.c
# End Source File
# Begin Source File
SOURCE=.\src\sat\bmc\bmcICheck.c
# End Source File
# Begin Source File
...
...
src/aig/gia/giaDup.c
View file @
6da21b8b
...
...
@@ -426,6 +426,39 @@ Gia_Man_t * Gia_ManDupOrderAiger( Gia_Man_t * p )
SeeAlso []
***********************************************************************/
Gia_Man_t
*
Gia_ManDupOnsetOffset
(
Gia_Man_t
*
p
)
{
Gia_Man_t
*
pNew
;
Gia_Obj_t
*
pObj
;
int
i
;
pNew
=
Gia_ManStart
(
Gia_ManObjNum
(
p
)
);
pNew
->
pName
=
Abc_UtilStrsav
(
p
->
pName
);
pNew
->
pSpec
=
Abc_UtilStrsav
(
p
->
pSpec
);
Gia_ManConst0
(
p
)
->
Value
=
0
;
Gia_ManForEachCi
(
p
,
pObj
,
i
)
pObj
->
Value
=
Gia_ManAppendCi
(
pNew
);
Gia_ManForEachAnd
(
p
,
pObj
,
i
)
pObj
->
Value
=
Gia_ManAppendAnd
(
pNew
,
Gia_ObjFanin0Copy
(
pObj
),
Gia_ObjFanin1Copy
(
pObj
)
);
Gia_ManForEachCo
(
p
,
pObj
,
i
)
{
pObj
->
Value
=
Gia_ManAppendCo
(
pNew
,
Gia_ObjFanin0Copy
(
pObj
)
);
pObj
->
Value
=
Gia_ManAppendCo
(
pNew
,
Abc_LitNot
(
Gia_ObjFanin0Copy
(
pObj
))
);
}
Gia_ManSetRegNum
(
pNew
,
Gia_ManRegNum
(
p
)
);
return
pNew
;
}
/**Function*************************************************************
Synopsis [Duplicates AIG while putting first PIs, then nodes, then POs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t
*
Gia_ManDupLastPis
(
Gia_Man_t
*
p
,
int
nLastPis
)
{
Gia_Man_t
*
pNew
;
...
...
src/aig/gia/giaMf.c
View file @
6da21b8b
...
...
@@ -346,9 +346,9 @@ Cnf_Dat_t * Mf_ManDeriveCnf( Mf_Man_t * p, int fCnfObjIds, int fAddOrCla )
Gia_ManForEachAndReverseId
(
p
->
pGia
,
Id
)
if
(
Mf_ObjMapRefNum
(
p
,
Id
)
)
Vec_IntWriteEntry
(
vCnfIds
,
Id
,
Id
),
iVar
++
;
Vec_IntWriteEntry
(
vCnfIds
,
0
,
0
);
Gia_ManForEachCiId
(
p
->
pGia
,
Id
,
i
)
Vec_IntWriteEntry
(
vCnfIds
,
Id
,
Id
);
Vec_IntWriteEntry
(
vCnfIds
,
0
,
0
);
assert
(
iVar
==
nVars
);
}
else
...
...
@@ -358,9 +358,9 @@ Cnf_Dat_t * Mf_ManDeriveCnf( Mf_Man_t * p, int fCnfObjIds, int fAddOrCla )
Gia_ManForEachAndReverseId
(
p
->
pGia
,
Id
)
if
(
Mf_ObjMapRefNum
(
p
,
Id
)
)
Vec_IntWriteEntry
(
vCnfIds
,
Id
,
iVar
++
);
Vec_IntWriteEntry
(
vCnfIds
,
0
,
iVar
++
);
Gia_ManForEachCiId
(
p
->
pGia
,
Id
,
i
)
Vec_IntWriteEntry
(
vCnfIds
,
Id
,
iVar
++
);
Vec_IntWriteEntry
(
vCnfIds
,
0
,
iVar
++
);
assert
(
iVar
==
nVars
);
}
// generate CNF
...
...
src/aig/gia/giaQbf.c
View file @
6da21b8b
...
...
@@ -75,7 +75,7 @@ int Gia_ManSatEnum( Gia_Man_t * pGia, int nConfLimit, int nTimeOut, int fVerbose
abctime
clkStart
=
Abc_Clock
();
pCnf
=
Mf_ManGenerateCnf
(
pGia
,
8
,
0
,
1
,
0
);
pSat
=
(
sat_solver
*
)
Cnf_DataWriteIntoSolver
(
pCnf
,
1
,
0
);
iParVarBeg
=
pCnf
->
nVars
-
Gia_ManPiNum
(
pGia
)
-
1
;
iParVarBeg
=
pCnf
->
nVars
-
Gia_ManPiNum
(
pGia
)
;
//
- 1;
Cnf_DataFree
(
pCnf
);
// iterate through the SAT assignment
vLits
=
Vec_IntAlloc
(
Gia_ManPiNum
(
pGia
)
);
...
...
@@ -180,7 +180,7 @@ Qbf_Man_t * Gia_QbfAlloc( Gia_Man_t * pGia, int nPars, int fVerbose )
p
->
nPars
=
nPars
;
p
->
nVars
=
Gia_ManPiNum
(
pGia
)
-
nPars
;
p
->
fVerbose
=
fVerbose
;
p
->
iParVarBeg
=
pCnf
->
nVars
-
Gia_ManPiNum
(
pGia
)
-
1
;
p
->
iParVarBeg
=
pCnf
->
nVars
-
Gia_ManPiNum
(
pGia
)
;
//
- 1;
p
->
pSatVer
=
(
sat_solver
*
)
Cnf_DataWriteIntoSolver
(
pCnf
,
1
,
0
);
p
->
pSatSyn
=
sat_solver_new
();
p
->
vValues
=
Vec_IntAlloc
(
Gia_ManPiNum
(
pGia
)
);
...
...
@@ -280,7 +280,7 @@ Gia_Man_t * Gia_QbfCofactor( Gia_Man_t * p, int nPars, Vec_Int_t * vValues, Vec_
int
Gia_QbfAddCofactor
(
Qbf_Man_t
*
p
,
Gia_Man_t
*
pCof
)
{
Cnf_Dat_t
*
pCnf
=
Mf_ManGenerateCnf
(
pCof
,
8
,
0
,
1
,
0
);
int
i
,
iFirstVar
=
sat_solver_nvars
(
p
->
pSatSyn
)
+
pCnf
->
nVars
-
Gia_ManPiNum
(
pCof
)
-
1
;
int
i
,
iFirstVar
=
sat_solver_nvars
(
p
->
pSatSyn
)
+
pCnf
->
nVars
-
Gia_ManPiNum
(
pCof
)
;
//
- 1;
pCnf
->
pMan
=
NULL
;
Cnf_DataLift
(
pCnf
,
sat_solver_nvars
(
p
->
pSatSyn
)
);
for
(
i
=
0
;
i
<
pCnf
->
nClauses
;
i
++
)
...
...
src/base/abci/abc.c
View file @
6da21b8b
...
...
@@ -437,6 +437,7 @@ static int Abc_CommandAbc9ICheck ( Abc_Frame_t * pAbc, int argc, cha
static
int
Abc_CommandAbc9SatTest
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9FFTest
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9Qbf
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9SatFx
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9Inse
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9Maxi
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAbc9Bmci
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
...
...
@@ -1043,6 +1044,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&sattest"
,
Abc_CommandAbc9SatTest
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&fftest"
,
Abc_CommandAbc9FFTest
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&qbf"
,
Abc_CommandAbc9Qbf
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&satfx"
,
Abc_CommandAbc9SatFx
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&inse"
,
Abc_CommandAbc9Inse
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&maxi"
,
Abc_CommandAbc9Maxi
,
0
);
Cmd_CommandAdd
(
pAbc
,
"ABC9"
,
"&bmci"
,
Abc_CommandAbc9Bmci
,
0
);
...
...
@@ -36545,6 +36547,72 @@ usage:
SeeAlso []
***********************************************************************/
int
Abc_CommandAbc9SatFx
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
extern
int
Bmc_FxCompute
(
Gia_Man_t
*
p
);
extern
int
Bmc_FxComputeOne
(
Gia_Man_t
*
p
);
int
c
,
nFrames
=
1000
,
fDec
=
0
,
fVerbose
=
0
;
Extra_UtilGetoptReset
();
while
(
(
c
=
Extra_UtilGetopt
(
argc
,
argv
,
"Fdvh"
)
)
!=
EOF
)
{
switch
(
c
)
{
case
'F'
:
if
(
globalUtilOptind
>=
argc
)
{
Abc_Print
(
-
1
,
"Command line switch
\"
-F
\"
should be followed by an integer.
\n
"
);
goto
usage
;
}
nFrames
=
atoi
(
argv
[
globalUtilOptind
]);
globalUtilOptind
++
;
if
(
nFrames
<
0
)
goto
usage
;
break
;
case
'd'
:
fDec
^=
1
;
break
;
case
'v'
:
fVerbose
^=
1
;
break
;
case
'h'
:
goto
usage
;
default:
goto
usage
;
}
}
if
(
pAbc
->
pGia
==
NULL
)
{
Abc_Print
(
-
1
,
"Abc_CommandAbc9SatFx(): There is no AIG.
\n
"
);
return
0
;
}
if
(
fDec
)
Bmc_FxComputeOne
(
pAbc
->
pGia
);
else
Bmc_FxCompute
(
pAbc
->
pGia
);
return
0
;
usage:
Abc_Print
(
-
2
,
"usage: &satfx [-F num] [-dvh]
\n
"
);
Abc_Print
(
-
2
,
"
\t
performs SAT based shared logic extraction
\n
"
);
Abc_Print
(
-
2
,
"
\t
-F num : the number of timeframes [default = %d]
\n
"
,
nFrames
);
Abc_Print
(
-
2
,
"
\t
-d : toggles decomposing the first output [default = %s]
\n
"
,
fDec
?
"yes"
:
"no"
);
Abc_Print
(
-
2
,
"
\t
-v : toggles printing verbose information [default = %s]
\n
"
,
fVerbose
?
"yes"
:
"no"
);
Abc_Print
(
-
2
,
"
\t
-h : print the command usage
\n
"
);
return
1
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Abc_CommandAbc9Inse
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
extern
Vec_Int_t
*
Gia_ManInseTest
(
Gia_Man_t
*
p
,
Vec_Int_t
*
vInit
,
int
nFrames
,
int
nWords
,
int
nTimeOut
,
int
fSim
,
int
fVerbose
);
src/map/if/ifSat.c
View file @
6da21b8b
...
...
@@ -54,10 +54,11 @@ void * If_ManSatBuildXY( int nLutSize )
sat_solver_setnvars
(
p
,
nVars
);
for
(
m
=
0
;
m
<
nMintsF
;
m
++
)
sat_solver_add_mux
(
p
,
iVarM
+
m
,
iVarP0
+
m
%
nMintsL
,
iVarP1
+
2
*
(
m
/
nMintsL
)
+
1
,
iVarP1
+
2
*
(
m
/
nMintsL
),
iVarM
+
m
);
0
,
0
,
0
,
0
);
return
p
;
}
void
*
If_ManSatBuildXYZ
(
int
nLutSize
)
...
...
@@ -73,13 +74,13 @@ void * If_ManSatBuildXYZ( int nLutSize )
sat_solver_setnvars
(
p
,
nVars
);
for
(
m
=
0
;
m
<
nMintsF
;
m
++
)
sat_solver_add_mux41
(
p
,
iVarM
+
m
,
iVarP0
+
m
%
nMintsL
,
iVarP1
+
(
m
>>
nLutSize
)
%
nMintsL
,
iVarP2
+
4
*
(
m
>>
(
2
*
nLutSize
))
+
0
,
iVarP2
+
4
*
(
m
>>
(
2
*
nLutSize
))
+
1
,
iVarP2
+
4
*
(
m
>>
(
2
*
nLutSize
))
+
2
,
iVarP2
+
4
*
(
m
>>
(
2
*
nLutSize
))
+
3
,
iVarM
+
m
);
iVarP2
+
4
*
(
m
>>
(
2
*
nLutSize
))
+
3
);
return
p
;
}
void
If_ManSatUnbuild
(
void
*
p
)
...
...
src/sat/bmc/bmcEco.c
View file @
6da21b8b
...
...
@@ -138,7 +138,6 @@ static inline Cnf_Dat_t * Cnf_DeriveGiaRemapped( Gia_Man_t * p )
int
Bmc_EcoSolve
(
sat_solver
*
pSat
,
int
Root
,
Vec_Int_t
*
vVars
)
{
int
nBTLimit
=
1000000
;
Vec_Int_t
*
vValues
=
Vec_IntAlloc
(
Vec_IntSize
(
vVars
)
);
Vec_Int_t
*
vLits
=
Vec_IntAlloc
(
Vec_IntSize
(
vVars
)
);
int
status
,
i
,
Div
,
iVar
,
nFinal
,
*
pFinal
,
nIter
=
0
,
RetValue
=
0
;
int
pLits
[
2
],
nVars
=
sat_solver_nvars
(
pSat
);
...
...
@@ -154,10 +153,6 @@ int Bmc_EcoSolve( sat_solver * pSat, int Root, Vec_Int_t * vVars )
if
(
status
==
l_False
)
{
RetValue
=
1
;
break
;
}
assert
(
status
==
l_True
);
// remember variable values
Vec_IntClear
(
vValues
);
Vec_IntForEachEntry
(
vVars
,
iVar
,
i
)
Vec_IntPush
(
vValues
,
sat_solver_var_value
(
pSat
,
iVar
)
);
// collect divisor literals
Vec_IntClear
(
vLits
);
Vec_IntPush
(
vLits
,
Abc_LitNot
(
pLits
[
0
])
);
// F = 0
...
...
@@ -189,7 +184,6 @@ int Bmc_EcoSolve( sat_solver * pSat, int Root, Vec_Int_t * vVars )
nIter
++
;
}
// assert( status == l_True );
Vec_IntFree
(
vValues
);
Vec_IntFree
(
vLits
);
return
RetValue
;
}
...
...
src/sat/bmc/bmcFx.c
0 → 100644
View file @
6da21b8b
/**CFile****************************************************************
FileName [bmcFx.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT-based bounded model checking.]
Synopsis [INT-FX: Interpolation-based logic sharing extraction.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: bmcFx.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "bmc.h"
#include "misc/vec/vecWec.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satStore.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
extern
Cnf_Dat_t
*
Mf_ManGenerateCnf
(
Gia_Man_t
*
pGia
,
int
nLutSize
,
int
fCnfObjIds
,
int
fAddOrCla
,
int
fVerbose
);
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create hash table to hash divisors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
#define TAB_UNUSED 0x7FFF
typedef
struct
Tab_Obj_t_
Tab_Obj_t
;
// 16 bytes
struct
Tab_Obj_t_
{
int
Table
;
int
Next
;
unsigned
Cost
:
17
;
unsigned
LitA
:
15
;
unsigned
LitB
:
15
;
unsigned
LitC
:
15
;
unsigned
Func
:
2
;
};
typedef
struct
Tab_Tab_t_
Tab_Tab_t
;
// 16 bytes
struct
Tab_Tab_t_
{
int
SizeMask
;
int
nBins
;
Tab_Obj_t
*
pBins
;
};
static
inline
Tab_Tab_t
*
Tab_TabAlloc
(
int
LogSize
)
{
Tab_Tab_t
*
p
=
ABC_CALLOC
(
Tab_Tab_t
,
1
);
assert
(
LogSize
>=
4
&&
LogSize
<=
31
);
p
->
SizeMask
=
(
1
<<
LogSize
)
-
1
;
p
->
pBins
=
ABC_CALLOC
(
Tab_Obj_t
,
p
->
SizeMask
+
1
);
p
->
nBins
=
1
;
return
p
;
}
static
inline
void
Tab_TabFree
(
Tab_Tab_t
*
p
)
{
ABC_FREE
(
p
->
pBins
);
ABC_FREE
(
p
);
}
static
inline
Vec_Int_t
*
Tab_TabFindBest
(
Tab_Tab_t
*
p
,
int
nDivs
)
{
char
*
pNames
[
5
]
=
{
"const1"
,
"and"
,
"xor"
,
"mux"
,
"none"
};
int
*
pOrder
,
i
;
Vec_Int_t
*
vDivs
=
Vec_IntAlloc
(
100
);
Vec_Int_t
*
vCosts
=
Vec_IntAlloc
(
p
->
nBins
);
Tab_Obj_t
*
pEnt
,
*
pLimit
=
p
->
pBins
+
p
->
nBins
;
for
(
pEnt
=
p
->
pBins
;
pEnt
<
pLimit
;
pEnt
++
)
Vec_IntPush
(
vCosts
,
-
(
int
)
pEnt
->
Cost
);
pOrder
=
Abc_MergeSortCost
(
Vec_IntArray
(
vCosts
),
Vec_IntSize
(
vCosts
)
);
for
(
i
=
0
;
i
<
Vec_IntSize
(
vCosts
);
i
++
)
{
pEnt
=
p
->
pBins
+
pOrder
[
i
];
if
(
i
==
nDivs
||
pEnt
->
Cost
==
1
)
break
;
printf
(
"Lit0 = %5d. Lit1 = %5d. Lit2 = %5d. Func = %s. Cost = %3d.
\n
"
,
pEnt
->
LitA
,
pEnt
->
LitB
,
pEnt
->
LitC
,
pNames
[
pEnt
->
Func
],
pEnt
->
Cost
);
Vec_IntPushTwo
(
vDivs
,
pEnt
->
Func
,
pEnt
->
LitA
);
Vec_IntPushTwo
(
vDivs
,
pEnt
->
LitB
,
pEnt
->
LitC
);
}
Vec_IntFree
(
vCosts
);
ABC_FREE
(
pOrder
);
return
vDivs
;
}
static
inline
int
Tab_Hash
(
int
LitA
,
int
LitB
,
int
LitC
,
int
Func
,
int
Mask
)
{
return
(
LitA
*
50331653
+
LitB
*
100663319
+
LitC
+
201326611
+
Func
*
402653189
)
&
Mask
;
}
static
inline
void
Tab_TabRehash
(
Tab_Tab_t
*
p
)
{
Tab_Obj_t
*
pEnt
,
*
pLimit
,
*
pBin
;
assert
(
p
->
nBins
==
p
->
SizeMask
+
1
);
// realloc memory
p
->
pBins
=
ABC_REALLOC
(
Tab_Obj_t
,
p
->
pBins
,
2
*
(
p
->
SizeMask
+
1
)
);
memset
(
p
->
pBins
+
p
->
SizeMask
+
1
,
0
,
sizeof
(
Tab_Obj_t
)
*
(
p
->
SizeMask
+
1
)
);
// clean entries
pLimit
=
p
->
pBins
+
p
->
SizeMask
+
1
;
for
(
pEnt
=
p
->
pBins
;
pEnt
<
pLimit
;
pEnt
++
)
pEnt
->
Table
=
pEnt
->
Next
=
0
;
// rehash entries
p
->
SizeMask
=
2
*
p
->
SizeMask
+
1
;
for
(
pEnt
=
p
->
pBins
+
1
;
pEnt
<
pLimit
;
pEnt
++
)
{
pBin
=
p
->
pBins
+
Tab_Hash
(
pEnt
->
LitA
,
pEnt
->
LitB
,
pEnt
->
LitC
,
pEnt
->
Func
,
p
->
SizeMask
);
pEnt
->
Next
=
pBin
->
Table
;
pBin
->
Table
=
pEnt
-
p
->
pBins
;
assert
(
!
pEnt
->
Next
||
pEnt
->
Next
!=
pBin
->
Table
);
}
}
static
inline
Tab_Obj_t
*
Tab_TabEntry
(
Tab_Tab_t
*
p
,
int
i
)
{
return
i
?
p
->
pBins
+
i
:
NULL
;
}
static
inline
int
Tab_TabHashAdd
(
Tab_Tab_t
*
p
,
int
*
pLits
,
int
Func
,
int
Cost
)
{
if
(
p
->
nBins
==
p
->
SizeMask
+
1
)
Tab_TabRehash
(
p
);
assert
(
p
->
nBins
<
p
->
SizeMask
+
1
);
{
Tab_Obj_t
*
pEnt
,
*
pBin
=
p
->
pBins
+
Tab_Hash
(
pLits
[
0
],
pLits
[
1
],
pLits
[
2
],
Func
,
p
->
SizeMask
);
for
(
pEnt
=
Tab_TabEntry
(
p
,
pBin
->
Table
);
pEnt
;
pEnt
=
Tab_TabEntry
(
p
,
pEnt
->
Next
)
)
if
(
(
int
)
pEnt
->
LitA
==
pLits
[
0
]
&&
(
int
)
pEnt
->
LitB
==
pLits
[
1
]
&&
(
int
)
pEnt
->
LitC
==
pLits
[
2
]
&&
(
int
)
pEnt
->
Func
==
Func
)
{
pEnt
->
Cost
+=
Cost
;
return
1
;
}
pEnt
=
p
->
pBins
+
p
->
nBins
;
pEnt
->
LitA
=
pLits
[
0
];
pEnt
->
LitB
=
pLits
[
1
];
pEnt
->
LitC
=
pLits
[
2
];
pEnt
->
Func
=
Func
;
pEnt
->
Cost
=
Cost
;
pEnt
->
Next
=
pBin
->
Table
;
pBin
->
Table
=
p
->
nBins
++
;
assert
(
!
pEnt
->
Next
||
pEnt
->
Next
!=
pBin
->
Table
);
return
0
;
}
}
/**Function*************************************************************
Synopsis [Input is four literals. Output is type, polarity and fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
// name types
typedef
enum
{
DIV_CST
=
0
,
// 0: constant 1
DIV_AND
,
// 1: and (ordered fanins)
DIV_XOR
,
// 2: xor (ordered fanins)
DIV_MUX
,
// 3: mux (c, d1, d0)
DIV_NONE
// 4: not used
}
Div_Type_t
;
static
inline
Div_Type_t
Bmc_FxDivOr
(
int
LitA
,
int
LitB
,
int
*
pLits
,
int
*
pPhase
)
{
assert
(
LitA
!=
LitB
);
if
(
Abc_Lit2Var
(
LitA
)
==
Abc_Lit2Var
(
LitB
)
)
return
DIV_CST
;
if
(
LitA
>
LitB
)
ABC_SWAP
(
int
,
LitA
,
LitB
);
pLits
[
0
]
=
Abc_LitNot
(
LitA
);
pLits
[
1
]
=
Abc_LitNot
(
LitB
);
*
pPhase
=
1
;
return
DIV_AND
;
}
static
inline
Div_Type_t
Bmc_FxDivXor
(
int
LitA
,
int
LitB
,
int
*
pLits
,
int
*
pPhase
)
{
assert
(
LitA
!=
LitB
);
*
pPhase
^=
Abc_LitIsCompl
(
LitA
);
*
pPhase
^=
Abc_LitIsCompl
(
LitB
);
pLits
[
0
]
=
Abc_LitRegular
(
LitA
);
pLits
[
1
]
=
Abc_LitRegular
(
LitB
);
return
DIV_XOR
;
}
static
inline
Div_Type_t
Bmc_FxDivMux
(
int
LitC
,
int
LitCn
,
int
LitT
,
int
LitE
,
int
*
pLits
,
int
*
pPhase
)
{
assert
(
LitC
!=
LitCn
);
assert
(
Abc_Lit2Var
(
LitC
)
==
Abc_Lit2Var
(
LitCn
)
);
assert
(
Abc_Lit2Var
(
LitC
)
!=
Abc_Lit2Var
(
LitT
)
);
assert
(
Abc_Lit2Var
(
LitC
)
!=
Abc_Lit2Var
(
LitE
)
);
assert
(
Abc_Lit2Var
(
LitC
)
!=
Abc_Lit2Var
(
LitE
)
);
if
(
Abc_LitIsCompl
(
LitC
)
)
{
LitC
=
Abc_LitRegular
(
LitC
);
ABC_SWAP
(
int
,
LitT
,
LitE
);
}
if
(
Abc_LitIsCompl
(
LitT
)
)
{
*
pPhase
^=
1
;
LitT
=
Abc_LitNot
(
LitT
);
LitE
=
Abc_LitNot
(
LitE
);
}
pLits
[
0
]
=
LitC
;
pLits
[
1
]
=
LitT
;
pLits
[
2
]
=
LitE
;
return
DIV_MUX
;
}
static
inline
Div_Type_t
Div_FindType
(
int
LitA
[
2
],
int
LitB
[
2
],
int
*
pLits
,
int
*
pPhase
)
{
*
pPhase
=
0
;
pLits
[
0
]
=
pLits
[
1
]
=
pLits
[
2
]
=
TAB_UNUSED
;
if
(
LitA
[
0
]
==
-
1
&&
LitA
[
1
]
==
-
1
)
return
DIV_CST
;
if
(
LitB
[
0
]
==
-
1
&&
LitB
[
1
]
==
-
1
)
return
DIV_CST
;
assert
(
LitA
[
0
]
>=
0
&&
LitB
[
0
]
>=
0
);
assert
(
LitA
[
0
]
!=
LitB
[
0
]
);
if
(
LitA
[
1
]
==
-
1
&&
LitB
[
1
]
==
-
1
)
return
Bmc_FxDivOr
(
LitA
[
0
],
LitB
[
0
],
pLits
,
pPhase
);
assert
(
LitA
[
1
]
!=
LitB
[
1
]
);
if
(
LitA
[
1
]
==
-
1
||
LitB
[
1
]
==
-
1
)
{
if
(
LitA
[
1
]
==
-
1
)
{
ABC_SWAP
(
int
,
LitA
[
0
],
LitB
[
0
]
);
ABC_SWAP
(
int
,
LitA
[
1
],
LitB
[
1
]
);
}
assert
(
LitA
[
0
]
>=
0
&&
LitA
[
1
]
>=
0
);
assert
(
LitB
[
0
]
>=
0
&&
LitB
[
1
]
==
-
1
);
if
(
Abc_Lit2Var
(
LitB
[
0
])
==
Abc_Lit2Var
(
LitA
[
0
])
)
return
Bmc_FxDivOr
(
LitB
[
0
],
LitA
[
1
],
pLits
,
pPhase
);
if
(
Abc_Lit2Var
(
LitB
[
0
])
==
Abc_Lit2Var
(
LitA
[
1
])
)
return
Bmc_FxDivOr
(
LitB
[
0
],
LitA
[
0
],
pLits
,
pPhase
);
return
DIV_NONE
;
}
if
(
Abc_Lit2Var
(
LitA
[
0
])
==
Abc_Lit2Var
(
LitB
[
0
])
&&
Abc_Lit2Var
(
LitA
[
1
])
==
Abc_Lit2Var
(
LitB
[
1
])
)
return
Bmc_FxDivXor
(
LitA
[
0
],
LitB
[
1
],
pLits
,
pPhase
);
if
(
Abc_Lit2Var
(
LitA
[
0
])
==
Abc_Lit2Var
(
LitB
[
0
])
)
return
Bmc_FxDivMux
(
LitA
[
0
],
LitB
[
0
],
LitA
[
1
],
LitB
[
1
],
pLits
,
pPhase
);
if
(
Abc_Lit2Var
(
LitA
[
0
])
==
Abc_Lit2Var
(
LitB
[
1
])
)
return
Bmc_FxDivMux
(
LitA
[
0
],
LitB
[
1
],
LitA
[
1
],
LitB
[
0
],
pLits
,
pPhase
);
if
(
Abc_Lit2Var
(
LitA
[
1
])
==
Abc_Lit2Var
(
LitB
[
0
])
)
return
Bmc_FxDivMux
(
LitA
[
1
],
LitB
[
0
],
LitA
[
0
],
LitB
[
1
],
pLits
,
pPhase
);
if
(
Abc_Lit2Var
(
LitA
[
1
])
==
Abc_Lit2Var
(
LitB
[
1
])
)
return
Bmc_FxDivMux
(
LitA
[
1
],
LitB
[
1
],
LitA
[
0
],
LitB
[
0
],
pLits
,
pPhase
);
return
DIV_NONE
;
}
/**Function*************************************************************
Synopsis [Returns the number of shared variables, or -1 if failed.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static
inline
int
Div_AddLit
(
int
Lit
,
int
pLits
[
2
]
)
{
if
(
pLits
[
0
]
==
-
1
)
pLits
[
0
]
=
Lit
;
else
if
(
pLits
[
1
]
==
-
1
)
pLits
[
1
]
=
Lit
;
else
return
1
;
return
0
;
}
int
Div_FindDiv
(
Vec_Int_t
*
vA
,
Vec_Int_t
*
vB
,
int
pLitsA
[
2
],
int
pLitsB
[
2
]
)
{
int
Counter
=
0
;
int
*
pBegA
=
vA
->
pArray
,
*
pEndA
=
vA
->
pArray
+
vA
->
nSize
;
int
*
pBegB
=
vB
->
pArray
,
*
pEndB
=
vB
->
pArray
+
vB
->
nSize
;
pLitsA
[
0
]
=
pLitsA
[
1
]
=
pLitsB
[
0
]
=
pLitsB
[
1
]
=
-
1
;
while
(
pBegA
<
pEndA
&&
pBegB
<
pEndB
)
{
if
(
*
pBegA
==
*
pBegB
)
pBegA
++
,
pBegB
++
,
Counter
++
;
else
if
(
*
pBegA
<
*
pBegB
)
{
if
(
Div_AddLit
(
*
pBegA
++
,
pLitsA
)
)
return
-
1
;
}
else
{
if
(
Div_AddLit
(
*
pBegB
++
,
pLitsB
)
)
return
-
1
;
}
}
while
(
pBegA
<
pEndA
)
if
(
Div_AddLit
(
*
pBegA
++
,
pLitsA
)
)
return
-
1
;
while
(
pBegB
<
pEndB
)
if
(
Div_AddLit
(
*
pBegB
++
,
pLitsB
)
)
return
-
1
;
return
Counter
;
}
void
Div_CubePrintOne
(
Vec_Int_t
*
vCube
,
Vec_Str_t
*
vStr
,
int
nVars
)
{
int
i
,
Lit
;
Vec_StrFill
(
vStr
,
nVars
,
'-'
);
Vec_IntForEachEntry
(
vCube
,
Lit
,
i
)
Vec_StrWriteEntry
(
vStr
,
Abc_Lit2Var
(
Lit
),
(
char
)(
Abc_LitIsCompl
(
Lit
)
?
'0'
:
'1'
)
);
printf
(
"%s
\n
"
,
Vec_StrArray
(
vStr
)
);
}
void
Div_CubePrint
(
Vec_Wec_t
*
p
,
int
nVars
)
{
Vec_Int_t
*
vCube
;
int
i
;
Vec_Str_t
*
vStr
=
Vec_StrStart
(
nVars
+
1
);
Vec_WecForEachLevel
(
p
,
vCube
,
i
)
Div_CubePrintOne
(
vCube
,
vStr
,
nVars
);
Vec_StrFree
(
vStr
);
}
Vec_Int_t
*
Div_CubePairs
(
Vec_Wec_t
*
p
,
int
nVars
,
int
nDivs
)
{
int
fVerbose
=
0
;
char
*
pNames
[
5
]
=
{
"const1"
,
"and"
,
"xor"
,
"mux"
,
"none"
};
Vec_Int_t
*
vCube1
,
*
vCube2
,
*
vDivs
;
int
i1
,
i2
,
i
,
k
,
pLitsA
[
2
],
pLitsB
[
2
],
pLits
[
4
],
Type
,
Phase
,
nBase
,
Count
=
0
;
Vec_Str_t
*
vStr
=
Vec_StrStart
(
nVars
+
1
);
Tab_Tab_t
*
pTab
=
Tab_TabAlloc
(
5
);
Vec_WecForEachLevel
(
p
,
vCube1
,
i
)
{
// add lit pairs
pLits
[
2
]
=
TAB_UNUSED
;
Vec_IntForEachEntry
(
vCube1
,
pLits
[
0
],
i1
)
Vec_IntForEachEntryStart
(
vCube1
,
pLits
[
1
],
i2
,
i1
+
1
)
{
Tab_TabHashAdd
(
pTab
,
pLits
,
DIV_AND
,
1
);
}
Vec_WecForEachLevelStart
(
p
,
vCube2
,
k
,
i
+
1
)
{
nBase
=
Div_FindDiv
(
vCube1
,
vCube2
,
pLitsA
,
pLitsB
);
if
(
nBase
==
-
1
)
continue
;
Type
=
Div_FindType
(
pLitsA
,
pLitsB
,
pLits
,
&
Phase
);
if
(
Type
>=
DIV_AND
&&
Type
<=
DIV_MUX
)
Tab_TabHashAdd
(
pTab
,
pLits
,
Type
,
nBase
);
if
(
fVerbose
)
{
printf
(
"Pair %d:
\n
"
,
Count
++
);
Div_CubePrintOne
(
vCube1
,
vStr
,
nVars
);
Div_CubePrintOne
(
vCube2
,
vStr
,
nVars
);
printf
(
"Result = %d "
,
nBase
);
assert
(
nBase
>
0
);
printf
(
"Type = %s "
,
pNames
[
Type
]
);
printf
(
"LitA = %d "
,
pLits
[
0
]
);
printf
(
"LitB = %d "
,
pLits
[
1
]
);
printf
(
"LitC = %d "
,
pLits
[
2
]
);
printf
(
"Phase = %d "
,
Phase
);
printf
(
"
\n
"
);
}
}
}
// print the table
printf
(
"Divisors = %d.
\n
"
,
pTab
->
nBins
);
vDivs
=
Tab_TabFindBest
(
pTab
,
nDivs
);
// cleanup
Vec_StrFree
(
vStr
);
Tab_TabFree
(
pTab
);
return
vDivs
;
}
/**Function*************************************************************
Synopsis [Solve the enumeration problem.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Bmc_FxSolve
(
sat_solver
*
pSat
,
int
iOut
,
int
iAuxVar
,
Vec_Int_t
*
vVars
,
int
fDumpPla
,
int
fVerbose
,
int
*
pCounter
,
Vec_Wec_t
*
vCubes
)
{
int
nBTLimit
=
1000000
;
Vec_Int_t
*
vLevel
=
NULL
;
Vec_Int_t
*
vLits
=
Vec_IntAlloc
(
Vec_IntSize
(
vVars
)
);
Vec_Int_t
*
vLits2
=
Vec_IntAlloc
(
Vec_IntSize
(
vVars
)
);
Vec_Str_t
*
vCube
=
Vec_StrStart
(
Vec_IntSize
(
vVars
)
+
1
);
int
status
,
i
,
k
,
n
,
Lit
,
Lit2
,
iVar
,
nFinal
,
*
pFinal
,
pLits
[
2
],
nIter
=
0
,
RetValue
=
0
;
int
Before
,
After
,
Total
=
0
,
nLits
=
0
;
pLits
[
0
]
=
Abc_Var2Lit
(
iOut
+
1
,
0
);
// F = 1
pLits
[
1
]
=
Abc_Var2Lit
(
iAuxVar
,
0
);
// iNewLit
if
(
vCubes
)
Vec_WecClear
(
vCubes
);
if
(
fDumpPla
)
printf
(
".i %d
\n
"
,
Vec_IntSize
(
vVars
)
);
if
(
fDumpPla
)
printf
(
".o %d
\n
"
,
1
);
while
(
1
)
{
// find onset minterm
status
=
sat_solver_solve
(
pSat
,
pLits
,
pLits
+
2
,
nBTLimit
,
0
,
0
,
0
);
if
(
status
==
l_Undef
)
{
RetValue
=
-
1
;
break
;
}
if
(
status
==
l_False
)
{
RetValue
=
1
;
break
;
}
assert
(
status
==
l_True
);
// collect divisor literals
Vec_IntClear
(
vLits
);
Vec_IntPush
(
vLits
,
Abc_LitNot
(
pLits
[
0
])
);
// F = 0
Vec_IntForEachEntryReverse
(
vVars
,
iVar
,
i
)
// Vec_IntForEachEntry( vVars, iVar, i )
Vec_IntPush
(
vLits
,
sat_solver_var_literal
(
pSat
,
iVar
)
);
// check against offset
status
=
sat_solver_solve
(
pSat
,
Vec_IntArray
(
vLits
),
Vec_IntArray
(
vLits
)
+
Vec_IntSize
(
vLits
),
nBTLimit
,
0
,
0
,
0
);
if
(
status
==
l_Undef
)
{
RetValue
=
-
1
;
break
;
}
if
(
status
==
l_True
)
break
;
assert
(
status
==
l_False
);
// get subset of literals
nFinal
=
sat_solver_final
(
pSat
,
&
pFinal
);
Before
=
nFinal
;
//printf( "Before %d. ", nFinal );
/*
// save these literals
Vec_IntClear( vLits );
for ( i = 0; i < nFinal; i++ )
Vec_IntPush( vLits, Abc_LitNot(pFinal[i]) );
Vec_IntReverseOrder( vLits );
// make one final run
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
assert( status == l_False );
nFinal = sat_solver_final( pSat, &pFinal );
*/
// save these literals
Vec_IntClear
(
vLits2
);
for
(
i
=
0
;
i
<
nFinal
;
i
++
)
Vec_IntPush
(
vLits2
,
Abc_LitNot
(
pFinal
[
i
])
);
Vec_IntSort
(
vLits2
,
1
);
// try removing literals from the cube
Vec_IntForEachEntry
(
vLits2
,
Lit2
,
k
)
{
if
(
Lit2
==
Abc_LitNot
(
pLits
[
0
])
)
continue
;
Vec_IntClear
(
vLits
);
Vec_IntForEachEntry
(
vLits2
,
Lit
,
n
)
if
(
Lit
!=
-
1
&&
Lit
!=
Lit2
)
Vec_IntPush
(
vLits
,
Lit
);
// call sat
status
=
sat_solver_solve
(
pSat
,
Vec_IntArray
(
vLits
),
Vec_IntArray
(
vLits
)
+
Vec_IntSize
(
vLits
),
nBTLimit
,
0
,
0
,
0
);
if
(
status
==
l_Undef
)
assert
(
0
);
if
(
status
==
l_True
)
// SAT
continue
;
// Lit2 can be removed
Vec_IntWriteEntry
(
vLits2
,
k
,
-
1
);
}
// make one final run
Vec_IntClear
(
vLits
);
Vec_IntForEachEntry
(
vLits2
,
Lit2
,
k
)
if
(
Lit2
!=
-
1
)
Vec_IntPush
(
vLits
,
Lit2
);
status
=
sat_solver_solve
(
pSat
,
Vec_IntArray
(
vLits
),
Vec_IntArray
(
vLits
)
+
Vec_IntSize
(
vLits
),
nBTLimit
,
0
,
0
,
0
);
assert
(
status
==
l_False
);
// put them back
nFinal
=
0
;
Vec_IntForEachEntry
(
vLits2
,
Lit2
,
k
)
if
(
Lit2
!=
-
1
)
pFinal
[
nFinal
++
]
=
Abc_LitNot
(
Lit2
);
//printf( "After %d. \n", nFinal );
After
=
nFinal
;
Total
+=
Before
-
After
;
// get subset of literals
//nFinal = sat_solver_final( pSat, &pFinal );
// compute cube and add clause
Vec_IntClear
(
vLits
);
Vec_IntPush
(
vLits
,
Abc_LitNot
(
pLits
[
1
])
);
// NOT(iNewLit)
if
(
fDumpPla
)
Vec_StrFill
(
vCube
,
Vec_IntSize
(
vVars
),
'-'
);
if
(
vCubes
)
vLevel
=
Vec_WecPushLevel
(
vCubes
);
for
(
i
=
0
;
i
<
nFinal
;
i
++
)
{
if
(
pFinal
[
i
]
==
pLits
[
0
]
)
continue
;
Vec_IntPush
(
vLits
,
pFinal
[
i
]
);
iVar
=
Vec_IntFind
(
vVars
,
Abc_Lit2Var
(
pFinal
[
i
])
);
assert
(
iVar
>=
0
&&
iVar
<
Vec_IntSize
(
vVars
)
);
//printf( "%s%d ", Abc_LitIsCompl(pFinal[i]) ? "+":"-", iVar );
if
(
fDumpPla
)
Vec_StrWriteEntry
(
vCube
,
iVar
,
(
char
)(
Abc_LitIsCompl
(
pFinal
[
i
])
?
'0'
:
'1'
)
);
if
(
vLevel
)
Vec_IntPush
(
vLevel
,
Abc_Var2Lit
(
iVar
,
Abc_LitIsCompl
(
pFinal
[
i
]))
);
}
if
(
vCubes
)
Vec_IntSort
(
vLevel
,
0
);
if
(
fDumpPla
)
printf
(
"%s 1
\n
"
,
Vec_StrArray
(
vCube
)
);
status
=
sat_solver_addclause
(
pSat
,
Vec_IntArray
(
vLits
),
Vec_IntArray
(
vLits
)
+
Vec_IntSize
(
vLits
)
);
assert
(
status
);
nLits
+=
Vec_IntSize
(
vLevel
);
nIter
++
;
}
if
(
fDumpPla
)
printf
(
".e
\n
"
);
if
(
fDumpPla
)
printf
(
".p %d
\n\n
"
,
nIter
);
if
(
fVerbose
)
printf
(
"Cubes = %d. Reduced = %d. Lits = %d
\n
"
,
nIter
,
Total
,
nLits
);
if
(
pCounter
)
*
pCounter
=
nIter
;
// assert( status == l_True );
Vec_IntFree
(
vLits
);
Vec_IntFree
(
vLits2
);
Vec_StrFree
(
vCube
);
return
RetValue
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Bmc_FxCompute
(
Gia_Man_t
*
p
)
{
// create dual-output circuit with on-set/off-set
extern
Gia_Man_t
*
Gia_ManDupOnsetOffset
(
Gia_Man_t
*
p
);
Gia_Man_t
*
p2
=
Gia_ManDupOnsetOffset
(
p
);
// create SAT solver
Cnf_Dat_t
*
pCnf
=
Mf_ManGenerateCnf
(
p2
,
8
,
0
,
0
,
0
);
sat_solver
*
pSat
=
(
sat_solver
*
)
Cnf_DataWriteIntoSolver
(
pCnf
,
1
,
0
);
// compute parameters
int
nOuts
=
Gia_ManCoNum
(
p
);
int
nCiVars
=
Gia_ManCiNum
(
p
),
iCiVarBeg
=
pCnf
->
nVars
-
nCiVars
;
// - 1;
int
o
,
i
,
n
,
RetValue
,
nCounter
,
iAuxVarStart
=
sat_solver_nvars
(
pSat
);
int
nCubes
[
2
][
2
]
=
{
0
};
// create variables
Vec_Int_t
*
vVars
=
Vec_IntAlloc
(
nCiVars
);
for
(
n
=
0
;
n
<
nCiVars
;
n
++
)
Vec_IntPush
(
vVars
,
iCiVarBeg
+
n
);
sat_solver_setnvars
(
pSat
,
iAuxVarStart
+
4
*
nOuts
);
// iterate through outputs
for
(
o
=
0
;
o
<
nOuts
;
o
++
)
for
(
i
=
0
;
i
<
2
;
i
++
)
for
(
n
=
0
;
n
<
2
;
n
++
)
// 0=onset, 1=offset
// for ( n = 1; n >= 0; n-- ) // 0=onset, 1=offset
{
printf
(
"Out %3d %sset "
,
o
,
n
?
"off"
:
" on"
);
RetValue
=
Bmc_FxSolve
(
pSat
,
Abc_Var2Lit
(
o
,
n
),
iAuxVarStart
+
2
*
i
*
nOuts
+
Abc_Var2Lit
(
o
,
n
),
vVars
,
0
,
0
,
&
nCounter
,
NULL
);
if
(
RetValue
==
0
)
printf
(
"Mismatch
\n
"
);
if
(
RetValue
==
-
1
)
printf
(
"Timeout
\n
"
);
nCubes
[
i
][
n
]
+=
nCounter
;
}
// cleanup
Vec_IntFree
(
vVars
);
sat_solver_delete
(
pSat
);
Cnf_DataFree
(
pCnf
);
Gia_ManStop
(
p2
);
printf
(
"Onset = %5d. Offset = %5d. Onset = %5d. Offset = %5d.
\n
"
,
nCubes
[
0
][
0
],
nCubes
[
0
][
1
],
nCubes
[
1
][
0
],
nCubes
[
1
][
1
]
);
return
1
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Bmc_FxAddClauses
(
sat_solver
*
pSat
,
Vec_Int_t
*
vDivs
,
int
iCiVarBeg
,
int
iVarStart
)
{
int
i
,
Func
,
pLits
[
3
],
nDivs
=
Vec_IntSize
(
vDivs
)
/
4
;
assert
(
Vec_IntSize
(
vDivs
)
%
4
==
0
);
// create new var for each divisor
for
(
i
=
0
;
i
<
nDivs
;
i
++
)
{
Func
=
Vec_IntEntry
(
vDivs
,
4
*
i
+
0
);
pLits
[
0
]
=
Vec_IntEntry
(
vDivs
,
4
*
i
+
1
);
pLits
[
1
]
=
Vec_IntEntry
(
vDivs
,
4
*
i
+
2
);
pLits
[
2
]
=
Vec_IntEntry
(
vDivs
,
4
*
i
+
3
);
//printf( "Adding clause with vars %d %d -> %d\n", iCiVarBeg + Abc_Lit2Var(pLits[0]), iCiVarBeg + Abc_Lit2Var(pLits[1]), iVarStart + nDivs - 1 - i );
if
(
Func
==
DIV_AND
)
sat_solver_add_and
(
pSat
,
iVarStart
+
nDivs
-
1
-
i
,
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
0
]),
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
1
]),
Abc_LitIsCompl
(
pLits
[
0
]),
Abc_LitIsCompl
(
pLits
[
1
]),
0
);
else
if
(
Func
==
DIV_XOR
)
sat_solver_add_xor
(
pSat
,
iVarStart
+
nDivs
-
1
-
i
,
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
0
]),
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
1
]),
0
);
else
if
(
Func
==
DIV_MUX
)
sat_solver_add_mux
(
pSat
,
iVarStart
+
nDivs
-
1
-
i
,
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
0
]),
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
1
]),
iCiVarBeg
+
Abc_Lit2Var
(
pLits
[
2
]),
Abc_LitIsCompl
(
pLits
[
0
]),
Abc_LitIsCompl
(
pLits
[
1
]),
Abc_LitIsCompl
(
pLits
[
2
]),
0
);
else
assert
(
0
);
}
}
int
Bmc_FxComputeOne
(
Gia_Man_t
*
p
)
{
int
Extra
=
1000
;
int
nIterMax
=
5
;
int
nDiv2Add
=
16
;
// create SAT solver
Cnf_Dat_t
*
pCnf
=
Mf_ManGenerateCnf
(
p
,
8
,
0
,
0
,
0
);
sat_solver
*
pSat
=
(
sat_solver
*
)
Cnf_DataWriteIntoSolver
(
pCnf
,
1
,
0
);
// compute parameters
int
nCiVars
=
Gia_ManCiNum
(
p
);
// PI count
int
iCiVarBeg
=
pCnf
->
nVars
-
nCiVars
;
//- 1; // first PI var
int
iCiVarCur
=
iCiVarBeg
+
nCiVars
;
// current unused PI var
int
n
,
Iter
,
RetValue
;
// create variables
int
iAuxVarStart
=
sat_solver_nvars
(
pSat
)
+
Extra
;
// the aux var
sat_solver_setnvars
(
pSat
,
iAuxVarStart
+
1
+
nIterMax
);
for
(
Iter
=
0
;
Iter
<
nIterMax
;
Iter
++
)
{
Vec_Wec_t
*
vCubes
=
Vec_WecAlloc
(
1000
);
// collect variables
Vec_Int_t
*
vVar2Sat
=
Vec_IntAlloc
(
iCiVarCur
-
iCiVarBeg
),
*
vDivs
;
// for ( n = iCiVarCur - 1; n >= iCiVarBeg; n-- )
for
(
n
=
iCiVarBeg
;
n
<
iCiVarCur
;
n
++
)
Vec_IntPush
(
vVar2Sat
,
n
);
// iterate through outputs
printf
(
"
\n
Iteration %d (Aux = %d)
\n
"
,
Iter
,
iAuxVarStart
+
Iter
);
RetValue
=
Bmc_FxSolve
(
pSat
,
0
,
iAuxVarStart
+
Iter
,
vVar2Sat
,
1
,
1
,
NULL
,
vCubes
);
if
(
RetValue
==
0
)
printf
(
"Mismatch
\n
"
);
if
(
RetValue
==
-
1
)
printf
(
"Timeout
\n
"
);
// print cubes
//Div_CubePrint( vCubes, nCiVars );
vDivs
=
Div_CubePairs
(
vCubes
,
nCiVars
,
nDiv2Add
);
Vec_WecFree
(
vCubes
);
// add clauses and update variables
Bmc_FxAddClauses
(
pSat
,
vDivs
,
iCiVarBeg
,
iCiVarCur
);
iCiVarCur
+=
Vec_IntSize
(
vDivs
)
/
4
;
Vec_IntFree
(
vDivs
);
// cleanup
assert
(
Vec_IntSize
(
vVar2Sat
)
<=
nCiVars
+
Extra
);
Vec_IntFree
(
vVar2Sat
);
}
// cleanup
sat_solver_delete
(
pSat
);
Cnf_DataFree
(
pCnf
);
return
1
;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
src/sat/bsat/satSolver.h
View file @
6da21b8b
...
...
@@ -374,53 +374,53 @@ static inline int sat_solver_add_xor( sat_solver * pSat, int iVarA, int iVarB, i
assert
(
Cid
);
return
4
;
}
static
inline
int
sat_solver_add_mux
(
sat_solver
*
pSat
,
int
iVar
C
,
int
iVarT
,
int
iVarE
,
int
iVar
Z
)
static
inline
int
sat_solver_add_mux
(
sat_solver
*
pSat
,
int
iVar
Z
,
int
iVarC
,
int
iVarT
,
int
iVarE
,
int
iComplC
,
int
iComplT
,
int
iComplE
,
int
iCompl
Z
)
{
lit
Lits
[
3
];
int
Cid
;
assert
(
iVarC
>=
0
&&
iVarT
>=
0
&&
iVarE
>=
0
&&
iVarZ
>=
0
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
1
);
Lits
[
1
]
=
toLitCond
(
iVarT
,
1
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
1
^
iComplC
);
Lits
[
1
]
=
toLitCond
(
iVarT
,
1
^
iComplT
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
0
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
1
);
Lits
[
1
]
=
toLitCond
(
iVarT
,
0
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
1
^
iComplC
);
Lits
[
1
]
=
toLitCond
(
iVarT
,
0
^
iComplT
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
^
iComplZ
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
0
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
1
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
0
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
0
^
iComplC
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
1
^
iComplE
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
0
^
iComplZ
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
0
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
0
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
);
Lits
[
0
]
=
toLitCond
(
iVarC
,
0
^
iComplC
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
0
^
iComplE
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
^
iComplZ
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
if
(
iVarT
==
iVarE
)
return
4
;
Lits
[
0
]
=
toLitCond
(
iVarT
,
0
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
0
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
);
Lits
[
0
]
=
toLitCond
(
iVarT
,
0
^
iComplT
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
0
^
iComplE
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
1
^
iComplZ
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
Lits
[
0
]
=
toLitCond
(
iVarT
,
1
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
1
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
0
);
Lits
[
0
]
=
toLitCond
(
iVarT
,
1
^
iComplT
);
Lits
[
1
]
=
toLitCond
(
iVarE
,
1
^
iComplE
);
Lits
[
2
]
=
toLitCond
(
iVarZ
,
0
^
iComplZ
);
Cid
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
3
);
assert
(
Cid
);
return
6
;
}
static
inline
int
sat_solver_add_mux41
(
sat_solver
*
pSat
,
int
iVar
C0
,
int
iVarC1
,
int
iVarD0
,
int
iVarD1
,
int
iVarD2
,
int
iVarD3
,
int
iVarZ
)
static
inline
int
sat_solver_add_mux41
(
sat_solver
*
pSat
,
int
iVar
Z
,
int
iVarC0
,
int
iVarC1
,
int
iVarD0
,
int
iVarD1
,
int
iVarD2
,
int
iVarD3
)
{
lit
Lits
[
4
];
int
Cid
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment