Commit 32d1516c by Alan Mishchenko

Adding command 'exact' developed by Mathias Soeken to implement Knuth's exact synthesis algorithm.

parent abdf3971
...@@ -642,6 +642,8 @@ extern ABC_DLL int Abc_NtkLevelReverse( Abc_Ntk_t * pNtk ); ...@@ -642,6 +642,8 @@ extern ABC_DLL int Abc_NtkLevelReverse( Abc_Ntk_t * pNtk );
extern ABC_DLL int Abc_NtkIsAcyclic( Abc_Ntk_t * pNtk ); extern ABC_DLL int Abc_NtkIsAcyclic( Abc_Ntk_t * pNtk );
extern ABC_DLL int Abc_NtkIsAcyclicWithBoxes( Abc_Ntk_t * pNtk ); extern ABC_DLL int Abc_NtkIsAcyclicWithBoxes( Abc_Ntk_t * pNtk );
extern ABC_DLL Vec_Ptr_t * Abc_AigGetLevelizedOrder( Abc_Ntk_t * pNtk, int fCollectCis ); extern ABC_DLL Vec_Ptr_t * Abc_AigGetLevelizedOrder( Abc_Ntk_t * pNtk, int fCollectCis );
/*=== abcExact.c ==========================================================*/
extern ABC_DLL Abc_Ntk_t * Abc_NtkFindExact( word * pTruth, int nVars, int nFunc, int fVerbose );
/*=== abcFanio.c ==========================================================*/ /*=== abcFanio.c ==========================================================*/
extern ABC_DLL void Abc_ObjAddFanin( Abc_Obj_t * pObj, Abc_Obj_t * pFanin ); extern ABC_DLL void Abc_ObjAddFanin( Abc_Obj_t * pObj, Abc_Obj_t * pFanin );
extern ABC_DLL void Abc_ObjDeleteFanin( Abc_Obj_t * pObj, Abc_Obj_t * pFanin ); extern ABC_DLL void Abc_ObjDeleteFanin( Abc_Obj_t * pObj, Abc_Obj_t * pFanin );
......
...@@ -135,6 +135,7 @@ static int Abc_CommandCascade ( Abc_Frame_t * pAbc, int argc, cha ...@@ -135,6 +135,7 @@ static int Abc_CommandCascade ( Abc_Frame_t * pAbc, int argc, cha
static int Abc_CommandExtract ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandExtract ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandVarMin ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandVarMin ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandDetect ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandDetect ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandExact ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandLogic ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandLogic ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandComb ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandComb ( Abc_Frame_t * pAbc, int argc, char ** argv );
...@@ -773,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc ) ...@@ -773,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Synthesis", "extract", Abc_CommandExtract, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "extract", Abc_CommandExtract, 1 );
Cmd_CommandAdd( pAbc, "Synthesis", "varmin", Abc_CommandVarMin, 0 ); Cmd_CommandAdd( pAbc, "Synthesis", "varmin", Abc_CommandVarMin, 0 );
Cmd_CommandAdd( pAbc, "Synthesis", "detect", Abc_CommandDetect, 0 ); Cmd_CommandAdd( pAbc, "Synthesis", "detect", Abc_CommandDetect, 0 );
Cmd_CommandAdd( pAbc, "Synthesis", "exact", Abc_CommandExact, 1 );
Cmd_CommandAdd( pAbc, "Various", "logic", Abc_CommandLogic, 1 ); Cmd_CommandAdd( pAbc, "Various", "logic", Abc_CommandLogic, 1 );
Cmd_CommandAdd( pAbc, "Various", "comb", Abc_CommandComb, 1 ); Cmd_CommandAdd( pAbc, "Various", "comb", Abc_CommandComb, 1 );
...@@ -7274,6 +7276,61 @@ usage: ...@@ -7274,6 +7276,61 @@ usage:
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int Abc_CommandExact( Abc_Frame_t * pAbc, int argc, char ** argv )
{
int c, fVerbose = 0, nVars;
word pTruth[1];
Abc_Ntk_t * pNtkRes;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "vh" ) ) != EOF )
{
switch ( c )
{
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
if ( argc != globalUtilOptind + 1 )
{
goto usage;
}
nVars = Abc_TtReadHex( pTruth, argv[globalUtilOptind] );
pNtkRes = Abc_NtkFindExact( pTruth, nVars, 1, fVerbose );
assert( pNtkRes != NULL );
Abc_FrameReplaceCurrentNetwork( pAbc, pNtkRes );
Abc_FrameClearVerifStatus( pAbc );
return 0;
usage:
Abc_Print( -2, "usage: exact [-vh] <truth>\n" );
Abc_Print( -2, "\t finds optimum networks using SAT-based exact synthesis\n" );
Abc_Print( -2, "\t-v : toggle verbose printout [default = %s]\n", fVerbose? "yes": "no" );
Abc_Print( -2, "\t-h : print the command usage\n");
Abc_Print( -2, "\t\n" );
Abc_Print( -2, "\t This command was contributed by Mathias Soeken from EPFL in July 2016.\n" );
Abc_Print( -2, "\t The author can be contacted as mathias.soeken at epfl.ch\n" );
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandLogic( Abc_Frame_t * pAbc, int argc, char ** argv ) int Abc_CommandLogic( Abc_Frame_t * pAbc, int argc, char ** argv )
{ {
Abc_Ntk_t * pNtk, * pNtkRes; Abc_Ntk_t * pNtk, * pNtkRes;
/**CFile****************************************************************
FileName [abcExact.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Find minimum size networks with a SAT solver.]
Author [Mathias Soeken]
Affiliation [EPFL]
Date [Ver. 1.0. Started - July 15, 2016.]
Revision [$Id: abcFanio.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
/* This implementation is based on Exercises 477 and 478 in
* Donald E. Knuth TAOCP Fascicle 6 (Satisfiability) Section 7.2.2.2
*/
#include "base/abc/abc.h"
#include "misc/util/utilTruth.h"
#include "misc/vec/vecInt.h"
#include "misc/vec/vecPtr.h"
#include "sat/bsat/satSolver.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Ses_Man_t_ Ses_Man_t;
struct Ses_Man_t_
{
sat_solver * pSat; /* SAT solver */
word * pSpec; /* specification */
int bSpecInv; /* remembers whether spec was inverted for normalization */
int nSpecVars; /* number of variables in specification */
int nSpecFunc; /* number of functions to synthesize */
int nRows; /* number of rows in the specification (without 0) */
int fVerbose; /* be verbose */
int fVeryVerbose; /* be very verbose */
int nGates; /* number of gates */
int nSimVars; /* number of simulation vars x(i, t) */
int nOutputVars; /* number of output variables g(h, i) */
int nGateVars; /* number of gate variables f(i, p, q) */
int nSelectVars; /* number of select variables s(i, j, k ) */
int nOutputOffset; /* offset where output variables start */
int nGateOffset; /* offset where gate variables start */
int nSelectOffset; /* offset where select variables start */
abctime timeSat; /* SAT runtime */
abctime timeSatSat; /* SAT runtime (sat instance) */
abctime timeSatUnsat; /* SAT runtime (unsat instance) */
abctime timeTotal; /* all runtime */
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
static inline Ses_Man_t * Ses_ManAlloc( word * pTruth, int nVars, int nFunc, int fVerbose )
{
int h;
Ses_Man_t * p = ABC_CALLOC( Ses_Man_t, 1 );
p->pSat = NULL;
p->bSpecInv = 0;
for ( h = 0; h < nFunc; ++h )
if ( pTruth[h] & 1 )
{
pTruth[h] = ~pTruth[h];
p->bSpecInv |= ( 1 << h );
}
p->pSpec = pTruth;
p->nSpecVars = nVars;
p->nSpecFunc = nFunc;
p->nRows = ( 1 << nVars ) - 1;
p->fVerbose = fVerbose;
p->fVeryVerbose = 0;
return p;
}
static inline void Ses_ManClean( Ses_Man_t * pSes )
{
int h;
for ( h = 0; h < pSes->nSpecFunc; ++h )
if ( ( pSes->bSpecInv >> h ) & 1 )
pSes->pSpec[h] = ~( pSes->pSpec[h] );
if ( pSes->pSat )
sat_solver_delete( pSes->pSat );
ABC_FREE( pSes );
}
/**Function*************************************************************
Synopsis [Access variables based on indexes.]
***********************************************************************/
static inline int Ses_ManSimVar( Ses_Man_t * pSes, int i, int t )
{
assert( i < pSes->nGates );
assert( t < pSes->nRows );
return pSes->nRows * i + t;
}
static inline int Ses_ManOutputVar( Ses_Man_t * pSes, int h, int i )
{
assert( h < pSes->nSpecFunc );
assert( i < pSes->nGates );
return pSes->nOutputOffset + pSes->nGates * h + i;
}
static inline int Ses_ManGateVar( Ses_Man_t * pSes, int i, int p, int q )
{
assert( i < pSes->nGates );
assert( p < 2 );
assert( q < 2 );
assert( p > 0 || q > 0 );
return pSes->nGateOffset + i * 3 + ( p << 1 ) + q - 1;
}
static inline int Ses_ManSelectVar( Ses_Man_t * pSes, int i, int j, int k )
{
int a;
int offset;
assert( i < pSes->nGates );
assert( k < pSes->nSpecVars + i );
assert( j < k );
offset = pSes->nSelectOffset;
for ( a = pSes->nSpecVars; a < pSes->nSpecVars + i; ++a )
offset += a * ( a - 1 ) / 2;
return offset + ( -j * ( 1 + j - 2 * ( pSes->nSpecVars + i ) ) ) / 2 + ( k - j - 1 );
}
/**Function*************************************************************
Synopsis [Setup variables to find network with nGates gates.]
***********************************************************************/
static void Ses_ManCreateVars( Ses_Man_t * pSes, int nGates )
{
int i;
if ( pSes->fVerbose )
{
printf( "create variables for network with %d functions over %d variables and %d gates\n", pSes->nSpecFunc, pSes->nSpecVars, nGates );
}
pSes->nGates = nGates;
pSes->nSimVars = nGates * pSes->nRows;
pSes->nOutputVars = pSes->nSpecFunc * nGates;
pSes->nGateVars = nGates * 3;
pSes->nSelectVars = 0;
for ( i = pSes->nSpecVars; i < pSes->nSpecVars + nGates; ++i )
pSes->nSelectVars += ( i * ( i - 1 ) ) / 2;
pSes->nOutputOffset = pSes->nSimVars;
pSes->nGateOffset = pSes->nSimVars + pSes->nOutputVars;
pSes->nSelectOffset = pSes->nSimVars + pSes->nOutputVars + pSes->nGateVars;
if ( pSes->pSat )
sat_solver_delete( pSes->pSat );
pSes->pSat = sat_solver_new();
sat_solver_setnvars( pSes->pSat, pSes->nSimVars + pSes->nOutputVars + pSes->nGateVars + pSes->nSelectVars );
}
/**Function*************************************************************
Synopsis [Create clauses.]
***********************************************************************/
static inline void Ses_ManCreateMainClause( Ses_Man_t * pSes, int t, int i, int j, int k, int a, int b, int c )
{
int pLits[5], ctr = 0, value;
pLits[ctr++] = Abc_Var2Lit( Ses_ManSelectVar( pSes, i, j, k ), 1 );
pLits[ctr++] = Abc_Var2Lit( Ses_ManSimVar( pSes, i, t ), a );
if ( j < pSes->nSpecVars )
{
if ( ( ( s_Truths6[j] >> ( t + 1 ) ) & 1 ) != b ) /* 1 in clause, we can omit the clause */
return;
}
else
pLits[ctr++] = Abc_Var2Lit( Ses_ManSimVar( pSes, j - pSes->nSpecVars, t ), b );
if ( k < pSes->nSpecVars )
{
if ( ( ( s_Truths6[k] >> ( t + 1 ) ) & 1 ) != c ) /* 1 in clause, we can omit the clause */
return;
}
else
pLits[ctr++] = Abc_Var2Lit( Ses_ManSimVar( pSes, k - pSes->nSpecVars, t ), c );
if ( b > 0 || c > 0 )
pLits[ctr++] = Abc_Var2Lit( Ses_ManGateVar( pSes, i, b, c ), 1 - a );
value = sat_solver_addclause( pSes->pSat, pLits, pLits + ctr );
assert( value );
}
static void Ses_ManCreateClauses( Ses_Man_t * pSes )
{
extern int Extra_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 );
int h, i, j, k, t, ii, jj, kk, p, q;
int pLits[2];
Vec_Int_t * vLits;
for ( t = 0; t < pSes->nRows; ++t )
for ( i = 0; i < pSes->nGates; ++i )
{
/* main clauses */
for ( j = 0; j < pSes->nSpecVars + i; ++j )
for ( k = j + 1; k < pSes->nSpecVars + i; ++k )
{
Ses_ManCreateMainClause( pSes, t, i, j, k, 0, 0, 1 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 0, 1, 0 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 0, 1, 1 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 1, 0, 0 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 1, 0, 1 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 1, 1, 0 );
Ses_ManCreateMainClause( pSes, t, i, j, k, 1, 1, 1 );
}
/* output clauses */
for ( h = 0; h < pSes->nSpecFunc; ++h )
{
pLits[0] = Abc_Var2Lit( Ses_ManOutputVar( pSes, h, i ), 1 );
pLits[1] = Abc_Var2Lit( Ses_ManSimVar( pSes, i, t ), 1 - (int)( ( pSes->pSpec[h] >> ( t + 1 ) ) & 1 ) );
assert( sat_solver_addclause( pSes->pSat, pLits, pLits + 2 ) );
}
}
/* some output is selected */
for ( h = 0; h < pSes->nSpecFunc; ++h )
{
vLits = Vec_IntAlloc( pSes->nGates );
for ( i = 0; i < pSes->nGates; ++i )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManOutputVar( pSes, h, i ), 0 ) );
assert( sat_solver_addclause( pSes->pSat, Vec_IntArray( vLits ), Vec_IntLimit( vLits ) ) );
Vec_IntFree( vLits );
}
/* each gate has two operands */
for ( i = 0; i < pSes->nGates; ++i )
{
vLits = Vec_IntAlloc( ( ( pSes->nSpecVars + i ) * ( pSes->nSpecVars + i - 1 ) ) / 2 );
for ( j = 0; j < pSes->nSpecVars + i; ++j )
for ( k = j + 1; k < pSes->nSpecVars + i; ++k )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManSelectVar( pSes, i, j, k ), 0 ) );
assert( sat_solver_addclause( pSes->pSat, Vec_IntArray( vLits ), Vec_IntLimit( vLits ) ) );
Vec_IntFree( vLits );
}
/* EXTRA clauses: use gate i at least once */
for ( i = 0; i < pSes->nGates; ++i )
{
vLits = Vec_IntAlloc( 0 );
for ( h = 0; h < pSes->nSpecFunc; ++h )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManOutputVar( pSes, h, i ), 0 ) );
for ( ii = i + 1; ii < pSes->nGates; ++ii )
{
for ( j = 0; j < pSes->nSpecVars + i; ++j )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManSelectVar( pSes, ii, j, pSes->nSpecVars + i ), 0 ) );
for ( j = pSes->nSpecVars + i + 1; j < pSes->nSpecVars + ii; ++j )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManSelectVar( pSes, ii, pSes->nSpecVars + i, j ), 0 ) );
}
assert( sat_solver_addclause( pSes->pSat, Vec_IntArray( vLits ), Vec_IntLimit( vLits ) ) );
Vec_IntFree( vLits );
}
/* EXTRA clauses: co-lexicographic order */
for ( i = 0; i < pSes->nGates - 1; ++i )
{
for ( k = 2; k < pSes->nSpecVars + i; ++k )
{
for ( j = 1; j < k; ++j )
for ( jj = 0; jj < j; ++jj )
{
pLits[0] = Abc_Var2Lit( Ses_ManSelectVar( pSes, i, j, k ), 1 );
pLits[1] = Abc_Var2Lit( Ses_ManSelectVar( pSes, i + 1, jj, k ), 1 );
}
for ( j = 0; j < k; ++j )
for ( kk = 1; kk < k; ++kk )
for ( jj = 0; jj < kk; ++jj )
{
pLits[0] = Abc_Var2Lit( Ses_ManSelectVar( pSes, i, j, k ), 1 );
pLits[1] = Abc_Var2Lit( Ses_ManSelectVar( pSes, i + 1, jj, kk ), 1 );
}
}
}
/* EXTRA clauses: symmetric variables */
if ( pSes->nSpecFunc == 1 ) /* only check if there is one output function */
for ( q = 1; q < pSes->nSpecVars; ++q )
for ( p = 0; p < q; ++p )
if ( Extra_TruthVarsSymm( (unsigned*)pSes->pSpec, pSes->nSpecVars, p, q ) )
{
if ( pSes->fVeryVerbose )
printf( "variables %d and %d are symmetric\n", p, q );
for ( i = 0; i < pSes->nGates; ++i )
for ( j = 0; j < q; ++j )
{
if ( j == p ) continue;
vLits = Vec_IntAlloc( 0 );
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManSelectVar( pSes, i, j, q ), 1 ) );
for ( ii = 0; ii < i; ++ii )
for ( kk = 1; kk < pSes->nSpecVars + ii; ++kk )
for ( jj = 0; jj < kk; ++jj )
if ( jj == p || kk == p )
Vec_IntPush( vLits, Abc_Var2Lit( Ses_ManSelectVar( pSes, ii, jj, kk ), 0 ) );
assert( sat_solver_addclause( pSes->pSat, Vec_IntArray( vLits ), Vec_IntLimit( vLits ) ) );
Vec_IntFree( vLits );
}
}
}
/**Function*************************************************************
Synopsis [Solve.]
***********************************************************************/
static inline int Ses_ManSolve( Ses_Man_t * pSes )
{
int status;
abctime timeStart, timeDelta;
// if ( pSes->fVerbose )
// {
// printf( "solve SAT instance with %d clauses and %d variables\n", sat_solver_nclauses( pSes->pSat ), sat_solver_nvars( pSes->pSat ) );
// }
timeStart = Abc_Clock();
status = sat_solver_solve( pSes->pSat, NULL, NULL, 0, 0, 0, 0 );
timeDelta = Abc_Clock() - timeStart;
pSes->timeSat += timeDelta;
if ( status == l_True )
{
pSes->timeSatSat += timeDelta;
return 1;
}
else if ( status == l_False )
{
pSes->timeSatUnsat += timeDelta;
return 0;
}
else
{
if ( pSes->fVerbose )
{
printf( "undefined\n" );
}
return 0;
}
}
/**Function*************************************************************
Synopsis [Extract solution.]
***********************************************************************/
static Abc_Ntk_t * Ses_ManExtractSolution( Ses_Man_t * pSes )
{
int h, i, j, k;
Abc_Ntk_t * pNtk;
Abc_Obj_t * pObj;
Vec_Ptr_t * pGates, * vNames;
char pGateTruth[5];
char * pSopCover;
pNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
pNtk->pName = Extra_UtilStrsav( "exact" );
pGates = Vec_PtrAlloc( pSes->nSpecVars + pSes->nGates );
pGateTruth[3] = '0';
pGateTruth[4] = '\0';
vNames = Abc_NodeGetFakeNames( pSes->nSpecVars + pSes->nSpecFunc );
/* primary inputs */
Vec_PtrPush( pNtk->vObjs, NULL );
for ( i = 0; i < pSes->nSpecVars; ++i )
{
pObj = Abc_NtkCreatePi( pNtk );
Abc_ObjAssignName( pObj, (char*)Vec_PtrEntry( vNames, i ), NULL );
Vec_PtrPush( pGates, pObj );
}
/* gates */
for ( i = 0; i < pSes->nGates; ++i )
{
pGateTruth[2] = '0' + sat_solver_var_value( pSes->pSat, Ses_ManGateVar( pSes, i, 0, 1 ) );
pGateTruth[1] = '0' + sat_solver_var_value( pSes->pSat, Ses_ManGateVar( pSes, i, 1, 0 ) );
pGateTruth[0] = '0' + sat_solver_var_value( pSes->pSat, Ses_ManGateVar( pSes, i, 1, 1 ) );
if ( pSes->fVeryVerbose )
{
printf( "gate %d has truth table %s", pSes->nSpecVars + i, pGateTruth );
}
pSopCover = Abc_SopFromTruthBin( pGateTruth );
pObj = Abc_NtkCreateNode( pNtk );
pObj->pData = Abc_SopRegister( (Mem_Flex_t*)pNtk->pManFunc, pSopCover );
Vec_PtrPush( pGates, pObj );
ABC_FREE( pSopCover );
for ( k = 0; k < pSes->nSpecVars + i; ++k )
for ( j = 0; j < k; ++j )
if ( sat_solver_var_value( pSes->pSat, Ses_ManSelectVar( pSes, i, j, k ) ) )
{
if ( pSes->fVeryVerbose )
printf( " with children %d and %d\n", j, k );
Abc_ObjAddFanin( pObj, (Abc_Obj_t *)Vec_PtrEntry( pGates, j ) );
Abc_ObjAddFanin( pObj, (Abc_Obj_t *)Vec_PtrEntry( pGates, k ) );
break;
}
}
/* outputs */
for ( h = 0; h < pSes->nSpecFunc; ++h )
{
pObj = Abc_NtkCreatePo( pNtk );
Abc_ObjAssignName( pObj, (char*)Vec_PtrEntry( vNames, pSes->nSpecVars + h ), NULL );
for ( i = 0; i < pSes->nGates; ++i )
{
if ( sat_solver_var_value( pSes->pSat, Ses_ManOutputVar( pSes, h, i ) ) )
{
/* if output has been inverted, we need to add an inverter */
if ( ( pSes->bSpecInv >> h ) & 1 )
Abc_ObjAddFanin( pObj, Abc_NtkCreateNodeInv( pNtk, (Abc_Obj_t *)Vec_PtrEntry( pGates, pSes->nSpecVars + i ) ) );
else
Abc_ObjAddFanin( pObj, (Abc_Obj_t *)Vec_PtrEntry( pGates, pSes->nSpecVars + i ) );
}
}
}
Abc_NodeFreeNames( vNames );
Vec_PtrFree( pGates );
if ( !Abc_NtkCheck( pNtk ) )
printf( "Ses_ManExtractSolution(): Network check has failed.\n" );
return pNtk;
}
/**Function*************************************************************
Synopsis [Synthesis algorithm.]
***********************************************************************/
static Abc_Ntk_t * Ses_ManFindMinimumSize( Ses_Man_t * pSes )
{
int nGates = 0;
abctime timeStart;
Abc_Ntk_t * pNtk;
timeStart = Abc_Clock();
while ( true )
{
++nGates;
Ses_ManCreateVars( pSes, nGates );
Ses_ManCreateClauses( pSes );
if ( Ses_ManSolve( pSes ) )
{
pNtk = Ses_ManExtractSolution( pSes );
pSes->timeTotal = Abc_Clock() - timeStart;
return pNtk;
}
}
}
/**Function*************************************************************
Synopsis [Debug.]
***********************************************************************/
static void Ses_ManPrintRuntime( Ses_Man_t * pSes )
{
printf( "Runtime breakdown:\n" );
ABC_PRTP( "Sat ", pSes->timeSat, pSes->timeTotal );
ABC_PRTP( " Sat ", pSes->timeSatSat, pSes->timeTotal );
ABC_PRTP( " Unsat", pSes->timeSatUnsat, pSes->timeTotal );
ABC_PRTP( "ALL ", pSes->timeTotal, pSes->timeTotal );
}
static inline void Ses_ManPrintVars( Ses_Man_t * pSes )
{
int h, i, j, k, p, q, t;
for ( i = 0; i < pSes->nGates; ++i )
for ( t = 0; t < pSes->nRows; ++t )
printf( "x(%d, %d) : %d\n", i, t, Ses_ManSimVar( pSes, i, t ) );
for ( h = 0; h < pSes->nSpecFunc; ++h )
for ( i = 0; i < pSes->nGates; ++i )
printf( "h(%d, %d) : %d\n", h, i, Ses_ManOutputVar( pSes, h, i ) );
for ( i = 0; i < pSes->nGates; ++i )
for ( p = 0; p <= 1; ++p )
for ( q = 0; q <= 1; ++ q)
{
if ( p == 0 && q == 0 ) { continue; }
printf( "f(%d, %d, %d) : %d\n", i, p, q, Ses_ManGateVar( pSes, i, p, q ) );
}
for ( i = 0; i < pSes->nGates; ++i )
for ( j = 0; j < pSes->nSpecVars + i; ++j )
for ( k = j + 1; k < pSes->nSpecVars + i; ++k )
printf( "s(%d, %d, %d) : %d\n", i, j, k, Ses_ManSelectVar( pSes, i, j, k ) );
}
/**Function*************************************************************
Synopsis [Find minimum size networks with a SAT solver.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkFindExact( word * pTruth, int nVars, int nFunc, int fVerbose )
{
int i, j;
Ses_Man_t * pSes;
Abc_Ntk_t * pNtk;
/* some checks */
assert( nVars >= 2 && nVars <= 6 );
if ( fVerbose )
{
printf( "find optimum circuit for %d %d-variable functions:\n", nFunc, nVars );
for ( i = 0; i < nFunc; ++i )
{
printf( " func %d: ", i + 1 );
for ( j = 0; j < ( 1 << nVars ); ++j )
printf( "%lu", ( pTruth[i] >> j ) & 1 );
printf( "\n" );
}
}
pSes = Ses_ManAlloc( pTruth, nVars, nFunc, fVerbose );
pNtk = Ses_ManFindMinimumSize( pSes );
if ( fVerbose )
Ses_ManPrintRuntime( pSes );
/* cleanup */
Ses_ManClean( pSes );
return pNtk;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
...@@ -16,6 +16,7 @@ SRC += src/base/abci/abc.c \ ...@@ -16,6 +16,7 @@ SRC += src/base/abci/abc.c \
src/base/abci/abcDress.c \ src/base/abci/abcDress.c \
src/base/abci/abcDress2.c \ src/base/abci/abcDress2.c \
src/base/abci/abcDsd.c \ src/base/abci/abcDsd.c \
src/base/abci/abcExact.c \
src/base/abci/abcExtract.c \ src/base/abci/abcExtract.c \
src/base/abci/abcFraig.c \ src/base/abci/abcFraig.c \
src/base/abci/abcFx.c \ src/base/abci/abcFx.c \
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment