Commit 40bb7089 by Alan Mishchenko

Experiments with precomputation and matching.

parent 15a86aef
......@@ -2539,6 +2539,10 @@ SOURCE=.\src\opt\sfm\sfmSat.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\sfm\sfmTime.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\sfm\sfmWin.c
# End Source File
# End Group
......
......@@ -5160,7 +5160,7 @@ int Abc_CommandMfs3( Abc_Frame_t * pAbc, int argc, char ** argv )
// set defaults
Sfm_ParSetDefault3( pPars );
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "OIFLHDMCNPdazospvwh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "OIFLHDMCNPdamzospvwh" ) ) != EOF )
{
switch ( c )
{
......@@ -5280,6 +5280,9 @@ int Abc_CommandMfs3( Abc_Frame_t * pAbc, int argc, char ** argv )
case 'a':
pPars->fArea ^= 1;
break;
case 'm':
pPars->fUseAndOr ^= 1;
break;
case 'z':
pPars->fZeroCost ^= 1;
break;
......@@ -5319,7 +5322,7 @@ int Abc_CommandMfs3( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
Abc_Print( -2, "usage: mfs3 [-OIFLHDMCNP <num>] [-azospvwh]\n" );
Abc_Print( -2, "usage: mfs3 [-OIFLHDMCNP <num>] [-amzospvwh]\n" );
Abc_Print( -2, "\t performs don't-care-based optimization of mapped networks\n" );
Abc_Print( -2, "\t-O <num> : the number of levels in the TFO cone (0 <= num) [default = %d]\n", pPars->nTfoLevMax );
Abc_Print( -2, "\t-I <num> : the number of levels in the TFI cone (1 <= num) [default = %d]\n", pPars->nTfiLevMax );
......@@ -5331,7 +5334,8 @@ usage:
Abc_Print( -2, "\t-C <num> : the max number of conflicts in one SAT run (0 = no limit) [default = %d]\n", pPars->nBTLimit );
Abc_Print( -2, "\t-N <num> : the max number of nodes to try (0 = all) [default = %d]\n", pPars->nNodesMax );
Abc_Print( -2, "\t-P <num> : one particular node to try (0 = none) [default = %d]\n", pPars->iNodeOne );
Abc_Print( -2, "\t-a : toggle minimizing area or area+edges [default = %s]\n", pPars->fArea? "area": "area+edges" );
Abc_Print( -2, "\t-a : toggle area minimization [default = %s]\n", pPars->fArea? "yes": "no" );
Abc_Print( -2, "\t-m : toggle detecting multi-input AND/OR gates [default = %s]\n", pPars->fUseAndOr? "yes": "no" );
Abc_Print( -2, "\t-z : toggle zero-cost replacements [default = %s]\n", pPars->fZeroCost? "yes": "no" );
Abc_Print( -2, "\t-o : toggle using old implementation for comparison [default = %s]\n", pPars->fRrOnly? "yes": "no" );
Abc_Print( -2, "\t-s : toggle using simulation [default = %s]\n", pPars->fUseSim? "yes": "no" );
......@@ -11030,7 +11034,7 @@ int Abc_CommandTestColor( Abc_Frame_t * pAbc, int argc, char ** argv )
***********************************************************************/
int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
{
// Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc);
Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc);
int nCutMax = 1;
int nLeafMax = 4;
int nDivMax = 2;
......@@ -11237,6 +11241,8 @@ int Abc_CommandTest( Abc_Frame_t * pAbc, int argc, char ** argv )
{
// extern void Cba_PrsReadBlifTest();
// Cba_PrsReadBlifTest();
extern void Sfm_TimTest( Abc_Ntk_t * pNtk );
Sfm_TimTest( pNtk );
}
return 0;
usage:
......@@ -4,4 +4,5 @@ SRC += src/opt/sfm/sfmCnf.c \
src/opt/sfm/sfmLib.c \
src/opt/sfm/sfmNtk.c \
src/opt/sfm/sfmSat.c \
src/opt/sfm/sfmTime.c \
src/opt/sfm/sfmWin.c
......@@ -58,6 +58,7 @@ struct Sfm_Par_t_
int fRrOnly; // perform redundance removal
int fArea; // performs optimization for area
int fMoreEffort; // performs high-affort minimization
int fUseAndOr; // enable internal detection of AND/OR gates
int fZeroCost; // enable zero-cost replacement
int fUseSim; // enable simulation
int fPrintDecs; // enable printing decompositions
......
......@@ -147,6 +147,9 @@ void Sfm_ParSetDefault3( Sfm_Par_t * pPars )
pPars->nWinSizeMax = 300; // the maximum window size
pPars->nGrowthLevel = 0; // the maximum allowed growth in level
pPars->nBTLimit = 5000; // the maximum number of conflicts in one SAT run
pPars->fUseAndOr = 0; // enable internal detection of AND/OR gates
pPars->fZeroCost = 0; // enable zero-cost replacement
pPars->fUseSim = 0; // enable simulation
pPars->fArea = 0; // performs optimization for area
pPars->fVerbose = 0; // enable basic stats
pPars->fVeryVerbose = 0; // enable detailed stats
......@@ -900,8 +903,9 @@ int Sfm_DecPeformDec_rec( Sfm_Dec_t * p, word * pTruth, int * pSupp, int * pAssu
printf( "Found variable %s%d.\n", Abc_LitIsCompl(Impls[0]) ? "!":"", pSupp[0] );
return 1;
}
/*
// try using all implications at once
if ( p->pPars->fUseAndOr )
for ( c = 0; c < 2; c++ )
{
if ( Vec_IntSize(&p->vImpls[!c]) < 2 )
......@@ -965,7 +969,7 @@ int Sfm_DecPeformDec_rec( Sfm_Dec_t * p, word * pTruth, int * pSupp, int * pAssu
*Vec_WrdEntryP(&p->vSets[c], i) |= ((word)1 << p->nPats[c]);
p->uMask[c] |= ((word)1 << p->nPats[c]++);
}
*/
// find the best cofactoring variable
Var = -1, CostMin = ABC_INFINITY;
for ( c = 0; c < 2; c++ )
......
/**CFile****************************************************************
FileName [sfmTime.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT-based optimization using internal don't-cares.]
Synopsis [Timing manager.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: sfmTime.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sfmInt.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "base/abc/abc.h"
#include "misc/util/utilNam.h"
#include "map/scl/sclCon.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Sfm_Tim_t_ Sfm_Tim_t;
struct Sfm_Tim_t_
{
// external
Mio_Library_t * pLib; // library
Scl_Con_t * pExt; // external timing
Abc_Ntk_t * pNtk; // mapped network
int Delay; // the largest delay
// timing info
Vec_Int_t vTimArrs; // arrivals (rise/fall)
Vec_Int_t vTimReqs; // required (rise/fall)
Vec_Int_t vTimSlews; // slews (rise/fall)
Vec_Int_t vTimLoads; // loads (rise/fall)
// timing edges
Vec_Int_t vObjOffs; // object offsets
Vec_Int_t vTimEdges; // edge timings (rise/fall)
// critical path
Vec_Int_t vPath; // critical path
};
static inline int * Sfm_TimArr( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimArrs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int * Sfm_TimReq( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimReqs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int * Sfm_TimSlew( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimSlews, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int * Sfm_TimLoad( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimLoads, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int Sfm_TimArrMax( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * a = Sfm_TimArr(p, pNode); return Abc_MaxInt(a[0], a[1]); }
static inline void Sfm_TimSetReq( Sfm_Tim_t * p, Abc_Obj_t * pNode, int t ) { int * r = Sfm_TimReq(p, pNode); r[0] = r[1] = t; }
static inline int Sfm_TimSlack( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * r = Sfm_TimReq(p, pNode), * a = Sfm_TimArr(p, pNode); return Abc_MinInt(r[0]-a[0], r[1]-a[1]); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimEdgeArrival( Sfm_Tim_t * p, Abc_Obj_t * pNode, int iEdge, Mio_Pin_t * pPin )
{
Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
int tDelayBlockRise = (int)(MIO_NUM*Mio_PinReadDelayBlockRise(pPin));
int tDelayBlockFall = (int)(MIO_NUM*Mio_PinReadDelayBlockFall(pPin));
int * pTimeOut = Sfm_TimArr(p, pNode);
int * pTimeIn = Sfm_TimArr(p, Abc_ObjFanin(pNode, iEdge));
if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present
{
pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[0] + tDelayBlockRise );
pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[1] + tDelayBlockFall );
}
if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present
{
pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[1] + tDelayBlockRise );
pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[0] + tDelayBlockFall );
}
}
void Sfm_TimGateArrival( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
Mio_Gate_t * pGate = (Mio_Gate_t *)pNode->pData;
Mio_Pin_t * pPin; int i = 0;
Mio_GateForEachPin( pGate, pPin )
Sfm_TimEdgeArrival( p, pNode, i++, pPin );
assert( i == Mio_GateReadPinNum(pGate) );
}
void Sfm_TimEdgeRequired( Sfm_Tim_t * p, Abc_Obj_t * pNode, int iEdge, Mio_Pin_t * pPin )
{
Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
int tDelayBlockRise = (int)(MIO_NUM*Mio_PinReadDelayBlockRise(pPin));
int tDelayBlockFall = (int)(MIO_NUM*Mio_PinReadDelayBlockFall(pPin));
int * pTimeOut = Sfm_TimReq(p, pNode);
int * pTimeIn = Sfm_TimReq(p, Abc_ObjFanin(pNode, iEdge));
if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present
{
pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[0] - tDelayBlockRise );
pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[1] - tDelayBlockFall );
}
if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present
{
pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[1] - tDelayBlockRise );
pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[0] - tDelayBlockFall );
}
}
void Sfm_TimGateRequired( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
Mio_Gate_t * pGate = (Mio_Gate_t *)pNode->pData;
Mio_Pin_t * pPin; int i = 0;
Mio_GateForEachPin( pGate, pPin )
Sfm_TimEdgeRequired( p, pNode, i++, pPin );
assert( i == Mio_GateReadPinNum(pGate) );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimCriticalPath_int( Sfm_Tim_t * p, Abc_Obj_t * pObj, Vec_Int_t * vPath, int SlackMax )
{
Abc_Obj_t * pNext; int i;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
assert( Abc_ObjIsNode(pObj) );
Abc_ObjForEachFanin( pObj, pNext, i )
{
if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
continue;
assert( Abc_ObjIsNode(pNext) );
if ( Sfm_TimSlack(p, pNext) <= SlackMax )
Sfm_TimCriticalPath_int( p, pNext, vPath, SlackMax );
}
if ( Abc_ObjFaninNum(pObj) > 0 )
Vec_IntPush( vPath, Abc_ObjId(pObj) );
}
int Sfm_TimCriticalPath( Sfm_Tim_t * p, int Window )
{
int i, SlackMax = p->Delay * Window / 100;
Abc_Obj_t * pObj, * pNext;
Vec_IntClear( &p->vPath );
Abc_NtkIncrementTravId( p->pNtk );
Abc_NtkForEachCo( p->pNtk, pObj, i )
{
pNext = Abc_ObjFanin0(pObj);
if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
continue;
assert( Abc_ObjIsNode(pNext) );
if ( Sfm_TimSlack(p, pNext) <= SlackMax )
Sfm_TimCriticalPath_int( p, pNext, &p->vPath, SlackMax );
}
return Vec_IntSize(&p->vPath);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimTrace( Sfm_Tim_t * p )
{
Abc_Obj_t * pObj; int i, Delay = 0;
Vec_Ptr_t * vNodes = Abc_NtkDfs( p->pNtk, 1 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Sfm_TimGateArrival( p, pObj );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Delay = Abc_MaxInt( Delay, Sfm_TimArrMax(p, Abc_ObjFanin0(pObj)) );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Sfm_TimSetReq( p, Abc_ObjFanin0(pObj), Delay );
Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
Sfm_TimGateRequired( p, pObj );
Vec_PtrFree( vNodes );
return Delay;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Sfm_Tim_t * Sfm_TimStart( Mio_Library_t * pLib, Scl_Con_t * pExt, Abc_Ntk_t * pNtk )
{
// Abc_Obj_t * pObj; int i;
Sfm_Tim_t * p = ABC_CALLOC( Sfm_Tim_t, 1 );
p->pLib = pLib;
p->pExt = pExt;
p->pNtk = pNtk;
Vec_IntFill( &p->vTimArrs, 2*Abc_NtkObjNumMax(pNtk), 0 );
Vec_IntFill( &p->vTimReqs, 2*Abc_NtkObjNumMax(pNtk), 0 );
// Vec_IntFill( &p->vTimSlews, 2*Abc_NtkObjNumMax(pNtk), 0 );
// Vec_IntFill( &p->vTimLoads, 2*Abc_NtkObjNumMax(pNtk), 0 );
// Vec_IntFill( &p->vObjOffs, Abc_NtkObjNumMax(pNtk), 0 );
// Abc_NtkForEachNode( pNtk, pObj, i )
// {
// Vec_IntWriteEntry( &p->vObjOffs, i, Vec_IntSize(Vec_IntSize(&p->vTimEdges)) );
// Vec_IntFillExtra( &p->vTimEdges, Vec_IntSize(Vec_IntSize(&p->vTimEdges)) + Abc_ObjFaninNum(pObj), 0 );
// }
return p;
}
void Sfm_TimStop( Sfm_Tim_t * p )
{
Vec_IntErase( &p->vTimArrs );
Vec_IntErase( &p->vTimReqs );
Vec_IntErase( &p->vTimSlews );
Vec_IntErase( &p->vTimLoads );
Vec_IntErase( &p->vObjOffs );
Vec_IntErase( &p->vTimEdges );
Vec_IntErase( &p->vPath );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimTest( Abc_Ntk_t * pNtk )
{
Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
Sfm_Tim_t * p = Sfm_TimStart( pLib, NULL, pNtk );
p->Delay = Sfm_TimTrace( p );
printf( "Max delay = %.2f. Path = %d (%d).\n", MIO_NUMINV*p->Delay, Sfm_TimCriticalPath(p, 1), Abc_NtkNodeNum(p->pNtk) );
Sfm_TimStop( p );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment