Commit 4c6804c3 by Alan Mishchenko

Improved gate-sizing.

parent a206287b
......@@ -2455,6 +2455,10 @@ SOURCE=.\src\map\scl\sclBuff.c
# End Source File
# Begin Source File
SOURCE=.\src\map\scl\sclBuffer.c
# End Source File
# Begin Source File
SOURCE=.\src\map\scl\sclDnsize.c
# End Source File
# Begin Source File
......
......@@ -199,6 +199,9 @@ int Map_MatchNodePhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase )
fWorstLimit = pNode->tRequired[fPhase].Worst;
for ( pCut = pNode->pCuts->pNext; pCut; pCut = pCut->pNext )
{
// limit gate sizes based on fanout count
if ( (pNode->nRefs > 8 && pCut->nLeaves > 2) || (pNode->nRefs > 4 && pCut->nLeaves > 3) )
continue;
pMatch = pCut->M + fPhase;
if ( pMatch->pSupers == NULL )
continue;
......
......@@ -121,6 +121,7 @@ extern char * Mio_GateReadSop ( Mio_Gate_t * pGate );
extern word Mio_GateReadTruth ( Mio_Gate_t * pGate );
extern int Mio_GateReadValue ( Mio_Gate_t * pGate );
extern char * Mio_GateReadPinName ( Mio_Gate_t * pGate, int iPin );
extern float Mio_GateReadPinDelay ( Mio_Gate_t * pGate, int iPin );
extern void Mio_GateSetValue ( Mio_Gate_t * pGate, int Value );
extern char * Mio_PinReadName ( Mio_Pin_t * pPin );
extern Mio_PinPhase_t Mio_PinReadPhase ( Mio_Pin_t * pPin );
......
......@@ -198,6 +198,15 @@ char * Mio_GateReadPinName( Mio_Gate_t * pGate, int iPin )
return Mio_PinReadName(pPin);
return NULL;
}
float Mio_GateReadPinDelay( Mio_Gate_t * pGate, int iPin )
{
Mio_Pin_t * pPin;
int i = 0;
Mio_GateForEachPin( pGate, pPin )
if ( i++ == iPin )
return 0.5 * pPin->dDelayBlockRise + 0.5 * pPin->dDelayBlockFall;
return ABC_INFINITY;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
......
SRC += src/map/scl/scl.c \
src/map/scl/sclBuff.c \
src/map/scl/sclBuffer.c \
src/map/scl/sclDnsize.c \
src/map/scl/sclLib.c \
src/map/scl/sclLoad.c \
......
......@@ -556,11 +556,12 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
Abc_Ntk_t * pNtkRes;
int Degree, fUseInvs;
int c, fVerbose;
int fOldAlgo = 0;
Degree = 4;
fUseInvs = 0;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "Nivh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "Naivh" ) ) != EOF )
{
switch ( c )
{
......@@ -575,6 +576,9 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
if ( Degree < 0 )
goto usage;
break;
case 'a':
fOldAlgo ^= 1;
break;
case 'i':
fUseInvs ^= 1;
break;
......@@ -600,7 +604,10 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
}
// modify the current network
pNtkRes = Abc_SclPerformBuffering( pNtk, Degree, fUseInvs, fVerbose );
if ( fOldAlgo )
pNtkRes = Abc_SclPerformBuffering( pNtk, Degree, fUseInvs, fVerbose );
else
pNtkRes = Abc_SclBufPerform( pNtk, fVerbose );
if ( pNtkRes == NULL )
{
Abc_Print( -1, "The command has failed.\n" );
......@@ -611,9 +618,10 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
fprintf( pAbc->Err, "usage: buffer [-N num] [-ivh]\n" );
fprintf( pAbc->Err, "usage: buffer [-N num] [-aivh]\n" );
fprintf( pAbc->Err, "\t performs buffering of the mapped network\n" );
fprintf( pAbc->Err, "\t-N <num> : the max allowed fanout count of node/buffer [default = %d]\n", Degree );
fprintf( pAbc->Err, "\t-a : toggle using old algorithm [default = %s]\n", fOldAlgo? "yes": "no" );
fprintf( pAbc->Err, "\t-i : toggle using interters instead of buffers [default = %s]\n", fUseInvs? "yes": "no" );
fprintf( pAbc->Err, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pAbc->Err, "\t-h : print the command usage\n");
......
/**CFile****************************************************************
FileName [sclBuffer.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Buffering algorithms.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclBuffer.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sclSize.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define BUF_SCALE 1000
typedef struct Buf_Man_t_ Buf_Man_t;
struct Buf_Man_t_
{
// parameters
int nFanMin; // the smallest fanout count to consider
int nFanMax; // the largest fanout count allowed off CP
// internal deta
Abc_Ntk_t * pNtk; // logic network
Vec_Int_t * vOffsets; // offsets into edge delays
Vec_Int_t * vEdges; // edge delays
Vec_Int_t * vArr; // arrival times
Vec_Int_t * vDep; // departure times
Vec_Flt_t * vCounts; // fanout counts
Vec_Que_t * vQue; // queue by fanout count
int nObjStart; // the number of starting objects
int nObjAlloc; // the number of allocated objects
int DelayMax; // maximum delay (percentage of inverter delay)
float DelayInv; // inverter delay
// sorting fanouts
Vec_Int_t * vOrder; // ordering of fanouts
Vec_Int_t * vDelays; // fanout delays
Vec_Int_t * vNonCrit; // non-critical fanouts
Vec_Int_t * vTfCone; // TFI/TFO cone of the node including the node
Vec_Ptr_t * vFanouts; // temp storage for fanouts
// statistics
int nSeparate;
int nDuplicate;
int nBranch0;
int nBranch1;
};
static inline int Abc_BufNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vArr, Abc_ObjId(pObj) ); }
static inline int Abc_BufNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vDep, Abc_ObjId(pObj) ); }
static inline void Abc_BufSetNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vArr, Abc_ObjId(pObj), f ); }
static inline void Abc_BufSetNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vDep, Abc_ObjId(pObj), f ); }
static inline int Abc_BufEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i ) { return Vec_IntEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i ); }
static inline void Abc_BufSetEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i, int f ) { Vec_IntWriteEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i, f ); }
static inline int Abc_BufNodeSlack( Buf_Man_t * p, Abc_Obj_t * pObj ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pObj); }
static inline int Abc_BufEdgeSlack( Buf_Man_t * p, Abc_Obj_t * pObj, Abc_Obj_t * pFan ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pFan) - Abc_BufEdgeDelay(p, pFan, Abc_NodeFindFanin(pFan, pObj)); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Abc_BufComputeArr( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanin;
int i;
float DelayF, Delay = -ABC_INFINITY;
Abc_ObjForEachFanin( pObj, pFanin, i )
{
DelayF = Abc_BufNodeArr(p, pFanin) + Abc_BufEdgeDelay(p, pObj, i);
if ( Delay < DelayF )
Delay = DelayF;
}
Abc_BufSetNodeArr( p, pObj, Delay );
return Delay;
}
float Abc_BufComputeDep( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
float DelayF, Delay = -ABC_INFINITY;
Abc_ObjForEachFanout( pObj, pFanout, i )
{
DelayF = Abc_BufNodeDep(p, pFanout) + Abc_BufEdgeDelay(p, pFanout, Abc_NodeFindFanin(pFanout, pObj));
if ( Delay < DelayF )
Delay = DelayF;
}
Abc_BufSetNodeDep( p, pObj, Delay );
return Delay;
}
void Abc_BufUpdateGlobal( Buf_Man_t * p )
{
Abc_Obj_t * pObj;
int i;
p->DelayMax = 0;
Abc_NtkForEachCo( p->pNtk, pObj, i )
p->DelayMax = Abc_MaxInt( p->DelayMax, Abc_BufNodeArr(p, Abc_ObjFanin0(pObj)) );
}
void Abc_BufCreateEdges( Buf_Man_t * p, Abc_Obj_t * pObj )
{
int k;
Mio_Gate_t * pGate = Abc_ObjIsCo(pObj) ? NULL : (Mio_Gate_t *)pObj->pData;
Vec_IntWriteEntry( p->vOffsets, Abc_ObjId(pObj), Vec_IntSize(p->vEdges) );
for ( k = 0; k < Abc_ObjFaninNum(pObj); k++ )
Vec_IntPush( p->vEdges, pGate ? (int)(1.0 * BUF_SCALE * Mio_GateReadPinDelay(pGate, k) / p->DelayInv) : 0 );
}
void Abc_BufAddToQue( Buf_Man_t * p, Abc_Obj_t * pObj )
{
if ( Abc_ObjFanoutNum(pObj) < p->nFanMin )
return;
Vec_FltWriteEntry( p->vCounts, Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) );
assert( !Vec_QueIsMember(p->vQue, Abc_ObjId(pObj)) );
Vec_QuePush( p->vQue, Abc_ObjId(pObj) );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_BufCollectTfoCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes )
{
Abc_Obj_t * pNext;
int i;
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
Abc_NodeSetTravIdCurrent( pNode );
if ( Abc_ObjIsCo(pNode) )
return;
assert( Abc_ObjIsCi(pNode) || Abc_ObjIsNode(pNode) );
Abc_ObjForEachFanout( pNode, pNext, i )
Abc_BufCollectTfoCone_rec( pNext, vNodes );
if ( Abc_ObjIsNode(pNode) )
Vec_IntPush( vNodes, Abc_ObjId(pNode) );
}
void Abc_BufCollectTfoCone( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Vec_IntClear( p->vTfCone );
Abc_NtkIncrementTravId( p->pNtk );
Abc_BufCollectTfoCone_rec( pObj, p->vTfCone );
}
void Abc_BufUpdateArr( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pNext;
int i, Delay;
// assert( Abc_ObjIsNode(pObj) );
Abc_BufCollectTfoCone( p, pObj );
Vec_IntReverseOrder( p->vTfCone );
Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i )
{
Delay = Abc_BufComputeArr( p, pNext );
p->DelayMax = Abc_MaxInt( p->DelayMax, Delay );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_BufCollectTfiCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes )
{
Abc_Obj_t * pNext;
int i;
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
Abc_NodeSetTravIdCurrent( pNode );
if ( Abc_ObjIsCi(pNode) )
return;
assert( Abc_ObjIsNode(pNode) );
Abc_ObjForEachFanin( pNode, pNext, i )
Abc_BufCollectTfiCone_rec( pNext, vNodes );
Vec_IntPush( vNodes, Abc_ObjId(pNode) );
}
void Abc_BufCollectTfiCone( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Vec_IntClear( p->vTfCone );
Abc_NtkIncrementTravId( p->pNtk );
Abc_BufCollectTfiCone_rec( pObj, p->vTfCone );
}
void Abc_BufUpdateDep( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pNext;
int i, Delay;
// assert( Abc_ObjIsNode(pObj) );
Abc_BufCollectTfiCone( p, pObj );
Vec_IntReverseOrder( p->vTfCone );
Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i )
{
Delay = Abc_BufComputeDep( p, pNext );
p->DelayMax = Abc_MaxInt( p->DelayMax, Delay );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk )
{
Buf_Man_t * p;
Abc_Obj_t * pObj;
Vec_Ptr_t * vNodes;
int i;
p = ABC_CALLOC( Buf_Man_t, 1 );
p->pNtk = pNtk;
p->nFanMin = 6;
// p->nFanMax = 16;
// allocate arrays
p->nObjStart = Abc_NtkObjNumMax(p->pNtk);
p->nObjAlloc = (6 * Abc_NtkObjNumMax(p->pNtk) / 3) + 100;
p->vOffsets = Vec_IntAlloc( p->nObjAlloc );
p->vArr = Vec_IntAlloc( p->nObjAlloc );
p->vDep = Vec_IntAlloc( p->nObjAlloc );
p->vCounts = Vec_FltAlloc( p->nObjAlloc );
p->vQue = Vec_QueAlloc( p->nObjAlloc );
Vec_IntFill( p->vOffsets, p->nObjAlloc, -ABC_INFINITY );
Vec_IntFill( p->vArr, p->nObjAlloc, 0 );
Vec_IntFill( p->vDep, p->nObjAlloc, 0 );
Vec_FltFill( p->vCounts, p->nObjAlloc, -ABC_INFINITY );
Vec_QueSetCosts( p->vQue, Vec_FltArrayP(p->vCounts) );
// collect edge delays
p->DelayInv = Mio_GateReadPinDelay( Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc), 0 );
p->vEdges = Vec_IntAlloc( 1000 );
// create edges
vNodes = Abc_NtkDfs( p->pNtk, 0 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufCreateEdges( p, pObj );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Abc_BufCreateEdges( p, pObj );
// derive delays
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufComputeArr( p, pObj );
Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufComputeDep( p, pObj );
Abc_BufUpdateGlobal( p );
// create fanout queue
Abc_NtkForEachCi( p->pNtk, pObj, i )
Abc_BufAddToQue( p, pObj );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufAddToQue( p, pObj );
Vec_PtrFree( vNodes );
// print everything
// Abc_NtkForEachNode( p->pNtk, pObj, i )
// printf( "%4d : %4d %4d\n", i, Abc_BufNodeArr(p, pObj), Abc_BufNodeDep(p, pObj) );
p->vDelays = Vec_IntAlloc( 100 );
p->vOrder = Vec_IntAlloc( 100 );
p->vNonCrit = Vec_IntAlloc( 100 );
p->vTfCone = Vec_IntAlloc( 100 );
p->vFanouts = Vec_PtrAlloc( 100 );
return p;
}
void Buf_ManStop( Buf_Man_t * p )
{
printf( "Sep = %d. Dup = %d. Br0 = %d. Br1 = %d. ",
p->nSeparate, p->nDuplicate, p->nBranch0, p->nBranch1 );
printf( "Orig = %d. Add = %d. Rem = %d.\n",
p->nObjStart, Abc_NtkObjNumMax(p->pNtk) - p->nObjStart,
p->nObjAlloc - Abc_NtkObjNumMax(p->pNtk) );
Vec_PtrFree( p->vFanouts );
Vec_IntFree( p->vTfCone );
Vec_IntFree( p->vNonCrit );
Vec_IntFree( p->vDelays );
Vec_IntFree( p->vOrder );
Vec_IntFree( p->vOffsets );
Vec_IntFree( p->vEdges );
Vec_IntFree( p->vArr );
Vec_IntFree( p->vDep );
// Vec_QueCheck( p->vQue );
Vec_QueFree( p->vQue );
Vec_FltFree( p->vCounts );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_BufSortByDelay( Buf_Man_t * p, int iPivot )
{
Abc_Obj_t * pObj, * pFanout;
int i, * pOrder;
Vec_IntClear( p->vDelays );
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_ObjForEachFanout( pObj, pFanout, i )
{
int Slack = Abc_BufEdgeSlack(p, pObj, pFanout);
if ( Slack < 0 )
printf( "%d ", Slack );
Vec_IntPush( p->vDelays, Abc_MaxInt(0, Slack) );
}
pOrder = Abc_QuickSortCost( Vec_IntArray(p->vDelays), Vec_IntSize(p->vDelays), 0 );
//Vec_IntPrint( p->vDelays );
Vec_IntClear( p->vOrder );
for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
Vec_IntPush( p->vOrder, Abc_ObjId(Abc_ObjFanout(pObj, pOrder[i])) );
ABC_FREE( pOrder );
// print
// for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
// printf( "%5d - %5d ", Vec_IntEntry(p->vOrder, i), Abc_BufEdgeSlack(p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(p->vOrder, i))) );
return p->vOrder;
}
void Abc_BufPrintOne( Buf_Man_t * p, int iPivot )
{
Abc_Obj_t * pObj, * pFanout;
Vec_Int_t * vOrder;
int i, Slack;
pObj = Abc_NtkObj( p->pNtk, iPivot );
vOrder = Abc_BufSortByDelay( p, iPivot );
printf( "Node %5d Fi = %d Fo = %3d Lev = %3d : {", iPivot, Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), Abc_ObjLevel(pObj) );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
{
Slack = Abc_BufEdgeSlack( p, pObj, pFanout );
printf( " %d(%d)", Abc_ObjId(pFanout), Slack );
}
printf( " }\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
{
Abc_Obj_t * pObj, * pFanout;
int i, Average = 0;
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
Average += Abc_BufEdgeSlack( p, pObj, pFanout );
return Average / Vec_IntSize(vOrder);
}
int Abc_BufCountNonCritical_( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
{
Abc_Obj_t * pObj, * pFanout;
int i;
Vec_IntClear( p->vNonCrit );
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 5*BUF_SCALE/2 )
Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) );
return Vec_IntSize(p->vNonCrit);
}
Abc_Obj_t * Abc_BufFindNonBuffDriver( Buf_Man_t * p, Abc_Obj_t * pObj )
{
return (Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj)) ? Abc_BufFindNonBuffDriver(p, Abc_ObjFanin0(pObj)) : pObj;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_BufCountNonCritical( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
Vec_IntClear( p->vNonCrit );
Abc_ObjForEachFanout( pObj, pFanout, i )
if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 3*BUF_SCALE )
Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) );
return Vec_IntSize(p->vNonCrit);
}
void Abc_BufPerformOne( Buf_Man_t * p, int iPivot, int fVerbose )
{
Abc_Obj_t * pObj, * pFanout;
Vec_Int_t * vOrder;
int Fastest, Slowest, Average;
int i, j, nCrit, nNonCrit;
int DelayMax = p->DelayMax;
pObj = Abc_NtkObj( p->pNtk, iPivot );
nNonCrit = Abc_BufCountNonCritical( p, pObj );
nCrit = Abc_ObjFanoutNum(pObj) - nNonCrit;
if ( fVerbose )
{
vOrder = Abc_BufSortByDelay( p, iPivot );
//Abc_BufPrintOne( p, iPivot );
Fastest = Abc_BufEdgeSlack( p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(vOrder,0)) );
Slowest = Abc_BufEdgeSlack( p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntryLast(vOrder)) );
Average = Abc_BufComputeAverage( p, iPivot, vOrder );
printf( "FI =%2d. FO =%4d. ", Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj) );
printf( "Fastest =%5d. Slowest =%5d. Ave =%5d. Crit =%3d. NonCrit =%3d. ", Fastest, Slowest, Average, nCrit, nNonCrit );
}
// decide based on these
assert( Abc_NtkObjNumMax(p->pNtk) + 30 < p->nObjAlloc );
if ( nCrit > 0 && nNonCrit > 1 )
{
// separate using buffer
Abc_Obj_t * pBuffer = Abc_NtkCreateNodeBuf( p->pNtk, pObj );
Abc_NtkForEachObjVec( p->vNonCrit, p->pNtk, pFanout, i )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
// update timing
Abc_BufCreateEdges( p, pBuffer );
Abc_BufUpdateArr( p, pBuffer );
Abc_BufUpdateDep( p, pBuffer );
Abc_BufAddToQue( p, pObj );
Abc_BufAddToQue( p, pBuffer );
p->nSeparate++;
if ( fVerbose )
printf( "Adding buffer\n" );
}
else if ( nNonCrit < 2 && Abc_ObjFanoutNum(pObj) > 4 && Abc_ObjFanoutNum(pObj) < 12 && Abc_ObjIsNode(pObj) )
{
// duplicate
Abc_Obj_t * pClone = Abc_NtkDupObj( p->pNtk, pObj, 0 );
Abc_ObjForEachFanin( pObj, pFanout, i )
Abc_ObjAddFanin( pClone, pFanout );
Abc_NodeCollectFanouts( pObj, p->vFanouts );
Vec_PtrForEachEntryStop( Abc_Obj_t *, p->vFanouts, pFanout, i, Vec_PtrSize(p->vFanouts)/2 )
Abc_ObjPatchFanin( pFanout, pObj, pClone );
// update timing
Abc_BufCreateEdges( p, pClone );
Abc_BufSetNodeArr( p, pClone, Abc_BufNodeArr(p, pObj) );
Abc_BufUpdateDep( p, pObj );
Abc_BufUpdateDep( p, pClone );
Abc_BufAddToQue( p, pObj );
Abc_BufAddToQue( p, pClone );
p->nDuplicate++;
// add fanins to queue
if ( fVerbose )
printf( "Duplicating node\n" );
}
else if ( Abc_ObjFanoutNum(pObj) >= 12 )
{
// branch (consider buffer)
// int nFan = Abc_ObjFanoutNum(pObj);
int nFan = 64;
double Res = pow(nFan, 0.34);
int Temp = (int)pow(Abc_ObjFanoutNum(pObj), 0.34);
int nDegree = Abc_MinInt( 4, (int)pow(Abc_ObjFanoutNum(pObj), 0.34) );
int n1Degree = Abc_ObjFanoutNum(pObj) / nDegree + 1;
int n1Number = Abc_ObjFanoutNum(pObj) % nDegree;
int nFirst = n1Degree * n1Number;
// Abc_Obj_t * pNonBuff = Abc_BufFindNonBuffDriver( p, pObj );
// create inverters
int iFirstBuf = Abc_NtkObjNumMax( p->pNtk );
Abc_NodeCollectFanouts( pObj, p->vFanouts );
if ( Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj) )
{
p->nBranch0++;
pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)p->pNtk->pManFunc);
Abc_BufSetEdgeDelay( p, pObj, 0, BUF_SCALE );
assert( Abc_NodeIsInv(pObj) );
for ( i = 0; i < nDegree; i++ )
Abc_NtkCreateNodeInv( p->pNtk, pObj );
if ( fVerbose )
printf( "Adding %d inverters\n", nDegree );
}
else
{
p->nBranch1++;
for ( i = 0; i < nDegree; i++ )
Abc_NtkCreateNodeBuf( p->pNtk, pObj );
if ( fVerbose )
printf( "Adding %d buffers\n", nDegree );
}
// create inverters
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanouts, pFanout, i )
{
j = (i < nFirst) ? i/n1Degree : n1Number + ((i - nFirst)/(n1Degree - 1));
assert( j >= 0 && j < nDegree );
Abc_ObjPatchFanin( pFanout, pObj, Abc_NtkObj(p->pNtk, iFirstBuf + j) );
}
// remove node
// if ( Abc_ObjIsNode(pObj) && Abc_ObjFanoutNum(pObj) == 0 )
// Abc_NtkDeleteObj_rec( pObj, 1 );
// update timing
for ( i = 0; i < nDegree; i++ )
Abc_BufCreateEdges( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
Abc_BufUpdateArr( p, pObj );
for ( i = 0; i < nDegree; i++ )
Abc_BufComputeDep( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
Abc_BufUpdateDep( p, pObj );
for ( i = 0; i < nDegree; i++ )
Abc_BufAddToQue( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
}
else
{
if ( fVerbose )
printf( "Doing nothing\n" );
}
// if ( DelayMax != p->DelayMax )
// printf( "%d (%.2f) ", p->DelayMax, 1.0 * p->DelayMax * p->DelayInv / BUF_SCALE );
}
Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int fVerbose )
{
Abc_Ntk_t * pNew;
Buf_Man_t * p = Buf_ManStart( pNtk );
int i, Limit = ABC_INFINITY;
// int i, Limit = 3;
for ( i = 0; i < Limit && Vec_QueSize(p->vQue); i++ )
Abc_BufPerformOne( p, Vec_QuePop(p->vQue), fVerbose );
Buf_ManStop( p );
// duplication in topo order
pNew = Abc_NtkDupDfs( pNtk );
Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
......@@ -375,6 +375,8 @@ static inline void Abc_SclDumpStats( SC_Man * p, char * pFileName, abctime Time
/*=== sclBuff.c ===============================================================*/
extern int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose );
extern Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fUseInvs, int fVerbose );
/*=== sclBuffer.c ===============================================================*/
extern Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int fVerbose );
/*=== sclDnsize.c ===============================================================*/
extern void Abc_SclDnsizePerform( SC_Lib * pLib, Abc_Ntk_t * pNtk, SC_SizePars * pPars );
/*=== sclLoad.c ===============================================================*/
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment