Commit 519b03e8 by Alan Mishchenko

Changes to the matching procedure and new abstraction code.

parent 976f5f5a
......@@ -2039,7 +2039,7 @@ SOURCE=.\src\map\if\ifDec10.c
# End Source File
# Begin Source File
SOURCE=.\src\map\if\ifDec10f.c
SOURCE=.\src\map\if\ifDec16.c
# End Source File
# Begin Source File
......@@ -3507,6 +3507,10 @@ SOURCE=.\src\aig\saig\saigAbsStart.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigAbsVfa.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigBmc.c
# End Source File
# Begin Source File
......
......@@ -2,6 +2,7 @@ SRC += src/aig/saig/saigAbs.c \
src/aig/saig/saigAbsCba.c \
src/aig/saig/saigAbsPba.c \
src/aig/saig/saigAbsStart.c \
src/aig/saig/saigAbsVfa.c \
src/aig/saig/saigBmc.c \
src/aig/saig/saigBmc2.c \
src/aig/saig/saigBmc3.c \
......
/**CFile****************************************************************
FileName [saigAbsVfa.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Sequential AIG package.]
Synopsis [Intergrated abstraction procedure.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: saigAbsVfa.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "saig.h"
#include "cnf.h"
#include "satSolver.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Abs_VfaMan_t_ Abs_VfaMan_t;
struct Abs_VfaMan_t_
{
Aig_Man_t * pAig;
int nConfLimit;
int fVerbose;
// unrolling info
int iFrame;
int nFrames;
Vec_Int_t * vObj2Vec; // maps obj ID into its vec ID
Vec_Int_t * vVec2Var; // maps vec ID into its sat Var (nFrames per vec ID)
Vec_Int_t * vVar2Inf; // maps sat Var into its frame and obj ID
Vec_Int_t * vFra2Var; // maps frame number into the first variable
// SAT solver
sat_solver * pSat;
Cnf_Dat_t * pCnf;
Vec_Int_t * vAssumps;
Vec_Int_t * vCore;
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Adds CNF clauses for the MUX.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abs_VfaManSatMux( sat_solver * pSat, int VarF, int VarI, int VarT, int VarE )
{
int RetValue, pLits[3];
// f = ITE(i, t, e)
// i' + t' + f
// i' + t + f'
// i + e' + f
// i + e + f'
// create four clauses
pLits[0] = toLitCond(VarI, 1);
pLits[1] = toLitCond(VarT, 1);
pLits[2] = toLitCond(VarF, 0);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
pLits[0] = toLitCond(VarI, 1);
pLits[1] = toLitCond(VarT, 0);
pLits[2] = toLitCond(VarF, 1);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
pLits[0] = toLitCond(VarI, 0);
pLits[1] = toLitCond(VarE, 1);
pLits[2] = toLitCond(VarF, 0);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
pLits[0] = toLitCond(VarI, 0);
pLits[1] = toLitCond(VarE, 0);
pLits[2] = toLitCond(VarF, 1);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
// two additional clauses
// t' & e' -> f'
// t & e -> f
// t + e + f'
// t' + e' + f
assert( VarT != VarE );
pLits[0] = toLitCond(VarT, 0);
pLits[1] = toLitCond(VarE, 0);
pLits[2] = toLitCond(VarF, 1);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
pLits[0] = toLitCond(VarT, 1);
pLits[1] = toLitCond(VarE, 1);
pLits[2] = toLitCond(VarF, 0);
RetValue = sat_solver_addclause( pSat, pLits, pLits + 3 );
assert( RetValue );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abs_VfaManAddVar( Abs_VfaMan_t * p, Aig_Obj_t * pObj, int f, int * pfNew )
{
int i, SatId, VecId = Vec_IntEntry( p->vObj2Vec, Aig_ObjId(pObj) );
*pfNew = 0;
if ( VecId == -1 )
return -1;
if ( VecId == 0 )
{
VecId = Vec_IntSize( p->vVec2Var ) / p->nFrames;
for ( i = 0; i < p->nFrames; i++ )
Vec_IntPush( p->vVec2Var, 0 );
Vec_IntWriteEntry( p->vObj2Vec, Aig_ObjId(pObj), VecId );
}
SatId = Vec_IntEntry( p->vVec2Var, p->nFrames * VecId + f );
if ( SatId )
return SatId;
SatId = Vec_IntSize( p->vVar2Inf ) / 2;
// save SatId
Vec_IntWriteEntry( p->vVec2Var, p->nFrames * VecId + f, SatId );
Vec_IntPush( p->vVar2Inf, Aig_ObjId(pObj) );
Vec_IntPush( p->vVar2Inf, f );
if ( Saig_ObjIsLo( p->pAig, pObj ) ) // reserve IDs for aux vars
{
Vec_IntPush( p->vVar2Inf, -1 );
Vec_IntPush( p->vVar2Inf, f );
Vec_IntPush( p->vVar2Inf, -2 );
Vec_IntPush( p->vVar2Inf, f );
}
*pfNew = 1;
return SatId;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abs_VfaManCreateFrame_rec( Abs_VfaMan_t * p, Aig_Obj_t * pObj, int f )
{
int SatVar, fNew;
if ( Aig_ObjIsConst1(pObj) )
return -1;
SatVar = Abs_VfaManAddVar( p, pObj, f, &fNew );
if ( (SatVar > 0 && !fNew) || Saig_ObjIsPi(p->pAig, pObj) || (Aig_ObjIsPi(pObj) && f==0) )
return SatVar;
if ( Aig_ObjIsPo(pObj) )
return Abs_VfaManCreateFrame_rec( p, Aig_ObjFanin0(pObj), f );
if ( Aig_ObjIsPi(pObj) )
return Abs_VfaManCreateFrame_rec( p, Saig_ObjLoToLi(p->pAig, pObj), f-1 );
assert( Aig_ObjIsAnd(pObj) );
Abs_VfaManCreateFrame_rec( p, Aig_ObjFanin0(pObj), f );
Abs_VfaManCreateFrame_rec( p, Aig_ObjFanin1(pObj), f );
return SatVar;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abs_VfaManCreateFrame( Abs_VfaMan_t * p, int f )
{
Aig_Obj_t * pObj;
int i, clk = clock();
Saig_ManForEachPo( p->pAig, pObj, i )
Abs_VfaManCreateFrame_rec( p, pObj, f );
Vec_IntPush( p->vFra2Var, Vec_IntSize( p->vVar2Inf ) / 2 );
printf( "Frame = %3d : ", f );
printf( "Vecs = %8d ", Vec_IntSize( p->vVec2Var ) / p->nFrames );
printf( "Vars = %8d ", Vec_IntSize( p->vVar2Inf ) / 2 );
Abc_PrintTime( 1, "Time", clock() - clk );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abs_VfaMan_t * Abs_VfaManStart( Aig_Man_t * pAig )
{
Abs_VfaMan_t * p;
int i;
p = ABC_CALLOC( Abs_VfaMan_t, 1 );
p->pAig = pAig;
p->vObj2Vec = Vec_IntStart( Aig_ManObjNumMax(pAig) );
p->vVec2Var = Vec_IntAlloc( 1 << 20 );
p->vVar2Inf = Vec_IntAlloc( 1 << 20 );
p->vFra2Var = Vec_IntStart( 1 );
// skip the first variable
Vec_IntPush( p->vVar2Inf, -3 );
Vec_IntPush( p->vVar2Inf, -3 );
for ( i = 0; i < p->nFrames; i++ )
Vec_IntPush( p->vVec2Var, -1 );
// transfer values from CNF
p->pCnf = Cnf_DeriveOther( pAig );
for ( i = 0; i < Aig_ManObjNumMax(pAig); i++ )
if ( p->pCnf->pObj2Clause[i] == -1 )
Vec_IntWriteEntry( p->vObj2Vec, i, -1 );
p->vAssumps = Vec_IntAlloc( 100 );
p->vCore = Vec_IntAlloc( 100 );
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abs_VfaManStop( Abs_VfaMan_t * p )
{
Vec_IntFreeP( &p->vObj2Vec );
Vec_IntFreeP( &p->vVec2Var );
Vec_IntFreeP( &p->vVar2Inf );
Vec_IntFreeP( &p->vFra2Var );
Vec_IntFreeP( &p->vAssumps );
Vec_IntFreeP( &p->vCore );
if ( p->pCnf )
Cnf_DataFree( p->pCnf );
if ( p->pSat )
sat_solver_delete( p->pSat );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Perform variable frame abstraction.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abs_VfaManTest( Aig_Man_t * pAig, int nFrames, int nConfLimit, int fVerbose )
{
Abs_VfaMan_t * p;
int i;
p = Abs_VfaManStart( pAig );
p->nFrames = nFrames;
p->nConfLimit = nConfLimit;
p->fVerbose = fVerbose;
// create unrolling for the given number of frames
for ( i = 0; i < p->nFrames; i++ )
Abs_VfaManCreateFrame( p, i );
Abs_VfaManStop( p );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
......@@ -903,8 +903,8 @@ void Abc_Init( Abc_Frame_t * pAbc )
}
*/
{
extern void If_CluTest();
If_CluTest();
// extern void If_CluTest();
// If_CluTest();
}
}
......@@ -8860,9 +8860,22 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
}
*/
{
extern void Abs_VfaManTest( Aig_Man_t * pAig, int nFrames, int nConfLimit, int fVerbose );
extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );
if ( pNtk )
{
Aig_Man_t * pAig = Abc_NtkToDar( pNtk, 0, 1 );
Abs_VfaManTest( pAig, 32, 1000000, 1 );
Aig_ManStop( pAig );
}
}
{
void Bdc_SpfdDecomposeTest();
Bdc_SpfdDecomposeTest();
// void Bdc_SpfdDecomposeTest();
// Bdc_SpfdDecomposeTest();
}
return 0;
usage:
......
/**CFile****************************************************************
FileName [ifDec10f.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [FPGA mapping based on priority cuts.]
Synopsis [Fast checking procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - November 21, 2006.]
Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
***********************************************************************/
#include "if.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define CLU_MAX 16
// decomposition
typedef struct If_Bst_t_ If_Bst_t;
struct If_Bst_t_
{
int nMyu;
int nVars;
int Vars[CLU_MAX];
float Dels[CLU_MAX];
word Truth[1 << (CLU_MAX-6)];
};
// the bit count for the first 256 integer numbers
static int BitCount8[256] = {
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
// variable swapping code
static word PMasks[5][3] = {
{ 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 },
{ 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 },
{ 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 },
{ 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 },
{ 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 }
};
// elementary truth tables
static word Truth6[6] = {
0xAAAAAAAAAAAAAAAA,
0xCCCCCCCCCCCCCCCC,
0xF0F0F0F0F0F0F0F0,
0xFF00FF00FF00FF00,
0xFFFF0000FFFF0000,
0xFFFFFFFF00000000
};
static word TruthAll[CLU_MAX][1 << (CLU_MAX-6)];
extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
// group representation (MSB <-> LSB)
// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
// if nCofs > 2, v0 is the shared variable
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
void If_CluInitTruthTables()
{
int i, k;
assert( CLU_MAX <= 16 );
for ( i = 0; i < 6; i++ )
for ( k = 0; k < (1 << (CLU_MAX-6)); k++ )
TruthAll[i][k] = Truth6[i];
for ( i = 6; i < CLU_MAX; i++ )
for ( k = 0; k < (1 << (CLU_MAX-6)); k++ )
TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0;
}
// variable permutation for large functions
static inline int If_CluWordNum( int nVars )
{
return nVars <= 6 ? 1 : 1 << (nVars-6);
}
static inline void If_CluCopy( word * pOut, word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pOut[w] = pIn[w];
}
static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars )
{
int i, k, nWords = If_CluWordNum( nVars );
assert( iVar < nVars - 1 );
if ( iVar < 5 )
{
int Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
}
else if ( iVar > 5 )
{
int Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 4*Step )
{
for ( i = 0; i < Step; i++ )
pOut[i] = pIn[i];
for ( i = 0; i < Step; i++ )
pOut[Step+i] = pIn[2*Step+i];
for ( i = 0; i < Step; i++ )
pOut[2*Step+i] = pIn[Step+i];
for ( i = 0; i < Step; i++ )
pOut[3*Step+i] = pIn[3*Step+i];
pIn += 4*Step;
pOut += 4*Step;
}
}
else // if ( iVar == 5 )
{
for ( i = 0; i < nWords; i += 2 )
{
pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32);
pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32);
}
}
}
// moves one var (v) to the given position (p)
void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
{
word pG[1 << (CLU_MAX-6)], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
if ( Var2Pla[v] <= p )
{
while ( Var2Pla[v] < p )
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
else
{
while ( Var2Pla[v] > p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
assert( Pla2Var[p] == v );
}
// moves vars to be the most signiticant ones (Group[0] is MSB)
void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, word Group )
{
char * pVars = (char *)&Group;
int v;
for ( v = 0; v < pVars[7]; v++ )
If_CluMoveVar( pF, nVars, V2P, P2V, pVars[pVars[7] - 1 - v], nVars - 1 - v );
}
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift )
{
int nShift = (1 << (nVars - nBSsize));
word Mask = (((word)1) << nShift) - 1;
word iCofs[64], iCof;
int i, c, nMints = (1 << nBSsize), nCofs = 1;
assert( nBSsize >= 3 && nBSsize <= 6 );
assert( nVars - nBSsize > 0 && nVars - nBSsize <= 6 );
if ( nVars - nBSsize == 6 )
Mask = ~0;
iCofs[0] = (pF[iShift / 64] >> (iShift & 63)) & Mask;
for ( i = 1; i < nMints; i++ )
{
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
for ( c = 0; c < nCofs; c++ )
if ( iCof == iCofs[c] )
break;
if ( c == nCofs )
iCofs[nCofs++] = iCof;
if ( nCofs == 5 )
break;
}
assert( nCofs >= 2 && nCofs <= 5 );
return nCofs;
}
void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
{
pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
}
return;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
{
pCof0[i] = pCof0[Step+i] = pF[i];
pCof1[i] = pCof1[Step+i] = pF[Step+i];
}
pF += 2*Step;
pCof0 += 2*Step;
pCof1 += 2*Step;
}
return;
}
}
// check non-disjoint decomposition
int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, int nBSsize, char * pGroup )
{
int v, i, nCofsBest2;
if ( (pGroup[6] == 3 || pGroup[6] == 4) )
{
word pCof0[1 << (CLU_MAX-6)];
word pCof1[1 << (CLU_MAX-6)];
// try cofactoring w.r.t. each variable
for ( v = 0; v < pGroup[7]; v++ )
{
If_CluCofactors( pF, nVars, pGroup[v], pCof0, pCof1 );
nCofsBest2 = If_CluCountCofs( pCof0, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
nCofsBest2 = If_CluCountCofs( pCof1, nVars, nBSsize, 0 );
if ( nCofsBest2 > 2 )
continue;
// find a good variable - move to the end
If_CluMoveVar( pF, nVars, V2P, P2V, pGroup[v], nVars-1 );
for ( i = 0; i < nBSsize; i++ )
pGroup[i] = P2V[nVars-nBSsize+i];
return 1;
}
}
return 0;
}
void If_CluPrintGroup( word Group )
{
char * pGroup = (char *)&Group;
int i;
for ( i = 0; i < pGroup[7]; i++ )
printf( "%d ", pGroup[i] );
printf( "\n" );
printf( "Cofs = %d", pGroup[6] );
printf( "\n" );
printf( "Vars = %d", pGroup[7] );
printf( "\n" );
}
// finds a good var group (cof count < 6; vars are MSBs)
word If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
{
int nRounds = 3;
word GroupBest = 0;
char * pGroupBest = (char *)&GroupBest;
int i, r, v, nCofs, VarBest, nCofsBest2;
assert( nVars >= nBSsize + iVarStart && nVars <= CLU_MAX );
assert( nBSsize >= 3 && nBSsize <= 6 );
// start with the default group
pGroupBest[7] = nBSsize;
pGroupBest[6] = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
printf( "Iter %d ", -1 );
If_CluPrintGroup( GroupBest );
// try to find better group
for ( r = 0; r < nRounds; r++ )
{
// find the best var to add
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
{
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// find the best var to remove
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0 );
for ( v = nVars-nBSsize; v < nVars; v++ )
{
If_CluMoveVar( pF, nVars, V2P, P2V, v, nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
if ( nCofsBest2 > nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0 );
assert( nCofs == nCofsBest2 );
if ( pGroupBest[6] > nCofs )
{
pGroupBest[7] = nBSsize;
pGroupBest[6] = nCofs;
for ( i = 0; i < nBSsize; i++ )
pGroupBest[i] = P2V[nVars-nBSsize+i];
}
printf( "Iter %d ", r );
If_CluPrintGroup( GroupBest );
// check if good enough
if ( pGroupBest[6] == 2 )
return GroupBest;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, nBSsize, pGroupBest ) )
return GroupBest;
}
assert( r == nRounds );
return 0;
}
// double check that the given group has a decomposition
void If_CluCheckGroup( word * pTruth, int nVars, word Group )
{
word pF[1 << (CLU_MAX-6)];
int v, nCofs, V2P[CLU_MAX], P2V[CLU_MAX];
char * pVars = (char *)&Group;
assert( pVars[7] >= 3 && pVars[7] <= 6 ); // vars
assert( pVars[6] >= 2 && pVars[6] <= 4 ); // cofs
// create permutation
for ( v = 0; v < nVars; v++ )
V2P[v] = P2V[v] = v;
// create truth table
If_CluCopy( pF, pTruth, nVars );
// move group up
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, Group );
// check the number of cofactors
nCofs = If_CluCountCofs( pF, nVars, pVars[7], 0 );
if ( nCofs != pVars[6] )
printf( "Group check 0 has failed.\n" );
// check compatible
if ( nCofs > 2 )
{
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, 0 );
if ( nCofs > 2 )
printf( "Group check 1 has failed.\n" );
nCofs = If_CluCountCofs( pF, nVars-1, pVars[7]-1, (1 << (nVars-1)) );
if ( nCofs > 2 )
printf( "Group check 2 has failed.\n" );
}
}
static inline int If_CluSuppIsMinBase( int Supp )
{
return (Supp & (Supp+1)) == 0;
}
static inline int If_CluHasVar( word * t, int nVars, int iVar )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) )
return 1;
return 0;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
if ( t[i] != t[Step+i] )
return 1;
t += 2*Step;
}
return 0;
}
}
static inline int If_CluSupport( word * t, int nVars )
{
int v, Supp = 0;
for ( v = 0; v < nVars; v++ )
if ( If_CluHasVar( t, nVars, v ) )
Supp |= (1 << v);
return Supp;
}
// returns the number of nodes and conf bits in vConf
word If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
{
int V2P[CLU_MAX], P2V[CLU_MAX];
word Group1, pF[1 << (CLU_MAX-6)];
int i, nSupp;
assert( nVars <= CLU_MAX );
assert( nVars <= nLutLeaf + nLutRoot - 1 );
// check minnimum base
If_CluCopy( pF, pTruth, nVars );
nSupp = If_CluSupport( pF, nVars );
if ( !nSupp || !If_CluSuppIsMinBase(nSupp) )
return 0;
// perform testing
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
Group1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
if ( Group1 == 0 )
return 0;
// perform checking
If_CluCheckGroup( pTruth, nVars, Group1 );
// compute conf bits
return Group1;
}
// computes delay of the decomposition
float If_CluDelayMax( word Group, float * pDelays )
{
char * pVars = (char *)&Group;
float Delay = 0.0;
int i;
for ( i = 0; i < pVars[7]; i++ )
Delay = Abc_MaxFloat( Delay, pDelays[pVars[i]] );
return Delay;
}
// returns delay of the decomposition; sets area of the cut as its cost
float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay )
{
float Delays[CLU_MAX+2];
int fUsed[CLU_MAX+2] = {0};
If_Obj_t * pLeaf;
word Group1 = 0, Group2 = 0, Group3 = 0;
char * pGroup1 = (char *)&Group1;
char * pGroup2 = (char *)&Group2;
char * pGroup3 = (char *)&Group3;
int nLeaves = If_CutLeaveNum(pCut);
int i, nLutLeaf, nLutRoot;
// mark the cut as user cut
pCut->fUser = 1;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
printf( "Wrong LUT struct (%s)\n", pStr );
return ABC_INFINITY;
}
nLutLeaf = pStr[0] - '0';
if ( nLutLeaf < 3 || nLutLeaf > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
return ABC_INFINITY;
}
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return ABC_INFINITY;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
{
printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot );
return ABC_INFINITY;
}
// remember the delays
If_CutForEachLeaf( p, pCut, pLeaf, i )
Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
{
assert( nLeaves <= 6 );
for ( i = 0; i < nLeaves; i++ )
{
pCut->pPerm[i] = 1;
pGroup1[i] = i;
}
pGroup1[7] = nLeaves;
pCut->Cost = 1;
return 1.0 + If_CluDelayMax( Group1, Delays );
}
// derive the first group
Group1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
if ( Group1 == 0 )
return ABC_INFINITY;
// compute the delay
Delays[nLeaves] = If_CluDelayMax( Group1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
if ( Group2 )
Delays[nLeaves+1] = If_CluDelayMax( Group2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
// mark used groups
for ( i = 0; i < pGroup1[7]; i++ )
fUsed[pGroup1[i]] = 1;
for ( i = 0; i < pGroup2[7]; i++ )
fUsed[pGroup2[i]] = 1;
// mark unused groups
assert( pGroup1[6] >= 2 && pGroup1[6] <= 4 );
if ( pGroup1[6] > 2 )
fUsed[pGroup1[0]] = 0;
assert( pGroup2[6] >= 2 && pGroup2[6] <= 4 );
if ( pGroup2[6] > 2 )
fUsed[pGroup2[0]] = 0;
// create remaining group
assert( pGroup3[7] == 0 );
for ( i = 0; i < nLeaves; i++ )
if ( !fUsed[i] )
pGroup3[pGroup3[7]++] = i;
pGroup3[pGroup3[7]++] = nLeaves;
if ( Group2 )
pGroup3[pGroup3[7]++] = nLeaves+1;
assert( pGroup1[7] + pGroup2[7] + pGroup3[7] == nLeaves + (pGroup1[7] > 0) + (pGroup2[7] > 0) + (pGroup1[6] > 2) + (pGroup2[6] > 2) );
// what if both non-disjoint vars are the same???
pCut->Cost = 2 + (pGroup2[7] > 0);
return 1.0 + If_CluDelayMax( Group3, Delays );
}
// testing procedure
void If_CluTest()
{
// word t = 0xff00f0f0ccccaaaa;
word t = 0xfedcba9876543210;
int nLeaves = 6;
int nLutLeaf = 4;
int nLutRoot = 4;
word Group1;
char * pVars = (char *)&Group1;
// return;
Group1 = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
If_CluPrintGroup( Group1 );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
/**CFile****************************************************************
FileName [ifDec10f.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [FPGA mapping based on priority cuts.]
Synopsis [Fast checking procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - November 21, 2006.]
Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
***********************************************************************/
#include "if.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define CLU_VAR_MAX 16
#define CLU_WRD_MAX (1 << ((CLU_VAR_MAX)-6))
// decomposition
typedef struct If_Grp_t_ If_Grp_t;
struct If_Grp_t_
{
char nVars;
char nMyu;
char pVars[6];
};
// the bit count for the first 256 integer numbers
static int BitCount8[256] = {
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
// variable swapping code
static word PMasks[5][3] = {
{ 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 },
{ 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 },
{ 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 },
{ 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 },
{ 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 }
};
// elementary truth tables
static word Truth6[6] = {
0xAAAAAAAAAAAAAAAA,
0xCCCCCCCCCCCCCCCC,
0xF0F0F0F0F0F0F0F0,
0xFF00FF00FF00FF00,
0xFFFF0000FFFF0000,
0xFFFFFFFF00000000
};
static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX];
extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
// group representation (MSB <-> LSB)
// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
// if nCofs > 2, v0 is the shared variable
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
void If_CluInitTruthTables()
{
int i, k;
assert( CLU_VAR_MAX <= 16 );
for ( i = 0; i < 6; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = Truth6[i];
for ( i = 6; i < CLU_VAR_MAX; i++ )
for ( k = 0; k < CLU_WRD_MAX; k++ )
TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0;
}
// variable permutation for large functions
static inline int If_CluWordNum( int nVars )
{
return nVars <= 6 ? 1 : 1 << (nVars-6);
}
static inline void If_CluCopy( word * pOut, word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
pOut[w] = pIn[w];
}
static inline int If_CluEqual( word * pOut, word * pIn, int nVars )
{
int w, nWords = If_CluWordNum( nVars );
for ( w = 0; w < nWords; w++ )
if ( pOut[w] != pIn[w] )
return 0;
return 1;
}
static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars )
{
int i, k, nWords = If_CluWordNum( nVars );
assert( iVar < nVars - 1 );
if ( iVar < 5 )
{
int Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
}
else if ( iVar > 5 )
{
int Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 4*Step )
{
for ( i = 0; i < Step; i++ )
pOut[i] = pIn[i];
for ( i = 0; i < Step; i++ )
pOut[Step+i] = pIn[2*Step+i];
for ( i = 0; i < Step; i++ )
pOut[2*Step+i] = pIn[Step+i];
for ( i = 0; i < Step; i++ )
pOut[3*Step+i] = pIn[3*Step+i];
pIn += 4*Step;
pOut += 4*Step;
}
}
else // if ( iVar == 5 )
{
for ( i = 0; i < nWords; i += 2 )
{
pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32);
pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32);
}
}
}
// moves one var (v) to the given position (p)
void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
{
word pG[CLU_WRD_MAX], * pIn = pF, * pOut = pG, * pTemp;
int iPlace0, iPlace1, Count = 0;
assert( v >= 0 && v < nVars );
if ( Var2Pla[v] <= p )
{
while ( Var2Pla[v] < p )
{
iPlace0 = Var2Pla[v];
iPlace1 = Var2Pla[v]+1;
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
else
{
while ( Var2Pla[v] > p )
{
iPlace0 = Var2Pla[v]-1;
iPlace1 = Var2Pla[v];
If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
pTemp = pIn; pIn = pOut, pOut = pTemp;
Var2Pla[Pla2Var[iPlace0]]++;
Var2Pla[Pla2Var[iPlace1]]--;
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
Count++;
}
}
if ( Count & 1 )
If_CluCopy( pF, pIn, nVars );
assert( Pla2Var[p] == v );
}
// moves vars to be the most signiticant ones (Group[0] is MSB)
void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
{
int v;
for ( v = 0; v < g->nVars; v++ )
If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[g->nVars - 1 - v], nVars - 1 - v );
}
// return the number of cofactors w.r.t. the topmost vars (nBSsize)
int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word * pCofs[2] )
{
word iCofs[64], iCof;
int i, c, w, nMints = (1 << nBSsize), nCofs;
assert( nBSsize < nVars );
assert( nBSsize >= 3 && nBSsize <= 6 );
if ( nVars - nBSsize >= 6 )
{
word * pCofA, * pCofB;
int nWords = (1 << (nVars - nBSsize - 6));
assert( nWords * nMints == If_CluWordNum(nVars) );
for ( nCofs = i = 0; i < nMints; i++ )
{
for ( c = 0; c < nCofs; c++ )
{
pCofA = pF + i * nWords;
pCofB = pF + iCofs[c] * nWords;
for ( w = 0; w < nWords; w++ )
if ( pCofA[w] != pCofB[w] )
break;
if ( w == nWords )
break;
}
if ( c == nCofs )
iCofs[nCofs++] = i;
if ( nCofs == 5 )
break;
}
if ( nCofs == 2 && pCofs )
{
for ( c = 0; c < nCofs; c++ )
{
word * pCofA = pF + iCofs[c] * nWords;
for ( w = 0; w < nWords; w++ )
pCofs[c][w] = pCofA[w];
}
}
}
else
{
int nShift = (1 << (nVars - nBSsize));
word Mask = ((((word)1) << nShift) - 1);
for ( nCofs = i = 0; i < nMints; i++ )
{
iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
for ( c = 0; c < nCofs; c++ )
if ( iCof == iCofs[c] )
break;
if ( c == nCofs )
iCofs[nCofs++] = iCof;
if ( nCofs == 5 )
break;
}
}
assert( nCofs >= 2 && nCofs <= 5 );
return nCofs;
}
void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
{
pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
}
return;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
{
pCof0[i] = pCof0[Step+i] = pF[i];
pCof1[i] = pCof1[Step+i] = pF[Step+i];
}
pF += 2*Step;
pCof0 += 2*Step;
pCof1 += 2*Step;
}
return;
}
}
// derives non-disjoint decomposition (assumes the shared var in pG->pVars[pG->nVars-1]
word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * pG )
{
/*
word Truth, Truth0, Truth1;
word Cof[2][CLU_WRD_MAX], Cof0[2][CLU_WRD_MAX], Cof1[2][CLU_WRD_MAX];
int i, nFSvars, nFSHalfBits, nBSHalfBits;
assert( pG->nVars >= 3 && pG->nVar <= 6 );
assert( pG->nMyu == 3 || pG->nMyu == 4 );
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, pG );
If_CluCofactors( pF, nVars, nVars - 1, Cof[0], Cof[1] );
assert( 2 >= If_Dec6CofCount2(c0) );
assert( 2 >= If_Dec6CofCount2(c1) );
assert( 2 >= If_CluCountCofs( Cof[0], nVars - 1, pG->nVars - 1, 0 ) );
assert( 2 >= If_CluCountCofs( Cof[1], nVars - 1, pG->nVars - 1, 0 ) );
Truth0 = If_CluExtract2Cofs( Cof[0], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
Truth1 = If_CluExtract2Cofs( Cof[1], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
nFSHalfBits = (1 << (nVars - pG->nVars - 1));
nBSHalfBits = (1 << (pG->nVars - 1))
Truth = ((Truth0 && ((1 << nBSHalfBits) - 1)) << nBSHalfBits) | (Truth0 && ((1 << nBSHalfBits) - 1))
for ( i = 0; i < 4; i++ )
z |= (((word)Pla2Var[i+2]) << (16 + 4*i));
z |= ((word)((Cof0[1] << 4) | Cof0[0]) << 32);
z |= ((word)((Cof1[1] << 4) | Cof1[0]) << 40);
for ( i = 0; i < 2; i++ )
z |= (((word)Pla2Var[i]) << (48 + 4*i));
z |= (((word)7) << (48 + 4*i++));
z |= (((word)Pla2Var[5]) << (48 + 4*i++));
assert( i == 4 );
return z;
*/
return 0;
}
// check non-disjoint decomposition
int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
{
int v, i, nCofsBest2;
if ( (g->nMyu == 3 || g->nMyu == 4) )
{
word pCof0[CLU_WRD_MAX];
word pCof1[CLU_WRD_MAX];
// try cofactoring w.r.t. each variable
for ( v = 0; v < g->nVars; v++ )
{
If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCof0, pCof1 );
nCofsBest2 = If_CluCountCofs( pCof0, nVars, g->nVars, 0, NULL );
if ( nCofsBest2 > 2 )
continue;
nCofsBest2 = If_CluCountCofs( pCof1, nVars, g->nVars, 0, NULL );
if ( nCofsBest2 > 2 )
continue;
// found good shared variable - move to the end
If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[v], nVars-1 );
for ( i = 0; i < g->nVars; i++ )
g->pVars[i] = P2V[nVars-g->nVars+i];
return 1;
}
}
return 0;
}
void If_CluPrintGroup( If_Grp_t * g )
{
int i;
for ( i = 0; i < g->nVars; i++ )
printf( "%d ", g->pVars[i] );
printf( "\n" );
printf( "Cofs = %d", g->nMyu );
printf( "\n" );
printf( "Vars = %d", g->nVars );
printf( "\n" );
}
// finds a good var group (cof count < 6; vars are MSBs)
If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
{
If_Grp_t G = {0}, * g = &G;
int i, r, v, nCofs, VarBest, nCofsBest2;
assert( nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX );
assert( nBSsize >= 3 && nBSsize <= 6 );
// start with the default group
g->nVars = nBSsize;
g->nMyu = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
for ( i = 0; i < nBSsize; i++ )
g->pVars[i] = P2V[nVars-nBSsize+i];
// check if good enough
if ( g->nMyu == 2 )
return G;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
return G;
printf( "Iter %d ", -1 );
If_CluPrintGroup( g );
// try to find better group
for ( r = 0; r < nBSsize; r++ )
{
// find the best var to add
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
{
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
if ( nCofsBest2 >= nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
assert( nCofs == nCofsBest2 );
// find the best var to remove
VarBest = P2V[nVars-1-nBSsize];
nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
for ( v = nVars-nBSsize; v < nVars; v++ )
{
If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
if ( nCofsBest2 >= nCofs )
{
nCofsBest2 = nCofs;
VarBest = P2V[nVars-1-nBSsize];
}
}
// go back
If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
// update best bound set
nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
assert( nCofs == nCofsBest2 );
if ( g->nMyu >= nCofs )
{
g->nVars = nBSsize;
g->nMyu = nCofs;
for ( i = 0; i < nBSsize; i++ )
g->pVars[i] = P2V[nVars-nBSsize+i];
}
printf( "Iter %d ", r );
If_CluPrintGroup( g );
// check if good enough
if ( g->nMyu == 2 )
return G;
if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
return G;
}
assert( r == nBSsize );
g->nVars = 0;
return G;
}
// double check that the given group has a decomposition
void If_CluCheckGroup( word * pTruth, int nVars, If_Grp_t * g )
{
word pF[CLU_WRD_MAX];
int v, nCofs, V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
assert( g->nVars >= 3 && g->nVars <= 6 ); // vars
assert( g->nMyu >= 2 && g->nMyu <= 4 ); // cofs
// create permutation
for ( v = 0; v < nVars; v++ )
V2P[v] = P2V[v] = v;
// create truth table
If_CluCopy( pF, pTruth, nVars );
// move group up
If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, g );
// check the number of cofactors
nCofs = If_CluCountCofs( pF, nVars, g->nVars, 0, NULL );
if ( nCofs != g->nMyu )
printf( "Group check 0 has failed.\n" );
// check compatible
if ( nCofs > 2 )
{
nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, 0, NULL );
if ( nCofs > 2 )
printf( "Group check 1 has failed.\n" );
nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, (1 << (nVars-1)), NULL );
if ( nCofs > 2 )
printf( "Group check 2 has failed.\n" );
}
}
// double check that the permutation derived is correct
void If_CluCheckPerm( word * pTruth, word * pF, int nVars, int * V2P, int * P2V )
{
int i;
for ( i = 0; i < nVars; i++ )
If_CluMoveVar( pF, nVars, V2P, P2V, i, i );
if ( If_CluEqual( pTruth, pF, nVars ) )
printf( "Permutation successful\n" );
else
printf( "Permutation FAILED.\n" );
}
static inline int If_CluSuppIsMinBase( int Supp )
{
return (Supp & (Supp+1)) == 0;
}
static inline int If_CluHasVar( word * t, int nVars, int iVar )
{
int nWords = If_CluWordNum( nVars );
assert( iVar < nVars );
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) )
return 1;
return 0;
}
else
{
int i, k, Step = (1 << (iVar - 6));
for ( k = 0; k < nWords; k += 2*Step )
{
for ( i = 0; i < Step; i++ )
if ( t[i] != t[Step+i] )
return 1;
t += 2*Step;
}
return 0;
}
}
static inline int If_CluSupport( word * t, int nVars )
{
int v, Supp = 0;
for ( v = 0; v < nVars; v++ )
if ( If_CluHasVar( t, nVars, v ) )
Supp |= (1 << v);
return Supp;
}
// returns the best group found
If_Grp_t If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
{
int V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
word pF[CLU_WRD_MAX];
If_Grp_t G1 = {0};
int i, nSupp;
assert( nVars <= CLU_VAR_MAX );
assert( nVars <= nLutLeaf + nLutRoot - 1 );
// check minnimum base
If_CluCopy( pF, pTruth, nVars );
nSupp = If_CluSupport( pF, nVars );
if ( !nSupp || !If_CluSuppIsMinBase(nSupp) )
return G1;
// perform testing
for ( i = 0; i < nVars; i++ )
V2P[i] = P2V[i] = i;
G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
// check permutation
If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V );
if ( G1.nVars == 0 )
return G1;
// perform checking
If_CluCheckGroup( pTruth, nVars, &G1 );
return G1;
}
// computes delay of the decomposition
float If_CluDelayMax( If_Grp_t * g, float * pDelays )
{
float Delay = 0.0;
int i;
for ( i = 0; i < g->nVars; i++ )
Delay = Abc_MaxFloat( Delay, pDelays[g->pVars[i]] );
return Delay;
}
// returns delay of the decomposition; sets area of the cut as its cost
float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay )
{
float Delays[CLU_VAR_MAX+2];
int fUsed[CLU_VAR_MAX+2] = {0};
If_Obj_t * pLeaf;
If_Grp_t G1 = {0}, G2 = {0}, G3 = {0};
int nLeaves = If_CutLeaveNum(pCut);
int i, nLutLeaf, nLutRoot;
// mark the cut as user cut
pCut->fUser = 1;
// quit if parameters are wrong
if ( strlen(pStr) != 2 )
{
printf( "Wrong LUT struct (%s)\n", pStr );
return ABC_INFINITY;
}
nLutLeaf = pStr[0] - '0';
if ( nLutLeaf < 3 || nLutLeaf > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
return ABC_INFINITY;
}
nLutRoot = pStr[1] - '0';
if ( nLutRoot < 3 || nLutRoot > 6 )
{
printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
return ABC_INFINITY;
}
if ( nLeaves > nLutLeaf + nLutRoot - 1 )
{
printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot );
return ABC_INFINITY;
}
// remember the delays
If_CutForEachLeaf( p, pCut, pLeaf, i )
Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
// consider easy case
if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
{
assert( nLeaves <= 6 );
for ( i = 0; i < nLeaves; i++ )
{
pCut->pPerm[i] = 1;
G1.pVars[i] = i;
}
G1.nVars = nLeaves;
pCut->Cost = 1;
return 1.0 + If_CluDelayMax( &G1, Delays );
}
// derive the first group
G1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
if ( G1.nVars == 0 )
return ABC_INFINITY;
// compute the delay
Delays[nLeaves] = If_CluDelayMax( &G1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
if ( G2.nVars )
Delays[nLeaves+1] = If_CluDelayMax( &G2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
// mark used groups
for ( i = 0; i < G1.nVars; i++ )
fUsed[G1.pVars[i]] = 1;
for ( i = 0; i < G2.nVars; i++ )
fUsed[G2.pVars[i]] = 1;
// mark unused groups
assert( G1.nMyu >= 2 && G1.nMyu <= 4 );
if ( G1.nMyu > 2 )
fUsed[G1.pVars[G1.nVars-1]] = 0;
assert( G2.nMyu >= 2 && G2.nMyu <= 4 );
if ( G2.nMyu > 2 )
fUsed[G2.pVars[G2.nVars-1]] = 0;
// create remaining group
assert( G3.nVars == 0 );
for ( i = 0; i < nLeaves; i++ )
if ( !fUsed[i] )
G3.pVars[G3.nVars++] = i;
G3.pVars[G3.nVars++] = nLeaves;
if ( G2.nVars )
G3.pVars[G3.nVars++] = nLeaves+1;
assert( G1.nVars + G2.nVars + G3.nVars == nLeaves +
(G1.nVars > 0) + (G2.nVars > 0) + (G1.nMyu > 2) + (G2.nMyu > 2) );
// what if both non-disjoint vars are the same???
pCut->Cost = 2 + (G2.nVars > 0);
return 1.0 + If_CluDelayMax( &G3, Delays );
}
// testing procedure
void If_CluTest()
{
// word t = 0xff00f0f0ccccaaaa;
word t = 0xfedcba9876543210;
int nLeaves = 6;
int nLutLeaf = 4;
int nLutRoot = 4;
If_Grp_t G;
G = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
If_CluPrintGroup( &G );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
......@@ -3,6 +3,7 @@ SRC += src/map/if/ifCore.c \
src/map/if/ifDec07.c \
src/map/if/ifDec08.c \
src/map/if/ifDec10.c \
src/map/if/ifDec16.c \
src/map/if/ifLib.c \
src/map/if/ifMan.c \
src/map/if/ifMap.c \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment