Commit 4c7165a4 by Alan Mishchenko

New ISOP computation.

parent fa5f05e3
...@@ -2,6 +2,7 @@ SRC += src/misc/util/utilBridge.c \ ...@@ -2,6 +2,7 @@ SRC += src/misc/util/utilBridge.c \
src/misc/util/utilCex.c \ src/misc/util/utilCex.c \
src/misc/util/utilColor.c \ src/misc/util/utilColor.c \
src/misc/util/utilFile.c \ src/misc/util/utilFile.c \
src/misc/util/utilIsop.c \
src/misc/util/utilNam.c \ src/misc/util/utilNam.c \
src/misc/util/utilSignal.c \ src/misc/util/utilSignal.c \
src/misc/util/utilSort.c src/misc/util/utilSort.c
/**CFile****************************************************************
FileName [utilIsop.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [ISOP computation.]
Synopsis [ISOP computation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - October 4, 2014.]
Revision [$Id: utilIsop.c,v 1.00 2014/10/04 00:00:00 alanmi Exp $]
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "misc/vec/vec.h"
#include "misc/util/utilTruth.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef int FUNC_ISOP( word *, word *, word *, int *, int );
static FUNC_ISOP Abc_Isop7Cover;
static FUNC_ISOP Abc_Isop8Cover;
static FUNC_ISOP Abc_Isop9Cover;
static FUNC_ISOP Abc_Isop10Cover;
static FUNC_ISOP Abc_Isop11Cover;
static FUNC_ISOP Abc_Isop12Cover;
static FUNC_ISOP Abc_Isop13Cover;
static FUNC_ISOP Abc_Isop14Cover;
static FUNC_ISOP Abc_Isop15Cover;
static FUNC_ISOP Abc_Isop16Cover;
static FUNC_ISOP * s_pFuncIsopCover[17] =
{
NULL, // 0
NULL, // 1
NULL, // 2
NULL, // 3
NULL, // 4
NULL, // 5
NULL, // 6
Abc_Isop7Cover, // 7
Abc_Isop8Cover, // 8
Abc_Isop9Cover, // 9
Abc_Isop10Cover, // 10
Abc_Isop11Cover, // 11
Abc_Isop12Cover, // 12
Abc_Isop13Cover, // 13
Abc_Isop14Cover, // 14
Abc_Isop15Cover, // 15
Abc_Isop16Cover // 16
};
extern int Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, int nCostLim, int * pCover );
extern int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [These procedures assume that function has exact support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_IsopAddLits( int * pCover, int nCost0, int nCost1, int Var )
{
int c;
if ( pCover == NULL ) return;
for ( c = 0; c < nCost0; c++ )
pCover[c] |= (1 << Abc_Var2Lit(Var,0));
for ( c = 0; c < nCost1; c++ )
pCover[nCost0+c] |= (1 << Abc_Var2Lit(Var,1));
}
int Abc_Isop6Cover( word uOn, word uOnDc, word * pRes, int nVars, int nCostLim, int * pCover )
{
word uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;
int Var, nCost0, nCost1, nCost2;
assert( nVars <= 6 );
assert( (uOn & ~uOnDc) == 0 );
if ( uOn == 0 )
{
pRes[0] = 0;
return 0;
}
if ( uOnDc == ~(word)0 )
{
pRes[0] = ~(word)0;
if ( pCover ) pCover[0] = 0;
return (1 << 16);
}
assert( nVars > 0 );
// find the topmost var
for ( Var = nVars-1; Var >= 0; Var-- )
if ( Abc_Tt6HasVar( uOn, Var ) || Abc_Tt6HasVar( uOnDc, Var ) )
break;
assert( Var >= 0 );
// cofactor
uOn0 = Abc_Tt6Cofactor0( uOn, Var );
uOn1 = Abc_Tt6Cofactor1( uOn , Var );
uOnDc0 = Abc_Tt6Cofactor0( uOnDc, Var );
uOnDc1 = Abc_Tt6Cofactor1( uOnDc, Var );
// solve for cofactors
nCost0 = Abc_Isop6Cover( uOn0 & ~uOnDc1, uOnDc0, &uRes0, Var, nCostLim, pCover );
if ( nCost0 >= nCostLim ) return nCostLim;
nCost1 = Abc_Isop6Cover( uOn1 & ~uOnDc0, uOnDc1, &uRes1, Var, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
nCost2 = Abc_Isop6Cover( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, &uRes2, Var, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
// derive the final truth table
*pRes = uRes2 | (uRes0 & s_Truths6Neg[Var]) | (uRes1 & s_Truths6[Var]);
assert( (uOn & ~*pRes) == 0 && (*pRes & ~uOnDc) == 0 );
Abc_IsopAddLits( pCover, nCost0, nCost1, Var );
return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
}
int Abc_Isop7Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
word uOn0, uOn1, uOn2, uOnDc2, uRes0, uRes1, uRes2;
int nCost0, nCost1, nCost2, nVars = 6;
// cofactor
uOn0 = pOn[0] & ~pOnDc[1];
uOn1 = pOn[1] & ~pOnDc[0];
// solve for cofactors
nCost0 = Abc_IsopCheck( &uOn0, pOnDc, &uRes0, nVars, nCostLim, pCover );
if ( nCost0 >= nCostLim ) return nCostLim;
nCost1 = Abc_IsopCheck( &uOn1, pOnDc+1, &uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
uOn2 = (pOn[0] & ~uRes0) | (pOn[1] & ~uRes1);
uOnDc2 = pOnDc[0] & pOnDc[1];
nCost2 = Abc_IsopCheck( &uOn2, &uOnDc2, &uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
// derive the final truth table
pRes[0] = uRes2 | uRes0;
pRes[1] = uRes2 | uRes1;
assert( (pOn[0] & ~pRes[0]) == 0 && (pRes[0] & ~pOnDc[0]) == 0 );
assert( (pOn[1] & ~pRes[1]) == 0 && (pRes[1] & ~pOnDc[1]) == 0 );
Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
}
int Abc_Isop8Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
word uOn0[2], uOn1[2], uOn2[2], uOnDc2[2], uRes0[2], uRes1[2], uRes2[2];
int nCost0, nCost1, nCost2, nVars = 7;
// cofactor
uOn0[0] = pOn[0] & ~pOnDc[2];
uOn0[1] = pOn[1] & ~pOnDc[3];
uOn1[0] = pOn[2] & ~pOnDc[0];
uOn1[1] = pOn[3] & ~pOnDc[1];
// solve for cofactors
nCost0 = Abc_IsopCheck( uOn0, pOnDc, uRes0, nVars, nCostLim, pCover );
if ( nCost0 >= nCostLim ) return nCostLim;
nCost1 = Abc_IsopCheck( uOn1, pOnDc+2, uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
uOn2[0] = (pOn[0] & ~uRes0[0]) | (pOn[2] & ~uRes1[0]);
uOn2[1] = (pOn[1] & ~uRes0[1]) | (pOn[3] & ~uRes1[1]);
uOnDc2[0] = pOnDc[0] & pOnDc[2];
uOnDc2[1] = pOnDc[1] & pOnDc[3];
nCost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
// derive the final truth table
pRes[0] = uRes2[0] | uRes0[0];
pRes[1] = uRes2[1] | uRes0[1];
pRes[2] = uRes2[0] | uRes1[0];
pRes[3] = uRes2[1] | uRes1[1];
assert( (pOn[0] & ~pRes[0]) == 0 && (pOn[1] & ~pRes[1]) == 0 && (pOn[2] & ~pRes[2]) == 0 && (pOn[3] & ~pRes[3]) == 0 );
assert( (pRes[0] & ~pOnDc[0])==0 && (pRes[1] & ~pOnDc[1])==0 && (pRes[2] & ~pOnDc[2])==0 && (pRes[3] & ~pOnDc[3])==0 );
Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
}
int Abc_Isop9Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
word uOn0[4], uOn1[4], uOn2[4], uOnDc2[4], uRes0[4], uRes1[4], uRes2[4];
int c, nCost0, nCost1, nCost2, nVars = 8, nWords = 4;
// cofactor
for ( c = 0; c < nWords; c++ )
uOn0[c] = pOn[c] & ~pOnDc[c+nWords], uOn1[c] = pOn[c+nWords] & ~pOnDc[c];
// solve for cofactors
nCost0 = Abc_IsopCheck( uOn0, pOnDc, uRes0, nVars, nCostLim, pCover );
if ( nCost0 >= nCostLim ) return nCostLim;
nCost1 = Abc_IsopCheck( uOn1, pOnDc+nWords, uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
for ( c = 0; c < nWords; c++ )
uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
nCost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
// derive the final truth table
for ( c = 0; c < nWords; c++ )
pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
// verify
for ( c = 0; c < (nWords<<1); c++ )
assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
}
int Abc_Isop10Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop11Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop12Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop13Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop14Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop15Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_Isop16Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
{
return 0;
}
int Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, int nCostLim, int * pCover )
{
int Var;
for ( Var = nVars - 1; Var > 6; Var-- )
if ( Abc_TtHasVar( pOn, nVars, Var ) || Abc_TtHasVar( pOnDc, nVars, Var ) )
return s_pFuncIsopCover[Var+1]( pOn, pOnDc, pRes, pCover, nCostLim );
return Abc_Isop6Cover( *pOn, *pOnDc, pRes, nVars, nCostLim, pCover );
}
/**Function*************************************************************
Synopsis [Compute CNF assuming it does not exceed the limit.]
Description [Please note that pCover should have at least 32 extra entries!]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_IsopCnf( word * pFunc, int nVars, int nCubeLim, int * pCover )
{
word pRes[1024];
int c, Cost0, Cost1, CostLim = nCubeLim << 16;
assert( Abc_TtHasVar( pFunc, nVars, nVars - 1 ) );
if ( nVars > 6 )
Cost0 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, pCover, CostLim );
else
Cost0 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostLim, pCover );
if ( Cost0 >= CostLim )
return CostLim;
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
if ( nVars > 6 )
Cost1 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, pCover ? pCover + (Cost0 >> 16) : NULL, CostLim );
else
Cost1 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostLim, pCover ? pCover + (Cost0 >> 16) : NULL );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
if ( Cost0 + Cost1 >= CostLim )
return CostLim;
if ( pCover == NULL )
return Cost0 + Cost1;
for ( c = 0; c < (Cost0 >> 16); c++ )
pCover[c] |= (1 << Abc_Var2Lit(nVars, 0));
for ( c = 0; c < (Cost1 >> 16); c++ )
pCover[c+(Cost0 >> 16)] |= (1 << Abc_Var2Lit(nVars, 1));
return Cost0 + Cost1;
}
/**Function*************************************************************
Synopsis [These procedures assume that function has exact support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_EsopAddLits( int * pCover, int Max, int r0, int r1, int r2, int Var )
{
int i;
if ( pCover == NULL ) return;
r0 >>= 16;
r1 >>= 16;
r2 >>= 16;
if ( Max == r0 )
{
for ( i = 0; i < r1; i++ )
pCover[i] = pCover[r0+i];
for ( i = 0; i < r2; i++ )
pCover[r1+i] = pCover[r0+r1+i] | (1 << Abc_Var2Lit(Var,0));
}
else if ( Max == r1 )
{
for ( i = 0; i < r2; i++ )
pCover[r0+i] = pCover[r0+r1+i] | (1 << Abc_Var2Lit(Var,1));
}
else
{
for ( i = 0; i < r0; i++ )
pCover[i] |= (1 << Abc_Var2Lit(Var,0));
for ( i = 0; i < r1; i++ )
pCover[r0+i] |= (1 << Abc_Var2Lit(Var,1));
}
}
int Abc_Esop6Cover( word t, int nVars, int nCostLim, int * pCover )
{
word c0, c1;
int Var, r0, r1, r2, Max;
assert( nVars <= 6 );
if ( t == 0 )
return 0;
if ( t == ~(word)0 )
{
if ( pCover ) *pCover = 0;
return 1 << 16;
}
assert( nVars > 0 );
// find the topmost var
for ( Var = nVars-1; Var >= 0; Var-- )
if ( Abc_Tt6HasVar( t, Var ) )
break;
assert( Var >= 0 );
// cofactor
c0 = Abc_Tt6Cofactor0( t, Var );
c1 = Abc_Tt6Cofactor1( t, Var );
// call recursively
r0 = Abc_Esop6Cover( c0, Var, nCostLim, pCover ? pCover : NULL );
if ( r0 >= nCostLim ) return nCostLim;
r1 = Abc_Esop6Cover( c1, Var, nCostLim, pCover ? pCover + (r0 >> 16) : NULL );
if ( r1 >= nCostLim ) return nCostLim;
r2 = Abc_Esop6Cover( c0 ^ c1, Var, nCostLim, pCover ? pCover + (r0 >> 16) + (r1 >> 16) : NULL );
if ( r2 >= nCostLim ) return nCostLim;
Max = Abc_MaxInt( r0, Abc_MaxInt(r1, r2) );
if ( r0 + r1 + r2 - Max >= nCostLim ) return nCostLim;
// add literals
Abc_EsopAddLits( pCover, Max, r0, r1, r2, Var );
return r0 + r1 + r2 - Max;
}
int Abc_EsopCover( word * pOn, int nVars, int nCostLim, int * pCover )
{
int c, r0, r1, r2, Max, nWords = (1 << (nVars - 7));
assert( nVars > 6 );
r0 = Abc_EsopCheck( pOn, nVars-1, nCostLim, pCover );
if ( r0 >= nCostLim ) return nCostLim;
r1 = Abc_EsopCheck( pOn+1, nVars-1, nCostLim, pCover ? pCover + (r0 >> 16) : NULL );
if ( r1 >= nCostLim ) return nCostLim;
for ( c = 0; c < nWords; c++ )
pOn[c] ^= pOn[nWords+c];
r2 = Abc_EsopCheck( pOn, nVars-1, nCostLim, pCover ? pCover + (r0 >> 16) + (r1 >> 16) : NULL );
for ( c = 0; c < nWords; c++ )
pOn[c] ^= pOn[nWords+c];
if ( r2 >= nCostLim ) return nCostLim;
Max = Abc_MaxInt( r0, Abc_MaxInt(r1, r2) );
if ( r0 + r1 + r2 - Max >= nCostLim ) return nCostLim;
// add literals
Abc_EsopAddLits( pCover, Max, r0, r1, r2, nVars-1 );
return r0 + r1 + r2 - Max;
}
int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover )
{
int Var;
for ( Var = nVars - 1; Var > 6; Var-- )
if ( Abc_TtHasVar( pOn, nVars, Var ) )
return Abc_EsopCover( pOn, Var + 1, nCostLim, pCover );
return Abc_Esop6Cover( *pOn, nVars, nCostLim, pCover );
}
/**Function*************************************************************
Synopsis [This procedure assumes that function has exact support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
#define ABC_ISOP_MAX_VAR 12
static inline word ** Abc_IsopTtElems()
{
static word TtElems[ABC_ISOP_MAX_VAR+1][ABC_ISOP_MAX_VAR > 6 ? (1 << (ABC_ISOP_MAX_VAR-6)) : 1], * pTtElems[ABC_ISOP_MAX_VAR+1] = {NULL};
if ( pTtElems[0] == NULL )
{
int v;
for ( v = 0; v <= ABC_ISOP_MAX_VAR; v++ )
pTtElems[v] = TtElems[v];
Abc_TtElemInit( pTtElems, ABC_ISOP_MAX_VAR );
}
return pTtElems;
}
/**Function*************************************************************
Synopsis [Create truth table for the given cover.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_IsopBuildTruth( Vec_Int_t * vCover, int nVars, word * pRes, int fXor, int fCompl )
{
word ** pTtElems = Abc_IsopTtElems();
word pCube[1024];
int nWords = Abc_TtWordNum( nVars );
int c, v, Cube;
Abc_TtClear( pRes, nWords );
Vec_IntForEachEntry( vCover, Cube, c )
{
Abc_TtFill( pCube, nWords );
for ( v = 0; v < nVars; v++ )
if ( ((Cube >> (v << 1)) & 3) == 1 )
Abc_TtSharp( pCube, pCube, pTtElems[v], nWords );
else if ( ((Cube >> (v << 1)) & 3) == 2 )
Abc_TtAnd( pCube, pCube, pTtElems[v], nWords, 0 );
if ( fXor )
Abc_TtXor( pRes, pRes, pCube, nWords, 0 );
else
Abc_TtOr( pRes, pRes, pCube, nWords );
}
if ( fCompl )
Abc_TtNot( pRes, nWords );
}
static inline void Abc_IsopVerify( word * pFunc, int nVars, word * pRes, Vec_Int_t * vCover, int fXor, int fCompl )
{
Abc_IsopBuildTruth( vCover, nVars, pRes, fXor, fCompl );
if ( !Abc_TtEqual( pFunc, pRes, Abc_TtWordNum(nVars) ) )
printf( "Verification failed.\n" );
}
/**Function*************************************************************
Synopsis [This procedure assumes that function has exact support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_Isop( word * pFunc, int nVars, int Type, int nCubeLim, Vec_Int_t * vCover )
{
word pRes[1024];
int Limit = nCubeLim ? nCubeLim : 0xFFFF;
int LimitXor = nCubeLim ? 3 * Limit : 3 * (nVars + 1);
int nCost0 = -1, nCost1 = -1, nCost2 = -1;
assert( nVars <= 16 );
assert( Abc_TtHasVar( pFunc, nVars, nVars - 1 ) );
assert( !(Type & 4) );
// xor polarity
if ( Type & 4 )
nCost2 = Abc_EsopCheck( pFunc, nVars, LimitXor << 16, NULL );
// direct polarity
if ( Type & 1 )
nCost0 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_MinInt(Limit, 3*nCost2) << 16, NULL );
// opposite polarity
if ( Type & 2 )
{
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
nCost1 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_MinInt(nCost0, Abc_MinInt(Limit, 3*nCost2)) << 16, NULL );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
}
assert( nCost0 >= 0 || nCost1 >= 0 );
// find minimum cover
if ( nCost0 <= nCost1 || nCost0 != -1 )
{
Vec_IntFill( vCover, -1, nCost0 >> 16 );
Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 0 );
return 0;
}
if ( nCost1 < nCost0 || nCost1 != -1 )
{
Vec_IntFill( vCover, -1, nCost1 >> 16 );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 1 );
return 1;
}
assert( 0 );
return -1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment