Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
abc
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
abc
Commits
478066f7
Commit
478066f7
authored
Sep 03, 2016
by
Alan Mishchenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Experimental code for polynomial construction.
parent
9ac7b05e
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1008 additions
and
0 deletions
+1008
-0
abclib.dsp
+8
-0
src/proof/acec/acecPo.c
+564
-0
src/proof/acec/acecRe.c
+436
-0
No files found.
abclib.dsp
View file @
478066f7
...
...
@@ -5371,10 +5371,18 @@ SOURCE=.\src\proof\acec\acecOrder.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecPo.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecPolyn.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecRe.c
# End Source File
# Begin Source File
SOURCE=.\src\proof\acec\acecUtil.c
# End Source File
# End Group
...
...
src/proof/acec/acecPo.c
0 → 100644
View file @
478066f7
/**CFile****************************************************************
FileName [acecPo.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [CEC for arithmetic circuits.]
Synopsis [Core procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: acecPo.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acecInt.h"
#include "misc/vec/vecWec.h"
#include "misc/vec/vecHsh.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Prints polynomial.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Gia_PolynPrintMono
(
Vec_Int_t
*
vConst
,
Vec_Int_t
*
vMono
)
{
int
k
,
Entry
;
Vec_IntForEachEntry
(
vConst
,
Entry
,
k
)
printf
(
"%s2^%d"
,
Entry
<
0
?
"-"
:
"+"
,
Abc_AbsInt
(
Entry
)
-
1
);
Vec_IntForEachEntry
(
vMono
,
Entry
,
k
)
printf
(
" * %d"
,
Entry
);
printf
(
"
\n
"
);
}
void
Gia_PolynPrint
(
Vec_Wec_t
*
vPolyn
)
{
Vec_Int_t
*
vConst
,
*
vMono
;
int
i
;
printf
(
"Polynomial with %d monomials:
\n
"
,
Vec_WecSize
(
vPolyn
)
/
2
);
for
(
i
=
0
;
i
<
Vec_WecSize
(
vPolyn
)
/
2
;
i
++
)
{
vConst
=
Vec_WecEntry
(
vPolyn
,
2
*
i
+
0
);
vMono
=
Vec_WecEntry
(
vPolyn
,
2
*
i
+
1
);
Gia_PolynPrintMono
(
vConst
,
vMono
);
}
}
void
Gia_PolynPrintStats
(
Vec_Wec_t
*
vPolyn
)
{
Vec_Int_t
*
vConst
,
*
vCountsP
,
*
vCountsN
;
int
i
,
Entry
,
Max
=
0
;
printf
(
"Polynomial with %d monomials:
\n
"
,
Vec_WecSize
(
vPolyn
)
/
2
);
for
(
i
=
0
;
i
<
Vec_WecSize
(
vPolyn
)
/
2
;
i
++
)
{
vConst
=
Vec_WecEntry
(
vPolyn
,
2
*
i
+
0
);
Max
=
Abc_MaxInt
(
Max
,
Abc_AbsInt
(
Abc_AbsInt
(
Vec_IntEntry
(
vConst
,
0
)))
);
}
vCountsP
=
Vec_IntStart
(
Max
+
1
);
vCountsN
=
Vec_IntStart
(
Max
+
1
);
for
(
i
=
0
;
i
<
Vec_WecSize
(
vPolyn
)
/
2
;
i
++
)
{
vConst
=
Vec_WecEntry
(
vPolyn
,
2
*
i
+
0
);
Entry
=
Vec_IntEntry
(
vConst
,
0
);
if
(
Entry
>
0
)
Vec_IntAddToEntry
(
vCountsP
,
Entry
,
1
);
else
Vec_IntAddToEntry
(
vCountsN
,
-
Entry
,
1
);
}
Vec_IntForEachEntry
(
vCountsN
,
Entry
,
i
)
if
(
Entry
)
printf
(
"-2^%d appears %d times
\n
"
,
Abc_AbsInt
(
i
)
-
1
,
Entry
);
Vec_IntForEachEntry
(
vCountsP
,
Entry
,
i
)
if
(
Entry
)
printf
(
"+2^%d appears %d times
\n
"
,
Abc_AbsInt
(
i
)
-
1
,
Entry
);
Vec_IntFree
(
vCountsP
);
Vec_IntFree
(
vCountsN
);
}
/**Function*************************************************************
Synopsis [Collects polynomial.]
Description [Collects non-trivial monomials in the increasing order
of the absolute value of the their first coefficients.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Wec_t
*
Gia_PolynGetResult
(
Hsh_VecMan_t
*
pHashC
,
Hsh_VecMan_t
*
pHashM
,
Vec_Int_t
*
vCoefs
)
{
Vec_Int_t
*
vClass
,
*
vLevel
,
*
vArray
;
Vec_Wec_t
*
vPolyn
,
*
vSorted
;
int
i
,
k
,
iConst
,
iMono
;
// find the largest
int
nLargest
=
0
,
nNonConst
=
0
;
Vec_IntForEachEntry
(
vCoefs
,
iConst
,
iMono
)
{
//Vec_IntPrint( Hsh_VecReadEntry(pHashM, iMono) );
if
(
iConst
==
0
)
continue
;
vArray
=
Hsh_VecReadEntry
(
pHashC
,
iConst
);
nLargest
=
Abc_MaxInt
(
nLargest
,
Abc_AbsInt
(
Vec_IntEntry
(
vArray
,
0
))
);
nNonConst
++
;
}
// sort by the size of the largest coefficient
vSorted
=
Vec_WecStart
(
nLargest
+
1
);
Vec_IntForEachEntry
(
vCoefs
,
iConst
,
iMono
)
{
if
(
iConst
==
0
)
continue
;
vArray
=
Hsh_VecReadEntry
(
pHashC
,
iConst
);
vLevel
=
Vec_WecEntry
(
vSorted
,
Abc_AbsInt
(
Vec_IntEntry
(
vArray
,
0
))
);
Vec_IntPushTwo
(
vLevel
,
iConst
,
iMono
);
}
// reload in the given order
vPolyn
=
Vec_WecAlloc
(
2
*
nNonConst
);
Vec_WecForEachLevel
(
vSorted
,
vClass
,
i
)
{
Vec_IntForEachEntryDouble
(
vClass
,
iConst
,
iMono
,
k
)
{
vArray
=
Hsh_VecReadEntry
(
pHashC
,
iConst
);
vLevel
=
Vec_WecPushLevel
(
vPolyn
);
Vec_IntGrow
(
vLevel
,
Vec_IntSize
(
vArray
)
);
Vec_IntAppend
(
vLevel
,
vArray
);
vArray
=
Hsh_VecReadEntry
(
pHashM
,
iMono
);
vLevel
=
Vec_WecPushLevel
(
vPolyn
);
Vec_IntGrow
(
vLevel
,
Vec_IntSize
(
vArray
)
);
Vec_IntAppend
(
vLevel
,
vArray
);
}
}
assert
(
Vec_WecSize
(
vPolyn
)
==
2
*
nNonConst
);
Vec_WecFree
(
vSorted
);
return
vPolyn
;
}
/**Function*************************************************************
Synopsis [Derives new constant.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static
inline
void
Gia_PolynMergeConstOne
(
Vec_Int_t
*
vConst
,
int
New
)
{
int
i
,
Old
;
assert
(
New
!=
0
);
Vec_IntForEachEntry
(
vConst
,
Old
,
i
)
{
assert
(
Old
!=
0
);
if
(
Old
==
New
)
// A == B
{
Vec_IntDrop
(
vConst
,
i
);
Gia_PolynMergeConstOne
(
vConst
,
New
>
0
?
New
+
1
:
New
-
1
);
return
;
}
if
(
Abc_AbsInt
(
Old
)
==
Abc_AbsInt
(
New
)
)
// A == -B
{
Vec_IntDrop
(
vConst
,
i
);
return
;
}
if
(
Old
+
New
==
1
||
Old
+
New
==
-
1
)
// sign(A) != sign(B) && abs(abs(A)-abs(B)) == 1
{
int
Value
=
Abc_MinInt
(
Abc_AbsInt
(
Old
),
Abc_AbsInt
(
New
)
);
Vec_IntDrop
(
vConst
,
i
);
Gia_PolynMergeConstOne
(
vConst
,
(
Old
+
New
==
1
)
?
Value
:
-
Value
);
return
;
}
}
Vec_IntPushUniqueOrder
(
vConst
,
New
);
}
static
inline
void
Gia_PolynMergeConst
(
Vec_Int_t
*
vTempC
,
Hsh_VecMan_t
*
pHashC
,
int
iConstAdd
)
{
int
i
,
New
;
Vec_Int_t
*
vConstAdd
=
Hsh_VecReadEntry
(
pHashC
,
iConstAdd
);
Vec_IntForEachEntry
(
vConstAdd
,
New
,
i
)
{
Gia_PolynMergeConstOne
(
vTempC
,
New
);
vConstAdd
=
Hsh_VecReadEntry
(
pHashC
,
iConstAdd
);
}
}
static
inline
int
Gia_PolynBuildAdd
(
Hsh_VecMan_t
*
pHashC
,
Hsh_VecMan_t
*
pHashM
,
Vec_Int_t
*
vCoefs
,
Vec_Wec_t
*
vLit2Mono
,
Vec_Int_t
*
vTempC
,
Vec_Int_t
*
vTempM
)
{
int
i
,
iLit
,
iConst
,
iConstNew
;
int
iMono
=
Hsh_VecManAdd
(
pHashM
,
vTempM
);
if
(
iMono
==
Vec_IntSize
(
vCoefs
)
)
// new monomial
{
// map monomial into a constant
assert
(
Vec_IntSize
(
vTempC
)
>
0
);
iConst
=
Hsh_VecManAdd
(
pHashC
,
vTempC
);
Vec_IntPush
(
vCoefs
,
iConst
);
// map literals into monomial
assert
(
Vec_IntSize
(
vTempM
)
>
0
);
Vec_IntForEachEntry
(
vTempM
,
iLit
,
i
)
Vec_WecPush
(
vLit2Mono
,
iLit
,
iMono
);
//printf( "New monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
return
1
;
}
// this monomial exists
iConst
=
Vec_IntEntry
(
vCoefs
,
iMono
);
if
(
iConst
)
Gia_PolynMergeConst
(
vTempC
,
pHashC
,
iConst
);
iConstNew
=
Hsh_VecManAdd
(
pHashC
,
vTempC
);
Vec_IntWriteEntry
(
vCoefs
,
iMono
,
iConstNew
);
//printf( "Old monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
if
(
iConst
&&
!
iConstNew
)
return
-
1
;
if
(
!
iConst
&&
iConstNew
)
return
1
;
return
0
;
}
/**Function*************************************************************
Synopsis [Computing for literals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static
inline
int
Gia_PolynHandleOne
(
Hsh_VecMan_t
*
pHashC
,
Hsh_VecMan_t
*
pHashM
,
Vec_Int_t
*
vCoefs
,
Vec_Wec_t
*
vLit2Mono
,
Vec_Int_t
*
vTempC
,
Vec_Int_t
*
vTempM
,
int
iMono
,
int
iLitOld
,
int
iLitNew0
,
int
iLitNew1
)
{
int
status
,
iConst
=
Vec_IntEntry
(
vCoefs
,
iMono
);
Vec_Int_t
*
vArrayC
=
Hsh_VecReadEntry
(
pHashC
,
iConst
);
Vec_Int_t
*
vArrayM
=
Hsh_VecReadEntry
(
pHashM
,
iMono
);
// create new monomial
Vec_IntClear
(
vTempM
);
Vec_IntAppend
(
vTempM
,
vArrayM
);
status
=
Vec_IntRemove
(
vTempM
,
iLitOld
);
assert
(
status
);
// create new monomial
if
(
iLitNew0
==
-
1
&&
iLitNew1
==
-
1
)
// no new lit - the same const
Vec_IntAppendMinus
(
vTempC
,
vArrayC
,
0
);
else
if
(
iLitNew0
>
-
1
&&
iLitNew1
==
-
1
)
// one new lit - opposite const
{
Vec_IntAppendMinus
(
vTempC
,
vArrayC
,
1
);
Vec_IntPushUniqueOrder
(
vTempM
,
iLitNew0
);
}
else
if
(
iLitNew0
>
-
1
&&
iLitNew1
>
-
1
)
// both new lit - the same const
{
Vec_IntAppendMinus
(
vTempC
,
vArrayC
,
0
);
Vec_IntPushUniqueOrder
(
vTempM
,
iLitNew0
);
Vec_IntPushUniqueOrder
(
vTempM
,
iLitNew1
);
}
else
assert
(
0
);
return
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
);
}
Vec_Wec_t
*
Gia_PolynBuildNew2
(
Gia_Man_t
*
pGia
,
Vec_Int_t
*
vRootLits
,
Vec_Int_t
*
vLeaves
,
Vec_Int_t
*
vNodes
,
int
fSigned
,
int
fVerbose
,
int
fVeryVerbose
)
{
abctime
clk
=
Abc_Clock
();
Vec_Wec_t
*
vPolyn
;
Vec_Wec_t
*
vLit2Mono
=
Vec_WecStart
(
2
*
Gia_ManObjNum
(
pGia
)
);
// mapping AIG literals into monomials
Hsh_VecMan_t
*
pHashC
=
Hsh_VecManStart
(
1000
);
// hash table for constants
Hsh_VecMan_t
*
pHashM
=
Hsh_VecManStart
(
1000
);
// hash table for monomials
Vec_Int_t
*
vCoefs
=
Vec_IntAlloc
(
1000
);
// monomial coefficients
Vec_Int_t
*
vTempC
=
Vec_IntAlloc
(
10
);
// temporary array
Vec_Int_t
*
vTempM
=
Vec_IntAlloc
(
10
);
// temporary array
int
i
,
k
,
iObj
,
iLit
,
iMono
,
nMonos
=
0
,
nBuilds
=
0
;
// add 0-constant and 1-monomial
Hsh_VecManAdd
(
pHashC
,
vTempC
);
Hsh_VecManAdd
(
pHashM
,
vTempM
);
Vec_IntPush
(
vCoefs
,
0
);
// create output signature
Vec_IntForEachEntry
(
vRootLits
,
iLit
,
i
)
{
Vec_IntFill
(
vTempC
,
1
,
(
fSigned
&&
i
==
Vec_IntSize
(
vRootLits
)
-
1
)
?
-
i
-
1
:
i
+
1
);
Vec_IntFill
(
vTempM
,
1
,
iLit
);
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
);
nBuilds
++
;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse
(
vNodes
,
iObj
,
i
)
{
Gia_Obj_t
*
pObj
=
Gia_ManObj
(
pGia
,
iObj
);
int
iLits
[
2
]
=
{
Abc_Var2Lit
(
iObj
,
0
),
Abc_Var2Lit
(
iObj
,
1
)
};
int
iFans
[
2
]
=
{
Gia_ObjFaninLit0
(
pObj
,
iObj
),
Gia_ObjFaninLit1
(
pObj
,
iObj
)
};
// add inverter
Vec_Int_t
*
vArray
=
Vec_WecEntry
(
vLit2Mono
,
iLits
[
1
]
);
Vec_IntForEachEntry
(
vArray
,
iMono
,
k
)
if
(
Vec_IntEntry
(
vCoefs
,
iMono
)
>
0
)
{
nMonos
+=
Gia_PolynHandleOne
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
,
iMono
,
iLits
[
1
],
-
1
,
-
1
);
nMonos
+=
Gia_PolynHandleOne
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
,
iMono
,
iLits
[
1
],
iLits
[
0
],
-
1
);
Vec_IntWriteEntry
(
vCoefs
,
iMono
,
0
);
nMonos
--
;
nBuilds
++
;
nBuilds
++
;
}
// add AND gate
vArray
=
Vec_WecEntry
(
vLit2Mono
,
iLits
[
0
]
);
Vec_IntForEachEntry
(
vArray
,
iMono
,
k
)
if
(
Vec_IntEntry
(
vCoefs
,
iMono
)
>
0
)
{
nMonos
+=
Gia_PolynHandleOne
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
,
iMono
,
iLits
[
0
],
iFans
[
0
],
iFans
[
1
]
);
Vec_IntWriteEntry
(
vCoefs
,
iMono
,
0
);
nMonos
--
;
nBuilds
++
;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// complement leave nodes
Vec_IntForEachEntry
(
vLeaves
,
iObj
,
i
)
{
Gia_Obj_t
*
pObj
=
Gia_ManObj
(
pGia
,
iObj
);
int
iLits
[
2
]
=
{
Abc_Var2Lit
(
iObj
,
0
),
Abc_Var2Lit
(
iObj
,
1
)
};
// add inverter
Vec_Int_t
*
vArray
=
Vec_WecEntry
(
vLit2Mono
,
iLits
[
1
]
);
Vec_IntForEachEntry
(
vArray
,
iMono
,
k
)
if
(
Vec_IntEntry
(
vCoefs
,
iMono
)
>
0
)
{
nMonos
+=
Gia_PolynHandleOne
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
,
iMono
,
iLits
[
1
],
-
1
,
-
1
);
nMonos
+=
Gia_PolynHandleOne
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
,
vTempM
,
iMono
,
iLits
[
1
],
iLits
[
0
],
-
1
);
Vec_IntWriteEntry
(
vCoefs
,
iMono
,
0
);
nMonos
--
;
nBuilds
++
;
}
}
// get the results
vPolyn
=
Gia_PolynGetResult
(
pHashC
,
pHashM
,
vCoefs
);
printf
(
"HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. "
,
Hsh_VecSize
(
pHashC
),
Hsh_VecSize
(
pHashM
),
nBuilds
,
nMonos
,
Vec_WecSize
(
vPolyn
)
/
2
);
Abc_PrintTime
(
1
,
"Time"
,
Abc_Clock
()
-
clk
);
Vec_IntFree
(
vTempC
);
Vec_IntFree
(
vTempM
);
Vec_IntFree
(
vCoefs
);
Vec_WecFree
(
vLit2Mono
);
Hsh_VecManStop
(
pHashC
);
Hsh_VecManStop
(
pHashM
);
return
vPolyn
;
}
/**Function*************************************************************
Synopsis [Computing for objects.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static
inline
void
Gia_PolynPrepare2
(
Vec_Int_t
*
vTempC
[
2
],
Vec_Int_t
*
vTempM
[
2
],
int
iObj
,
int
iCst
)
{
Vec_IntFill
(
vTempC
[
0
],
1
,
iCst
);
Vec_IntFill
(
vTempC
[
1
],
1
,
-
iCst
);
Vec_IntClear
(
vTempM
[
0
]
);
Vec_IntFill
(
vTempM
[
1
],
1
,
iObj
);
}
static
inline
void
Gia_PolynPrepare4
(
Vec_Int_t
*
vTempC
[
4
],
Vec_Int_t
*
vTempM
[
4
],
Vec_Int_t
*
vConst
,
Vec_Int_t
*
vMono
,
int
iObj
,
int
iFan0
,
int
iFan1
)
{
int
i
,
k
,
Entry
;
for
(
i
=
0
;
i
<
4
;
i
++
)
Vec_IntAppendMinus
(
vTempC
[
i
],
vConst
,
i
&
1
);
for
(
i
=
0
;
i
<
4
;
i
++
)
Vec_IntClear
(
vTempM
[
i
]
);
Vec_IntForEachEntry
(
vMono
,
Entry
,
k
)
if
(
Entry
!=
iObj
)
for
(
i
=
0
;
i
<
4
;
i
++
)
Vec_IntPush
(
vTempM
[
i
],
Entry
);
Vec_IntPushUniqueOrder
(
vTempM
[
1
],
iFan0
);
Vec_IntPushUniqueOrder
(
vTempM
[
2
],
iFan1
);
Vec_IntPushUniqueOrder
(
vTempM
[
3
],
iFan0
);
Vec_IntPushUniqueOrder
(
vTempM
[
3
],
iFan1
);
}
Vec_Wec_t
*
Gia_PolynBuildNew
(
Gia_Man_t
*
pGia
,
Vec_Int_t
*
vRootLits
,
Vec_Int_t
*
vLeaves
,
Vec_Int_t
*
vNodes
,
int
fSigned
,
int
fVerbose
,
int
fVeryVerbose
)
{
abctime
clk
=
Abc_Clock
();
Vec_Wec_t
*
vPolyn
;
Vec_Wec_t
*
vLit2Mono
=
Vec_WecStart
(
Gia_ManObjNum
(
pGia
)
);
// mapping AIG literals into monomials
Hsh_VecMan_t
*
pHashC
=
Hsh_VecManStart
(
1000
);
// hash table for constants
Hsh_VecMan_t
*
pHashM
=
Hsh_VecManStart
(
1000
);
// hash table for monomials
Vec_Int_t
*
vCoefs
=
Vec_IntAlloc
(
1000
);
// monomial coefficients
Vec_Int_t
*
vTempC
[
4
],
*
vTempM
[
4
];
// temporary array
int
i
,
k
,
iObj
,
iLit
,
iMono
,
iConst
,
nMonos
=
0
,
nBuilds
=
0
;
for
(
i
=
0
;
i
<
4
;
i
++
)
vTempC
[
i
]
=
Vec_IntAlloc
(
10
);
for
(
i
=
0
;
i
<
4
;
i
++
)
vTempM
[
i
]
=
Vec_IntAlloc
(
10
);
// add 0-constant and 1-monomial
Hsh_VecManAdd
(
pHashC
,
vTempC
[
0
]
);
Hsh_VecManAdd
(
pHashM
,
vTempM
[
0
]
);
Vec_IntPush
(
vCoefs
,
0
);
// create output signature
Vec_IntForEachEntry
(
vRootLits
,
iLit
,
i
)
{
Gia_PolynPrepare2
(
vTempC
,
vTempM
,
Abc_Lit2Var
(
iLit
),
i
+
1
);
if
(
fSigned
&&
i
==
Vec_IntSize
(
vRootLits
)
-
1
)
{
if
(
Abc_LitIsCompl
(
iLit
)
)
{
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
0
]
);
// -C
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
1
]
);
// C * Driver
nBuilds
++
;
}
else
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
1
]
);
// -C * Driver
}
else
{
if
(
Abc_LitIsCompl
(
iLit
)
)
{
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
0
]
);
// C
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
1
]
);
// -C * Driver
nBuilds
++
;
}
else
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
1
]
);
// C * Driver
}
nBuilds
++
;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse
(
vNodes
,
iObj
,
i
)
{
Gia_Obj_t
*
pObj
=
Gia_ManObj
(
pGia
,
iObj
);
Vec_Int_t
*
vArray
=
Vec_WecEntry
(
vLit2Mono
,
iObj
);
Vec_IntForEachEntry
(
vArray
,
iMono
,
k
)
if
(
(
iConst
=
Vec_IntEntry
(
vCoefs
,
iMono
))
>
0
)
{
Vec_Int_t
*
vArrayC
=
Hsh_VecReadEntry
(
pHashC
,
iConst
);
Vec_Int_t
*
vArrayM
=
Hsh_VecReadEntry
(
pHashM
,
iMono
);
Gia_PolynPrepare4
(
vTempC
,
vTempM
,
vArrayC
,
vArrayM
,
iObj
,
Gia_ObjFaninId0
(
pObj
,
iObj
),
Gia_ObjFaninId1
(
pObj
,
iObj
)
);
if
(
Gia_ObjIsXor
(
pObj
)
)
{
}
else
if
(
Gia_ObjFaninC0
(
pObj
)
&&
Gia_ObjFaninC1
(
pObj
)
)
// C * (1 - x) * (1 - y)
{
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
0
]
);
// C * 1
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
1
]
);
// -C * x
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
3
],
vTempM
[
2
]
);
// -C * y
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
2
],
vTempM
[
3
]
);
// C * x * y
nBuilds
+=
3
;
}
else
if
(
Gia_ObjFaninC0
(
pObj
)
&&
!
Gia_ObjFaninC1
(
pObj
)
)
// C * (1 - x) * y
{
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
2
]
);
// C * y
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
3
]
);
// -C * x * y
nBuilds
+=
2
;
}
else
if
(
!
Gia_ObjFaninC0
(
pObj
)
&&
Gia_ObjFaninC1
(
pObj
)
)
// C * x * (1 - y)
{
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
1
]
);
// C * x
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
1
],
vTempM
[
3
]
);
// -C * x * y
nBuilds
++
;
}
else
nMonos
+=
Gia_PolynBuildAdd
(
pHashC
,
pHashM
,
vCoefs
,
vLit2Mono
,
vTempC
[
0
],
vTempM
[
3
]
);
// C * x * y
Vec_IntWriteEntry
(
vCoefs
,
iMono
,
0
);
nMonos
--
;
nBuilds
++
;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// get the results
vPolyn
=
Gia_PolynGetResult
(
pHashC
,
pHashM
,
vCoefs
);
printf
(
"HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. "
,
Hsh_VecSize
(
pHashC
),
Hsh_VecSize
(
pHashM
),
nBuilds
,
nMonos
,
Vec_WecSize
(
vPolyn
)
/
2
);
Abc_PrintTime
(
1
,
"Time"
,
Abc_Clock
()
-
clk
);
for
(
i
=
0
;
i
<
4
;
i
++
)
Vec_IntFree
(
vTempC
[
i
]
);
for
(
i
=
0
;
i
<
4
;
i
++
)
Vec_IntFree
(
vTempM
[
i
]
);
Vec_IntFree
(
vCoefs
);
Vec_WecFree
(
vLit2Mono
);
Hsh_VecManStop
(
pHashC
);
Hsh_VecManStop
(
pHashM
);
return
vPolyn
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Gia_PolynBuild2Test
(
Gia_Man_t
*
pGia
)
{
Vec_Wec_t
*
vPolyn
;
Vec_Int_t
*
vRootLits
=
Vec_IntAlloc
(
Gia_ManCoNum
(
pGia
)
);
Vec_Int_t
*
vLeaves
=
Vec_IntAlloc
(
Gia_ManCiNum
(
pGia
)
);
Vec_Int_t
*
vNodes
=
Vec_IntAlloc
(
Gia_ManAndNum
(
pGia
)
);
Gia_Obj_t
*
pObj
;
int
i
;
Gia_ManForEachObj
(
pGia
,
pObj
,
i
)
if
(
Gia_ObjIsCi
(
pObj
)
)
Vec_IntPush
(
vLeaves
,
i
);
else
if
(
Gia_ObjIsAnd
(
pObj
)
)
Vec_IntPush
(
vNodes
,
i
);
else
if
(
Gia_ObjIsCo
(
pObj
)
)
Vec_IntPush
(
vRootLits
,
Gia_ObjFaninLit0p
(
pGia
,
pObj
)
);
vPolyn
=
Gia_PolynBuildNew
(
pGia
,
vRootLits
,
vLeaves
,
vNodes
,
0
,
0
,
0
);
// printf( "Polynomial has %d monomials.\n", Vec_WecSize(vPolyn)/2 );
// Gia_PolynPrintStats( vPolyn );
// Gia_PolynPrint( vPolyn );
Vec_WecFree
(
vPolyn
);
Vec_IntFree
(
vRootLits
);
Vec_IntFree
(
vLeaves
);
Vec_IntFree
(
vNodes
);
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
src/proof/acec/acecRe.c
0 → 100644
View file @
478066f7
/**CFile****************************************************************
FileName [acecRe.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [CEC for arithmetic circuits.]
Synopsis [Core procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: acecRe.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acecInt.h"
#include "misc/vec/vecHash.h"
#include "misc/util/utilTruth.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define Ree_ForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 2 )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Detecting FADDs in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Ree_TruthPrecompute
()
{
word
Truths
[
8
]
=
{
0x00
,
0x11
,
0x22
,
0x33
,
0x44
,
0x55
,
0x66
,
0x77
};
word
Truth
;
int
i
;
for
(
i
=
0
;
i
<
8
;
i
++
)
{
Truth
=
Truths
[
i
];
Truth
=
Abc_Tt6SwapAdjacent
(
Truth
,
1
);
Abc_TtPrintHexRev
(
stdout
,
&
Truth
,
3
);
printf
(
"
\n
"
);
}
printf
(
"
\n
"
);
for
(
i
=
0
;
i
<
8
;
i
++
)
{
Truth
=
Truths
[
i
];
Truth
=
Abc_Tt6SwapAdjacent
(
Truth
,
1
);
Truth
=
Abc_Tt6SwapAdjacent
(
Truth
,
0
);
Abc_TtPrintHexRev
(
stdout
,
&
Truth
,
3
);
printf
(
"
\n
"
);
}
printf
(
"
\n
"
);
}
/**Function*************************************************************
Synopsis [Detecting FADDs in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static
inline
int
Ree_ManCutMergeOne
(
int
*
pCut0
,
int
*
pCut1
,
int
*
pCut
)
{
int
i
,
k
;
for
(
k
=
0
;
k
<=
pCut1
[
0
];
k
++
)
pCut
[
k
]
=
pCut1
[
k
];
for
(
i
=
1
;
i
<=
pCut0
[
0
];
i
++
)
{
for
(
k
=
1
;
k
<=
pCut1
[
0
];
k
++
)
if
(
pCut0
[
i
]
==
pCut1
[
k
]
)
break
;
if
(
k
<=
pCut1
[
0
]
)
continue
;
if
(
pCut
[
0
]
==
3
)
return
0
;
pCut
[
1
+
pCut
[
0
]
++
]
=
pCut0
[
i
];
}
assert
(
pCut
[
0
]
==
2
||
pCut
[
0
]
==
3
);
if
(
pCut
[
1
]
>
pCut
[
2
]
)
ABC_SWAP
(
int
,
pCut
[
1
],
pCut
[
2
]
);
assert
(
pCut
[
1
]
<
pCut
[
2
]
);
if
(
pCut
[
0
]
==
2
)
return
1
;
if
(
pCut
[
2
]
>
pCut
[
3
]
)
ABC_SWAP
(
int
,
pCut
[
2
],
pCut
[
3
]
);
if
(
pCut
[
1
]
>
pCut
[
2
]
)
ABC_SWAP
(
int
,
pCut
[
1
],
pCut
[
2
]
);
assert
(
pCut
[
1
]
<
pCut
[
2
]
);
assert
(
pCut
[
2
]
<
pCut
[
3
]
);
return
1
;
}
static
inline
int
Ree_ManCutCheckEqual
(
Vec_Int_t
*
vCuts
,
int
*
pCutNew
)
{
int
*
pList
=
Vec_IntArray
(
vCuts
);
int
i
,
k
,
*
pCut
;
Ree_ForEachCut
(
pList
,
pCut
,
i
)
{
for
(
k
=
0
;
k
<=
pCut
[
0
];
k
++
)
if
(
pCut
[
k
]
!=
pCutNew
[
k
]
)
break
;
if
(
k
>
pCut
[
0
]
)
return
1
;
}
return
0
;
}
static
inline
int
Ree_ManCutFind
(
int
iObj
,
int
*
pCut
)
{
if
(
pCut
[
1
]
==
iObj
)
return
0
;
if
(
pCut
[
2
]
==
iObj
)
return
1
;
if
(
pCut
[
3
]
==
iObj
)
return
2
;
assert
(
0
);
return
-
1
;
}
static
inline
int
Ree_ManCutNotFind
(
int
iObj1
,
int
iObj2
,
int
*
pCut
)
{
if
(
pCut
[
3
]
!=
iObj1
&&
pCut
[
3
]
!=
iObj2
)
return
0
;
if
(
pCut
[
2
]
!=
iObj1
&&
pCut
[
2
]
!=
iObj2
)
return
1
;
if
(
pCut
[
1
]
!=
iObj1
&&
pCut
[
1
]
!=
iObj2
)
return
2
;
assert
(
0
);
return
-
1
;
}
static
inline
int
Ree_ManCutTruthOne
(
int
*
pCut0
,
int
*
pCut
)
{
int
Truth0
=
pCut0
[
pCut0
[
0
]
+
1
];
int
fComp0
=
(
Truth0
>>
7
)
&
1
;
if
(
pCut0
[
0
]
==
3
)
return
Truth0
;
Truth0
=
fComp0
?
~
Truth0
:
Truth0
;
if
(
pCut0
[
0
]
==
2
)
{
int
Truths
[
3
][
8
]
=
{
{
0x00
,
0x11
,
0x22
,
0x33
,
0x44
,
0x55
,
0x66
,
0x77
},
// {0,1,-}
{
0x00
,
0x05
,
0x0A
,
0x0F
,
0x50
,
0x55
,
0x5A
,
0x5F
},
// {0,-,1}
{
0x00
,
0x03
,
0x0C
,
0x0F
,
0x30
,
0x33
,
0x3C
,
0x3F
}
// {-,0,1}
};
int
Truth
=
Truths
[
Ree_ManCutNotFind
(
pCut0
[
1
],
pCut0
[
2
],
pCut
)][
Truth0
&
0x7
];
return
0xFF
&
(
fComp0
?
~
Truth
:
Truth
);
}
if
(
pCut0
[
0
]
==
1
)
{
int
Truths
[
3
]
=
{
0x55
,
0x33
,
0x0F
};
int
Truth
=
Truths
[
Ree_ManCutFind
(
pCut0
[
1
],
pCut
)];
return
0xFF
&
(
fComp0
?
~
Truth
:
Truth
);
}
assert
(
0
);
return
-
1
;
}
static
inline
int
Ree_ManCutTruth
(
Gia_Obj_t
*
pObj
,
int
*
pCut0
,
int
*
pCut1
,
int
*
pCut
)
{
int
Truth0
=
Ree_ManCutTruthOne
(
pCut0
,
pCut
);
int
Truth1
=
Ree_ManCutTruthOne
(
pCut1
,
pCut
);
Truth0
=
Gia_ObjFaninC0
(
pObj
)
?
~
Truth0
:
Truth0
;
Truth1
=
Gia_ObjFaninC1
(
pObj
)
?
~
Truth1
:
Truth1
;
return
0xFF
&
(
Gia_ObjIsXor
(
pObj
)
?
Truth0
^
Truth1
:
Truth0
&
Truth1
);
}
#if 0
int Ree_ObjComputeTruth_rec( Gia_Obj_t * pObj )
{
int Truth0, Truth1;
if ( pObj->Value )
return pObj->Value;
assert( Gia_ObjIsAnd(pObj) );
Truth0 = Ree_ObjComputeTruth_rec( Gia_ObjFanin0(pObj) );
Truth1 = Ree_ObjComputeTruth_rec( Gia_ObjFanin1(pObj) );
if ( Gia_ObjIsXor(pObj) )
return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) ^ (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1));
else
return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) & (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1));
}
void Ree_ObjCleanTruth_rec( Gia_Obj_t * pObj )
{
if ( !pObj->Value )
return;
pObj->Value = 0;
if ( !Gia_ObjIsAnd(pObj) )
return;
Ree_ObjCleanTruth_rec( Gia_ObjFanin0(pObj) );
Ree_ObjCleanTruth_rec( Gia_ObjFanin1(pObj) );
}
int Ree_ObjComputeTruth( Gia_Man_t * p, int iObj, int * pCut )
{
unsigned Truth, Truths[3] = { 0xAA, 0xCC, 0xF0 }; int i;
for ( i = 1; i <= pCut[0]; i++ )
Gia_ManObj(p, pCut[i])->Value = Truths[i-1];
Truth = 0xFF & Ree_ObjComputeTruth_rec( Gia_ManObj(p, iObj) );
Ree_ObjCleanTruth_rec( Gia_ManObj(p, iObj) );
return Truth;
}
#endif
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Ree_ManCutPrint
(
int
*
pCut
,
int
Count
,
word
Truth
)
{
int
c
;
printf
(
"%d : "
,
Count
);
for
(
c
=
1
;
c
<=
pCut
[
0
];
c
++
)
printf
(
"%3d "
,
pCut
[
c
]
);
for
(
;
c
<=
4
;
c
++
)
printf
(
" "
);
printf
(
"0x"
);
Abc_TtPrintHexRev
(
stdout
,
&
Truth
,
3
);
printf
(
"
\n
"
);
}
void
Ree_ManCutMerge
(
Gia_Man_t
*
p
,
int
iObj
,
int
*
pList0
,
int
*
pList1
,
Vec_Int_t
*
vCuts
,
Hash_IntMan_t
*
pHash
,
Vec_Int_t
*
vData
)
{
int
fVerbose
=
0
;
int
i
,
k
,
c
,
Value
,
Truth
,
TruthC
,
*
pCut0
,
*
pCut1
,
pCut
[
5
],
Count
=
0
;
if
(
fVerbose
)
printf
(
"Object %d
\n
"
,
iObj
);
Vec_IntFill
(
vCuts
,
2
,
1
);
Vec_IntPush
(
vCuts
,
iObj
);
Vec_IntPush
(
vCuts
,
0xAA
);
Ree_ForEachCut
(
pList0
,
pCut0
,
i
)
Ree_ForEachCut
(
pList1
,
pCut1
,
k
)
{
if
(
!
Ree_ManCutMergeOne
(
pCut0
,
pCut1
,
pCut
)
)
continue
;
if
(
Ree_ManCutCheckEqual
(
vCuts
,
pCut
)
)
continue
;
Truth
=
TruthC
=
Ree_ManCutTruth
(
Gia_ManObj
(
p
,
iObj
),
pCut0
,
pCut1
,
pCut
);
//assert( Truth == Ree_ObjComputeTruth(p, iObj, pCut) );
Vec_IntAddToEntry
(
vCuts
,
0
,
1
);
for
(
c
=
0
;
c
<=
pCut
[
0
];
c
++
)
Vec_IntPush
(
vCuts
,
pCut
[
c
]
);
Vec_IntPush
(
vCuts
,
Truth
);
if
(
Truth
&
0x80
)
Truth
=
0xFF
&
~
Truth
;
if
(
(
Truth
==
0x66
||
Truth
==
0x11
||
Truth
==
0x22
||
Truth
==
0x44
||
Truth
==
0x77
)
&&
pCut
[
0
]
==
2
)
{
assert
(
pCut
[
0
]
==
2
);
Value
=
Hsh_Int3ManInsert
(
pHash
,
pCut
[
1
],
pCut
[
2
],
0
);
Vec_IntPushThree
(
vData
,
iObj
,
Value
,
TruthC
);
}
else
if
(
Truth
==
0x69
||
Truth
==
0x17
||
Truth
==
0x2B
||
Truth
==
0x4D
||
Truth
==
0x71
)
{
assert
(
pCut
[
0
]
==
3
);
Value
=
Hsh_Int3ManInsert
(
pHash
,
pCut
[
1
],
pCut
[
2
],
pCut
[
3
]
);
Vec_IntPushThree
(
vData
,
iObj
,
Value
,
TruthC
);
}
if
(
fVerbose
)
Ree_ManCutPrint
(
pCut
,
++
Count
,
TruthC
);
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t
*
Ree_ManDeriveAdds
(
Hash_IntMan_t
*
p
,
Vec_Int_t
*
vData
)
{
int
i
,
j
,
k
,
iObj
,
iObj2
,
Value
,
Truth
,
CountX
,
CountM
,
Index
=
0
;
int
nEntries
=
Hash_IntManEntryNum
(
p
);
Vec_Int_t
*
vAdds
=
Vec_IntAlloc
(
1000
);
Vec_Int_t
*
vXors
=
Vec_IntStart
(
nEntries
+
1
);
Vec_Int_t
*
vMajs
=
Vec_IntStart
(
nEntries
+
1
);
Vec_Int_t
*
vIndex
=
Vec_IntStartFull
(
nEntries
+
1
);
Vec_Int_t
*
vIndexRev
=
Vec_IntAlloc
(
1000
);
Vec_Wec_t
*
vXorMap
,
*
vMajMap
;
Vec_IntForEachEntryTriple
(
vData
,
iObj
,
Value
,
Truth
,
i
)
{
assert
(
Value
<=
nEntries
);
if
(
Truth
==
0x66
||
Truth
==
0x99
||
Truth
==
0x69
||
Truth
==
0x96
)
Vec_IntAddToEntry
(
vXors
,
Value
,
1
);
else
Vec_IntAddToEntry
(
vMajs
,
Value
,
1
);
}
// remap these into indexes
Vec_IntForEachEntryTwo
(
vXors
,
vMajs
,
CountX
,
CountM
,
i
)
if
(
CountX
&&
CountM
)
{
Vec_IntPush
(
vIndexRev
,
i
);
Vec_IntWriteEntry
(
vIndex
,
i
,
Index
++
);
}
Vec_IntFree
(
vXors
);
Vec_IntFree
(
vMajs
);
printf
(
"Detected %d shared cuts among %d hashed cuts.
\n
"
,
Index
,
nEntries
);
// collect nodes
vXorMap
=
Vec_WecStart
(
Index
);
vMajMap
=
Vec_WecStart
(
Index
);
Vec_IntForEachEntryTriple
(
vData
,
iObj
,
Value
,
Truth
,
i
)
{
Index
=
Vec_IntEntry
(
vIndex
,
Value
);
if
(
Index
==
-
1
)
continue
;
if
(
Truth
==
0x66
||
Truth
==
0x99
||
Truth
==
0x69
||
Truth
==
0x96
)
Vec_WecPush
(
vXorMap
,
Index
,
iObj
);
else
Vec_WecPush
(
vMajMap
,
Index
,
iObj
);
}
Vec_IntFree
(
vIndex
);
// create pairs
Vec_IntForEachEntry
(
vIndexRev
,
Value
,
i
)
{
Vec_Int_t
*
vXorOne
=
Vec_WecEntry
(
vXorMap
,
i
);
Vec_Int_t
*
vMajOne
=
Vec_WecEntry
(
vMajMap
,
i
);
Hash_IntObj_t
*
pObj
=
Hash_IntObj
(
p
,
Value
);
Vec_IntForEachEntry
(
vXorOne
,
iObj
,
j
)
Vec_IntForEachEntry
(
vMajOne
,
iObj2
,
k
)
{
Vec_IntPushThree
(
vAdds
,
pObj
->
iData0
,
pObj
->
iData1
,
pObj
->
iData2
);
Vec_IntPushTwo
(
vAdds
,
iObj
,
iObj2
);
}
}
Vec_IntFree
(
vIndexRev
);
Vec_WecFree
(
vXorMap
);
Vec_WecFree
(
vMajMap
);
return
vAdds
;
}
Vec_Int_t
*
Ree_ManComputeCuts
(
Gia_Man_t
*
p
,
int
fVerbose
)
{
Gia_Obj_t
*
pObj
;
int
*
pList0
,
*
pList1
,
i
,
nCuts
=
0
;
Hash_IntMan_t
*
pHash
=
Hash_IntManStart
(
1000
);
Vec_Int_t
*
vAdds
;
Vec_Int_t
*
vTemp
=
Vec_IntAlloc
(
1000
);
Vec_Int_t
*
vData
=
Vec_IntAlloc
(
1000
);
Vec_Int_t
*
vCuts
=
Vec_IntAlloc
(
30
*
Gia_ManAndNum
(
p
)
);
Vec_IntFill
(
vCuts
,
Gia_ManObjNum
(
p
),
0
);
Gia_ManCleanValue
(
p
);
Gia_ManForEachCi
(
p
,
pObj
,
i
)
{
Vec_IntWriteEntry
(
vCuts
,
Gia_ObjId
(
p
,
pObj
),
Vec_IntSize
(
vCuts
)
);
Vec_IntPush
(
vCuts
,
1
);
Vec_IntPush
(
vCuts
,
1
);
Vec_IntPush
(
vCuts
,
Gia_ObjId
(
p
,
pObj
)
);
Vec_IntPush
(
vCuts
,
0xAA
);
}
Gia_ManForEachAnd
(
p
,
pObj
,
i
)
{
pList0
=
Vec_IntEntryP
(
vCuts
,
Vec_IntEntry
(
vCuts
,
Gia_ObjFaninId0
(
pObj
,
i
))
);
pList1
=
Vec_IntEntryP
(
vCuts
,
Vec_IntEntry
(
vCuts
,
Gia_ObjFaninId1
(
pObj
,
i
))
);
Ree_ManCutMerge
(
p
,
i
,
pList0
,
pList1
,
vTemp
,
pHash
,
vData
);
Vec_IntWriteEntry
(
vCuts
,
i
,
Vec_IntSize
(
vCuts
)
);
Vec_IntAppend
(
vCuts
,
vTemp
);
nCuts
+=
Vec_IntEntry
(
vTemp
,
0
);
}
if
(
fVerbose
)
printf
(
"Nodes = %d. Cuts = %d. Cuts/Node = %.2f. Ints/Node = %.2f.
\n
"
,
Gia_ManAndNum
(
p
),
nCuts
,
1
.
0
*
nCuts
/
Gia_ManAndNum
(
p
),
1
.
0
*
Vec_IntSize
(
vCuts
)
/
Gia_ManAndNum
(
p
)
);
Vec_IntFree
(
vTemp
);
Vec_IntFree
(
vCuts
);
vAdds
=
Ree_ManDeriveAdds
(
pHash
,
vData
);
if
(
fVerbose
)
printf
(
"Adds = %d. Total = %d. Hashed = %d. Hashed/Adds = %.2f.
\n
"
,
Vec_IntSize
(
vAdds
)
/
5
,
Vec_IntSize
(
vData
)
/
3
,
Hash_IntManEntryNum
(
pHash
),
5
.
0
*
Hash_IntManEntryNum
(
pHash
)
/
Vec_IntSize
(
vAdds
)
);
Vec_IntFree
(
vData
);
Hash_IntManStop
(
pHash
);
return
vAdds
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Ree_ManComputeCutsTest
(
Gia_Man_t
*
p
)
{
abctime
clk
=
Abc_Clock
();
Vec_Int_t
*
vAdds
=
Ree_ManComputeCuts
(
p
,
1
);
int
i
,
Count
=
0
;
for
(
i
=
0
;
5
*
i
<
Vec_IntSize
(
vAdds
);
i
++
)
{
if
(
Vec_IntEntry
(
vAdds
,
5
*
i
+
2
)
==
0
)
continue
;
Count
++
;
continue
;
printf
(
"%6d : "
,
i
);
printf
(
"%6d "
,
Vec_IntEntry
(
vAdds
,
5
*
i
+
0
)
);
printf
(
"%6d "
,
Vec_IntEntry
(
vAdds
,
5
*
i
+
1
)
);
printf
(
"%6d "
,
Vec_IntEntry
(
vAdds
,
5
*
i
+
2
)
);
printf
(
" -> "
);
printf
(
"%6d "
,
Vec_IntEntry
(
vAdds
,
5
*
i
+
3
)
);
printf
(
"%6d "
,
Vec_IntEntry
(
vAdds
,
5
*
i
+
4
)
);
printf
(
"
\n
"
);
}
Vec_IntFree
(
vAdds
);
printf
(
"Detected %d FAs and %d HAs. "
,
Count
,
Vec_IntSize
(
vAdds
)
/
5
-
Count
);
Abc_PrintTime
(
1
,
"Time"
,
Abc_Clock
()
-
clk
);
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment