Commit 478066f7 by Alan Mishchenko

Experimental code for polynomial construction.

parent 9ac7b05e
...@@ -5371,10 +5371,18 @@ SOURCE=.\src\proof\acec\acecOrder.c ...@@ -5371,10 +5371,18 @@ SOURCE=.\src\proof\acec\acecOrder.c
# End Source File # End Source File
# Begin Source File # Begin Source File
SOURCE=.\src\proof\acec\acecPo.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecPolyn.c SOURCE=.\src\proof\acec\acecPolyn.c
# End Source File # End Source File
# Begin Source File # Begin Source File
SOURCE=.\src\proof\acec\acecRe.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecUtil.c SOURCE=.\src\proof\acec\acecUtil.c
# End Source File # End Source File
# End Group # End Group
......
/**CFile****************************************************************
FileName [acecPo.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [CEC for arithmetic circuits.]
Synopsis [Core procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: acecPo.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acecInt.h"
#include "misc/vec/vecWec.h"
#include "misc/vec/vecHsh.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Prints polynomial.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Gia_PolynPrintMono( Vec_Int_t * vConst, Vec_Int_t * vMono )
{
int k, Entry;
Vec_IntForEachEntry( vConst, Entry, k )
printf( "%s2^%d", Entry < 0 ? "-" : "+", Abc_AbsInt(Entry)-1 );
Vec_IntForEachEntry( vMono, Entry, k )
printf( " * %d", Entry );
printf( "\n" );
}
void Gia_PolynPrint( Vec_Wec_t * vPolyn )
{
Vec_Int_t * vConst, * vMono; int i;
printf( "Polynomial with %d monomials:\n", Vec_WecSize(vPolyn)/2 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
vMono = Vec_WecEntry( vPolyn, 2*i+1 );
Gia_PolynPrintMono( vConst, vMono );
}
}
void Gia_PolynPrintStats( Vec_Wec_t * vPolyn )
{
Vec_Int_t * vConst, * vCountsP, * vCountsN;
int i, Entry, Max = 0;
printf( "Polynomial with %d monomials:\n", Vec_WecSize(vPolyn)/2 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
Max = Abc_MaxInt( Max, Abc_AbsInt(Abc_AbsInt(Vec_IntEntry(vConst, 0))) );
}
vCountsP = Vec_IntStart( Max + 1 );
vCountsN = Vec_IntStart( Max + 1 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
Entry = Vec_IntEntry(vConst, 0);
if ( Entry > 0 )
Vec_IntAddToEntry( vCountsP, Entry, 1 );
else
Vec_IntAddToEntry( vCountsN, -Entry, 1 );
}
Vec_IntForEachEntry( vCountsN, Entry, i )
if ( Entry )
printf( "-2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry );
Vec_IntForEachEntry( vCountsP, Entry, i )
if ( Entry )
printf( "+2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry );
Vec_IntFree( vCountsP );
Vec_IntFree( vCountsN );
}
/**Function*************************************************************
Synopsis [Collects polynomial.]
Description [Collects non-trivial monomials in the increasing order
of the absolute value of the their first coefficients.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Wec_t * Gia_PolynGetResult( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs )
{
Vec_Int_t * vClass, * vLevel, * vArray;
Vec_Wec_t * vPolyn, * vSorted;
int i, k, iConst, iMono;
// find the largest
int nLargest = 0, nNonConst = 0;
Vec_IntForEachEntry( vCoefs, iConst, iMono )
{
//Vec_IntPrint( Hsh_VecReadEntry(pHashM, iMono) );
if ( iConst == 0 )
continue;
vArray = Hsh_VecReadEntry( pHashC, iConst );
nLargest = Abc_MaxInt( nLargest, Abc_AbsInt(Vec_IntEntry(vArray, 0)) );
nNonConst++;
}
// sort by the size of the largest coefficient
vSorted = Vec_WecStart( nLargest+1 );
Vec_IntForEachEntry( vCoefs, iConst, iMono )
{
if ( iConst == 0 )
continue;
vArray = Hsh_VecReadEntry( pHashC, iConst );
vLevel = Vec_WecEntry( vSorted, Abc_AbsInt(Vec_IntEntry(vArray, 0)) );
Vec_IntPushTwo( vLevel, iConst, iMono );
}
// reload in the given order
vPolyn = Vec_WecAlloc( 2*nNonConst );
Vec_WecForEachLevel( vSorted, vClass, i )
{
Vec_IntForEachEntryDouble( vClass, iConst, iMono, k )
{
vArray = Hsh_VecReadEntry( pHashC, iConst );
vLevel = Vec_WecPushLevel( vPolyn );
Vec_IntGrow( vLevel, Vec_IntSize(vArray) );
Vec_IntAppend( vLevel, vArray );
vArray = Hsh_VecReadEntry( pHashM, iMono );
vLevel = Vec_WecPushLevel( vPolyn );
Vec_IntGrow( vLevel, Vec_IntSize(vArray) );
Vec_IntAppend( vLevel, vArray );
}
}
assert( Vec_WecSize(vPolyn) == 2*nNonConst );
Vec_WecFree( vSorted );
return vPolyn;
}
/**Function*************************************************************
Synopsis [Derives new constant.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_PolynMergeConstOne( Vec_Int_t * vConst, int New )
{
int i, Old;
assert( New != 0 );
Vec_IntForEachEntry( vConst, Old, i )
{
assert( Old != 0 );
if ( Old == New ) // A == B
{
Vec_IntDrop( vConst, i );
Gia_PolynMergeConstOne( vConst, New > 0 ? New + 1 : New - 1 );
return;
}
if ( Abc_AbsInt(Old) == Abc_AbsInt(New) ) // A == -B
{
Vec_IntDrop( vConst, i );
return;
}
if ( Old + New == 1 || Old + New == -1 ) // sign(A) != sign(B) && abs(abs(A)-abs(B)) == 1
{
int Value = Abc_MinInt( Abc_AbsInt(Old), Abc_AbsInt(New) );
Vec_IntDrop( vConst, i );
Gia_PolynMergeConstOne( vConst, (Old + New == 1) ? Value : -Value );
return;
}
}
Vec_IntPushUniqueOrder( vConst, New );
}
static inline void Gia_PolynMergeConst( Vec_Int_t * vTempC, Hsh_VecMan_t * pHashC, int iConstAdd )
{
int i, New;
Vec_Int_t * vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd );
Vec_IntForEachEntry( vConstAdd, New, i )
{
Gia_PolynMergeConstOne( vTempC, New );
vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd );
}
}
static inline int Gia_PolynBuildAdd( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs,
Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM )
{
int i, iLit, iConst, iConstNew;
int iMono = Hsh_VecManAdd(pHashM, vTempM);
if ( iMono == Vec_IntSize(vCoefs) ) // new monomial
{
// map monomial into a constant
assert( Vec_IntSize(vTempC) > 0 );
iConst = Hsh_VecManAdd( pHashC, vTempC );
Vec_IntPush( vCoefs, iConst );
// map literals into monomial
assert( Vec_IntSize(vTempM) > 0 );
Vec_IntForEachEntry( vTempM, iLit, i )
Vec_WecPush( vLit2Mono, iLit, iMono );
//printf( "New monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
return 1;
}
// this monomial exists
iConst = Vec_IntEntry( vCoefs, iMono );
if ( iConst )
Gia_PolynMergeConst( vTempC, pHashC, iConst );
iConstNew = Hsh_VecManAdd( pHashC, vTempC );
Vec_IntWriteEntry( vCoefs, iMono, iConstNew );
//printf( "Old monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
if ( iConst && !iConstNew )
return -1;
if ( !iConst && iConstNew )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Computing for literals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Gia_PolynHandleOne( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs,
Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM,
int iMono, int iLitOld, int iLitNew0, int iLitNew1 )
{
int status, iConst = Vec_IntEntry( vCoefs, iMono );
Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst );
Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono );
// create new monomial
Vec_IntClear( vTempM );
Vec_IntAppend( vTempM, vArrayM );
status = Vec_IntRemove( vTempM, iLitOld );
assert( status );
// create new monomial
if ( iLitNew0 == -1 && iLitNew1 == -1 ) // no new lit - the same const
Vec_IntAppendMinus( vTempC, vArrayC, 0 );
else if ( iLitNew0 > -1 && iLitNew1 == -1 ) // one new lit - opposite const
{
Vec_IntAppendMinus( vTempC, vArrayC, 1 );
Vec_IntPushUniqueOrder( vTempM, iLitNew0 );
}
else if ( iLitNew0 > -1 && iLitNew1 > -1 ) // both new lit - the same const
{
Vec_IntAppendMinus( vTempC, vArrayC, 0 );
Vec_IntPushUniqueOrder( vTempM, iLitNew0 );
Vec_IntPushUniqueOrder( vTempM, iLitNew1 );
}
else assert( 0 );
return Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM );
}
Vec_Wec_t * Gia_PolynBuildNew2( Gia_Man_t * pGia, Vec_Int_t * vRootLits, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose )
{
abctime clk = Abc_Clock();
Vec_Wec_t * vPolyn;
Vec_Wec_t * vLit2Mono = Vec_WecStart( 2 * Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials
Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants
Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials
Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients
Vec_Int_t * vTempC = Vec_IntAlloc( 10 ); // temporary array
Vec_Int_t * vTempM = Vec_IntAlloc( 10 ); // temporary array
int i, k, iObj, iLit, iMono, nMonos = 0, nBuilds = 0;
// add 0-constant and 1-monomial
Hsh_VecManAdd( pHashC, vTempC );
Hsh_VecManAdd( pHashM, vTempM );
Vec_IntPush( vCoefs, 0 );
// create output signature
Vec_IntForEachEntry( vRootLits, iLit, i )
{
Vec_IntFill( vTempC, 1, (fSigned && i == Vec_IntSize(vRootLits)-1) ? -i-1 : i+1 );
Vec_IntFill( vTempM, 1, iLit );
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM );
nBuilds++;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse( vNodes, iObj, i )
{
Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj );
int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) };
int iFans[2] = { Gia_ObjFaninLit0(pObj, iObj), Gia_ObjFaninLit1(pObj, iObj) };
// add inverter
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 );
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
nBuilds++;
}
// add AND gate
vArray = Vec_WecEntry( vLit2Mono, iLits[0] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[0], iFans[0], iFans[1] );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// complement leave nodes
Vec_IntForEachEntry( vLeaves, iObj, i )
{
Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj );
int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) };
// add inverter
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 );
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
}
// get the results
vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs );
printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ",
Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
Vec_IntFree( vTempC );
Vec_IntFree( vTempM );
Vec_IntFree( vCoefs );
Vec_WecFree( vLit2Mono );
Hsh_VecManStop( pHashC );
Hsh_VecManStop( pHashM );
return vPolyn;
}
/**Function*************************************************************
Synopsis [Computing for objects.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_PolynPrepare2( Vec_Int_t * vTempC[2], Vec_Int_t * vTempM[2], int iObj, int iCst )
{
Vec_IntFill( vTempC[0], 1, iCst );
Vec_IntFill( vTempC[1], 1, -iCst );
Vec_IntClear( vTempM[0] );
Vec_IntFill( vTempM[1], 1, iObj );
}
static inline void Gia_PolynPrepare4( Vec_Int_t * vTempC[4], Vec_Int_t * vTempM[4], Vec_Int_t * vConst, Vec_Int_t * vMono, int iObj, int iFan0, int iFan1 )
{
int i, k, Entry;
for ( i = 0; i < 4; i++ )
Vec_IntAppendMinus( vTempC[i], vConst, i & 1 );
for ( i = 0; i < 4; i++ )
Vec_IntClear( vTempM[i] );
Vec_IntForEachEntry( vMono, Entry, k )
if ( Entry != iObj )
for ( i = 0; i < 4; i++ )
Vec_IntPush( vTempM[i], Entry );
Vec_IntPushUniqueOrder( vTempM[1], iFan0 );
Vec_IntPushUniqueOrder( vTempM[2], iFan1 );
Vec_IntPushUniqueOrder( vTempM[3], iFan0 );
Vec_IntPushUniqueOrder( vTempM[3], iFan1 );
}
Vec_Wec_t * Gia_PolynBuildNew( Gia_Man_t * pGia, Vec_Int_t * vRootLits, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose )
{
abctime clk = Abc_Clock();
Vec_Wec_t * vPolyn;
Vec_Wec_t * vLit2Mono = Vec_WecStart( Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials
Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants
Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials
Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients
Vec_Int_t * vTempC[4], * vTempM[4]; // temporary array
int i, k, iObj, iLit, iMono, iConst, nMonos = 0, nBuilds = 0;
for ( i = 0; i < 4; i++ )
vTempC[i] = Vec_IntAlloc( 10 );
for ( i = 0; i < 4; i++ )
vTempM[i] = Vec_IntAlloc( 10 );
// add 0-constant and 1-monomial
Hsh_VecManAdd( pHashC, vTempC[0] );
Hsh_VecManAdd( pHashM, vTempM[0] );
Vec_IntPush( vCoefs, 0 );
// create output signature
Vec_IntForEachEntry( vRootLits, iLit, i )
{
Gia_PolynPrepare2( vTempC, vTempM, Abc_Lit2Var(iLit), i+1 );
if ( fSigned && i == Vec_IntSize(vRootLits)-1 )
{
if ( Abc_LitIsCompl(iLit) )
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[0] ); // -C
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver
}
else
{
if ( Abc_LitIsCompl(iLit) )
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver
}
nBuilds++;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse( vNodes, iObj, i )
{
Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj );
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iObj );
Vec_IntForEachEntry( vArray, iMono, k )
if ( (iConst = Vec_IntEntry(vCoefs, iMono)) > 0 )
{
Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst );
Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono );
Gia_PolynPrepare4( vTempC, vTempM, vArrayC, vArrayM, iObj, Gia_ObjFaninId0(pObj, iObj), Gia_ObjFaninId1(pObj, iObj) );
if ( Gia_ObjIsXor(pObj) )
{
}
else if ( Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * (1 - x) * (1 - y)
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C * 1
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * x
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[3], vTempM[2] ); // -C * y
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[2], vTempM[3] ); // C * x * y
nBuilds += 3;
}
else if ( Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) ) // C * (1 - x) * y
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[2] ); // C * y
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y
nBuilds += 2;
}
else if ( !Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * x * (1 - y)
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * x
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[3] ); // C * x * y
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// get the results
vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs );
printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ",
Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
for ( i = 0; i < 4; i++ )
Vec_IntFree( vTempC[i] );
for ( i = 0; i < 4; i++ )
Vec_IntFree( vTempM[i] );
Vec_IntFree( vCoefs );
Vec_WecFree( vLit2Mono );
Hsh_VecManStop( pHashC );
Hsh_VecManStop( pHashM );
return vPolyn;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Gia_PolynBuild2Test( Gia_Man_t * pGia )
{
Vec_Wec_t * vPolyn;
Vec_Int_t * vRootLits = Vec_IntAlloc( Gia_ManCoNum(pGia) );
Vec_Int_t * vLeaves = Vec_IntAlloc( Gia_ManCiNum(pGia) );
Vec_Int_t * vNodes = Vec_IntAlloc( Gia_ManAndNum(pGia) );
Gia_Obj_t * pObj;
int i;
Gia_ManForEachObj( pGia, pObj, i )
if ( Gia_ObjIsCi(pObj) )
Vec_IntPush( vLeaves, i );
else if ( Gia_ObjIsAnd(pObj) )
Vec_IntPush( vNodes, i );
else if ( Gia_ObjIsCo(pObj) )
Vec_IntPush( vRootLits, Gia_ObjFaninLit0p(pGia, pObj) );
vPolyn = Gia_PolynBuildNew( pGia, vRootLits, vLeaves, vNodes, 0, 0, 0 );
// printf( "Polynomial has %d monomials.\n", Vec_WecSize(vPolyn)/2 );
// Gia_PolynPrintStats( vPolyn );
// Gia_PolynPrint( vPolyn );
Vec_WecFree( vPolyn );
Vec_IntFree( vRootLits );
Vec_IntFree( vLeaves );
Vec_IntFree( vNodes );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
/**CFile****************************************************************
FileName [acecRe.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [CEC for arithmetic circuits.]
Synopsis [Core procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: acecRe.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acecInt.h"
#include "misc/vec/vecHash.h"
#include "misc/util/utilTruth.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define Ree_ForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 2 )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Detecting FADDs in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ree_TruthPrecompute()
{
word Truths[8] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
word Truth;
int i;
for ( i = 0; i < 8; i++ )
{
Truth = Truths[i];
Truth = Abc_Tt6SwapAdjacent( Truth, 1 );
Abc_TtPrintHexRev( stdout, &Truth, 3 );
printf( "\n" );
}
printf( "\n" );
for ( i = 0; i < 8; i++ )
{
Truth = Truths[i];
Truth = Abc_Tt6SwapAdjacent( Truth, 1 );
Truth = Abc_Tt6SwapAdjacent( Truth, 0 );
Abc_TtPrintHexRev( stdout, &Truth, 3 );
printf( "\n" );
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Detecting FADDs in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Ree_ManCutMergeOne( int * pCut0, int * pCut1, int * pCut )
{
int i, k;
for ( k = 0; k <= pCut1[0]; k++ )
pCut[k] = pCut1[k];
for ( i = 1; i <= pCut0[0]; i++ )
{
for ( k = 1; k <= pCut1[0]; k++ )
if ( pCut0[i] == pCut1[k] )
break;
if ( k <= pCut1[0] )
continue;
if ( pCut[0] == 3 )
return 0;
pCut[1+pCut[0]++] = pCut0[i];
}
assert( pCut[0] == 2 || pCut[0] == 3 );
if ( pCut[1] > pCut[2] )
ABC_SWAP( int, pCut[1], pCut[2] );
assert( pCut[1] < pCut[2] );
if ( pCut[0] == 2 )
return 1;
if ( pCut[2] > pCut[3] )
ABC_SWAP( int, pCut[2], pCut[3] );
if ( pCut[1] > pCut[2] )
ABC_SWAP( int, pCut[1], pCut[2] );
assert( pCut[1] < pCut[2] );
assert( pCut[2] < pCut[3] );
return 1;
}
static inline int Ree_ManCutCheckEqual( Vec_Int_t * vCuts, int * pCutNew )
{
int * pList = Vec_IntArray( vCuts );
int i, k, * pCut;
Ree_ForEachCut( pList, pCut, i )
{
for ( k = 0; k <= pCut[0]; k++ )
if ( pCut[k] != pCutNew[k] )
break;
if ( k > pCut[0] )
return 1;
}
return 0;
}
static inline int Ree_ManCutFind( int iObj, int * pCut )
{
if ( pCut[1] == iObj ) return 0;
if ( pCut[2] == iObj ) return 1;
if ( pCut[3] == iObj ) return 2;
assert( 0 );
return -1;
}
static inline int Ree_ManCutNotFind( int iObj1, int iObj2, int * pCut )
{
if ( pCut[3] != iObj1 && pCut[3] != iObj2 ) return 0;
if ( pCut[2] != iObj1 && pCut[2] != iObj2 ) return 1;
if ( pCut[1] != iObj1 && pCut[1] != iObj2 ) return 2;
assert( 0 );
return -1;
}
static inline int Ree_ManCutTruthOne( int * pCut0, int * pCut )
{
int Truth0 = pCut0[pCut0[0]+1];
int fComp0 = (Truth0 >> 7) & 1;
if ( pCut0[0] == 3 )
return Truth0;
Truth0 = fComp0 ? ~Truth0 : Truth0;
if ( pCut0[0] == 2 )
{
int Truths[3][8] = {
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }, // {0,1,-}
{ 0x00, 0x05, 0x0A, 0x0F, 0x50, 0x55, 0x5A, 0x5F }, // {0,-,1}
{ 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F } // {-,0,1}
};
int Truth = Truths[Ree_ManCutNotFind(pCut0[1], pCut0[2], pCut)][Truth0 & 0x7];
return 0xFF & (fComp0 ? ~Truth : Truth);
}
if ( pCut0[0] == 1 )
{
int Truths[3] = { 0x55, 0x33, 0x0F };
int Truth = Truths[Ree_ManCutFind(pCut0[1], pCut)];
return 0xFF & (fComp0 ? ~Truth : Truth);
}
assert( 0 );
return -1;
}
static inline int Ree_ManCutTruth( Gia_Obj_t * pObj, int * pCut0, int * pCut1, int * pCut )
{
int Truth0 = Ree_ManCutTruthOne( pCut0, pCut );
int Truth1 = Ree_ManCutTruthOne( pCut1, pCut );
Truth0 = Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0;
Truth1 = Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1;
return 0xFF & (Gia_ObjIsXor(pObj) ? Truth0 ^ Truth1 : Truth0 & Truth1);
}
#if 0
int Ree_ObjComputeTruth_rec( Gia_Obj_t * pObj )
{
int Truth0, Truth1;
if ( pObj->Value )
return pObj->Value;
assert( Gia_ObjIsAnd(pObj) );
Truth0 = Ree_ObjComputeTruth_rec( Gia_ObjFanin0(pObj) );
Truth1 = Ree_ObjComputeTruth_rec( Gia_ObjFanin1(pObj) );
if ( Gia_ObjIsXor(pObj) )
return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) ^ (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1));
else
return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) & (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1));
}
void Ree_ObjCleanTruth_rec( Gia_Obj_t * pObj )
{
if ( !pObj->Value )
return;
pObj->Value = 0;
if ( !Gia_ObjIsAnd(pObj) )
return;
Ree_ObjCleanTruth_rec( Gia_ObjFanin0(pObj) );
Ree_ObjCleanTruth_rec( Gia_ObjFanin1(pObj) );
}
int Ree_ObjComputeTruth( Gia_Man_t * p, int iObj, int * pCut )
{
unsigned Truth, Truths[3] = { 0xAA, 0xCC, 0xF0 }; int i;
for ( i = 1; i <= pCut[0]; i++ )
Gia_ManObj(p, pCut[i])->Value = Truths[i-1];
Truth = 0xFF & Ree_ObjComputeTruth_rec( Gia_ManObj(p, iObj) );
Ree_ObjCleanTruth_rec( Gia_ManObj(p, iObj) );
return Truth;
}
#endif
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ree_ManCutPrint( int * pCut, int Count, word Truth )
{
int c;
printf( "%d : ", Count );
for ( c = 1; c <= pCut[0]; c++ )
printf( "%3d ", pCut[c] );
for ( ; c <= 4; c++ )
printf( " " );
printf( "0x" );
Abc_TtPrintHexRev( stdout, &Truth, 3 );
printf( "\n" );
}
void Ree_ManCutMerge( Gia_Man_t * p, int iObj, int * pList0, int * pList1, Vec_Int_t * vCuts, Hash_IntMan_t * pHash, Vec_Int_t * vData )
{
int fVerbose = 0;
int i, k, c, Value, Truth, TruthC, * pCut0, * pCut1, pCut[5], Count = 0;
if ( fVerbose )
printf( "Object %d\n", iObj );
Vec_IntFill( vCuts, 2, 1 );
Vec_IntPush( vCuts, iObj );
Vec_IntPush( vCuts, 0xAA );
Ree_ForEachCut( pList0, pCut0, i )
Ree_ForEachCut( pList1, pCut1, k )
{
if ( !Ree_ManCutMergeOne(pCut0, pCut1, pCut) )
continue;
if ( Ree_ManCutCheckEqual(vCuts, pCut) )
continue;
Truth = TruthC = Ree_ManCutTruth(Gia_ManObj(p, iObj), pCut0, pCut1, pCut);
//assert( Truth == Ree_ObjComputeTruth(p, iObj, pCut) );
Vec_IntAddToEntry( vCuts, 0, 1 );
for ( c = 0; c <= pCut[0]; c++ )
Vec_IntPush( vCuts, pCut[c] );
Vec_IntPush( vCuts, Truth );
if ( Truth & 0x80 )
Truth = 0xFF & ~Truth;
if ( (Truth == 0x66 || Truth == 0x11 || Truth == 0x22 || Truth == 0x44 || Truth == 0x77) && pCut[0] == 2 )
{
assert( pCut[0] == 2 );
Value = Hsh_Int3ManInsert( pHash, pCut[1], pCut[2], 0 );
Vec_IntPushThree( vData, iObj, Value, TruthC );
}
else if ( Truth == 0x69 || Truth == 0x17 || Truth == 0x2B || Truth == 0x4D || Truth == 0x71 )
{
assert( pCut[0] == 3 );
Value = Hsh_Int3ManInsert( pHash, pCut[1], pCut[2], pCut[3] );
Vec_IntPushThree( vData, iObj, Value, TruthC );
}
if ( fVerbose )
Ree_ManCutPrint( pCut, ++Count, TruthC );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Ree_ManDeriveAdds( Hash_IntMan_t * p, Vec_Int_t * vData )
{
int i, j, k, iObj, iObj2, Value, Truth, CountX, CountM, Index = 0;
int nEntries = Hash_IntManEntryNum(p);
Vec_Int_t * vAdds = Vec_IntAlloc( 1000 );
Vec_Int_t * vXors = Vec_IntStart( nEntries + 1 );
Vec_Int_t * vMajs = Vec_IntStart( nEntries + 1 );
Vec_Int_t * vIndex = Vec_IntStartFull( nEntries + 1 );
Vec_Int_t * vIndexRev = Vec_IntAlloc( 1000 );
Vec_Wec_t * vXorMap, * vMajMap;
Vec_IntForEachEntryTriple( vData, iObj, Value, Truth, i )
{
assert( Value <= nEntries );
if ( Truth == 0x66 || Truth == 0x99 || Truth == 0x69 || Truth == 0x96 )
Vec_IntAddToEntry( vXors, Value, 1 );
else
Vec_IntAddToEntry( vMajs, Value, 1 );
}
// remap these into indexes
Vec_IntForEachEntryTwo( vXors, vMajs, CountX, CountM, i )
if ( CountX && CountM )
{
Vec_IntPush( vIndexRev, i );
Vec_IntWriteEntry( vIndex, i, Index++ );
}
Vec_IntFree( vXors );
Vec_IntFree( vMajs );
printf( "Detected %d shared cuts among %d hashed cuts.\n", Index, nEntries );
// collect nodes
vXorMap = Vec_WecStart( Index );
vMajMap = Vec_WecStart( Index );
Vec_IntForEachEntryTriple( vData, iObj, Value, Truth, i )
{
Index = Vec_IntEntry( vIndex, Value );
if ( Index == -1 )
continue;
if ( Truth == 0x66 || Truth == 0x99 || Truth == 0x69 || Truth == 0x96 )
Vec_WecPush( vXorMap, Index, iObj );
else
Vec_WecPush( vMajMap, Index, iObj );
}
Vec_IntFree( vIndex );
// create pairs
Vec_IntForEachEntry( vIndexRev, Value, i )
{
Vec_Int_t * vXorOne = Vec_WecEntry( vXorMap, i );
Vec_Int_t * vMajOne = Vec_WecEntry( vMajMap, i );
Hash_IntObj_t * pObj = Hash_IntObj( p, Value );
Vec_IntForEachEntry( vXorOne, iObj, j )
Vec_IntForEachEntry( vMajOne, iObj2, k )
{
Vec_IntPushThree( vAdds, pObj->iData0, pObj->iData1, pObj->iData2 );
Vec_IntPushTwo( vAdds, iObj, iObj2 );
}
}
Vec_IntFree( vIndexRev );
Vec_WecFree( vXorMap );
Vec_WecFree( vMajMap );
return vAdds;
}
Vec_Int_t * Ree_ManComputeCuts( Gia_Man_t * p, int fVerbose )
{
Gia_Obj_t * pObj;
int * pList0, * pList1, i, nCuts = 0;
Hash_IntMan_t * pHash = Hash_IntManStart( 1000 );
Vec_Int_t * vAdds;
Vec_Int_t * vTemp = Vec_IntAlloc( 1000 );
Vec_Int_t * vData = Vec_IntAlloc( 1000 );
Vec_Int_t * vCuts = Vec_IntAlloc( 30 * Gia_ManAndNum(p) );
Vec_IntFill( vCuts, Gia_ManObjNum(p), 0 );
Gia_ManCleanValue( p );
Gia_ManForEachCi( p, pObj, i )
{
Vec_IntWriteEntry( vCuts, Gia_ObjId(p, pObj), Vec_IntSize(vCuts) );
Vec_IntPush( vCuts, 1 );
Vec_IntPush( vCuts, 1 );
Vec_IntPush( vCuts, Gia_ObjId(p, pObj) );
Vec_IntPush( vCuts, 0xAA );
}
Gia_ManForEachAnd( p, pObj, i )
{
pList0 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId0(pObj, i)) );
pList1 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId1(pObj, i)) );
Ree_ManCutMerge( p, i, pList0, pList1, vTemp, pHash, vData );
Vec_IntWriteEntry( vCuts, i, Vec_IntSize(vCuts) );
Vec_IntAppend( vCuts, vTemp );
nCuts += Vec_IntEntry( vTemp, 0 );
}
if ( fVerbose )
printf( "Nodes = %d. Cuts = %d. Cuts/Node = %.2f. Ints/Node = %.2f.\n",
Gia_ManAndNum(p), nCuts, 1.0*nCuts/Gia_ManAndNum(p), 1.0*Vec_IntSize(vCuts)/Gia_ManAndNum(p) );
Vec_IntFree( vTemp );
Vec_IntFree( vCuts );
vAdds = Ree_ManDeriveAdds( pHash, vData );
if ( fVerbose )
printf( "Adds = %d. Total = %d. Hashed = %d. Hashed/Adds = %.2f.\n",
Vec_IntSize(vAdds)/5, Vec_IntSize(vData)/3, Hash_IntManEntryNum(pHash), 5.0*Hash_IntManEntryNum(pHash)/Vec_IntSize(vAdds) );
Vec_IntFree( vData );
Hash_IntManStop( pHash );
return vAdds;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ree_ManComputeCutsTest( Gia_Man_t * p )
{
abctime clk = Abc_Clock();
Vec_Int_t * vAdds = Ree_ManComputeCuts( p, 1 );
int i, Count = 0;
for ( i = 0; 5*i < Vec_IntSize(vAdds); i++ )
{
if ( Vec_IntEntry(vAdds, 5*i+2) == 0 )
continue;
Count++;
continue;
printf( "%6d : ", i );
printf( "%6d ", Vec_IntEntry(vAdds, 5*i+0) );
printf( "%6d ", Vec_IntEntry(vAdds, 5*i+1) );
printf( "%6d ", Vec_IntEntry(vAdds, 5*i+2) );
printf( " -> " );
printf( "%6d ", Vec_IntEntry(vAdds, 5*i+3) );
printf( "%6d ", Vec_IntEntry(vAdds, 5*i+4) );
printf( "\n" );
}
Vec_IntFree( vAdds );
printf( "Detected %d FAs and %d HAs. ", Count, Vec_IntSize(vAdds)/5-Count );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment