Commit 41d18ca0 by Alan Mishchenko

Changing 'refactor' to work with truth tables.

parent 24f2a120
......@@ -5919,7 +5919,7 @@ int Abc_CommandRefactor( Abc_Frame_t * pAbc, int argc, char ** argv )
fUseDcs = 0;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "NClzdvh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "Nlzvh" ) ) != EOF )
{
switch ( c )
{
......@@ -5979,6 +5979,11 @@ int Abc_CommandRefactor( Abc_Frame_t * pAbc, int argc, char ** argv )
Abc_Print( -1, "AIG resynthesis cannot be applied to AIGs with choice nodes.\n" );
return 1;
}
if ( nNodeSizeMax > 15 )
{
Abc_Print( -1, "The cone size cannot exceed 15.\n" );
return 1;
}
if ( fUseDcs && nNodeSizeMax >= nConeSizeMax )
{
......@@ -5995,13 +6000,13 @@ int Abc_CommandRefactor( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
Abc_Print( -2, "usage: refactor [-NC <num>] [-lzdvh]\n" );
Abc_Print( -2, "usage: refactor [-N <num>] [-lzvh]\n" );
Abc_Print( -2, "\t performs technology-independent refactoring of the AIG\n" );
Abc_Print( -2, "\t-N <num> : the max support of the collapsed node [default = %d]\n", nNodeSizeMax );
Abc_Print( -2, "\t-C <num> : the max support of the containing cone [default = %d]\n", nConeSizeMax );
// Abc_Print( -2, "\t-C <num> : the max support of the containing cone [default = %d]\n", nConeSizeMax );
Abc_Print( -2, "\t-l : toggle preserving the number of levels [default = %s]\n", fUpdateLevel? "yes": "no" );
Abc_Print( -2, "\t-z : toggle using zero-cost replacements [default = %s]\n", fUseZeros? "yes": "no" );
Abc_Print( -2, "\t-d : toggle using don't-cares [default = %s]\n", fUseDcs? "yes": "no" );
// Abc_Print( -2, "\t-d : toggle using don't-cares [default = %s]\n", fUseDcs? "yes": "no" );
Abc_Print( -2, "\t-v : toggle verbose printout [default = %s]\n", fVerbose? "yes": "no" );
Abc_Print( -2, "\t-h : print the command usage\n");
return 1;
......@@ -20,10 +20,7 @@
#include "base/abc/abc.h"
#include "bool/dec/dec.h"
#ifdef ABC_USE_CUDD
#include "bdd/extrab/extraBdd.h"
#endif
#include "bool/kit/kit.h"
ABC_NAMESPACE_IMPL_START
......@@ -32,8 +29,6 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#ifdef ABC_USE_CUDD
typedef struct Abc_ManRef_t_ Abc_ManRef_t;
struct Abc_ManRef_t_
{
......@@ -42,7 +37,9 @@ struct Abc_ManRef_t_
int nConeSizeMax; // the limit on the size of the containing cone
int fVerbose; // the verbosity flag
// internal data structures
DdManager * dd; // the BDD manager
Vec_Ptr_t * vVars; // truth tables
Vec_Ptr_t * vFuncs; // functions
Vec_Int_t * vMemory; // memory
Vec_Str_t * vCube; // temporary
Vec_Int_t * vForm; // temporary
Vec_Ptr_t * vVisited; // temporary
......@@ -56,7 +53,7 @@ struct Abc_ManRef_t_
int nNodesEnd;
// runtime statistics
abctime timeCut;
abctime timeBdd;
abctime timeTru;
abctime timeDcs;
abctime timeSop;
abctime timeFact;
......@@ -65,11 +62,6 @@ struct Abc_ManRef_t_
abctime timeNtk;
abctime timeTotal;
};
static void Abc_NtkManRefPrintStats( Abc_ManRef_t * p );
static Abc_ManRef_t * Abc_NtkManRefStart( int nNodeSizeMax, int nConeSizeMax, int fUseDcs, int fVerbose );
static void Abc_NtkManRefStop( Abc_ManRef_t * p );
static Dec_Graph_t * Abc_NodeRefactor( Abc_ManRef_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vFanins, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
......@@ -77,108 +69,74 @@ static Dec_Graph_t * Abc_NodeRefactor( Abc_ManRef_t * p, Abc_Obj_t * pNode, Vec
/**Function*************************************************************
Synopsis [Performs incremental resynthesis of the AIG.]
Synopsis [Returns function of the cone.]
Description [Starting from each node, computes a reconvergence-driven cut,
derives BDD of the cut function, constructs ISOP, factors the ISOP,
and replaces the current implementation of the MFFC of the node by the
new factored form, if the number of AIG nodes is reduced and the total
number of levels of the AIG network is not increated. Returns the
number of AIG nodes saved.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRefactor( Abc_Ntk_t * pNtk, int nNodeSizeMax, int nConeSizeMax, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose )
word * Abc_NodeConeTruth( Vec_Ptr_t * vVars, Vec_Ptr_t * vFuncs, int nWordsMax, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVisited )
{
extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );
ProgressBar * pProgress;
Abc_ManRef_t * pManRef;
Abc_ManCut_t * pManCut;
Dec_Graph_t * pFForm;
Vec_Ptr_t * vFanins;
Abc_Obj_t * pNode;
abctime clk, clkStart = Abc_Clock();
int i, nNodes;
assert( Abc_NtkIsStrash(pNtk) );
// cleanup the AIG
Abc_AigCleanup((Abc_Aig_t *)pNtk->pManFunc);
// start the managers
pManCut = Abc_NtkManCutStart( nNodeSizeMax, nConeSizeMax, 2, 1000 );
pManRef = Abc_NtkManRefStart( nNodeSizeMax, nConeSizeMax, fUseDcs, fVerbose );
pManRef->vLeaves = Abc_NtkManCutReadCutLarge( pManCut );
// compute the reverse levels if level update is requested
if ( fUpdateLevel )
Abc_NtkStartReverseLevels( pNtk, 0 );
// resynthesize each node once
pManRef->nNodesBeg = Abc_NtkNodeNum(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachNode( pNtk, pNode, i )
word * pTruth0, * pTruth1, * pTruth = NULL;
int i, k, nWords = Abc_Truth6WordNum( Vec_PtrSize(vLeaves) );
// get nodes in the cut without fanins in the DFS order
Abc_NodeConeCollect( &pRoot, 1, vLeaves, vVisited, 0 );
// set elementary functions
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Vec_PtrEntry( vVars, i );
// prepare functions
for ( i = Vec_PtrSize(vFuncs); i < Vec_PtrSize(vVisited); i++ )
Vec_PtrPush( vFuncs, ABC_ALLOC(word, nWordsMax) );
// compute functions for the collected nodes
Vec_PtrForEachEntry( Abc_Obj_t *, vVisited, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// skip the constant node
// if ( Abc_NodeIsConst(pNode) )
// continue;
// skip persistant nodes
if ( Abc_NodeIsPersistant(pNode) )
continue;
// skip the nodes with many fanouts
if ( Abc_ObjFanoutNum(pNode) > 1000 )
continue;
// stop if all nodes have been tried once
if ( i >= nNodes )
break;
// compute a reconvergence-driven cut
clk = Abc_Clock();
vFanins = Abc_NodeFindCut( pManCut, pNode, fUseDcs );
pManRef->timeCut += Abc_Clock() - clk;
// evaluate this cut
clk = Abc_Clock();
pFForm = Abc_NodeRefactor( pManRef, pNode, vFanins, fUpdateLevel, fUseZeros, fUseDcs, fVerbose );
pManRef->timeRes += Abc_Clock() - clk;
if ( pFForm == NULL )
continue;
// acceptable replacement found, update the graph
clk = Abc_Clock();
Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRef->nLastGain );
pManRef->timeNtk += Abc_Clock() - clk;
Dec_GraphFree( pFForm );
// {
// extern int s_TotalChanges;
// s_TotalChanges++;
// }
}
Extra_ProgressBarStop( pProgress );
pManRef->timeTotal = Abc_Clock() - clkStart;
pManRef->nNodesEnd = Abc_NtkNodeNum(pNtk);
// print statistics of the manager
if ( fVerbose )
Abc_NtkManRefPrintStats( pManRef );
// delete the managers
Abc_NtkManCutStop( pManCut );
Abc_NtkManRefStop( pManRef );
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
// Abc_AigCheckFaninOrder( pNtk->pManFunc );
// fix the levels
if ( fUpdateLevel )
Abc_NtkStopReverseLevels( pNtk );
else
Abc_NtkLevel( pNtk );
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkRefactor: The network check has failed.\n" );
return 0;
assert( !Abc_ObjIsPi(pNode) );
pTruth0 = (word *)Abc_ObjFanin0(pNode)->pCopy;
pTruth1 = (word *)Abc_ObjFanin1(pNode)->pCopy;
pTruth = (word *)Vec_PtrEntry( vFuncs, i );
if ( Abc_ObjFaninC0(pNode) )
{
if ( Abc_ObjFaninC1(pNode) )
for ( k = 0; k < nWords; k++ )
pTruth[k] = ~pTruth0[k] & ~pTruth1[k];
else
for ( k = 0; k < nWords; k++ )
pTruth[k] = ~pTruth0[k] & pTruth1[k];
}
else
{
if ( Abc_ObjFaninC1(pNode) )
for ( k = 0; k < nWords; k++ )
pTruth[k] = pTruth0[k] & ~pTruth1[k];
else
for ( k = 0; k < nWords; k++ )
pTruth[k] = pTruth0[k] & pTruth1[k];
}
pNode->pCopy = (Abc_Obj_t *)pTruth;
}
return pTruth;
}
int Abc_NodeConeIsConst0( word * pTruth, int nVars )
{
int k, nWords = Abc_Truth6WordNum( nVars );
for ( k = 0; k < nWords; k++ )
if ( pTruth[k] )
return 0;
return 1;
}
int Abc_NodeConeIsConst1( word * pTruth, int nVars )
{
int k, nWords = Abc_Truth6WordNum( nVars );
for ( k = 0; k < nWords; k++ )
if ( ~pTruth[k] )
return 0;
return 1;
}
/**Function*************************************************************
......@@ -193,72 +151,37 @@ pManRef->timeTotal = Abc_Clock() - clkStart;
***********************************************************************/
Dec_Graph_t * Abc_NodeRefactor( Abc_ManRef_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vFanins, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose )
{
extern DdNode * Abc_NodeConeBdd( DdManager * dd, DdNode ** pbVars, Abc_Obj_t * pNode, Vec_Ptr_t * vFanins, Vec_Ptr_t * vVisited );
extern DdNode * Abc_NodeConeDcs( DdManager * dd, DdNode ** pbVarsX, DdNode ** pbVarsY, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, Vec_Ptr_t * vVisited );
extern char * Abc_ConvertBddToSop( Mem_Flex_t * pMan, DdManager * dd, DdNode * bFuncOn, DdNode * bFuncOnDc, int nFanins, int fAllPrimes, Vec_Str_t * vCube, int fMode );
extern int Dec_GraphToNetworkCount( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax );
int fVeryVerbose = 0;
Abc_Obj_t * pFanin;
int nVars = Vec_PtrSize(vFanins);
int nWordsMax = Abc_Truth6WordNum(p->nNodeSizeMax);
Dec_Graph_t * pFForm;
DdNode * bNodeFunc;
int nNodesSaved, nNodesAdded, i;
Abc_Obj_t * pFanin;
word * pTruth;
abctime clk;
char * pSop;
int Required;
Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;
int i, nNodesSaved, nNodesAdded, Required;
p->nNodesConsidered++;
// get the function of the cut
clk = Abc_Clock();
bNodeFunc = Abc_NodeConeBdd( p->dd, p->dd->vars, pNode, vFanins, p->vVisited ); Cudd_Ref( bNodeFunc );
p->timeBdd += Abc_Clock() - clk;
Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;
// if don't-care are used, transform the function into ISOP
if ( fUseDcs )
{
DdNode * bNodeDc, * bNodeOn, * bNodeOnDc;
int nMints, nMintsDc;
// get the function of the cut
clk = Abc_Clock();
// get the don't-cares
bNodeDc = Abc_NodeConeDcs( p->dd, p->dd->vars + vFanins->nSize, p->dd->vars, p->vLeaves, vFanins, p->vVisited ); Cudd_Ref( bNodeDc );
nMints = (1 << vFanins->nSize);
nMintsDc = (int)Cudd_CountMinterm( p->dd, bNodeDc, vFanins->nSize );
// printf( "Percentage of minterms = %5.2f.\n", 100.0 * nMintsDc / nMints );
// get the ISF
bNodeOn = Cudd_bddAnd( p->dd, bNodeFunc, Cudd_Not(bNodeDc) ); Cudd_Ref( bNodeOn );
bNodeOnDc = Cudd_bddOr ( p->dd, bNodeFunc, bNodeDc ); Cudd_Ref( bNodeOnDc );
Cudd_RecursiveDeref( p->dd, bNodeFunc );
Cudd_RecursiveDeref( p->dd, bNodeDc );
// get the ISOP
bNodeFunc = Cudd_bddIsop( p->dd, bNodeOn, bNodeOnDc ); Cudd_Ref( bNodeFunc );
Cudd_RecursiveDeref( p->dd, bNodeOn );
Cudd_RecursiveDeref( p->dd, bNodeOnDc );
p->timeDcs += Abc_Clock() - clk;
}
pTruth = Abc_NodeConeTruth( p->vVars, p->vFuncs, nWordsMax, pNode, vFanins, p->vVisited );
p->timeTru += Abc_Clock() - clk;
// always accept the case of constant node
if ( Cudd_IsConstant(bNodeFunc) )
if ( Abc_NodeConeIsConst0(pTruth, nVars) || Abc_NodeConeIsConst1(pTruth, nVars) )
{
p->nLastGain = Abc_NodeMffcSize( pNode );
p->nNodesGained += p->nLastGain;
p->nNodesRefactored++;
Cudd_RecursiveDeref( p->dd, bNodeFunc );
if ( Cudd_IsComplement(bNodeFunc) )
return Dec_GraphCreateConst0();
return Dec_GraphCreateConst1();
return Abc_NodeConeIsConst0(pTruth, nVars) ? Dec_GraphCreateConst0() : Dec_GraphCreateConst1();
}
// get the SOP of the cut
clk = Abc_Clock();
pSop = Abc_ConvertBddToSop( NULL, p->dd, bNodeFunc, bNodeFunc, vFanins->nSize, 0, p->vCube, -1 );
p->timeSop += Abc_Clock() - clk;
// get the factored form
clk = Abc_Clock();
pFForm = Dec_Factor( pSop );
ABC_FREE( pSop );
pFForm = (Dec_Graph_t *)Kit_TruthToGraph( (unsigned *)pTruth, nVars, p->vMemory );
p->timeFact += Abc_Clock() - clk;
// mark the fanin boundary
......@@ -282,7 +205,6 @@ p->timeEval += Abc_Clock() - clk;
// quit if there is no improvement
if ( nNodesAdded == -1 || (nNodesAdded == nNodesSaved && !fUseZeros) )
{
Cudd_RecursiveDeref( p->dd, bNodeFunc );
Dec_GraphFree( pFForm );
return NULL;
}
......@@ -297,14 +219,12 @@ p->timeEval += Abc_Clock() - clk;
{
printf( "Node %6s : ", Abc_ObjName(pNode) );
printf( "Cone = %2d. ", vFanins->nSize );
printf( "BDD = %2d. ", Cudd_DagSize(bNodeFunc) );
printf( "FF = %2d. ", 1 + Dec_GraphNodeNum(pFForm) );
printf( "MFFC = %2d. ", nNodesSaved );
printf( "Add = %2d. ", nNodesAdded );
printf( "GAIN = %2d. ", p->nLastGain );
printf( "\n" );
}
Cudd_RecursiveDeref( p->dd, bNodeFunc );
return pFForm;
}
......@@ -330,12 +250,9 @@ Abc_ManRef_t * Abc_NtkManRefStart( int nNodeSizeMax, int nConeSizeMax, int fUseD
p->nNodeSizeMax = nNodeSizeMax;
p->nConeSizeMax = nConeSizeMax;
p->fVerbose = fVerbose;
// start the BDD manager
if ( fUseDcs )
p->dd = Cudd_Init( p->nNodeSizeMax + p->nConeSizeMax, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
else
p->dd = Cudd_Init( p->nNodeSizeMax, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
Cudd_zddVarsFromBddVars( p->dd, 2 );
p->vVars = Vec_PtrAllocTruthTables( Abc_MaxInt(nNodeSizeMax, 6) );
p->vFuncs = Vec_PtrAlloc( 100 );
p->vMemory = Vec_IntAlloc( 1 << 16 );
return p;
}
......@@ -352,9 +269,11 @@ Abc_ManRef_t * Abc_NtkManRefStart( int nNodeSizeMax, int nConeSizeMax, int fUseD
***********************************************************************/
void Abc_NtkManRefStop( Abc_ManRef_t * p )
{
Extra_StopManager( p->dd );
Vec_PtrFreeFree( p->vFuncs );
Vec_PtrFree( p->vVars );
Vec_IntFree( p->vMemory );
Vec_PtrFree( p->vVisited );
Vec_StrFree( p->vCube );
Vec_StrFree( p->vCube );
ABC_FREE( p );
}
......@@ -377,7 +296,7 @@ void Abc_NtkManRefPrintStats( Abc_ManRef_t * p )
printf( "Gain = %8d. (%6.2f %%).\n", p->nNodesBeg-p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg );
ABC_PRT( "Cuts ", p->timeCut );
ABC_PRT( "Resynthesis", p->timeRes );
ABC_PRT( " BDD ", p->timeBdd );
ABC_PRT( " BDD ", p->timeTru );
ABC_PRT( " DCs ", p->timeDcs );
ABC_PRT( " SOP ", p->timeSop );
ABC_PRT( " FF ", p->timeFact );
......@@ -386,11 +305,107 @@ void Abc_NtkManRefPrintStats( Abc_ManRef_t * p )
ABC_PRT( "TOTAL ", p->timeTotal );
}
#else
/**Function*************************************************************
Synopsis [Performs incremental resynthesis of the AIG.]
Description [Starting from each node, computes a reconvergence-driven cut,
derives BDD of the cut function, constructs ISOP, factors the ISOP,
and replaces the current implementation of the MFFC of the node by the
new factored form, if the number of AIG nodes is reduced and the total
number of levels of the AIG network is not increated. Returns the
number of AIG nodes saved.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRefactor( Abc_Ntk_t * pNtk, int nNodeSizeMax, int nConeSizeMax, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose )
{
extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );
ProgressBar * pProgress;
Abc_ManRef_t * pManRef;
Abc_ManCut_t * pManCut;
Dec_Graph_t * pFForm;
Vec_Ptr_t * vFanins;
Abc_Obj_t * pNode;
abctime clk, clkStart = Abc_Clock();
int i, nNodes;
assert( Abc_NtkIsStrash(pNtk) );
// cleanup the AIG
Abc_AigCleanup((Abc_Aig_t *)pNtk->pManFunc);
// start the managers
pManCut = Abc_NtkManCutStart( nNodeSizeMax, nConeSizeMax, 2, 1000 );
pManRef = Abc_NtkManRefStart( nNodeSizeMax, nConeSizeMax, fUseDcs, fVerbose );
pManRef->vLeaves = Abc_NtkManCutReadCutLarge( pManCut );
// compute the reverse levels if level update is requested
if ( fUpdateLevel )
Abc_NtkStartReverseLevels( pNtk, 0 );
int Abc_NtkRefactor( Abc_Ntk_t * pNtk, int nNodeSizeMax, int nConeSizeMax, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose ) { return 1; }
// resynthesize each node once
pManRef->nNodesBeg = Abc_NtkNodeNum(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachNode( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// skip the constant node
// if ( Abc_NodeIsConst(pNode) )
// continue;
// skip persistant nodes
if ( Abc_NodeIsPersistant(pNode) )
continue;
// skip the nodes with many fanouts
if ( Abc_ObjFanoutNum(pNode) > 1000 )
continue;
// stop if all nodes have been tried once
if ( i >= nNodes )
break;
// compute a reconvergence-driven cut
clk = Abc_Clock();
vFanins = Abc_NodeFindCut( pManCut, pNode, fUseDcs );
pManRef->timeCut += Abc_Clock() - clk;
// evaluate this cut
clk = Abc_Clock();
pFForm = Abc_NodeRefactor( pManRef, pNode, vFanins, fUpdateLevel, fUseZeros, fUseDcs, fVerbose );
pManRef->timeRes += Abc_Clock() - clk;
if ( pFForm == NULL )
continue;
// acceptable replacement found, update the graph
clk = Abc_Clock();
Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRef->nLastGain );
pManRef->timeNtk += Abc_Clock() - clk;
Dec_GraphFree( pFForm );
}
Extra_ProgressBarStop( pProgress );
pManRef->timeTotal = Abc_Clock() - clkStart;
pManRef->nNodesEnd = Abc_NtkNodeNum(pNtk);
// print statistics of the manager
if ( fVerbose )
Abc_NtkManRefPrintStats( pManRef );
// delete the managers
Abc_NtkManCutStop( pManCut );
Abc_NtkManRefStop( pManRef );
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
// Abc_AigCheckFaninOrder( pNtk->pManFunc );
// fix the levels
if ( fUpdateLevel )
Abc_NtkStopReverseLevels( pNtk );
else
Abc_NtkLevel( pNtk );
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkRefactor: The network check has failed.\n" );
return 0;
}
return 1;
}
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
......
......@@ -27,8 +27,6 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#ifdef ABC_USE_CUDD
static Abc_Ntk_t * Io_ReadEqnNetwork( Extra_FileReader_t * p );
static void Io_ReadEqnStrCompact( char * pStr );
static int Io_ReadEqnStrFind( Vec_Ptr_t * vTokens, char * pName );
......@@ -235,11 +233,6 @@ void Io_ReadEqnStrCutAt( char * pStr, char * pStop, int fUniqueOnly, Vec_Ptr_t *
Vec_PtrPush( vTokens, pToken );
}
#else
Abc_Ntk_t * Io_ReadEqn( char * pFileName, int fCheck ) { return NULL; }
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment