Commit 61850d59 by Alan Mishchenko

Version abc80116

parent 4a61139d
......@@ -1170,6 +1170,10 @@ SOURCE=.\src\sat\bsat\satInter.c
# End Source File
# Begin Source File
SOURCE=.\src\sat\bsat\satInterA.c
# End Source File
# Begin Source File
SOURCE=.\src\sat\bsat\satMem.c
# End Source File
# Begin Source File
......@@ -2870,6 +2874,10 @@ SOURCE=.\src\aig\aig\aigHaig.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\aig\aigInter.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\aig\aigMan.c
# End Source File
# Begin Source File
......
/**CFile****************************************************************
FileName [aigInter.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [AIG package.]
Synopsis [Interpolate two AIGs.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: aigInter.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
#include "aig.h"
#include "cnf.h"
#include "satStore.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Aig_ManInter( Aig_Man_t * pManOn, Aig_Man_t * pManOff, int fVerbose )
{
void * pSatCnf = NULL;
Inta_Man_t * pManInter;
Aig_Man_t * pRes;
sat_solver * pSat;
Cnf_Dat_t * pCnfOn, * pCnfOff;
Vec_Int_t * vVarsAB;
Aig_Obj_t * pObj, * pObj2;
int Lits[3], status, i;
int clk = clock();
assert( Aig_ManPiNum(pManOn) == Aig_ManPiNum(pManOff) );
// derive CNFs
pCnfOn = Cnf_Derive( pManOn, 0 );
pCnfOff = Cnf_Derive( pManOff, 0 );
// pCnfOn = Cnf_DeriveSimple( pManOn, 0 );
// pCnfOff = Cnf_DeriveSimple( pManOff, 0 );
Cnf_DataLift( pCnfOff, pCnfOn->nVars );
// start the solver
pSat = sat_solver_new();
sat_solver_store_alloc( pSat );
sat_solver_setnvars( pSat, pCnfOn->nVars + pCnfOff->nVars );
// add clauses of A
for ( i = 0; i < pCnfOn->nClauses; i++ )
{
if ( !sat_solver_addclause( pSat, pCnfOn->pClauses[i], pCnfOn->pClauses[i+1] ) )
{
Cnf_DataFree( pCnfOn );
Cnf_DataFree( pCnfOff );
sat_solver_delete( pSat );
return NULL;
}
}
sat_solver_store_mark_clauses_a( pSat );
// add clauses of B
for ( i = 0; i < pCnfOff->nClauses; i++ )
{
if ( !sat_solver_addclause( pSat, pCnfOff->pClauses[i], pCnfOff->pClauses[i+1] ) )
{
Cnf_DataFree( pCnfOn );
Cnf_DataFree( pCnfOff );
sat_solver_delete( pSat );
return NULL;
}
}
// add PI clauses
// collect the common variables
vVarsAB = Vec_IntAlloc( Aig_ManPiNum(pManOn) );
Aig_ManForEachPi( pManOn, pObj, i )
{
Vec_IntPush( vVarsAB, pCnfOn->pVarNums[pObj->Id] );
pObj2 = Aig_ManPi( pManOff, i );
Lits[0] = toLitCond( pCnfOn->pVarNums[pObj->Id], 0 );
Lits[1] = toLitCond( pCnfOff->pVarNums[pObj2->Id], 1 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
Lits[0] = toLitCond( pCnfOn->pVarNums[pObj->Id], 1 );
Lits[1] = toLitCond( pCnfOff->pVarNums[pObj2->Id], 0 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
}
Cnf_DataFree( pCnfOn );
Cnf_DataFree( pCnfOff );
sat_solver_store_mark_roots( pSat );
if ( fVerbose )
{
PRT( "Prepare", clock() - clk );
}
/*
status = sat_solver_simplify(pSat);
if ( status == 0 )
{
Vec_IntFree( vVarsAB );
Cnf_DataFree( pCnfOn );
Cnf_DataFree( pCnfOff );
sat_solver_delete( pSat );
return NULL;
}
*/
// solve the problem
clk = clock();
status = sat_solver_solve( pSat, NULL, NULL, (sint64)0, (sint64)0, (sint64)0, (sint64)0 );
if ( fVerbose )
{
PRT( "Solving", clock() - clk );
}
if ( status == l_False )
{
pSatCnf = sat_solver_store_release( pSat );
// printf( "unsat\n" );
}
else if ( status == l_True )
{
// printf( "sat\n" );
}
else
{
// printf( "undef\n" );
}
sat_solver_delete( pSat );
if ( pSatCnf == NULL )
{
printf( "The SAT problem is not unsat.\n" );
Vec_IntFree( vVarsAB );
return NULL;
}
// create the resulting manager
pManInter = Inta_ManAlloc();
pRes = Inta_ManInterpolate( pManInter, pSatCnf, vVarsAB, fVerbose );
Inta_ManFree( pManInter );
Vec_IntFree( vVarsAB );
Sto_ManFree( pSatCnf );
return pRes;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -3,6 +3,7 @@ SRC += src/aig/aig/aigCheck.c \
src/aig/aig/aigFanout.c \
src/aig/aig/aigFrames.c \
src/aig/aig/aigHaig.c \
src/aig/aig/aigInter.c \
src/aig/aig/aigMan.c \
src/aig/aig/aigMem.c \
src/aig/aig/aigMffc.c \
......
......@@ -133,6 +133,7 @@ extern Cnf_Man_t * Cnf_ManStart();
extern void Cnf_ManStop( Cnf_Man_t * p );
extern Vec_Int_t * Cnf_DataCollectPiSatNums( Cnf_Dat_t * pCnf, Aig_Man_t * p );
extern void Cnf_DataFree( Cnf_Dat_t * p );
extern void Cnf_DataLift( Cnf_Dat_t * p, int nVarsPlus );
extern void Cnf_DataWriteIntoFile( Cnf_Dat_t * p, char * pFileName, int fReadable );
void * Cnf_DataWriteIntoSolver( Cnf_Dat_t * p, int nFrames, int fInit );
/*=== cnfMap.c ========================================================*/
......
......@@ -139,6 +139,28 @@ void Cnf_DataFree( Cnf_Dat_t * p )
SeeAlso []
***********************************************************************/
void Cnf_DataLift( Cnf_Dat_t * p, int nVarsPlus )
{
Aig_Obj_t * pObj;
int v;
Aig_ManForEachObj( p->pMan, pObj, v )
if ( p->pVarNums[pObj->Id] )
p->pVarNums[pObj->Id] += nVarsPlus;
for ( v = 0; v < p->nLiterals; v++ )
p->pClauses[0][v] += 2*nVarsPlus;
}
/**Function*************************************************************
Synopsis [Writes CNF into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Cnf_DataWriteIntoFile( Cnf_Dat_t * p, char * pFileName, int fReadable )
{
FILE * pFile;
......
......@@ -104,6 +104,7 @@ static int Abc_CommandEspresso ( Abc_Frame_t * pAbc, int argc, char ** arg
static int Abc_CommandGen ( Abc_Frame_t * pAbc, int argc, char ** argv );
//static int Abc_CommandXyz ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandDouble ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandInter ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTest ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandQuaVar ( Abc_Frame_t * pAbc, int argc, char ** argv );
......@@ -281,6 +282,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Various", "gen", Abc_CommandGen, 0 );
// Cmd_CommandAdd( pAbc, "Various", "xyz", Abc_CommandXyz, 1 );
Cmd_CommandAdd( pAbc, "Various", "double", Abc_CommandDouble, 1 );
Cmd_CommandAdd( pAbc, "Various", "inter", Abc_CommandInter, 1 );
Cmd_CommandAdd( pAbc, "Various", "test", Abc_CommandTest, 0 );
Cmd_CommandAdd( pAbc, "Various", "qvar", Abc_CommandQuaVar, 1 );
......@@ -6209,6 +6211,77 @@ usage:
SeeAlso []
***********************************************************************/
int Abc_CommandInter( Abc_Frame_t * pAbc, int argc, char ** argv )
{
FILE * pOut, * pErr;
Abc_Ntk_t * pNtk, * pNtkRes, * pNtk1, * pNtk2;
char ** pArgvNew;
int nArgcNew;
int c, fDelete1, fDelete2;
int fVerbose;
extern Abc_Ntk_t * Abc_NtkInter( Abc_Ntk_t * pNtkOn, Abc_Ntk_t * pNtkOff, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
// set defaults
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "vh" ) ) != EOF )
{
switch ( c )
{
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
pArgvNew = argv + globalUtilOptind;
nArgcNew = argc - globalUtilOptind;
if ( !Abc_NtkPrepareTwoNtks( pErr, pNtk, pArgvNew, nArgcNew, &pNtk1, &pNtk2, &fDelete1, &fDelete2 ) )
return 1;
if ( nArgcNew == 0 )
{
printf( "Deriving new circuit structure for the current network.\n" );
Abc_ObjXorFaninC( Abc_NtkPo(pNtk2,0), 0 );
}
pNtkRes = Abc_NtkInter( pNtk1, pNtk2, fVerbose );
if ( fDelete1 ) Abc_NtkDelete( pNtk1 );
if ( fDelete2 ) Abc_NtkDelete( pNtk2 );
if ( pNtkRes == NULL )
{
fprintf( pErr, "Command has failed.\n" );
return 0;
}
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
return 0;
usage:
fprintf( pErr, "usage: inter [-vh] <fileOnSet> <fileOffSet>\n" );
fprintf( pErr, "\t derives interpolant of two networks (onset and offset)\n" );
fprintf( pErr, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandDouble( Abc_Frame_t * pAbc, int argc, char ** argv )
{
FILE * pOut, * pErr;
......@@ -6311,7 +6384,7 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
extern Abc_Ntk_t * Abc_NtkDarToCnf( Abc_Ntk_t * pNtk, char * pFileName );
extern Abc_Ntk_t * Abc_NtkFilter( Abc_Ntk_t * pNtk );
// extern Abc_Ntk_t * Abc_NtkDarRetime( Abc_Ntk_t * pNtk, int nStepsMax, int fVerbose );
extern Abc_Ntk_t * Abc_NtkPcmTest( Abc_Ntk_t * pNtk, int fVerbose );
// extern Abc_Ntk_t * Abc_NtkPcmTest( Abc_Ntk_t * pNtk, int fVerbose );
extern Abc_NtkDarHaigRecord( Abc_Ntk_t * pNtk );
extern void Abc_NtkDarTestBlif( char * pFileName );
......@@ -6464,7 +6537,7 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
}
*/
/*
if ( Abc_NtkIsStrash(pNtk) )
{
fprintf( stdout, "Currently only works for logic circuits.\n" );
......@@ -6482,7 +6555,7 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
}
// replace the current network
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
*/
// Abc_NtkDarHaigRecord( pNtk );
// Abc_NtkDarClau( pNtk, nFrames, nLevels, fBmc, fVerbose, fVeryVerbose );
......
......@@ -1482,6 +1482,54 @@ Abc_Ntk_t * Abc_NtkDarEnlarge( Abc_Ntk_t * pNtk, int nFrames, int fVerbose )
return pNtkAig;
}
/**Function*************************************************************
Synopsis [Interplates two networks.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkInter( Abc_Ntk_t * pNtkOn, Abc_Ntk_t * pNtkOff, int fVerbose )
{
extern Aig_Man_t * Aig_ManInter( Aig_Man_t * pManOn, Aig_Man_t * pManOff, int fVerbose );
Abc_Ntk_t * pNtkAig;
Aig_Man_t * pManOn, * pManOff, * pManAig;
if ( Abc_NtkCoNum(pNtkOn) != 1 || Abc_NtkCoNum(pNtkOff) != 1 )
{
printf( "Currently works only for single output networks.\n" );
return NULL;
}
if ( Abc_NtkCiNum(pNtkOn) != Abc_NtkCiNum(pNtkOff) )
{
printf( "The number of PIs should be the same.\n" );
return NULL;
}
// create internal AIGs
pManOn = Abc_NtkToDar( pNtkOn, 0 );
if ( pManOn == NULL )
return NULL;
pManOff = Abc_NtkToDar( pNtkOff, 0 );
if ( pManOff == NULL )
return NULL;
// derive the interpolant
pManAig = Aig_ManInter( pManOn, pManOff, fVerbose );
if ( pManAig == NULL )
{
printf( "Interpolant computation failed.\n" );
return NULL;
}
Aig_ManStop( pManOn );
Aig_ManStop( pManOff );
// create logic network
pNtkAig = Abc_NtkFromDar( pNtkOn, pManAig );
Aig_ManStop( pManAig );
return pNtkAig;
}
#include "ntl.h"
......
......@@ -100,7 +100,7 @@ Res_Man_t * Res_ManAlloc( Res_Par_t * pPars )
p->pPars = pPars;
p->pWin = Res_WinAlloc();
p->pSim = Res_SimAlloc( pPars->nSimWords );
p->pMan = Int_ManAlloc( 512 );
p->pMan = Int_ManAlloc();
p->vMem = Vec_IntAlloc( 0 );
p->vResubs = Vec_VecStart( pPars->nCands );
p->vResubsW = Vec_VecStart( pPars->nCands );
......
SRC += src/sat/bsat/satMem.c \
src/sat/bsat/satInter.c \
src/sat/bsat/satInterA.c \
src/sat/bsat/satSolver.c \
src/sat/bsat/satStore.c \
src/sat/bsat/satTrace.c \
......
......@@ -99,7 +99,7 @@ static inline void Int_ManProofSet( Int_Man_t * p, Sto_Cls_t * pCls, int n
SeeAlso []
***********************************************************************/
Int_Man_t * Int_ManAlloc( int nVarsAlloc )
Int_Man_t * Int_ManAlloc()
{
Int_Man_t * p;
// allocate the manager
......
/**CFile****************************************************************
FileName [satInter.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT sat_solver.]
Synopsis [Interpolation package.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: satInter.c,v 1.4 2005/09/16 22:55:03 casem Exp $]
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include "satStore.h"
#include "aig.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// variable assignments
static const lit LIT_UNDEF = 0xffffffff;
// interpolation manager
struct Inta_Man_t_
{
// clauses of the problems
Sto_Man_t * pCnf; // the set of CNF clauses for A and B
Vec_Int_t * vVarsAB; // the array of global variables
// various parameters
int fVerbose; // verbosiness flag
int fProofVerif; // verifies the proof
int fProofWrite; // writes the proof file
int nVarsAlloc; // the allocated size of var arrays
int nClosAlloc; // the allocated size of clause arrays
// internal BCP
int nRootSize; // the number of root level assignments
int nTrailSize; // the number of assignments made
lit * pTrail; // chronological order of assignments (size nVars)
lit * pAssigns; // assignments by variable (size nVars)
char * pSeens; // temporary mark (size nVars)
Sto_Cls_t ** pReasons; // reasons for each assignment (size nVars)
Sto_Cls_t ** pWatches; // watched clauses for each literal (size 2*nVars)
// interpolation data
Aig_Man_t * pAig; // the AIG manager for recording the interpolant
int * pVarTypes; // variable type (size nVars) [1=A, 0=B, <0=AB]
Aig_Obj_t ** pInters; // storage for interpolants as truth tables (size nClauses)
int nIntersAlloc; // the allocated size of truth table array
// proof recording
int Counter; // counter of resolved clauses
int * pProofNums; // the proof numbers for each clause (size nClauses)
FILE * pFile; // the file for proof recording
// internal verification
lit * pResLits; // the literals of the resolvent
int nResLits; // the number of literals of the resolvent
int nResLitsAlloc;// the number of literals of the resolvent
// runtime stats
int timeBcp; // the runtime for BCP
int timeTrace; // the runtime of trace construction
int timeTotal; // the total runtime of interpolation
};
// procedure to get hold of the clauses' truth table
static inline Aig_Obj_t ** Inta_ManAigRead( Inta_Man_t * pMan, Sto_Cls_t * pCls ) { return pMan->pInters + pCls->Id; }
static inline void Inta_ManAigClear( Inta_Man_t * pMan, Aig_Obj_t ** p ) { *p = Aig_ManConst0(pMan->pAig); }
static inline void Inta_ManAigFill( Inta_Man_t * pMan, Aig_Obj_t ** p ) { *p = Aig_ManConst1(pMan->pAig); }
static inline void Inta_ManAigCopy( Inta_Man_t * pMan, Aig_Obj_t ** p, Aig_Obj_t ** q ) { *p = *q; }
static inline void Inta_ManAigAnd( Inta_Man_t * pMan, Aig_Obj_t ** p, Aig_Obj_t ** q ) { *p = Aig_And(pMan->pAig, *p, *q); }
static inline void Inta_ManAigOr( Inta_Man_t * pMan, Aig_Obj_t ** p, Aig_Obj_t ** q ) { *p = Aig_Or(pMan->pAig, *p, *q); }
static inline void Inta_ManAigOrNot( Inta_Man_t * pMan, Aig_Obj_t ** p, Aig_Obj_t ** q ) { *p = Aig_Or(pMan->pAig, *p, Aig_Not(*q)); }
static inline void Inta_ManAigOrVar( Inta_Man_t * pMan, Aig_Obj_t ** p, int v ) { *p = Aig_Or(pMan->pAig, *p, Aig_IthVar(pMan->pAig, v)); }
static inline void Inta_ManAigOrNotVar( Inta_Man_t * pMan, Aig_Obj_t ** p, int v ) { *p = Aig_Or(pMan->pAig, *p, Aig_Not(Aig_IthVar(pMan->pAig, v))); }
// reading/writing the proof for a clause
static inline int Inta_ManProofGet( Inta_Man_t * p, Sto_Cls_t * pCls ) { return p->pProofNums[pCls->Id]; }
static inline void Inta_ManProofSet( Inta_Man_t * p, Sto_Cls_t * pCls, int n ) { p->pProofNums[pCls->Id] = n; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocate proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Inta_Man_t * Inta_ManAlloc()
{
Inta_Man_t * p;
// allocate the manager
p = (Inta_Man_t *)malloc( sizeof(Inta_Man_t) );
memset( p, 0, sizeof(Inta_Man_t) );
// verification
p->nResLitsAlloc = (1<<16);
p->pResLits = malloc( sizeof(lit) * p->nResLitsAlloc );
// parameters
p->fProofWrite = 0;
p->fProofVerif = 1;
return p;
}
/**Function*************************************************************
Synopsis [Count common variables in the clauses of A and B.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Inta_ManGlobalVars( Inta_Man_t * p )
{
Sto_Cls_t * pClause;
int LargeNum = -100000000;
int Var, nVarsAB, v;
// mark the variable encountered in the clauses of A
Sto_ManForEachClauseRoot( p->pCnf, pClause )
{
if ( !pClause->fA )
break;
for ( v = 0; v < (int)pClause->nLits; v++ )
p->pVarTypes[lit_var(pClause->pLits[v])] = 1;
}
// check variables that appear in clauses of B
nVarsAB = 0;
Sto_ManForEachClauseRoot( p->pCnf, pClause )
{
if ( pClause->fA )
continue;
for ( v = 0; v < (int)pClause->nLits; v++ )
{
Var = lit_var(pClause->pLits[v]);
if ( p->pVarTypes[Var] == 1 ) // var of A
{
// change it into a global variable
nVarsAB++;
p->pVarTypes[Var] = LargeNum;
}
}
}
assert( nVarsAB <= Vec_IntSize(p->vVarsAB) );
// order global variables
nVarsAB = 0;
Vec_IntForEachEntry( p->vVarsAB, Var, v )
p->pVarTypes[Var] = -(1+nVarsAB++);
// check that there is no extra global variables
for ( v = 0; v < p->pCnf->nVars; v++ )
assert( p->pVarTypes[v] != LargeNum );
return nVarsAB;
}
/**Function*************************************************************
Synopsis [Resize proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManResize( Inta_Man_t * p )
{
// check if resizing is needed
if ( p->nVarsAlloc < p->pCnf->nVars )
{
// find the new size
if ( p->nVarsAlloc == 0 )
p->nVarsAlloc = 1;
while ( p->nVarsAlloc < p->pCnf->nVars )
p->nVarsAlloc *= 2;
// resize the arrays
p->pTrail = (lit *) realloc( p->pTrail, sizeof(lit) * p->nVarsAlloc );
p->pAssigns = (lit *) realloc( p->pAssigns, sizeof(lit) * p->nVarsAlloc );
p->pSeens = (char *) realloc( p->pSeens, sizeof(char) * p->nVarsAlloc );
p->pVarTypes = (int *) realloc( p->pVarTypes, sizeof(int) * p->nVarsAlloc );
p->pReasons = (Sto_Cls_t **)realloc( p->pReasons, sizeof(Sto_Cls_t *) * p->nVarsAlloc );
p->pWatches = (Sto_Cls_t **)realloc( p->pWatches, sizeof(Sto_Cls_t *) * p->nVarsAlloc*2 );
}
// clean the free space
memset( p->pAssigns , 0xff, sizeof(lit) * p->pCnf->nVars );
memset( p->pSeens , 0, sizeof(char) * p->pCnf->nVars );
memset( p->pVarTypes, 0, sizeof(int) * p->pCnf->nVars );
memset( p->pReasons , 0, sizeof(Sto_Cls_t *) * p->pCnf->nVars );
memset( p->pWatches , 0, sizeof(Sto_Cls_t *) * p->pCnf->nVars*2 );
// compute the number of common variables
Inta_ManGlobalVars( p );
// check if resizing of clauses is needed
if ( p->nClosAlloc < p->pCnf->nClauses )
{
// find the new size
if ( p->nClosAlloc == 0 )
p->nClosAlloc = 1;
while ( p->nClosAlloc < p->pCnf->nClauses )
p->nClosAlloc *= 2;
// resize the arrays
p->pProofNums = (int *) realloc( p->pProofNums, sizeof(int) * p->nClosAlloc );
}
memset( p->pProofNums, 0, sizeof(int) * p->pCnf->nClauses );
// check if resizing of truth tables is needed
if ( p->nIntersAlloc < p->pCnf->nClauses )
{
p->nIntersAlloc = p->pCnf->nClauses;
p->pInters = (Aig_Obj_t **) realloc( p->pInters, sizeof(Aig_Obj_t *) * p->nIntersAlloc );
}
memset( p->pInters, 0, sizeof(Aig_Obj_t *) * p->pCnf->nClauses );
}
/**Function*************************************************************
Synopsis [Deallocate proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManFree( Inta_Man_t * p )
{
/*
printf( "Runtime stats:\n" );
PRT( "BCP ", p->timeBcp );
PRT( "Trace ", p->timeTrace );
PRT( "TOTAL ", p->timeTotal );
*/
free( p->pInters );
free( p->pProofNums );
free( p->pTrail );
free( p->pAssigns );
free( p->pSeens );
free( p->pVarTypes );
free( p->pReasons );
free( p->pWatches );
free( p->pResLits );
free( p );
}
/**Function*************************************************************
Synopsis [Prints the clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManPrintClause( Inta_Man_t * p, Sto_Cls_t * pClause )
{
int i;
printf( "Clause ID = %d. Proof = %d. {", pClause->Id, Inta_ManProofGet(p, pClause) );
for ( i = 0; i < (int)pClause->nLits; i++ )
printf( " %d", pClause->pLits[i] );
printf( " }\n" );
}
/**Function*************************************************************
Synopsis [Prints the resolvent.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManPrintResolvent( lit * pResLits, int nResLits )
{
int i;
printf( "Resolvent: {" );
for ( i = 0; i < nResLits; i++ )
printf( " %d", pResLits[i] );
printf( " }\n" );
}
/**Function*************************************************************
Synopsis [Prints the interpolant for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManPrintInterOne( Inta_Man_t * p, Sto_Cls_t * pClause )
{
printf( "Clause %2d : ", pClause->Id );
// Extra_PrintBinary___( stdout, Inta_ManAigRead(p, pClause), (1 << p->nVarsAB) );
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Adds one clause to the watcher list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Inta_ManWatchClause( Inta_Man_t * p, Sto_Cls_t * pClause, lit Lit )
{
assert( lit_check(Lit, p->pCnf->nVars) );
if ( pClause->pLits[0] == Lit )
pClause->pNext0 = p->pWatches[lit_neg(Lit)];
else
{
assert( pClause->pLits[1] == Lit );
pClause->pNext1 = p->pWatches[lit_neg(Lit)];
}
p->pWatches[lit_neg(Lit)] = pClause;
}
/**Function*************************************************************
Synopsis [Records implication.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Inta_ManEnqueue( Inta_Man_t * p, lit Lit, Sto_Cls_t * pReason )
{
int Var = lit_var(Lit);
if ( p->pAssigns[Var] != LIT_UNDEF )
return p->pAssigns[Var] == Lit;
p->pAssigns[Var] = Lit;
p->pReasons[Var] = pReason;
p->pTrail[p->nTrailSize++] = Lit;
//printf( "assigning var %d value %d\n", Var, !lit_sign(Lit) );
return 1;
}
/**Function*************************************************************
Synopsis [Records implication.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Inta_ManCancelUntil( Inta_Man_t * p, int Level )
{
lit Lit;
int i, Var;
for ( i = p->nTrailSize - 1; i >= Level; i-- )
{
Lit = p->pTrail[i];
Var = lit_var( Lit );
p->pReasons[Var] = NULL;
p->pAssigns[Var] = LIT_UNDEF;
//printf( "cancelling var %d\n", Var );
}
p->nTrailSize = Level;
}
/**Function*************************************************************
Synopsis [Propagate one assignment.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Sto_Cls_t * Inta_ManPropagateOne( Inta_Man_t * p, lit Lit )
{
Sto_Cls_t ** ppPrev, * pCur, * pTemp;
lit LitF = lit_neg(Lit);
int i;
// iterate through the literals
ppPrev = p->pWatches + Lit;
for ( pCur = p->pWatches[Lit]; pCur; pCur = *ppPrev )
{
// make sure the false literal is in the second literal of the clause
if ( pCur->pLits[0] == LitF )
{
pCur->pLits[0] = pCur->pLits[1];
pCur->pLits[1] = LitF;
pTemp = pCur->pNext0;
pCur->pNext0 = pCur->pNext1;
pCur->pNext1 = pTemp;
}
assert( pCur->pLits[1] == LitF );
// if the first literal is true, the clause is satisfied
if ( pCur->pLits[0] == p->pAssigns[lit_var(pCur->pLits[0])] )
{
ppPrev = &pCur->pNext1;
continue;
}
// look for a new literal to watch
for ( i = 2; i < (int)pCur->nLits; i++ )
{
// skip the case when the literal is false
if ( lit_neg(pCur->pLits[i]) == p->pAssigns[lit_var(pCur->pLits[i])] )
continue;
// the literal is either true or unassigned - watch it
pCur->pLits[1] = pCur->pLits[i];
pCur->pLits[i] = LitF;
// remove this clause from the watch list of Lit
*ppPrev = pCur->pNext1;
// add this clause to the watch list of pCur->pLits[i] (now it is pCur->pLits[1])
Inta_ManWatchClause( p, pCur, pCur->pLits[1] );
break;
}
if ( i < (int)pCur->nLits ) // found new watch
continue;
// clause is unit - enqueue new implication
if ( Inta_ManEnqueue(p, pCur->pLits[0], pCur) )
{
ppPrev = &pCur->pNext1;
continue;
}
// conflict detected - return the conflict clause
return pCur;
}
return NULL;
}
/**Function*************************************************************
Synopsis [Propagate the current assignments.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Sto_Cls_t * Inta_ManPropagate( Inta_Man_t * p, int Start )
{
Sto_Cls_t * pClause;
int i;
int clk = clock();
for ( i = Start; i < p->nTrailSize; i++ )
{
pClause = Inta_ManPropagateOne( p, p->pTrail[i] );
if ( pClause )
{
p->timeBcp += clock() - clk;
return pClause;
}
}
p->timeBcp += clock() - clk;
return NULL;
}
/**Function*************************************************************
Synopsis [Writes one root clause into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManProofWriteOne( Inta_Man_t * p, Sto_Cls_t * pClause )
{
Inta_ManProofSet( p, pClause, ++p->Counter );
if ( p->fProofWrite )
{
int v;
fprintf( p->pFile, "%d", Inta_ManProofGet(p, pClause) );
for ( v = 0; v < (int)pClause->nLits; v++ )
fprintf( p->pFile, " %d", lit_print(pClause->pLits[v]) );
fprintf( p->pFile, " 0 0\n" );
}
}
/**Function*************************************************************
Synopsis [Traces the proof for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Inta_ManProofTraceOne( Inta_Man_t * p, Sto_Cls_t * pConflict, Sto_Cls_t * pFinal )
{
Sto_Cls_t * pReason;
int i, v, Var, PrevId;
int fPrint = 0;
int clk = clock();
// collect resolvent literals
if ( p->fProofVerif )
{
assert( (int)pConflict->nLits <= p->nResLitsAlloc );
memcpy( p->pResLits, pConflict->pLits, sizeof(lit) * pConflict->nLits );
p->nResLits = pConflict->nLits;
}
// mark all the variables in the conflict as seen
for ( v = 0; v < (int)pConflict->nLits; v++ )
p->pSeens[lit_var(pConflict->pLits[v])] = 1;
// start the anticedents
// pFinal->pAntis = Vec_PtrAlloc( 32 );
// Vec_PtrPush( pFinal->pAntis, pConflict );
if ( p->pCnf->nClausesA )
Inta_ManAigCopy( p, Inta_ManAigRead(p, pFinal), Inta_ManAigRead(p, pConflict) );
// follow the trail backwards
PrevId = Inta_ManProofGet(p, pConflict);
for ( i = p->nTrailSize - 1; i >= 0; i-- )
{
// skip literals that are not involved
Var = lit_var(p->pTrail[i]);
if ( !p->pSeens[Var] )
continue;
p->pSeens[Var] = 0;
// skip literals of the resulting clause
pReason = p->pReasons[Var];
if ( pReason == NULL )
continue;
assert( p->pTrail[i] == pReason->pLits[0] );
// add the variables to seen
for ( v = 1; v < (int)pReason->nLits; v++ )
p->pSeens[lit_var(pReason->pLits[v])] = 1;
// record the reason clause
assert( Inta_ManProofGet(p, pReason) > 0 );
p->Counter++;
if ( p->fProofWrite )
fprintf( p->pFile, "%d * %d %d 0\n", p->Counter, PrevId, Inta_ManProofGet(p, pReason) );
PrevId = p->Counter;
if ( p->pCnf->nClausesA )
{
if ( p->pVarTypes[Var] == 1 ) // var of A
Inta_ManAigOr( p, Inta_ManAigRead(p, pFinal), Inta_ManAigRead(p, pReason) );
else
Inta_ManAigAnd( p, Inta_ManAigRead(p, pFinal), Inta_ManAigRead(p, pReason) );
}
// resolve the temporary resolvent with the reason clause
if ( p->fProofVerif )
{
int v1, v2;
if ( fPrint )
Inta_ManPrintResolvent( p->pResLits, p->nResLits );
// check that the var is present in the resolvent
for ( v1 = 0; v1 < p->nResLits; v1++ )
if ( lit_var(p->pResLits[v1]) == Var )
break;
if ( v1 == p->nResLits )
printf( "Recording clause %d: Cannot find variable %d in the temporary resolvent.\n", pFinal->Id, Var );
if ( p->pResLits[v1] != lit_neg(pReason->pLits[0]) )
printf( "Recording clause %d: The resolved variable %d is in the wrong polarity.\n", pFinal->Id, Var );
// remove this variable from the resolvent
assert( lit_var(p->pResLits[v1]) == Var );
p->nResLits--;
for ( ; v1 < p->nResLits; v1++ )
p->pResLits[v1] = p->pResLits[v1+1];
// add variables of the reason clause
for ( v2 = 1; v2 < (int)pReason->nLits; v2++ )
{
for ( v1 = 0; v1 < p->nResLits; v1++ )
if ( lit_var(p->pResLits[v1]) == lit_var(pReason->pLits[v2]) )
break;
// if it is a new variable, add it to the resolvent
if ( v1 == p->nResLits )
{
if ( p->nResLits == p->nResLitsAlloc )
printf( "Recording clause %d: Ran out of space for intermediate resolvent.\n", pFinal->Id );
p->pResLits[ p->nResLits++ ] = pReason->pLits[v2];
continue;
}
// if the variable is the same, the literal should be the same too
if ( p->pResLits[v1] == pReason->pLits[v2] )
continue;
// the literal is different
printf( "Recording clause %d: Trying to resolve the clause with more than one opposite literal.\n", pFinal->Id );
}
}
// Vec_PtrPush( pFinal->pAntis, pReason );
}
// unmark all seen variables
// for ( i = p->nTrailSize - 1; i >= 0; i-- )
// p->pSeens[lit_var(p->pTrail[i])] = 0;
// check that the literals are unmarked
// for ( i = p->nTrailSize - 1; i >= 0; i-- )
// assert( p->pSeens[lit_var(p->pTrail[i])] == 0 );
// use the resulting clause to check the correctness of resolution
if ( p->fProofVerif )
{
int v1, v2;
if ( fPrint )
Inta_ManPrintResolvent( p->pResLits, p->nResLits );
for ( v1 = 0; v1 < p->nResLits; v1++ )
{
for ( v2 = 0; v2 < (int)pFinal->nLits; v2++ )
if ( pFinal->pLits[v2] == p->pResLits[v1] )
break;
if ( v2 < (int)pFinal->nLits )
continue;
break;
}
if ( v1 < p->nResLits )
{
printf( "Recording clause %d: The final resolvent is wrong.\n", pFinal->Id );
Inta_ManPrintClause( p, pConflict );
Inta_ManPrintResolvent( p->pResLits, p->nResLits );
Inta_ManPrintClause( p, pFinal );
}
}
p->timeTrace += clock() - clk;
// return the proof pointer
if ( p->pCnf->nClausesA )
{
// Inta_ManPrintInterOne( p, pFinal );
}
Inta_ManProofSet( p, pFinal, p->Counter );
return p->Counter;
}
/**Function*************************************************************
Synopsis [Records the proof for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Inta_ManProofRecordOne( Inta_Man_t * p, Sto_Cls_t * pClause )
{
Sto_Cls_t * pConflict;
int i;
// empty clause never ends up there
assert( pClause->nLits > 0 );
if ( pClause->nLits == 0 )
printf( "Error: Empty clause is attempted.\n" );
// add assumptions to the trail
assert( !pClause->fRoot );
assert( p->nTrailSize == p->nRootSize );
for ( i = 0; i < (int)pClause->nLits; i++ )
if ( !Inta_ManEnqueue( p, lit_neg(pClause->pLits[i]), NULL ) )
{
assert( 0 ); // impossible
return 0;
}
// propagate the assumptions
pConflict = Inta_ManPropagate( p, p->nRootSize );
if ( pConflict == NULL )
{
assert( 0 ); // cannot prove
return 0;
}
// construct the proof
Inta_ManProofTraceOne( p, pConflict, pClause );
// undo to the root level
Inta_ManCancelUntil( p, p->nRootSize );
// add large clauses to the watched lists
if ( pClause->nLits > 1 )
{
Inta_ManWatchClause( p, pClause, pClause->pLits[0] );
Inta_ManWatchClause( p, pClause, pClause->pLits[1] );
return 1;
}
assert( pClause->nLits == 1 );
// if the clause proved is unit, add it and propagate
if ( !Inta_ManEnqueue( p, pClause->pLits[0], pClause ) )
{
assert( 0 ); // impossible
return 0;
}
// propagate the assumption
pConflict = Inta_ManPropagate( p, p->nRootSize );
if ( pConflict )
{
// construct the proof
Inta_ManProofTraceOne( p, pConflict, p->pCnf->pEmpty );
// if ( p->fVerbose )
// printf( "Found last conflict after adding unit clause number %d!\n", pClause->Id );
return 0;
}
// update the root level
p->nRootSize = p->nTrailSize;
return 1;
}
/**Function*************************************************************
Synopsis [Propagate the root clauses.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Inta_ManProcessRoots( Inta_Man_t * p )
{
Sto_Cls_t * pClause;
int Counter;
// make sure the root clauses are preceeding the learnt clauses
Counter = 0;
Sto_ManForEachClause( p->pCnf, pClause )
{
assert( (int)pClause->fA == (Counter < (int)p->pCnf->nClausesA) );
assert( (int)pClause->fRoot == (Counter < (int)p->pCnf->nRoots) );
Counter++;
}
assert( p->pCnf->nClauses == Counter );
// make sure the last clause if empty
assert( p->pCnf->pTail->nLits == 0 );
// go through the root unit clauses
p->nTrailSize = 0;
Sto_ManForEachClauseRoot( p->pCnf, pClause )
{
// create watcher lists for the root clauses
if ( pClause->nLits > 1 )
{
Inta_ManWatchClause( p, pClause, pClause->pLits[0] );
Inta_ManWatchClause( p, pClause, pClause->pLits[1] );
}
// empty clause and large clauses
if ( pClause->nLits != 1 )
continue;
// unit clause
assert( lit_check(pClause->pLits[0], p->pCnf->nVars) );
if ( !Inta_ManEnqueue( p, pClause->pLits[0], pClause ) )
{
// detected root level conflict
printf( "Error in Inta_ManProcessRoots(): Detected a root-level conflict too early!\n" );
assert( 0 );
return 0;
}
}
// propagate the root unit clauses
pClause = Inta_ManPropagate( p, 0 );
if ( pClause )
{
// detected root level conflict
Inta_ManProofTraceOne( p, pClause, p->pCnf->pEmpty );
if ( p->fVerbose )
printf( "Found root level conflict!\n" );
return 0;
}
// set the root level
p->nRootSize = p->nTrailSize;
return 1;
}
/**Function*************************************************************
Synopsis [Records the proof.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inta_ManPrepareInter( Inta_Man_t * p )
{
Sto_Cls_t * pClause;
int Var, VarAB, v;
// set interpolants for root clauses
Sto_ManForEachClauseRoot( p->pCnf, pClause )
{
if ( !pClause->fA ) // clause of B
{
Inta_ManAigFill( p, Inta_ManAigRead(p, pClause) );
// Inta_ManPrintInterOne( p, pClause );
continue;
}
// clause of A
Inta_ManAigClear( p, Inta_ManAigRead(p, pClause) );
for ( v = 0; v < (int)pClause->nLits; v++ )
{
Var = lit_var(pClause->pLits[v]);
if ( p->pVarTypes[Var] < 0 ) // global var
{
VarAB = -p->pVarTypes[Var]-1;
assert( VarAB >= 0 && VarAB < Vec_IntSize(p->vVarsAB) );
if ( lit_sign(pClause->pLits[v]) ) // negative var
Inta_ManAigOrNotVar( p, Inta_ManAigRead(p, pClause), VarAB );
else
Inta_ManAigOrVar( p, Inta_ManAigRead(p, pClause), VarAB );
}
}
// Inta_ManPrintInterOne( p, pClause );
}
}
/**Function*************************************************************
Synopsis [Computes interpolant for the given CNF.]
Description [Takes the interpolation manager, the CNF deriving by the SAT
solver, which includes ClausesA, ClausesB, and learned clauses. Additional
arguments are the vector of variables common to AB and the verbosiness flag.
Returns the AIG manager with a single output, containing the interpolant.]
SideEffects []
SeeAlso []
***********************************************************************/
void * Inta_ManInterpolate( Inta_Man_t * p, Sto_Man_t * pCnf, void * vVarsAB, int fVerbose )
{
Aig_Man_t * pRes;
Sto_Cls_t * pClause;
int RetValue = 1;
int clkTotal = clock();
// check that the CNF makes sense
assert( pCnf->nVars > 0 && pCnf->nClauses > 0 );
p->pCnf = pCnf;
p->fVerbose = fVerbose;
p->vVarsAB = vVarsAB;
p->pAig = pRes = Aig_ManStart( 10000 );
Aig_IthVar( p->pAig, Vec_IntSize(p->vVarsAB) - 1 );
// adjust the manager
Inta_ManResize( p );
// prepare the interpolant computation
Inta_ManPrepareInter( p );
// construct proof for each clause
// start the proof
if ( p->fProofWrite )
{
p->pFile = fopen( "proof.cnf_", "w" );
p->Counter = 0;
}
// write the root clauses
Sto_ManForEachClauseRoot( p->pCnf, pClause )
Inta_ManProofWriteOne( p, pClause );
// propagate root level assignments
if ( Inta_ManProcessRoots( p ) )
{
// if there is no conflict, consider learned clauses
Sto_ManForEachClause( p->pCnf, pClause )
{
if ( pClause->fRoot )
continue;
if ( !Inta_ManProofRecordOne( p, pClause ) )
{
RetValue = 0;
break;
}
}
}
// stop the proof
if ( p->fProofWrite )
{
fclose( p->pFile );
p->pFile = NULL;
}
if ( fVerbose )
{
PRT( "Interpo", clock() - clkTotal );
printf( "Vars = %d. Roots = %d. Learned = %d. Resol steps = %d. Ave = %.2f. Mem = %.2f Mb\n",
p->pCnf->nVars, p->pCnf->nRoots, p->pCnf->nClauses-p->pCnf->nRoots, p->Counter,
1.0*(p->Counter-p->pCnf->nRoots)/(p->pCnf->nClauses-p->pCnf->nRoots),
1.0*Sto_ManMemoryReport(p->pCnf)/(1<<20) );
p->timeTotal += clock() - clkTotal;
}
Aig_ObjCreatePo( pRes, *Inta_ManAigRead( p, p->pCnf->pTail ) );
Aig_ManCleanup( pRes );
p->pAig = NULL;
return pRes;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -71,6 +71,7 @@ static inline int lit_var (lit l) { return l >> 1; }
static inline int lit_sign (lit l) { return l & 1; }
static inline int lit_print(lit l) { return lit_sign(l)? -lit_var(l)-1 : lit_var(l)+1; }
static inline lit lit_read (int s) { return s > 0 ? toLit(s-1) : lit_neg(toLit(-s-1)); }
static inline int lit_check(lit l, int n) { return l >= 0 && lit_var(l) < n; }
//=================================================================================================
......
/**CFile****************************************************************
FileName [pr.h]
FileName [satStore.h]
SystemName [ABC: Logic synthesis and verification system.]
......@@ -18,11 +18,13 @@
***********************************************************************/
#ifndef __PR_H__
#define __PR_H__
#ifndef __SAT_STORE_H__
#define __SAT_STORE_H__
#include "satSolver.h"
/*
The trace of SAT solving contains the original clause of the problem
The trace of SAT solving contains the original clauses of the problem
along with the learned clauses derived during SAT solving.
The first line of the resulting file contains 3 numbers instead of 2:
c <num_vars> <num_all_clauses> <num_root_clauses>
......@@ -54,7 +56,18 @@ extern "C" {
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
/*
typedef unsigned lit;
// variable/literal conversions (taken from MiniSat)
static inline lit toLit (int v) { return v + v; }
static inline lit toLitCond(int v, int c) { return v + v + (c != 0); }
static inline lit lit_neg (lit l) { return l ^ 1; }
static inline int lit_var (lit l) { return l >> 1; }
static inline int lit_sign (lit l) { return l & 1; }
static inline int lit_print(lit l) { return lit_sign(l)? -lit_var(l)-1 : lit_var(l)+1; }
static inline lit lit_read (int s) { return s > 0 ? toLit(s-1) : lit_neg(toLit(-s-1)); }
static inline int lit_check(lit l, int n) { return l >= 0 && lit_var(l) < n; }
*/
typedef struct Sto_Cls_t_ Sto_Cls_t;
struct Sto_Cls_t_
......@@ -87,16 +100,6 @@ struct Sto_Man_t_
char * pChunkLast; // the last memory chunk
};
// variable/literal conversions (taken from MiniSat)
static inline lit toLit (int v) { return v + v; }
static inline lit toLitCond(int v, int c) { return v + v + (c != 0); }
static inline lit lit_neg (lit l) { return l ^ 1; }
static inline int lit_var (lit l) { return l >> 1; }
static inline int lit_sign (lit l) { return l & 1; }
static inline int lit_print(lit l) { return lit_sign(l)? -lit_var(l)-1 : lit_var(l)+1; }
static inline lit lit_read (int s) { return s > 0 ? toLit(s-1) : lit_neg(toLit(-s-1)); }
static inline int lit_check(lit l, int n) { return l >= 0 && lit_var(l) < n; }
// iterators through the clauses
#define Sto_ManForEachClause( p, pCls ) for( pCls = p->pHead; pCls; pCls = pCls->pNext )
#define Sto_ManForEachClauseRoot( p, pCls ) for( pCls = p->pHead; pCls && pCls->fRoot; pCls = pCls->pNext )
......@@ -121,10 +124,16 @@ extern Sto_Man_t * Sto_ManLoadClauses( char * pFileName );
/*=== satInter.c ==========================================================*/
typedef struct Int_Man_t_ Int_Man_t;
extern Int_Man_t * Int_ManAlloc( int nVarsAlloc );
extern Int_Man_t * Int_ManAlloc();
extern void Int_ManFree( Int_Man_t * p );
extern int Int_ManInterpolate( Int_Man_t * p, Sto_Man_t * pCnf, int fVerbose, unsigned ** ppResult );
/*=== satInterA.c ==========================================================*/
typedef struct Inta_Man_t_ Inta_Man_t;
extern Inta_Man_t * Inta_ManAlloc();
extern void Inta_ManFree( Inta_Man_t * p );
extern void * Inta_ManInterpolate( Inta_Man_t * p, Sto_Man_t * pCnf, void * vVarsAB, int fVerbose );
#ifdef __cplusplus
}
#endif
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment