Commit 228dbcc5 by Alan Mishchenko

Adding code of MiniSAT 2.2.

parent a9317eac
...@@ -19,7 +19,6 @@ src/xxx/ ...@@ -19,7 +19,6 @@ src/xxx/
src/aig/au/ src/aig/au/
src/aig/ssm/ src/aig/ssm/
src/aig/ddb/ src/aig/ddb/
src/sat/bsat2/
src/base/abc2/ src/base/abc2/
src/base/abc2d/ src/base/abc2d/
......
...@@ -109,14 +109,22 @@ DEP := $(OBJ:.o=.d) ...@@ -109,14 +109,22 @@ DEP := $(OBJ:.o=.d)
@echo "$(MSG_PREFIX)\`\` Compiling:" $(LOCAL_PATH)/$< @echo "$(MSG_PREFIX)\`\` Compiling:" $(LOCAL_PATH)/$<
@$(CXX) -c $(CXXFLAGS) $< -o $@ @$(CXX) -c $(CXXFLAGS) $< -o $@
%.o: %.cpp
@echo "$(MSG_PREFIX)\`\` Compiling:" $(LOCAL_PATH)/$<
@$(CXX) -c $(CXXFLAGS) $< -o $@
%.d: %.c %.d: %.c
@echo "$(MSG_PREFIX)\`\` Dependency:" $(LOCAL_PATH)/$< @echo "$(MSG_PREFIX)\`\` Generating dependency:" $(LOCAL_PATH)/$<
@./depends.sh $(CC) `dirname $*.c` $(CFLAGS) $*.c > $@ @./depends.sh $(CC) `dirname $*.c` $(CFLAGS) $*.c > $@
%.d: %.cc %.d: %.cc
@echo "$(MSG_PREFIX)\`\` Generating dependency:" $(LOCAL_PATH)/$< @echo "$(MSG_PREFIX)\`\` Generating dependency:" $(LOCAL_PATH)/$<
@./depends.sh $(CXX) `dirname $*.cc` $(CXXFLAGS) $*.cc > $@ @./depends.sh $(CXX) `dirname $*.cc` $(CXXFLAGS) $*.cc > $@
%.d: %.cpp
@echo "$(MSG_PREFIX)\`\` Generating dependency:" $(LOCAL_PATH)/$<
@./depends.sh $(CXX) `dirname $*.cpp` $(CXXFLAGS) $*.cpp > $@
-include $(DEP) -include $(DEP)
# Actual targets # Actual targets
......
/**CFile****************************************************************
FileName [AbcApi.cpp]
PackageName [A C++ version of SAT solver MiniSAT 2.2 developed
by Niklas Sorensson and Niklas Een. http://minisat.se.]
Synopsis [Interface to the SAT solver.]
Author [Niklas Sorensson and Niklas Een.]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - January 1, 2004.]
Revision [$Id: AbcApi.cpp,v 1.0 2004/01/01 1:00:00 alanmi Exp $]
***********************************************************************/
#include "Solver.h"
#include "sat/cnf/cnf.h"
ABC_NAMESPACE_IMPL_START
using namespace Minisat;
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CallMiniSat22( Cnf_Dat_t * p )
{
Solver S;
int Result = -1;
return Result;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
/*******************************************************************************************[Alg.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Alg_h
#define Minisat_Alg_h
#include "Vec.h"
namespace Minisat {
//=================================================================================================
// Useful functions on vector-like types:
//=================================================================================================
// Removing and searching for elements:
//
template<class V, class T>
static inline void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
assert(j < ts.size());
for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
ts.pop();
}
template<class V, class T>
static inline bool find(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
return j < ts.size();
}
//=================================================================================================
// Copying vectors with support for nested vector types:
//
// Base case:
template<class T>
static inline void copy(const T& from, T& to)
{
to = from;
}
// Recursive case:
template<class T>
static inline void copy(const vec<T>& from, vec<T>& to, bool append = false)
{
if (!append)
to.clear();
for (int i = 0; i < from.size(); i++){
to.push();
copy(from[i], to.last());
}
}
template<class T>
static inline void append(const vec<T>& from, vec<T>& to){ copy(from, to, true); }
//=================================================================================================
}
#endif
/*****************************************************************************************[Alloc.h]
Copyright (c) 2008-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Alloc_h
#define Minisat_Alloc_h
#include "XAlloc.h"
#include "Vec.h"
namespace Minisat {
//=================================================================================================
// Simple Region-based memory allocator:
template<class T>
class RegionAllocator
{
T* memory;
uint32_t sz;
uint32_t cap;
uint32_t wasted_;
void capacity(uint32_t min_cap);
public:
// TODO: make this a class for better type-checking?
typedef uint32_t Ref;
enum { Ref_Undef = UINT32_MAX };
enum { Unit_Size = sizeof(uint32_t) };
explicit RegionAllocator(uint32_t start_cap = 1024*1024) : memory(NULL), sz(0), cap(0), wasted_(0){ capacity(start_cap); }
~RegionAllocator()
{
if (memory != NULL)
::free(memory);
}
uint32_t size () const { return sz; }
uint32_t wasted () const { return wasted_; }
Ref alloc (int size);
void _free (int size) { wasted_ += size; }
// Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
T& operator[](Ref r) { assert(r >= 0 && r < sz); return memory[r]; }
const T& operator[](Ref r) const { assert(r >= 0 && r < sz); return memory[r]; }
T* lea (Ref r) { assert(r >= 0 && r < sz); return &memory[r]; }
const T* lea (Ref r) const { assert(r >= 0 && r < sz); return &memory[r]; }
Ref ael (const T* t) { assert((void*)t >= (void*)&memory[0] && (void*)t < (void*)&memory[sz-1]);
return (Ref)(t - &memory[0]); }
void moveTo(RegionAllocator& to) {
if (to.memory != NULL) ::free(to.memory);
to.memory = memory;
to.sz = sz;
to.cap = cap;
to.wasted_ = wasted_;
memory = NULL;
sz = cap = wasted_ = 0;
}
};
template<class T>
void RegionAllocator<T>::capacity(uint32_t min_cap)
{
if (cap >= min_cap) return;
uint32_t prev_cap = cap;
while (cap < min_cap){
// NOTE: Multiply by a factor (13/8) without causing overflow, then add 2 and make the
// result even by clearing the least significant bit. The resulting sequence of capacities
// is carefully chosen to hit a maximum capacity that is close to the '2^32-1' limit when
// using 'uint32_t' as indices so that as much as possible of this space can be used.
uint32_t delta = ((cap >> 1) + (cap >> 3) + 2) & ~1;
cap += delta;
if (cap <= prev_cap)
throw OutOfMemoryException();
}
// printf(" .. (%p) cap = %u\n", this, cap);
assert(cap > 0);
memory = (T*)xrealloc(memory, sizeof(T)*cap);
}
template<class T>
typename RegionAllocator<T>::Ref
RegionAllocator<T>::alloc(int size)
{
// printf("ALLOC called (this = %p, size = %d)\n", this, size); fflush(stdout);
assert(size > 0);
capacity(sz + size);
uint32_t prev_sz = sz;
sz += size;
// Handle overflow:
if (sz < prev_sz)
throw OutOfMemoryException();
return prev_sz;
}
//=================================================================================================
}
#endif
/****************************************************************************************[Dimacs.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Dimacs_h
#define Minisat_Dimacs_h
#include <stdio.h>
#include "ParseUtils.h"
#include "SolverTypes.h"
namespace Minisat {
//=================================================================================================
// DIMACS Parser:
template<class B, class Solver>
static void readClause(B& in, Solver& S, vec<Lit>& lits) {
int parsed_lit, var;
lits.clear();
for (;;){
parsed_lit = parseInt(in);
if (parsed_lit == 0) break;
var = abs(parsed_lit)-1;
while (var >= S.nVars()) S.newVar();
lits.push( (parsed_lit > 0) ? mkLit(var) : ~mkLit(var) );
}
}
template<class B, class Solver>
static void parse_DIMACS_main(B& in, Solver& S) {
vec<Lit> lits;
int vars = 0;
int clauses = 0;
int cnt = 0;
for (;;){
skipWhitespace(in);
if (*in == EOF) break;
else if (*in == 'p'){
if (eagerMatch(in, "p cnf")){
vars = parseInt(in);
clauses = parseInt(in);
// SATRACE'06 hack
// if (clauses > 4000000)
// S.eliminate(true);
}else{
printf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
}
} else if (*in == 'c' || *in == 'p')
skipLine(in);
else{
cnt++;
readClause(in, S, lits);
S.addClause_(lits); }
}
if (vars != S.nVars())
fprintf(stderr, "WARNING! DIMACS header mismatch: wrong number of variables.\n");
if (cnt != clauses)
fprintf(stderr, "WARNING! DIMACS header mismatch: wrong number of clauses.\n");
}
// Inserts problem into solver.
//
template<class Solver>
static void parse_DIMACS(gzFile input_stream, Solver& S) {
StreamBuffer in(input_stream);
parse_DIMACS_main(in, S); }
//=================================================================================================
}
#endif
/******************************************************************************************[Heap.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Heap_h
#define Minisat_Heap_h
#include "Vec.h"
namespace Minisat {
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class Heap {
Comp lt; // The heap is a minimum-heap with respect to this comparator
vec<int> heap; // Heap of integers
vec<int> indices; // Each integers position (index) in the Heap
// Index "traversal" functions
static inline int left (int i) { return i*2+1; }
static inline int right (int i) { return (i+1)*2; }
static inline int parent(int i) { return (i-1) >> 1; }
void percolateUp(int i)
{
int x = heap[i];
int p = parent(i);
while (i != 0 && lt(x, heap[p])){
heap[i] = heap[p];
indices[heap[p]] = i;
i = p;
p = parent(p);
}
heap [i] = x;
indices[x] = i;
}
void percolateDown(int i)
{
int x = heap[i];
while (left(i) < heap.size()){
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
if (!lt(heap[child], x)) break;
heap[i] = heap[child];
indices[heap[i]] = i;
i = child;
}
heap [i] = x;
indices[x] = i;
}
public:
Heap(const Comp& c) : lt(c) { }
int size () const { return heap.size(); }
bool empty () const { return heap.size() == 0; }
bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
void decrease (int n) { assert(inHeap(n)); percolateUp (indices[n]); }
void increase (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
// Safe variant of insert/decrease/increase:
void update(int n)
{
if (!inHeap(n))
insert(n);
else {
percolateUp(indices[n]);
percolateDown(indices[n]); }
}
void insert(int n)
{
indices.growTo(n+1, -1);
assert(!inHeap(n));
indices[n] = heap.size();
heap.push(n);
percolateUp(indices[n]);
}
int removeMin()
{
int x = heap[0];
heap[0] = heap.last();
indices[heap[0]] = 0;
indices[x] = -1;
heap.pop();
if (heap.size() > 1) percolateDown(0);
return x;
}
// Rebuild the heap from scratch, using the elements in 'ns':
void build(vec<int>& ns) {
int i;
for (i = 0; i < heap.size(); i++)
indices[heap[i]] = -1;
heap.clear();
for (i = 0; i < ns.size(); i++){
indices[ns[i]] = i;
heap.push(ns[i]); }
for (i = heap.size() / 2 - 1; i >= 0; i--)
percolateDown(i);
}
void clear(bool dealloc = false)
{
for (int i = 0; i < heap.size(); i++)
indices[heap[i]] = -1;
heap.clear(dealloc);
}
};
//=================================================================================================
}
#endif
/**************************************************************************************[IntTypes.h]
Copyright (c) 2009-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_IntTypes_h
#define Minisat_IntTypes_h
#ifdef __sun
// Not sure if there are newer versions that support C99 headers. The
// needed features are implemented in the headers below though:
# include <sys/int_types.h>
# include <sys/int_fmtio.h>
# include <sys/int_limits.h>
#elif _WIN32
# include "pstdint.h"
#else
# include <stdint.h>
# include <inttypes.h>
#endif
#include <limits.h>
//=================================================================================================
#endif
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010 Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
/*****************************************************************************************[Main.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <errno.h>
#include <signal.h>
#include "misc/zlib/zlib.h"
#include "System.h"
#include "ParseUtils.h"
#include "Options.h"
#include "Dimacs.h"
#include "Solver.h"
using namespace Minisat;
//=================================================================================================
void printStats(Solver& solver)
{
double cpu_time = cpuTime();
double mem_used = memUsedPeak();
printf("restarts : %-12.0f\n", (double)(int64_t)solver.starts);
printf("conflicts : %-12.0f (%.0f /sec)\n", (double)(int64_t)solver.conflicts, (double)(int64_t)solver.conflicts / cpu_time);
printf("decisions : %-12.0f (%4.2f %% random) (%.0f /sec)\n", (double)(int64_t)solver.decisions, (double)(int64_t)solver.rnd_decisions*100 / (double)(int64_t)solver.decisions, (double)(int64_t)solver.decisions / cpu_time);
printf("propagations : %-12.0f (%.0f /sec)\n", (double)(int64_t)solver.propagations, (double)(int64_t)solver.propagations / cpu_time);
printf("conflict literals : %-12.0f (%4.2f %% deleted)\n", (double)(int64_t)solver.tot_literals, (double)(int64_t)(solver.max_literals - solver.tot_literals)*100 / (double)(int64_t)solver.max_literals);
if (mem_used != 0) printf("Memory used : %.2f MB\n", mem_used);
printf("CPU time : %g s\n", cpu_time);
}
static Solver* solver;
// Terminate by notifying the solver and back out gracefully. This is mainly to have a test-case
// for this feature of the Solver as it may take longer than an immediate call to '_exit()'.
static void SIGINT_interrupt(int signum) { solver->interrupt(); }
// Note that '_exit()' rather than 'exit()' has to be used. The reason is that 'exit()' calls
// destructors and may cause deadlocks if a malloc/free function happens to be running (these
// functions are guarded by locks for multithreaded use).
static void SIGINT_exit(int signum) {
printf("\n"); printf("*** INTERRUPTED ***\n");
if (solver->verbosity > 0){
printStats(*solver);
printf("\n"); printf("*** INTERRUPTED ***\n"); }
_exit(1); }
//=================================================================================================
// Main:
extern "C" int MainSat(int argc, char** argv)
{
try {
setUsageHelp("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n");
// printf("This is MiniSat 2.0 beta\n");
#if defined(__linux__)
fpu_control_t oldcw, newcw;
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
printf("WARNING: for repeatability, setting FPU to use double precision\n");
#endif
// Extra options:
//
IntOption verb ("MAIN", "verb", "Verbosity level (0=silent, 1=some, 2=more).", 1, IntRange(0, 2));
IntOption cpu_lim("MAIN", "cpu-lim","Limit on CPU time allowed in seconds.\n", INT32_MAX, IntRange(0, INT32_MAX));
IntOption mem_lim("MAIN", "mem-lim","Limit on memory usage in megabytes.\n", INT32_MAX, IntRange(0, INT32_MAX));
if ( !parseOptions(argc, argv, true) )
return 1;
Solver S;
double initial_time = cpuTime();
S.verbosity = verb;
solver = &S;
/*
// Use signal handlers that forcibly quit until the solver will be able to respond to
// interrupts:
signal(SIGINT, SIGINT_exit);
signal(SIGXCPU,SIGINT_exit);
// Set limit on CPU-time:
if (cpu_lim != INT32_MAX){
rlimit rl;
getrlimit(RLIMIT_CPU, &rl);
if (rl.rlim_max == RLIM_INFINITY || (rlim_t)cpu_lim < rl.rlim_max){
rl.rlim_cur = cpu_lim;
if (setrlimit(RLIMIT_CPU, &rl) == -1)
printf("WARNING! Could not set resource limit: CPU-time.\n");
} }
// Set limit on virtual memory:
if (mem_lim != INT32_MAX){
rlim_t new_mem_lim = (rlim_t)mem_lim * 1024*1024;
rlimit rl;
getrlimit(RLIMIT_AS, &rl);
if (rl.rlim_max == RLIM_INFINITY || new_mem_lim < rl.rlim_max){
rl.rlim_cur = new_mem_lim;
if (setrlimit(RLIMIT_AS, &rl) == -1)
printf("WARNING! Could not set resource limit: Virtual memory.\n");
} }
*/
if (argc == 1)
{
printf("Reading from standard input... Use '--help' for help.\n");
return 1;
}
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
if (in == NULL)
printf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
if (S.verbosity > 0){
printf("============================[ Problem Statistics ]=============================\n");
printf("| |\n"); }
parse_DIMACS(in, S);
gzclose(in);
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
if (S.verbosity > 0){
printf("| Number of variables: %12d |\n", S.nVars());
printf("| Number of clauses: %12d |\n", S.nClauses()); }
double parsed_time = cpuTime();
if (S.verbosity > 0){
printf("| Parse time: %12.2f s |\n", parsed_time - initial_time);
printf("| |\n"); }
// Change to signal-handlers that will only notify the solver and allow it to terminate
// voluntarily:
// signal(SIGINT, SIGINT_interrupt);
// signal(SIGXCPU,SIGINT_interrupt);
if (!S.simplify()){
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
if (S.verbosity > 0){
printf("===============================================================================\n");
printf("Solved by unit propagation\n");
printStats(S);
printf("\n"); }
printf("UNSATISFIABLE\n");
exit(20);
}
vec<Lit> dummy;
lbool ret = S.solveLimited(dummy);
if (S.verbosity > 0){
printStats(S);
printf("\n"); }
printf(ret == l_True ? "SATISFIABLE\n" : ret == l_False ? "UNSATISFIABLE\n" : "INDETERMINATE\n");
if (res != NULL){
if (ret == l_True){
fprintf(res, "SAT\n");
for (int i = 0; i < S.nVars(); i++)
if (S.model[i] != l_Undef)
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
fprintf(res, " 0\n");
}else if (ret == l_False)
fprintf(res, "UNSAT\n");
else
fprintf(res, "INDET\n");
fclose(res);
}
//#ifdef NDEBUG
// exit(ret == l_True ? 10 : ret == l_False ? 20 : 0); // (faster than "return", which will invoke the destructor for 'Solver')
//#else
return (ret == l_True ? 10 : ret == l_False ? 20 : 0);
//#endif
} catch (OutOfMemoryException&){
printf("===============================================================================\n");
printf("INDETERMINATE\n");
exit(0);
}
}
/*****************************************************************************************[Main.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <errno.h>
#include <signal.h>
#include "misc/zlib/zlib.h"
#ifndef _WIN32
#include <sys/resource.h>
#endif
#include "System.h"
#include "ParseUtils.h"
#include "Options.h"
#include "Dimacs.h"
#include "SimpSolver.h"
using namespace Minisat;
//=================================================================================================
extern void printStats(Solver& solver);
static Solver* solver;
// Terminate by notifying the solver and back out gracefully. This is mainly to have a test-case
// for this feature of the Solver as it may take longer than an immediate call to '_exit()'.
static void SIGINT_interrupt(int signum) { solver->interrupt(); }
// Note that '_exit()' rather than 'exit()' has to be used. The reason is that 'exit()' calls
// destructors and may cause deadlocks if a malloc/free function happens to be running (these
// functions are guarded by locks for multithreaded use).
static void SIGINT_exit(int signum) {
printf("\n"); printf("*** INTERRUPTED ***\n");
if (solver->verbosity > 0){
printStats(*solver);
printf("\n"); printf("*** INTERRUPTED ***\n"); }
_exit(1); }
//=================================================================================================
// Main:
extern "C" int MainSimp(int argc, char** argv)
{
try {
setUsageHelp("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n");
// printf("This is MiniSat 2.0 beta\n");
#if defined(__linux__)
fpu_control_t oldcw, newcw;
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
printf("WARNING: for repeatability, setting FPU to use double precision\n");
#endif
// Extra options:
//
IntOption verb ("MAIN", "verb", "Verbosity level (0=silent, 1=some, 2=more).", 1, IntRange(0, 2));
BoolOption pre ("MAIN", "pre", "Completely turn on/off any preprocessing.", true);
StringOption dimacs ("MAIN", "dimacs", "If given, stop after preprocessing and write the result to this file.");
IntOption cpu_lim("MAIN", "cpu-lim","Limit on CPU time allowed in seconds.\n", INT32_MAX, IntRange(0, INT32_MAX));
IntOption mem_lim("MAIN", "mem-lim","Limit on memory usage in megabytes.\n", INT32_MAX, IntRange(0, INT32_MAX));
if ( !parseOptions(argc, argv, true) )
return 1;
SimpSolver S;
double initial_time = cpuTime();
if (!pre) S.eliminate(true);
S.verbosity = verb;
solver = &S;
/*
// Use signal handlers that forcibly quit until the solver will be able to respond to
// interrupts:
signal(SIGINT, SIGINT_exit);
signal(SIGXCPU,SIGINT_exit);
// Set limit on CPU-time:
if (cpu_lim != INT32_MAX){
rlimit rl;
getrlimit(RLIMIT_CPU, &rl);
if (rl.rlim_max == RLIM_INFINITY || (rlim_t)cpu_lim < rl.rlim_max){
rl.rlim_cur = cpu_lim;
if (setrlimit(RLIMIT_CPU, &rl) == -1)
printf("WARNING! Could not set resource limit: CPU-time.\n");
} }
// Set limit on virtual memory:
if (mem_lim != INT32_MAX){
rlim_t new_mem_lim = (rlim_t)mem_lim * 1024*1024;
rlimit rl;
getrlimit(RLIMIT_AS, &rl);
if (rl.rlim_max == RLIM_INFINITY || new_mem_lim < rl.rlim_max){
rl.rlim_cur = new_mem_lim;
if (setrlimit(RLIMIT_AS, &rl) == -1)
printf("WARNING! Could not set resource limit: Virtual memory.\n");
} }
*/
if (argc == 1)
{
printf("Reading from standard input... Use '--help' for help.\n");
return 1;
}
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
if (in == NULL)
printf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
if (S.verbosity > 0){
printf("============================[ Problem Statistics ]=============================\n");
printf("| |\n"); }
parse_DIMACS(in, S);
gzclose(in);
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
if (S.verbosity > 0){
printf("| Number of variables: %12d |\n", S.nVars());
printf("| Number of clauses: %12d |\n", S.nClauses()); }
double parsed_time = cpuTime();
if (S.verbosity > 0)
printf("| Parse time: %12.2f s |\n", parsed_time - initial_time);
// Change to signal-handlers that will only notify the solver and allow it to terminate
// voluntarily:
// signal(SIGINT, SIGINT_interrupt);
// signal(SIGXCPU,SIGINT_interrupt);
S.eliminate(true);
double simplified_time = cpuTime();
if (S.verbosity > 0){
printf("| Simplification time: %12.2f s |\n", simplified_time - parsed_time);
printf("| |\n"); }
if (!S.okay()){
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
if (S.verbosity > 0){
printf("===============================================================================\n");
printf("Solved by simplification\n");
printStats(S);
printf("\n"); }
printf("UNSATISFIABLE\n");
exit(20);
}
if (dimacs){
if (S.verbosity > 0)
printf("==============================[ Writing DIMACS ]===============================\n");
S.toDimacs((const char*)dimacs);
if (S.verbosity > 0)
printStats(S);
exit(0);
}
vec<Lit> dummy;
lbool ret = S.solveLimited(dummy);
if (S.verbosity > 0){
printStats(S);
printf("\n"); }
printf(ret == l_True ? "SATISFIABLE\n" : ret == l_False ? "UNSATISFIABLE\n" : "INDETERMINATE\n");
if (res != NULL){
if (ret == l_True){
fprintf(res, "SAT\n");
for (int i = 0; i < S.nVars(); i++)
if (S.model[i] != l_Undef)
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
fprintf(res, " 0\n");
}else if (ret == l_False)
fprintf(res, "UNSAT\n");
else
fprintf(res, "INDET\n");
fclose(res);
}
//#ifdef NDEBUG
// exit(ret == l_True ? 10 : ret == l_False ? 20 : 0); // (faster than "return", which will invoke the destructor for 'Solver')
//#else
return (ret == l_True ? 10 : ret == l_False ? 20 : 0);
//#endif
} catch (OutOfMemoryException&){
printf("===============================================================================\n");
printf("INDETERMINATE\n");
exit(0);
}
}
/*******************************************************************************************[Map.h]
Copyright (c) 2006-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Map_h
#define Minisat_Map_h
#include "IntTypes.h"
#include "Vec.h"
namespace Minisat {
//=================================================================================================
// Default hash/equals functions
//
template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
static inline uint32_t hash(uint32_t x){ return x; }
static inline uint32_t hash(uint64_t x){ return (uint32_t)x; }
static inline uint32_t hash(int32_t x) { return (uint32_t)x; }
static inline uint32_t hash(int64_t x) { return (uint32_t)x; }
//=================================================================================================
// Some primes
//
static const int nprimes = 25;
static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
//=================================================================================================
// Hash table implementation of Maps
//
template<class K, class D, class H = Hash<K>, class E = Equal<K> >
class Map {
public:
struct Pair { K key; D data; };
private:
H hash;
E equals;
vec<Pair>* table;
int cap;
int size;
// Don't allow copying (error prone):
Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); }
Map (Map<K,D,H,E>& other) { assert(0); }
bool checkCap(int new_size) const { return new_size > cap; }
int32_t index (const K& k) const { return hash(k) % cap; }
void _insert (const K& k, const D& d) {
vec<Pair>& ps = table[index(k)];
ps.push(); ps.last().key = k; ps.last().data = d; }
void rehash () {
const vec<Pair>* old = table;
int old_cap = cap;
int newsize = primes[0];
for (int i = 1; newsize <= cap && i < nprimes; i++)
newsize = primes[i];
table = new vec<Pair>[newsize];
cap = newsize;
for (int i = 0; i < old_cap; i++){
for (int j = 0; j < old[i].size(); j++){
_insert(old[i][j].key, old[i][j].data); }}
delete [] old;
// printf(" --- rehashing, old-cap=%d, new-cap=%d\n", cap, newsize);
}
public:
Map () : table(NULL), cap(0), size(0) {}
Map (const H& h, const E& e) : hash(h), equals(e), table(NULL), cap(0), size(0){}
~Map () { delete [] table; }
// PRECONDITION: the key must already exist in the map.
const D& operator [] (const K& k) const
{
assert(size != 0);
const D* res = NULL;
const vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k))
res = &ps[i].data;
assert(res != NULL);
return *res;
}
// PRECONDITION: the key must already exist in the map.
D& operator [] (const K& k)
{
assert(size != 0);
D* res = NULL;
vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k))
res = &ps[i].data;
assert(res != NULL);
return *res;
}
// PRECONDITION: the key must *NOT* exist in the map.
void insert (const K& k, const D& d) { if (checkCap(size+1)) rehash(); _insert(k, d); size++; }
bool peek (const K& k, D& d) const {
if (size == 0) return false;
const vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k)){
d = ps[i].data;
return true; }
return false;
}
bool has (const K& k) const {
if (size == 0) return false;
const vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k))
return true;
return false;
}
// PRECONDITION: the key must exist in the map.
void remove(const K& k) {
assert(table != NULL);
vec<Pair>& ps = table[index(k)];
int j = 0;
for (; j < ps.size() && !equals(ps[j].key, k); j++);
assert(j < ps.size());
ps[j] = ps.last();
ps.pop();
size--;
}
void clear () {
cap = size = 0;
delete [] table;
table = NULL;
}
int elems() const { return size; }
int bucket_count() const { return cap; }
// NOTE: the hash and equality objects are not moved by this method:
void moveTo(Map& other){
delete [] other.table;
other.table = table;
other.cap = cap;
other.size = size;
table = NULL;
size = cap = 0;
}
// NOTE: given a bit more time, I could make a more C++-style iterator out of this:
const vec<Pair>& bucket(int i) const { return table[i]; }
};
//=================================================================================================
}
#endif
/**************************************************************************************[Options.cc]
Copyright (c) 2008-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Sort.h"
#include "Options.h"
#include "ParseUtils.h"
using namespace Minisat;
int Minisat::parseOptions(int& argc, char** argv, bool strict)
{
int i, j;
for (i = j = 1; i < argc; i++){
const char* str = argv[i];
if (match(str, "--") && match(str, Option::getHelpPrefixString()) && match(str, "help")){
if (*str == '\0')
return printUsageAndExit(argc, argv);
else if (match(str, "-verb"))
return printUsageAndExit(argc, argv, true);
} else {
bool parsed_ok = false;
for (int k = 0; !parsed_ok && k < Option::getOptionList().size(); k++){
parsed_ok = Option::getOptionList()[k]->parse(argv[i]);
// fprintf(stderr, "checking %d: %s against flag <%s> (%s)\n", i, argv[i], Option::getOptionList()[k]->name, parsed_ok ? "ok" : "skip");
}
if (!parsed_ok)
if (strict && match(argv[i], "-"))
{ fprintf(stderr, "ERROR! Unknown flag \"%s\". Use '--%shelp' for help.\n", argv[i], Option::getHelpPrefixString()); return 0; } // exit(0);
else
argv[j++] = argv[i];
}
}
argc -= (i - j);
return 1;
}
void Minisat::setUsageHelp (const char* str){ Option::getUsageString() = str; }
void Minisat::setHelpPrefixStr (const char* str){ Option::getHelpPrefixString() = str; }
int Minisat::printUsageAndExit (int argc, char** argv, bool verbose)
{
const char* usage = Option::getUsageString();
if (usage != NULL)
fprintf(stderr, usage, argv[0]);
sort(Option::getOptionList(), Option::OptionLt());
const char* prev_cat = NULL;
const char* prev_type = NULL;
for (int i = 0; i < Option::getOptionList().size(); i++){
const char* cat = Option::getOptionList()[i]->category;
const char* type = Option::getOptionList()[i]->type_name;
if (cat != prev_cat)
fprintf(stderr, "\n%s OPTIONS:\n\n", cat);
else if (type != prev_type)
fprintf(stderr, "\n");
Option::getOptionList()[i]->help(verbose);
prev_cat = Option::getOptionList()[i]->category;
prev_type = Option::getOptionList()[i]->type_name;
}
fprintf(stderr, "\nHELP OPTIONS:\n\n");
fprintf(stderr, " --%shelp Print help message.\n", Option::getHelpPrefixString());
fprintf(stderr, " --%shelp-verb Print verbose help message.\n", Option::getHelpPrefixString());
fprintf(stderr, "\n");
// exit(0);
return 0;
}
/***************************************************************************************[Options.h]
Copyright (c) 2008-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Options_h
#define Minisat_Options_h
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "IntTypes.h"
#include "Vec.h"
#include "ParseUtils.h"
namespace Minisat {
//==================================================================================================
// Top-level option parse/help functions:
extern int parseOptions (int& argc, char** argv, bool strict = false);
extern int printUsageAndExit(int argc, char** argv, bool verbose = false);
extern void setUsageHelp (const char* str);
extern void setHelpPrefixStr (const char* str);
//==================================================================================================
// Options is an abstract class that gives the interface for all types options:
class Option
{
public:
const char* name;
const char* description;
const char* category;
const char* type_name;
static vec<Option*>& getOptionList () { static vec<Option*> options; return options; }
static const char*& getUsageString() { static const char* usage_str; return usage_str; }
static const char*& getHelpPrefixString() { static const char* help_prefix_str = ""; return help_prefix_str; }
struct OptionLt {
bool operator()(const Option* x, const Option* y) {
int test1 = strcmp(x->category, y->category);
return test1 < 0 || test1 == 0 && strcmp(x->type_name, y->type_name) < 0;
}
};
Option(const char* name_,
const char* desc_,
const char* cate_,
const char* type_) :
name (name_)
, description(desc_)
, category (cate_)
, type_name (type_)
{
getOptionList().push(this);
}
public:
virtual ~Option() {}
virtual bool parse (const char* str) = 0;
virtual void help (bool verbose = false) = 0;
friend int parseOptions (int& argc, char** argv, bool strict);
friend int printUsageAndExit (int argc, char** argv, bool verbose);
friend void setUsageHelp (const char* str);
friend void setHelpPrefixStr (const char* str);
};
//==================================================================================================
// Range classes with specialization for floating types:
struct IntRange {
int begin;
int end;
IntRange(int b, int e) : begin(b), end(e) {}
};
struct Int64Range {
int64_t begin;
int64_t end;
Int64Range(int64_t b, int64_t e) : begin(b), end(e) {}
};
struct DoubleRange {
double begin;
double end;
bool begin_inclusive;
bool end_inclusive;
DoubleRange(double b, bool binc, double e, bool einc) : begin(b), end(e), begin_inclusive(binc), end_inclusive(einc) {}
};
//==================================================================================================
// Double options:
class DoubleOption : public Option
{
protected:
DoubleRange range;
double value;
public:
DoubleOption(const char* c, const char* n, const char* d, double def = double(), DoubleRange r = DoubleRange(-HUGE_VAL, false, HUGE_VAL, false))
: Option(n, d, c, "<double>"), range(r), value(def) {
// FIXME: set LC_NUMERIC to "C" to make sure that strtof/strtod parses decimal point correctly.
}
operator double (void) const { return value; }
operator double& (void) { return value; }
DoubleOption& operator=(double x) { value = x; return *this; }
virtual bool parse(const char* str){
const char* span = str;
if (!match(span, "-") || !match(span, name) || !match(span, "="))
return false;
char* end;
double tmp = strtod(span, &end);
if (end == NULL)
return false;
else if (tmp >= range.end && (!range.end_inclusive || tmp != range.end)){
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
exit(1);
}else if (tmp <= range.begin && (!range.begin_inclusive || tmp != range.begin)){
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
exit(1); }
value = tmp;
// fprintf(stderr, "READ VALUE: %g\n", value);
return true;
}
virtual void help (bool verbose = false){
fprintf(stderr, " -%-12s = %-8s %c%4.2g .. %4.2g%c (default: %g)\n",
name, type_name,
range.begin_inclusive ? '[' : '(',
range.begin,
range.end,
range.end_inclusive ? ']' : ')',
value);
if (verbose){
fprintf(stderr, "\n %s\n", description);
fprintf(stderr, "\n");
}
}
};
//==================================================================================================
// Int options:
class IntOption : public Option
{
protected:
IntRange range;
int32_t value;
public:
IntOption(const char* c, const char* n, const char* d, int32_t def = int32_t(), IntRange r = IntRange(INT32_MIN, INT32_MAX))
: Option(n, d, c, "<int32>"), range(r), value(def) {}
operator int32_t (void) const { return value; }
operator int32_t& (void) { return value; }
IntOption& operator= (int32_t x) { value = x; return *this; }
virtual bool parse(const char* str){
const char* span = str;
if (!match(span, "-") || !match(span, name) || !match(span, "="))
return false;
char* end;
int32_t tmp = strtol(span, &end, 10);
if (end == NULL)
return false;
else if (tmp > range.end){
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
exit(1);
}else if (tmp < range.begin){
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
exit(1); }
value = tmp;
return true;
}
virtual void help (bool verbose = false){
fprintf(stderr, " -%-12s = %-8s [", name, type_name);
if (range.begin == INT32_MIN)
fprintf(stderr, "imin");
else
fprintf(stderr, "%4d", range.begin);
fprintf(stderr, " .. ");
if (range.end == INT32_MAX)
fprintf(stderr, "imax");
else
fprintf(stderr, "%4d", range.end);
fprintf(stderr, "] (default: %d)\n", value);
if (verbose){
fprintf(stderr, "\n %s\n", description);
fprintf(stderr, "\n");
}
}
};
// Leave this out for visual C++ until Microsoft implements C99 and gets support for strtoll.
#ifndef _MSC_VER
class Int64Option : public Option
{
protected:
Int64Range range;
int64_t value;
public:
Int64Option(const char* c, const char* n, const char* d, int64_t def = int64_t(), Int64Range r = Int64Range(INT64_MIN, INT64_MAX))
: Option(n, d, c, "<int64>"), range(r), value(def) {}
operator int64_t (void) const { return value; }
operator int64_t& (void) { return value; }
Int64Option& operator= (int64_t x) { value = x; return *this; }
virtual bool parse(const char* str){
const char* span = str;
if (!match(span, "-") || !match(span, name) || !match(span, "="))
return false;
char* end;
int64_t tmp = strtoll(span, &end, 10);
if (end == NULL)
return false;
else if (tmp > range.end){
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
exit(1);
}else if (tmp < range.begin){
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
exit(1); }
value = tmp;
return true;
}
virtual void help (bool verbose = false){
fprintf(stderr, " -%-12s = %-8s [", name, type_name);
if (range.begin == INT64_MIN)
fprintf(stderr, "imin");
else
fprintf(stderr, "%4"PRIi64, range.begin);
fprintf(stderr, " .. ");
if (range.end == INT64_MAX)
fprintf(stderr, "imax");
else
fprintf(stderr, "%4"PRIi64, range.end);
fprintf(stderr, "] (default: %"PRIi64")\n", value);
if (verbose){
fprintf(stderr, "\n %s\n", description);
fprintf(stderr, "\n");
}
}
};
#endif
//==================================================================================================
// String option:
class StringOption : public Option
{
const char* value;
public:
StringOption(const char* c, const char* n, const char* d, const char* def = NULL)
: Option(n, d, c, "<string>"), value(def) {}
operator const char* (void) const { return value; }
operator const char*& (void) { return value; }
StringOption& operator= (const char* x) { value = x; return *this; }
virtual bool parse(const char* str){
const char* span = str;
if (!match(span, "-") || !match(span, name) || !match(span, "="))
return false;
value = span;
return true;
}
virtual void help (bool verbose = false){
fprintf(stderr, " -%-10s = %8s\n", name, type_name);
if (verbose){
fprintf(stderr, "\n %s\n", description);
fprintf(stderr, "\n");
}
}
};
//==================================================================================================
// Bool option:
class BoolOption : public Option
{
bool value;
public:
BoolOption(const char* c, const char* n, const char* d, bool v)
: Option(n, d, c, "<bool>"), value(v) {}
operator bool (void) const { return value; }
operator bool& (void) { return value; }
BoolOption& operator=(bool b) { value = b; return *this; }
virtual bool parse(const char* str){
const char* span = str;
if (match(span, "-")){
bool b = !match(span, "no-");
if (strcmp(span, name) == 0){
value = b;
return true; }
}
return false;
}
virtual void help (bool verbose = false){
fprintf(stderr, " -%s, -no-%s", name, name);
for (uint32_t i = 0; i < 32 - strlen(name)*2; i++)
fprintf(stderr, " ");
fprintf(stderr, " ");
fprintf(stderr, "(default: %s)\n", value ? "on" : "off");
if (verbose){
fprintf(stderr, "\n %s\n", description);
fprintf(stderr, "\n");
}
}
};
//=================================================================================================
}
#endif
/************************************************************************************[ParseUtils.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_ParseUtils_h
#define Minisat_ParseUtils_h
#include <stdlib.h>
#include <stdio.h>
#include "misc/zlib/zlib.h"
namespace Minisat {
//-------------------------------------------------------------------------------------------------
// A simple buffered character stream class:
static const int buffer_size = 1048576;
class StreamBuffer {
gzFile in;
unsigned char buf[buffer_size];
int pos;
int size;
void assureLookahead() {
if (pos >= size) {
pos = 0;
size = gzread(in, buf, sizeof(buf)); } }
public:
explicit StreamBuffer(gzFile i) : in(i), pos(0), size(0) { assureLookahead(); }
int operator * () const { return (pos >= size) ? EOF : buf[pos]; }
void operator ++ () { pos++; assureLookahead(); }
int position () const { return pos; }
};
//-------------------------------------------------------------------------------------------------
// End-of-file detection functions for StreamBuffer and char*:
static inline bool isEof(StreamBuffer& in) { return *in == EOF; }
static inline bool isEof(const char* in) { return *in == '\0'; }
//-------------------------------------------------------------------------------------------------
// Generic parse functions parametrized over the input-stream type.
template<class B>
static void skipWhitespace(B& in) {
while ((*in >= 9 && *in <= 13) || *in == 32)
++in; }
template<class B>
static void skipLine(B& in) {
for (;;){
if (isEof(in)) return;
if (*in == '\n') { ++in; return; }
++in; } }
template<class B>
static int parseInt(B& in) {
int val = 0;
bool neg = false;
skipWhitespace(in);
if (*in == '-') neg = true, ++in;
else if (*in == '+') ++in;
if (*in < '0' || *in > '9') fprintf(stderr, "PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
while (*in >= '0' && *in <= '9')
val = val*10 + (*in - '0'),
++in;
return neg ? -val : val; }
// String matching: in case of a match the input iterator will be advanced the corresponding
// number of characters.
template<class B>
static bool match(B& in, const char* str) {
int i;
for (i = 0; str[i] != '\0'; i++)
if (in[i] != str[i])
return false;
in += i;
return true;
}
// String matching: consumes characters eagerly, but does not require random access iterator.
template<class B>
static bool eagerMatch(B& in, const char* str) {
for (; *str != '\0'; ++str, ++in)
if (*str != *in)
return false;
return true; }
//=================================================================================================
}
#endif
/*****************************************************************************************[Queue.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Queue_h
#define Minisat_Queue_h
#include "Vec.h"
namespace Minisat {
//=================================================================================================
template<class T>
class Queue {
vec<T> buf;
int first;
int end;
public:
typedef T Key;
Queue() : buf(1), first(0), end(0) {}
void clear (bool dealloc = false) { buf.clear(dealloc); buf.growTo(1); first = end = 0; }
int size () const { return (end >= first) ? end - first : end - first + buf.size(); }
const T& operator [] (int index) const { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; }
T& operator [] (int index) { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; }
T peek () const { assert(first != end); return buf[first]; }
void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
void insert(T elem) { // INVARIANT: buf[end] is always unused
buf[end++] = elem;
if (end == buf.size()) end = 0;
if (first == end){ // Resize:
vec<T> tmp((buf.size()*3 + 1) >> 1);
//**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
int j, i = 0;
for (j = first; j < buf.size(); j++) tmp[i++] = buf[j];
for (j = 0 ; j < end ; j++) tmp[i++] = buf[j];
first = 0;
end = buf.size();
tmp.moveTo(buf);
}
}
};
//=================================================================================================
}
#endif
================================================================================
DIRECTORY OVERVIEW:
mtl/ Mini Template Library
utils/ Generic helper code (I/O, Parsing, CPU-time, etc)
core/ A core version of the solver
simp/ An extended solver with simplification capabilities
README
LICENSE
================================================================================
BUILDING: (release version: without assertions, statically linked, etc)
export MROOT=<minisat-dir> (or setenv in cshell)
cd { core | simp }
gmake rs
cp minisat_static <install-dir>/minisat
================================================================================
EXAMPLES:
Run minisat with same heuristics as version 2.0:
> minisat <cnf-file> -no-luby -rinc=1.5 -phase-saving=0 -rnd-freq=0.02
Release Notes for MiniSat 2.2.0
===============================
Changes since version 2.0:
* Started using a more standard release numbering.
* Includes some now well-known heuristics: phase-saving and luby
restarts. The old heuristics are still present and can be activated
if needed.
* Detection/Handling of out-of-memory and vector capacity
overflow. This is fairly new and relatively untested.
* Simple resource controls: CPU-time, memory, number of
conflicts/decisions.
* CPU-time limiting is implemented by a more general, but simple,
asynchronous interruption feature. This means that the solving
procedure can be interrupted from another thread or in a signal
handler.
* Improved portability with respect to building on Solaris and with
Visual Studio. This is not regularly tested and chances are that
this have been broken since, but should be fairly easy to fix if
so.
* Changed C++ file-extention to the less problematic ".cc".
* Source code is now namespace-protected
* Introducing a new Clause Memory Allocator that brings reduced
memory consumption on 64-bit architechtures and improved
performance (to some extent). The allocator uses a region-based
approach were all references to clauses are represented as a 32-bit
index into a global memory region that contains all clauses. To
free up and compact memory it uses a simple copying garbage
collector.
* Improved unit-propagation by Blocking Literals. For each entry in
the watcher lists, pair the pointer to a clause with some
(arbitrary) literal from the clause. The idea is that if the
literal is currently true (i.e. the clause is satisfied) the
watchers of the clause does not need to be altered. This can thus
be detected without touching the clause's memory at all. As often
as can be done cheaply, the blocking literal for entries to the
watcher list of a literal 'p' is set to the other literal watched
in the corresponding clause.
* Basic command-line/option handling system. Makes it easy to specify
options in the class that they affect, and whenever that class is
used in an executable, parsing of options and help messages are
brought in automatically.
* General clean-up and various minor bug-fixes.
* Changed implementation of variable-elimination/model-extension:
- The interface is changed so that arbitrary remembering is no longer
possible. If you need to mention some variable again in the future,
this variable has to be frozen.
- When eliminating a variable, only clauses that contain the variable
with one sign is necessary to store. Thereby making the other sign
a "default" value when extending models.
- The memory consumption for eliminated clauses is further improved
by storing all eliminated clauses in a single contiguous vector.
* Some common utility code (I/O, Parsing, CPU-time, etc) is ripped
out and placed in a separate "utils" directory.
* The DIMACS parse is refactored so that it can be reused in other
applications (not very elegant, but at least possible).
* Some simple improvements to scalability of preprocessing, using
more lazy clause removal from data-structures and a couple of
ad-hoc limits (the longest clause that can be produced in variable
elimination, and the longest clause used in backward subsumption).
/***********************************************************************************[SimpSolver.cc]
Copyright (c) 2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Sort.h"
#include "SimpSolver.h"
#include "System.h"
using namespace Minisat;
//=================================================================================================
// Options:
static const char* _cat = "SIMP";
static BoolOption opt_use_asymm (_cat, "asymm", "Shrink clauses by asymmetric branching.", false);
static BoolOption opt_use_rcheck (_cat, "rcheck", "Check if a clause is already implied. (costly)", false);
static BoolOption opt_use_elim (_cat, "elim", "Perform variable elimination.", true);
static IntOption opt_grow (_cat, "grow", "Allow a variable elimination step to grow by a number of clauses.", 0);
static IntOption opt_clause_lim (_cat, "cl-lim", "Variables are not eliminated if it produces a resolvent with a length above this limit. -1 means no limit", 20, IntRange(-1, INT32_MAX));
static IntOption opt_subsumption_lim (_cat, "sub-lim", "Do not check if subsumption against a clause larger than this. -1 means no limit.", 1000, IntRange(-1, INT32_MAX));
static DoubleOption opt_simp_garbage_frac(_cat, "simp-gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered during simplification.", 0.5, DoubleRange(0, false, HUGE_VAL, false));
//=================================================================================================
// Constructor/Destructor:
SimpSolver::SimpSolver() :
grow (opt_grow)
, clause_lim (opt_clause_lim)
, subsumption_lim (opt_subsumption_lim)
, simp_garbage_frac (opt_simp_garbage_frac)
, use_asymm (opt_use_asymm)
, use_rcheck (opt_use_rcheck)
, use_elim (opt_use_elim)
, merges (0)
, asymm_lits (0)
, eliminated_vars (0)
, elimorder (1)
, use_simplification (true)
, occurs (ClauseDeleted(ca))
, elim_heap (ElimLt(n_occ))
, bwdsub_assigns (0)
, n_touched (0)
{
vec<Lit> dummy(1,lit_Undef);
ca.extra_clause_field = true; // NOTE: must happen before allocating the dummy clause below.
bwdsub_tmpunit = ca.alloc(dummy);
remove_satisfied = false;
}
SimpSolver::~SimpSolver()
{
}
Var SimpSolver::newVar(bool sign, bool dvar) {
Var v = Solver::newVar(sign, dvar);
frozen .push((char)false);
eliminated.push((char)false);
if (use_simplification){
n_occ .push(0);
n_occ .push(0);
occurs .init(v);
touched .push(0);
elim_heap .insert(v);
}
return v; }
lbool SimpSolver::solve_(bool do_simp, bool turn_off_simp)
{
vec<Var> extra_frozen;
lbool result = l_True;
do_simp &= use_simplification;
if (do_simp){
// Assumptions must be temporarily frozen to run variable elimination:
for (int i = 0; i < assumptions.size(); i++){
Var v = var(assumptions[i]);
// If an assumption has been eliminated, remember it.
assert(!isEliminated(v));
if (!frozen[v]){
// Freeze and store.
setFrozen(v, true);
extra_frozen.push(v);
} }
result = lbool(eliminate(turn_off_simp));
}
if (result == l_True)
result = Solver::solve_();
else if (verbosity >= 1)
printf("===============================================================================\n");
if (result == l_True)
extendModel();
if (do_simp)
// Unfreeze the assumptions that were frozen:
for (int i = 0; i < extra_frozen.size(); i++)
setFrozen(extra_frozen[i], false);
return result;
}
bool SimpSolver::addClause_(vec<Lit>& ps)
{
#ifndef NDEBUG
for (int i = 0; i < ps.size(); i++)
assert(!isEliminated(var(ps[i])));
#endif
int nclauses = clauses.size();
if (use_rcheck && implied(ps))
return true;
if (!Solver::addClause_(ps))
return false;
if (use_simplification && clauses.size() == nclauses + 1){
CRef cr = clauses.last();
const Clause& c = ca[cr];
// NOTE: the clause is added to the queue immediately and then
// again during 'gatherTouchedClauses()'. If nothing happens
// in between, it will only be checked once. Otherwise, it may
// be checked twice unnecessarily. This is an unfortunate
// consequence of how backward subsumption is used to mimic
// forward subsumption.
subsumption_queue.insert(cr);
for (int i = 0; i < c.size(); i++){
occurs[var(c[i])].push(cr);
n_occ[toInt(c[i])]++;
touched[var(c[i])] = 1;
n_touched++;
if (elim_heap.inHeap(var(c[i])))
elim_heap.increase(var(c[i]));
}
}
return true;
}
void SimpSolver::removeClause(CRef cr)
{
const Clause& c = ca[cr];
if (use_simplification)
for (int i = 0; i < c.size(); i++){
n_occ[toInt(c[i])]--;
updateElimHeap(var(c[i]));
occurs.smudge(var(c[i]));
}
Solver::removeClause(cr);
}
bool SimpSolver::strengthenClause(CRef cr, Lit l)
{
Clause& c = ca[cr];
assert(decisionLevel() == 0);
assert(use_simplification);
// FIX: this is too inefficient but would be nice to have (properly implemented)
// if (!find(subsumption_queue, &c))
subsumption_queue.insert(cr);
if (c.size() == 2){
removeClause(cr);
c.strengthen(l);
}else{
detachClause(cr, true);
c.strengthen(l);
attachClause(cr);
remove(occurs[var(l)], cr);
n_occ[toInt(l)]--;
updateElimHeap(var(l));
}
return c.size() == 1 ? enqueue(c[0]) && propagate() == CRef_Undef : true;
}
// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
{
merges++;
out_clause.clear();
bool ps_smallest = _ps.size() < _qs.size();
const Clause& ps = ps_smallest ? _qs : _ps;
const Clause& qs = ps_smallest ? _ps : _qs;
for (int i = 0; i < qs.size(); i++){
if (var(qs[i]) != v){
for (int j = 0; j < ps.size(); j++)
if (var(ps[j]) == var(qs[i]))
if (ps[j] == ~qs[i])
return false;
else
goto next;
out_clause.push(qs[i]);
}
next:;
}
for (i = 0; i < ps.size(); i++)
if (var(ps[i]) != v)
out_clause.push(ps[i]);
return true;
}
// Returns FALSE if clause is always satisfied.
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, int& size)
{
merges++;
bool ps_smallest = _ps.size() < _qs.size();
const Clause& ps = ps_smallest ? _qs : _ps;
const Clause& qs = ps_smallest ? _ps : _qs;
const Lit* __ps = (const Lit*)ps;
const Lit* __qs = (const Lit*)qs;
size = ps.size()-1;
for (int i = 0; i < qs.size(); i++){
if (var(__qs[i]) != v){
for (int j = 0; j < ps.size(); j++)
if (var(__ps[j]) == var(__qs[i]))
if (__ps[j] == ~__qs[i])
return false;
else
goto next;
size++;
}
next:;
}
return true;
}
void SimpSolver::gatherTouchedClauses()
{
if (n_touched == 0) return;
int i,j;
for (i = j = 0; i < subsumption_queue.size(); i++)
if (ca[subsumption_queue[i]].mark() == 0)
ca[subsumption_queue[i]].mark(2);
for (i = 0; i < touched.size(); i++)
if (touched[i]){
const vec<CRef>& cs = occurs.lookup(i);
for (j = 0; j < cs.size(); j++)
if (ca[cs[j]].mark() == 0){
subsumption_queue.insert(cs[j]);
ca[cs[j]].mark(2);
}
touched[i] = 0;
}
for (i = 0; i < subsumption_queue.size(); i++)
if (ca[subsumption_queue[i]].mark() == 2)
ca[subsumption_queue[i]].mark(0);
n_touched = 0;
}
bool SimpSolver::implied(const vec<Lit>& c)
{
assert(decisionLevel() == 0);
trail_lim.push(trail.size());
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True){
cancelUntil(0);
return false;
}else if (value(c[i]) != l_False){
assert(value(c[i]) == l_Undef);
uncheckedEnqueue(~c[i]);
}
bool result = propagate() != CRef_Undef;
cancelUntil(0);
return result;
}
// Backward subsumption + backward subsumption resolution
bool SimpSolver::backwardSubsumptionCheck(bool verbose)
{
int cnt = 0;
int subsumed = 0;
int deleted_literals = 0;
assert(decisionLevel() == 0);
while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
// Empty subsumption queue and return immediately on user-interrupt:
if (asynch_interrupt){
subsumption_queue.clear();
bwdsub_assigns = trail.size();
break; }
// Check top-level assignments by creating a dummy clause and placing it in the queue:
if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
Lit l = trail[bwdsub_assigns++];
ca[bwdsub_tmpunit][0] = l;
ca[bwdsub_tmpunit].calcAbstraction();
subsumption_queue.insert(bwdsub_tmpunit); }
CRef cr = subsumption_queue.peek(); subsumption_queue.pop();
Clause& c = ca[cr];
if (c.mark()) continue;
if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
printf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
// Find best variable to scan:
Var best = var(c[0]);
for (int i = 1; i < c.size(); i++)
if (occurs[var(c[i])].size() < occurs[best].size())
best = var(c[i]);
// Search all candidates:
vec<CRef>& _cs = occurs.lookup(best);
CRef* cs = (CRef*)_cs;
for (int j = 0; j < _cs.size(); j++)
if (c.mark())
break;
else if (!ca[cs[j]].mark() && cs[j] != cr && (subsumption_lim == -1 || ca[cs[j]].size() < subsumption_lim)){
Lit l = c.subsumes(ca[cs[j]]);
if (l == lit_Undef)
subsumed++, removeClause(cs[j]);
else if (l != lit_Error){
deleted_literals++;
if (!strengthenClause(cs[j], ~l))
return false;
// Did current candidate get deleted from cs? Then check candidate at index j again:
if (var(l) == best)
j--;
}
}
}
return true;
}
bool SimpSolver::asymm(Var v, CRef cr)
{
Clause& c = ca[cr];
assert(decisionLevel() == 0);
if (c.mark() || satisfied(c)) return true;
trail_lim.push(trail.size());
Lit l = lit_Undef;
for (int i = 0; i < c.size(); i++)
if (var(c[i]) != v && value(c[i]) != l_False)
uncheckedEnqueue(~c[i]);
else
l = c[i];
if (propagate() != CRef_Undef){
cancelUntil(0);
asymm_lits++;
if (!strengthenClause(cr, l))
return false;
}else
cancelUntil(0);
return true;
}
bool SimpSolver::asymmVar(Var v)
{
assert(use_simplification);
const vec<CRef>& cls = occurs.lookup(v);
if (value(v) != l_Undef || cls.size() == 0)
return true;
for (int i = 0; i < cls.size(); i++)
if (!asymm(v, cls[i]))
return false;
return backwardSubsumptionCheck();
}
static void mkElimClause(vec<uint32_t>& elimclauses, Lit x)
{
elimclauses.push(toInt(x));
elimclauses.push(1);
}
static void mkElimClause(vec<uint32_t>& elimclauses, Var v, Clause& c)
{
int first = elimclauses.size();
int v_pos = -1;
// Copy clause to elimclauses-vector. Remember position where the
// variable 'v' occurs:
for (int i = 0; i < c.size(); i++){
elimclauses.push(toInt(c[i]));
if (var(c[i]) == v)
v_pos = i + first;
}
assert(v_pos != -1);
// Swap the first literal with the 'v' literal, so that the literal
// containing 'v' will occur first in the clause:
uint32_t tmp = elimclauses[v_pos];
elimclauses[v_pos] = elimclauses[first];
elimclauses[first] = tmp;
// Store the length of the clause last:
elimclauses.push(c.size());
}
bool SimpSolver::eliminateVar(Var v)
{
assert(!frozen[v]);
assert(!isEliminated(v));
assert(value(v) == l_Undef);
// Split the occurrences into positive and negative:
//
const vec<CRef>& cls = occurs.lookup(v);
vec<CRef> pos, neg;
for (int i = 0; i < cls.size(); i++)
(find(ca[cls[i]], mkLit(v)) ? pos : neg).push(cls[i]);
// Check wether the increase in number of clauses stays within the allowed ('grow'). Moreover, no
// clause must exceed the limit on the maximal clause size (if it is set):
//
int cnt = 0;
int clause_size = 0;
for (i = 0; i < pos.size(); i++)
for (int j = 0; j < neg.size(); j++)
if (merge(ca[pos[i]], ca[neg[j]], v, clause_size) &&
(++cnt > cls.size() + grow || (clause_lim != -1 && clause_size > clause_lim)))
return true;
// Delete and store old clauses:
eliminated[v] = true;
setDecisionVar(v, false);
eliminated_vars++;
if (pos.size() > neg.size()){
for (int i = 0; i < neg.size(); i++)
mkElimClause(elimclauses, v, ca[neg[i]]);
mkElimClause(elimclauses, mkLit(v));
}else{
for (int i = 0; i < pos.size(); i++)
mkElimClause(elimclauses, v, ca[pos[i]]);
mkElimClause(elimclauses, ~mkLit(v));
}
for (i = 0; i < cls.size(); i++)
removeClause(cls[i]);
// Produce clauses in cross product:
vec<Lit>& resolvent = add_tmp;
for (i = 0; i < pos.size(); i++)
for (int j = 0; j < neg.size(); j++)
if (merge(ca[pos[i]], ca[neg[j]], v, resolvent) && !addClause_(resolvent))
return false;
// Free occurs list for this variable:
occurs[v].clear(true);
// Free watchers lists for this variable, if possible:
if (watches[ mkLit(v)].size() == 0) watches[ mkLit(v)].clear(true);
if (watches[~mkLit(v)].size() == 0) watches[~mkLit(v)].clear(true);
return backwardSubsumptionCheck();
}
bool SimpSolver::substitute(Var v, Lit x)
{
assert(!frozen[v]);
assert(!isEliminated(v));
assert(value(v) == l_Undef);
if (!ok) return false;
eliminated[v] = true;
setDecisionVar(v, false);
const vec<CRef>& cls = occurs.lookup(v);
vec<Lit>& subst_clause = add_tmp;
for (int i = 0; i < cls.size(); i++){
Clause& c = ca[cls[i]];
subst_clause.clear();
for (int j = 0; j < c.size(); j++){
Lit p = c[j];
subst_clause.push(var(p) == v ? x ^ sign(p) : p);
}
removeClause(cls[i]);
if (!addClause_(subst_clause))
return ok = false;
}
return true;
}
void SimpSolver::extendModel()
{
int i, j;
Lit x;
for (i = elimclauses.size()-1; i > 0; i -= j){
for (j = elimclauses[i--]; j > 1; j--, i--)
if (modelValue(toLit(elimclauses[i])) != l_False)
goto next;
x = toLit(elimclauses[i]);
model[var(x)] = lbool(!sign(x));
next:;
}
}
bool SimpSolver::eliminate(bool turn_off_elim)
{
if (!simplify())
return false;
else if (!use_simplification)
return true;
// Main simplification loop:
//
while (n_touched > 0 || bwdsub_assigns < trail.size() || elim_heap.size() > 0){
gatherTouchedClauses();
// printf(" ## (time = %6.2f s) BWD-SUB: queue = %d, trail = %d\n", cpuTime(), subsumption_queue.size(), trail.size() - bwdsub_assigns);
if ((subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()) &&
!backwardSubsumptionCheck(true)){
ok = false; goto cleanup; }
// Empty elim_heap and return immediately on user-interrupt:
if (asynch_interrupt){
assert(bwdsub_assigns == trail.size());
assert(subsumption_queue.size() == 0);
assert(n_touched == 0);
elim_heap.clear();
goto cleanup; }
// printf(" ## (time = %6.2f s) ELIM: vars = %d\n", cpuTime(), elim_heap.size());
for (int cnt = 0; !elim_heap.empty(); cnt++){
Var elim = elim_heap.removeMin();
if (asynch_interrupt) break;
if (isEliminated(elim) || value(elim) != l_Undef) continue;
if (verbosity >= 2 && cnt % 100 == 0)
printf("elimination left: %10d\r", elim_heap.size());
if (use_asymm){
// Temporarily freeze variable. Otherwise, it would immediately end up on the queue again:
bool was_frozen = frozen[elim];
frozen[elim] = true;
if (!asymmVar(elim)){
ok = false; goto cleanup; }
frozen[elim] = was_frozen; }
// At this point, the variable may have been set by assymetric branching, so check it
// again. Also, don't eliminate frozen variables:
if (use_elim && value(elim) == l_Undef && !frozen[elim] && !eliminateVar(elim)){
ok = false; goto cleanup; }
checkGarbage(simp_garbage_frac);
}
assert(subsumption_queue.size() == 0);
}
cleanup:
// If no more simplification is needed, free all simplification-related data structures:
if (turn_off_elim){
touched .clear(true);
occurs .clear(true);
n_occ .clear(true);
elim_heap.clear(true);
subsumption_queue.clear(true);
use_simplification = false;
remove_satisfied = true;
ca.extra_clause_field = false;
// Force full cleanup (this is safe and desirable since it only happens once):
rebuildOrderHeap();
garbageCollect();
}else{
// Cheaper cleanup:
cleanUpClauses(); // TODO: can we make 'cleanUpClauses()' not be linear in the problem size somehow?
checkGarbage();
}
if (verbosity >= 1 && elimclauses.size() > 0)
printf("| Eliminated clauses: %10.2f Mb |\n",
double(elimclauses.size() * sizeof(uint32_t)) / (1024*1024));
return ok;
}
void SimpSolver::cleanUpClauses()
{
occurs.cleanAll();
int i,j;
for (i = j = 0; i < clauses.size(); i++)
if (ca[clauses[i]].mark() == 0)
clauses[j++] = clauses[i];
clauses.shrink(i - j);
}
//=================================================================================================
// Garbage Collection methods:
void SimpSolver::relocAll(ClauseAllocator& to)
{
if (!use_simplification) return;
// All occurs lists:
//
for (int i = 0; i < nVars(); i++){
vec<CRef>& cs = occurs[i];
for (int j = 0; j < cs.size(); j++)
ca.reloc(cs[j], to);
}
// Subsumption queue:
//
for (i = 0; i < subsumption_queue.size(); i++)
ca.reloc(subsumption_queue[i], to);
// Temporary clause:
//
ca.reloc(bwdsub_tmpunit, to);
}
void SimpSolver::garbageCollect()
{
// Initialize the next region to a size corresponding to the estimated utilization degree. This
// is not precise but should avoid some unnecessary reallocations for the new region:
ClauseAllocator to(ca.size() - ca.wasted());
cleanUpClauses();
to.extra_clause_field = ca.extra_clause_field; // NOTE: this is important to keep (or lose) the extra fields.
relocAll(to);
Solver::relocAll(to);
if (verbosity >= 2)
printf("| Garbage collection: %12d bytes => %12d bytes |\n",
ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
to.moveTo(ca);
}
/************************************************************************************[SimpSolver.h]
Copyright (c) 2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_SimpSolver_h
#define Minisat_SimpSolver_h
#include "Queue.h"
#include "Solver.h"
namespace Minisat {
//=================================================================================================
class SimpSolver : public Solver {
public:
// Constructor/Destructor:
//
SimpSolver();
~SimpSolver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true);
bool addClause (const vec<Lit>& ps);
bool addEmptyClause(); // Add the empty clause to the solver.
bool addClause (Lit p); // Add a unit clause to the solver.
bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
bool addClause_( vec<Lit>& ps);
bool substitute(Var v, Lit x); // Replace all occurences of v with x (may cause a contradiction).
// Variable mode:
//
void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
bool isEliminated(Var v) const;
// Solving:
//
bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
lbool solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
bool solve ( bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p , bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p, Lit q, bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
// Memory managment:
//
virtual void garbageCollect();
// Generate a (possibly simplified) DIMACS file:
//
#if 0
void toDimacs (const char* file, const vec<Lit>& assumps);
void toDimacs (const char* file);
void toDimacs (const char* file, Lit p);
void toDimacs (const char* file, Lit p, Lit q);
void toDimacs (const char* file, Lit p, Lit q, Lit r);
#endif
// Mode of operation:
//
int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
int clause_lim; // Variables are not eliminated if it produces a resolvent with a length above this limit.
// -1 means no limit.
int subsumption_lim; // Do not check if subsumption against a clause larger than this. -1 means no limit.
double simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').
bool use_asymm; // Shrink clauses by asymmetric branching.
bool use_rcheck; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
bool use_elim; // Perform variable elimination.
// Statistics:
//
int merges;
int asymm_lits;
int eliminated_vars;
protected:
// Helper structures:
//
struct ElimLt {
const vec<int>& n_occ;
explicit ElimLt(const vec<int>& no) : n_occ(no) {}
// TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
// 32-bit implementation instead then, but this will have to do for now.
uint64_t cost (Var x) const { return (uint64_t)n_occ[toInt(mkLit(x))] * (uint64_t)n_occ[toInt(~mkLit(x))]; }
bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
// TODO: investigate this order alternative more.
// bool operator()(Var x, Var y) const {
// int c_x = cost(x);
// int c_y = cost(y);
// return c_x < c_y || c_x == c_y && x < y; }
};
struct ClauseDeleted {
const ClauseAllocator& ca;
explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };
// Solver state:
//
int elimorder;
bool use_simplification;
vec<uint32_t> elimclauses;
vec<char> touched;
OccLists<Var, vec<CRef>, ClauseDeleted>
occurs;
vec<int> n_occ;
Heap<ElimLt> elim_heap;
Queue<CRef> subsumption_queue;
vec<char> frozen;
vec<char> eliminated;
int bwdsub_assigns;
int n_touched;
// Temporaries:
//
CRef bwdsub_tmpunit;
// Main internal methods:
//
lbool solve_ (bool do_simp = true, bool turn_off_simp = false);
bool asymm (Var v, CRef cr);
bool asymmVar (Var v);
void updateElimHeap (Var v);
void gatherTouchedClauses ();
bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
bool merge (const Clause& _ps, const Clause& _qs, Var v, int& size);
bool backwardSubsumptionCheck (bool verbose = false);
bool eliminateVar (Var v);
void extendModel ();
void removeClause (CRef cr);
bool strengthenClause (CRef cr, Lit l);
void cleanUpClauses ();
bool implied (const vec<Lit>& c);
void relocAll (ClauseAllocator& to);
};
//=================================================================================================
// Implementation of inline methods:
inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
inline void SimpSolver::updateElimHeap(Var v) {
assert(use_simplification);
// if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
elim_heap.update(v); }
inline bool SimpSolver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
inline bool SimpSolver::addEmptyClause() { add_tmp.clear(); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }
inline bool SimpSolver::solve ( bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p , bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p, Lit q, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }
inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }
//=================================================================================================
}
#endif
/***************************************************************************************[Solver.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <math.h>
#include "Sort.h"
#include "Solver.h"
using namespace Minisat;
//=================================================================================================
// Options:
static const char* _cat = "CORE";
static DoubleOption opt_var_decay (_cat, "var-decay", "The variable activity decay factor", 0.95, DoubleRange(0, false, 1, false));
static DoubleOption opt_clause_decay (_cat, "cla-decay", "The clause activity decay factor", 0.999, DoubleRange(0, false, 1, false));
static DoubleOption opt_random_var_freq (_cat, "rnd-freq", "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
static DoubleOption opt_random_seed (_cat, "rnd-seed", "Used by the random variable selection", 91648253, DoubleRange(0, false, HUGE_VAL, false));
static IntOption opt_ccmin_mode (_cat, "ccmin-mode", "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
static IntOption opt_phase_saving (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
static BoolOption opt_rnd_init_act (_cat, "rnd-init", "Randomize the initial activity", false);
static BoolOption opt_luby_restart (_cat, "luby", "Use the Luby restart sequence", true);
static IntOption opt_restart_first (_cat, "rfirst", "The base restart interval", 100, IntRange(1, INT32_MAX));
static DoubleOption opt_restart_inc (_cat, "rinc", "Restart interval increase factor", 2, DoubleRange(1, false, HUGE_VAL, false));
static DoubleOption opt_garbage_frac (_cat, "gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered", 0.20, DoubleRange(0, false, HUGE_VAL, false));
//=================================================================================================
// Constructor/Destructor:
Solver::Solver() :
// Parameters (user settable):
//
verbosity (0)
, var_decay (opt_var_decay)
, clause_decay (opt_clause_decay)
, random_var_freq (opt_random_var_freq)
, random_seed (opt_random_seed)
, luby_restart (opt_luby_restart)
, ccmin_mode (opt_ccmin_mode)
, phase_saving (opt_phase_saving)
, rnd_pol (false)
, rnd_init_act (opt_rnd_init_act)
, garbage_frac (opt_garbage_frac)
, restart_first (opt_restart_first)
, restart_inc (opt_restart_inc)
// Parameters (the rest):
//
, learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
// Parameters (experimental):
//
, learntsize_adjust_start_confl (100)
, learntsize_adjust_inc (1.5)
// Statistics: (formerly in 'SolverStats')
//
, solves(0), starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
, dec_vars(0), clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
, ok (true)
, cla_inc (1)
, var_inc (1)
, watches (WatcherDeleted(ca))
, qhead (0)
, simpDB_assigns (-1)
, simpDB_props (0)
, order_heap (VarOrderLt(activity))
, progress_estimate (0)
, remove_satisfied (true)
// Resource constraints:
//
, conflict_budget (-1)
, propagation_budget (-1)
, asynch_interrupt (false)
{}
Solver::~Solver()
{
}
//=================================================================================================
// Minor methods:
// Creates a new SAT variable in the solver. If 'decision' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool sign, bool dvar)
{
int v = nVars();
watches .init(mkLit(v, false));
watches .init(mkLit(v, true ));
assigns .push(l_Undef);
vardata .push(mkVarData(CRef_Undef, 0));
//activity .push(0);
activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
seen .push(0);
polarity .push(sign);
decision .push();
trail .capacity(v+1);
setDecisionVar(v, dvar);
return v;
}
bool Solver::addClause_(vec<Lit>& ps)
{
assert(decisionLevel() == 0);
if (!ok) return false;
// Check if clause is satisfied and remove false/duplicate literals:
sort(ps);
Lit p; int i, j;
for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
if (value(ps[i]) == l_True || ps[i] == ~p)
return true;
else if (value(ps[i]) != l_False && ps[i] != p)
ps[j++] = p = ps[i];
ps.shrink(i - j);
if (ps.size() == 0)
return ok = false;
else if (ps.size() == 1){
uncheckedEnqueue(ps[0]);
return ok = (propagate() == CRef_Undef);
}else{
CRef cr = ca.alloc(ps, false);
clauses.push(cr);
attachClause(cr);
}
return true;
}
void Solver::attachClause(CRef cr) {
const Clause& c = ca[cr];
assert(c.size() > 1);
watches[~c[0]].push(Watcher(cr, c[1]));
watches[~c[1]].push(Watcher(cr, c[0]));
if (c.learnt()) learnts_literals += c.size();
else clauses_literals += c.size(); }
void Solver::detachClause(CRef cr, bool strict) {
const Clause& c = ca[cr];
assert(c.size() > 1);
if (strict){
remove(watches[~c[0]], Watcher(cr, c[1]));
remove(watches[~c[1]], Watcher(cr, c[0]));
}else{
// Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
watches.smudge(~c[0]);
watches.smudge(~c[1]);
}
if (c.learnt()) learnts_literals -= c.size();
else clauses_literals -= c.size(); }
void Solver::removeClause(CRef cr) {
Clause& c = ca[cr];
detachClause(cr);
// Don't leave pointers to free'd memory!
if (locked(c)) vardata[var(c[0])].reason = CRef_Undef;
c.mark(1);
ca._free(cr);
}
bool Solver::satisfied(const Clause& c) const {
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True)
return true;
return false; }
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
//
void Solver::cancelUntil(int level) {
if (decisionLevel() > level){
for (int c = trail.size()-1; c >= trail_lim[level]; c--){
Var x = var(trail[c]);
assigns [x] = l_Undef;
if (phase_saving > 1 || (phase_saving == 1) && c > trail_lim.last())
polarity[x] = sign(trail[c]);
insertVarOrder(x); }
qhead = trail_lim[level];
trail.shrink(trail.size() - trail_lim[level]);
trail_lim.shrink(trail_lim.size() - level);
} }
//=================================================================================================
// Major methods:
Lit Solver::pickBranchLit()
{
Var next = var_Undef;
// Random decision:
if (drand(random_seed) < random_var_freq && !order_heap.empty()){
next = order_heap[irand(random_seed,order_heap.size())];
if (value(next) == l_Undef && decision[next])
rnd_decisions++; }
// Activity based decision:
while (next == var_Undef || value(next) != l_Undef || !decision[next])
if (order_heap.empty()){
next = var_Undef;
break;
}else
next = order_heap.removeMin();
return next == var_Undef ? lit_Undef : mkLit(next, rnd_pol ? drand(random_seed) < 0.5 : polarity[next]);
}
/*_________________________________________________________________________________________________
|
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
|
| Description:
| Analyze conflict and produce a reason clause.
|
| Pre-conditions:
| * 'out_learnt' is assumed to be cleared.
| * Current decision level must be greater than root level.
|
| Post-conditions:
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
| * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
| rest of literals. There may be others from the same level though.
|
|________________________________________________________________________________________________@*/
void Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
{
int pathC = 0;
Lit p = lit_Undef;
// Generate conflict clause:
//
out_learnt.push(); // (leave room for the asserting literal)
int index = trail.size() - 1;
do{
assert(confl != CRef_Undef); // (otherwise should be UIP)
Clause& c = ca[confl];
if (c.learnt())
claBumpActivity(c);
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
Lit q = c[j];
if (!seen[var(q)] && level(var(q)) > 0){
varBumpActivity(var(q));
seen[var(q)] = 1;
if (level(var(q)) >= decisionLevel())
pathC++;
else
out_learnt.push(q);
}
}
// Select next clause to look at:
while (!seen[var(trail[index--])]);
p = trail[index+1];
confl = reason(var(p));
seen[var(p)] = 0;
pathC--;
}while (pathC > 0);
out_learnt[0] = ~p;
// Simplify conflict clause:
//
int i, j;
out_learnt.copyTo(analyze_toclear);
if (ccmin_mode == 2){
uint32_t abstract_level = 0;
for (i = 1; i < out_learnt.size(); i++)
abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
for (i = j = 1; i < out_learnt.size(); i++)
if (reason(var(out_learnt[i])) == CRef_Undef || !litRedundant(out_learnt[i], abstract_level))
out_learnt[j++] = out_learnt[i];
}else if (ccmin_mode == 1){
for (i = j = 1; i < out_learnt.size(); i++){
Var x = var(out_learnt[i]);
if (reason(x) == CRef_Undef)
out_learnt[j++] = out_learnt[i];
else{
Clause& c = ca[reason(var(out_learnt[i]))];
for (int k = 1; k < c.size(); k++)
if (!seen[var(c[k])] && level(var(c[k])) > 0){
out_learnt[j++] = out_learnt[i];
break; }
}
}
}else
i = j = out_learnt.size();
max_literals += out_learnt.size();
out_learnt.shrink(i - j);
tot_literals += out_learnt.size();
// Find correct backtrack level:
//
if (out_learnt.size() == 1)
out_btlevel = 0;
else{
int max_i = 1;
// Find the first literal assigned at the next-highest level:
for (int i = 2; i < out_learnt.size(); i++)
if (level(var(out_learnt[i])) > level(var(out_learnt[max_i])))
max_i = i;
// Swap-in this literal at index 1:
Lit p = out_learnt[max_i];
out_learnt[max_i] = out_learnt[1];
out_learnt[1] = p;
out_btlevel = level(var(p));
}
for (j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
}
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
// visiting literals at levels that cannot be removed later.
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
{
analyze_stack.clear(); analyze_stack.push(p);
int top = analyze_toclear.size();
while (analyze_stack.size() > 0){
assert(reason(var(analyze_stack.last())) != CRef_Undef);
Clause& c = ca[reason(var(analyze_stack.last()))]; analyze_stack.pop();
for (int i = 1; i < c.size(); i++){
Lit p = c[i];
if (!seen[var(p)] && level(var(p)) > 0){
if (reason(var(p)) != CRef_Undef && (abstractLevel(var(p)) & abstract_levels) != 0){
seen[var(p)] = 1;
analyze_stack.push(p);
analyze_toclear.push(p);
}else{
for (int j = top; j < analyze_toclear.size(); j++)
seen[var(analyze_toclear[j])] = 0;
analyze_toclear.shrink(analyze_toclear.size() - top);
return false;
}
}
}
}
return true;
}
/*_________________________________________________________________________________________________
|
| analyzeFinal : (p : Lit) -> [void]
|
| Description:
| Specialized analysis procedure to express the final conflict in terms of assumptions.
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
| stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
{
out_conflict.clear();
out_conflict.push(p);
if (decisionLevel() == 0)
return;
seen[var(p)] = 1;
for (int i = trail.size()-1; i >= trail_lim[0]; i--){
Var x = var(trail[i]);
if (seen[x]){
if (reason(x) == CRef_Undef){
assert(level(x) > 0);
out_conflict.push(~trail[i]);
}else{
Clause& c = ca[reason(x)];
for (int j = 1; j < c.size(); j++)
if (level(var(c[j])) > 0)
seen[var(c[j])] = 1;
}
seen[x] = 0;
}
}
seen[var(p)] = 0;
}
void Solver::uncheckedEnqueue(Lit p, CRef from)
{
assert(value(p) == l_Undef);
assigns[var(p)] = lbool(!sign(p));
vardata[var(p)] = mkVarData(from, decisionLevel());
trail.push_(p);
}
/*_________________________________________________________________________________________________
|
| propagate : [void] -> [Clause*]
|
| Description:
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
| otherwise CRef_Undef.
|
| Post-conditions:
| * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
CRef Solver::propagate()
{
CRef confl = CRef_Undef;
int num_props = 0;
watches.cleanAll();
while (qhead < trail.size()){
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
vec<Watcher>& ws = watches[p];
Watcher *i, *j, *end;
num_props++;
for (i = j = (Watcher*)ws, end = i + ws.size(); i != end;){
// Try to avoid inspecting the clause:
Lit blocker = i->blocker;
if (value(blocker) == l_True){
*j++ = *i++; continue; }
// Make sure the false literal is data[1]:
CRef cr = i->cref;
Clause& c = ca[cr];
Lit false_lit = ~p;
if (c[0] == false_lit)
c[0] = c[1], c[1] = false_lit;
assert(c[1] == false_lit);
i++;
// If 0th watch is true, then clause is already satisfied.
Lit first = c[0];
Watcher w = Watcher(cr, first);
if (first != blocker && value(first) == l_True){
*j++ = w; continue; }
// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False){
c[1] = c[k]; c[k] = false_lit;
watches[~c[1]].push(w);
goto NextClause; }
// Did not find watch -- clause is unit under assignment:
*j++ = w;
if (value(first) == l_False){
confl = cr;
qhead = trail.size();
// Copy the remaining watches:
while (i < end)
*j++ = *i++;
}else
uncheckedEnqueue(first, cr);
NextClause:;
}
ws.shrink(i - j);
}
propagations += num_props;
simpDB_props -= num_props;
return confl;
}
/*_________________________________________________________________________________________________
|
| reduceDB : () -> [void]
|
| Description:
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt {
ClauseAllocator& ca;
reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
bool operator () (CRef x, CRef y) {
return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
};
void Solver::reduceDB()
{
int i, j;
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
sort(learnts, reduceDB_lt(ca));
// Don't delete binary or locked clauses. From the rest, delete clauses from the first half
// and clauses with activity smaller than 'extra_lim':
for (i = j = 0; i < learnts.size(); i++){
Clause& c = ca[learnts[i]];
if (c.size() > 2 && !locked(c) && (i < learnts.size() / 2 || c.activity() < extra_lim))
removeClause(learnts[i]);
else
learnts[j++] = learnts[i];
}
learnts.shrink(i - j);
checkGarbage();
}
void Solver::removeSatisfied(vec<CRef>& cs)
{
int i, j;
for (i = j = 0; i < cs.size(); i++){
Clause& c = ca[cs[i]];
if (satisfied(c))
removeClause(cs[i]);
else
cs[j++] = cs[i];
}
cs.shrink(i - j);
}
void Solver::rebuildOrderHeap()
{
vec<Var> vs;
for (Var v = 0; v < nVars(); v++)
if (decision[v] && value(v) == l_Undef)
vs.push(v);
order_heap.build(vs);
}
/*_________________________________________________________________________________________________
|
| simplify : [void] -> [bool]
|
| Description:
| Simplify the clause database according to the current top-level assigment. Currently, the only
| thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplify()
{
assert(decisionLevel() == 0);
if (!ok || propagate() != CRef_Undef)
return ok = false;
if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
return true;
// Remove satisfied clauses:
removeSatisfied(learnts);
if (remove_satisfied) // Can be turned off.
removeSatisfied(clauses);
checkGarbage();
rebuildOrderHeap();
simpDB_assigns = nAssigns();
simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
return true;
}
/*_________________________________________________________________________________________________
|
| search : (nof_conflicts : int) (params : const SearchParams&) -> [lbool]
|
| Description:
| Search for a model the specified number of conflicts.
| NOTE! Use negative value for 'nof_conflicts' indicate infinity.
|
| Output:
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts)
{
assert(ok);
int backtrack_level;
int conflictC = 0;
vec<Lit> learnt_clause;
starts++;
for (;;){
CRef confl = propagate();
if (confl != CRef_Undef){
// CONFLICT
conflicts++; conflictC++;
if (decisionLevel() == 0) return l_False;
learnt_clause.clear();
analyze(confl, learnt_clause, backtrack_level);
cancelUntil(backtrack_level);
if (learnt_clause.size() == 1){
uncheckedEnqueue(learnt_clause[0]);
}else{
CRef cr = ca.alloc(learnt_clause, true);
learnts.push(cr);
attachClause(cr);
claBumpActivity(ca[cr]);
uncheckedEnqueue(learnt_clause[0], cr);
}
varDecayActivity();
claDecayActivity();
if (--learntsize_adjust_cnt == 0){
learntsize_adjust_confl *= learntsize_adjust_inc;
learntsize_adjust_cnt = (int)learntsize_adjust_confl;
max_learnts *= learntsize_inc;
if (verbosity >= 1)
printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
(int)conflicts,
(int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]), nClauses(), (int)clauses_literals,
(int)max_learnts, nLearnts(), ((double)((int64_t)learnts_literals))/nLearnts(), progressEstimate()*100);
}
}else{
// NO CONFLICT
if (nof_conflicts >= 0 && conflictC >= nof_conflicts || !withinBudget()){
// Reached bound on number of conflicts:
progress_estimate = progressEstimate();
cancelUntil(0);
return l_Undef; }
// Simplify the set of problem clauses:
if (decisionLevel() == 0 && !simplify())
return l_False;
if (learnts.size()-nAssigns() >= max_learnts)
// Reduce the set of learnt clauses:
reduceDB();
Lit next = lit_Undef;
while (decisionLevel() < assumptions.size()){
// Perform user provided assumption:
Lit p = assumptions[decisionLevel()];
if (value(p) == l_True){
// Dummy decision level:
newDecisionLevel();
}else if (value(p) == l_False){
analyzeFinal(~p, conflict);
return l_False;
}else{
next = p;
break;
}
}
if (next == lit_Undef){
// New variable decision:
decisions++;
next = pickBranchLit();
if (next == lit_Undef)
// Model found:
return l_True;
}
// Increase decision level and enqueue 'next'
newDecisionLevel();
uncheckedEnqueue(next);
}
}
}
double Solver::progressEstimate() const
{
double progress = 0;
double F = 1.0 / nVars();
for (int i = 0; i <= decisionLevel(); i++){
int beg = i == 0 ? 0 : trail_lim[i - 1];
int end = i == decisionLevel() ? trail.size() : trail_lim[i];
progress += pow(F, i) * (end - beg);
}
return progress / nVars();
}
/*
Finite subsequences of the Luby-sequence:
0: 1
1: 1 1 2
2: 1 1 2 1 1 2 4
3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
...
*/
static double luby(double y, int x){
// Find the finite subsequence that contains index 'x', and the
// size of that subsequence:
int size, seq;
for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
while (size-1 != x){
size = (size-1)>>1;
seq--;
x = x % size;
}
return pow(y, seq);
}
// NOTE: assumptions passed in member-variable 'assumptions'.
lbool Solver::solve_()
{
model.clear();
conflict.clear();
if (!ok) return l_False;
solves++;
max_learnts = nClauses() * learntsize_factor;
learntsize_adjust_confl = learntsize_adjust_start_confl;
learntsize_adjust_cnt = (int)learntsize_adjust_confl;
lbool status = l_Undef;
if (verbosity >= 1){
printf("============================[ Search Statistics ]==============================\n");
printf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
printf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
printf("===============================================================================\n");
}
// Search:
int curr_restarts = 0;
while (status == l_Undef){
double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
status = search(rest_base * restart_first);
if (!withinBudget()) break;
curr_restarts++;
}
if (verbosity >= 1)
printf("===============================================================================\n");
if (status == l_True){
// Extend & copy model:
model.growTo(nVars());
for (int i = 0; i < nVars(); i++) model[i] = value(i);
}else if (status == l_False && conflict.size() == 0)
ok = false;
cancelUntil(0);
return status;
}
//=================================================================================================
// Writing CNF to DIMACS:
//
// FIXME: this needs to be rewritten completely.
static Var mapVar(Var x, vec<Var>& map, Var& max)
{
if (map.size() <= x || map[x] == -1){
map.growTo(x+1, -1);
map[x] = max++;
}
return map[x];
}
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
{
if (satisfied(c)) return;
for (int i = 0; i < c.size(); i++)
if (value(c[i]) != l_False)
fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
fprintf(f, "0\n");
}
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
{
FILE* f = fopen(file, "wr");
if (f == NULL)
fprintf(stderr, "could not open file %s\n", file), exit(1);
toDimacs(f, assumps);
fclose(f);
}
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
{
// Handle case when solver is in contradictory state:
if (!ok){
fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
return; }
vec<Var> map; Var max = 0;
// Cannot use removeClauses here because it is not safe
// to deallocate them at this point. Could be improved.
int cnt = 0;
for (int i = 0; i < clauses.size(); i++)
if (!satisfied(ca[clauses[i]]))
cnt++;
for (i = 0; i < clauses.size(); i++)
if (!satisfied(ca[clauses[i]])){
Clause& c = ca[clauses[i]];
for (int j = 0; j < c.size(); j++)
if (value(c[j]) != l_False)
mapVar(var(c[j]), map, max);
}
// Assumptions are added as unit clauses:
cnt += assumptions.size();
fprintf(f, "p cnf %d %d\n", max, cnt);
for (i = 0; i < assumptions.size(); i++){
assert(value(assumptions[i]) != l_False);
fprintf(f, "%s%d 0\n", sign(assumptions[i]) ? "-" : "", mapVar(var(assumptions[i]), map, max)+1);
}
for (i = 0; i < clauses.size(); i++)
toDimacs(f, ca[clauses[i]], map, max);
if (verbosity > 0)
printf("Wrote %d clauses with %d variables.\n", cnt, max);
}
//=================================================================================================
// Garbage Collection methods:
void Solver::relocAll(ClauseAllocator& to)
{
// All watchers:
//
// for (int i = 0; i < watches.size(); i++)
watches.cleanAll();
for (int v = 0; v < nVars(); v++)
for (int s = 0; s < 2; s++){
Lit p = mkLit(v, s);
// printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
vec<Watcher>& ws = watches[p];
for (int j = 0; j < ws.size(); j++)
ca.reloc(ws[j].cref, to);
}
// All reasons:
//
for (int i = 0; i < trail.size(); i++){
Var v = var(trail[i]);
if (reason(v) != CRef_Undef && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
ca.reloc(vardata[v].reason, to);
}
// All learnt:
//
for (i = 0; i < learnts.size(); i++)
ca.reloc(learnts[i], to);
// All original:
//
for (i = 0; i < clauses.size(); i++)
ca.reloc(clauses[i], to);
}
void Solver::garbageCollect()
{
// Initialize the next region to a size corresponding to the estimated utilization degree. This
// is not precise but should avoid some unnecessary reallocations for the new region:
ClauseAllocator to(ca.size() - ca.wasted());
relocAll(to);
if (verbosity >= 2)
printf("| Garbage collection: %12d bytes => %12d bytes |\n",
ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
to.moveTo(ca);
}
/****************************************************************************************[Solver.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Solver_h
#define Minisat_Solver_h
#include "Vec.h"
#include "Heap.h"
#include "Alg.h"
#include "Options.h"
#include "SolverTypes.h"
namespace Minisat {
//=================================================================================================
// Solver -- the main class:
class Solver {
public:
// Constructor/Destructor:
//
Solver();
virtual ~Solver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
bool addClause (const vec<Lit>& ps); // Add a clause to the solver.
bool addEmptyClause(); // Add the empty clause, making the solver contradictory.
bool addClause (Lit p); // Add a unit clause to the solver.
bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
bool addClause_( vec<Lit>& ps); // Add a clause to the solver without making superflous internal copy. Will
// change the passed vector 'ps'.
// Solving:
//
bool simplify (); // Removes already satisfied clauses.
bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
lbool solveLimited (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions (With resource constraints).
bool solve (); // Search without assumptions.
bool solve (Lit p); // Search for a model that respects a single assumption.
bool solve (Lit p, Lit q); // Search for a model that respects two assumptions.
bool solve (Lit p, Lit q, Lit r); // Search for a model that respects three assumptions.
bool okay () const; // FALSE means solver is in a conflicting state
void toDimacs (FILE* f, const vec<Lit>& assumps); // Write CNF to file in DIMACS-format.
void toDimacs (const char *file, const vec<Lit>& assumps);
void toDimacs (FILE* f, Clause& c, vec<Var>& map, Var& max);
// Convenience versions of 'toDimacs()':
void toDimacs (const char* file);
void toDimacs (const char* file, Lit p);
void toDimacs (const char* file, Lit p, Lit q);
void toDimacs (const char* file, Lit p, Lit q, Lit r);
// Variable mode:
//
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
// Read state:
//
lbool value (Var x) const; // The current value of a variable.
lbool value (Lit p) const; // The current value of a literal.
lbool modelValue (Var x) const; // The value of a variable in the last model. The last call to solve must have been satisfiable.
lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
int nAssigns () const; // The current number of assigned literals.
int nClauses () const; // The current number of original clauses.
int nLearnts () const; // The current number of learnt clauses.
int nVars () const; // The current number of variables.
int nFreeVars () const;
// Resource contraints:
//
void setConfBudget(int64_t x);
void setPropBudget(int64_t x);
void budgetOff();
void interrupt(); // Trigger a (potentially asynchronous) interruption of the solver.
void clearInterrupt(); // Clear interrupt indicator flag.
// Memory managment:
//
virtual void garbageCollect();
void checkGarbage(double gf);
void checkGarbage();
// Extra results: (read-only member variable)
//
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
// Mode of operation:
//
int verbosity;
double var_decay;
double clause_decay;
double random_var_freq;
double random_seed;
bool luby_restart;
int ccmin_mode; // Controls conflict clause minimization (0=none, 1=basic, 2=deep).
int phase_saving; // Controls the level of phase saving (0=none, 1=limited, 2=full).
bool rnd_pol; // Use random polarities for branching heuristics.
bool rnd_init_act; // Initialize variable activities with a small random value.
double garbage_frac; // The fraction of wasted memory allowed before a garbage collection is triggered.
int restart_first; // The initial restart limit. (default 100)
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
int learntsize_adjust_start_confl;
double learntsize_adjust_inc;
// Statistics: (read-only member variable)
//
uint64_t solves, starts, decisions, rnd_decisions, propagations, conflicts;
uint64_t dec_vars, clauses_literals, learnts_literals, max_literals, tot_literals;
protected:
// Helper structures:
//
struct VarData { CRef reason; int level; };
static inline VarData mkVarData(CRef cr, int l){ VarData d = {cr, l}; return d; }
struct Watcher {
CRef cref;
Lit blocker;
Watcher(CRef cr, Lit p) : cref(cr), blocker(p) {}
bool operator==(const Watcher& w) const { return cref == w.cref; }
bool operator!=(const Watcher& w) const { return cref != w.cref; }
};
struct WatcherDeleted
{
const ClauseAllocator& ca;
WatcherDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
bool operator()(const Watcher& w) const { return ca[w.cref].mark() == 1; }
};
struct VarOrderLt {
const vec<double>& activity;
bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
VarOrderLt(const vec<double>& act) : activity(act) { }
};
// Solver state:
//
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
vec<CRef> clauses; // List of problem clauses.
vec<CRef> learnts; // List of learnt clauses.
double cla_inc; // Amount to bump next clause with.
vec<double> activity; // A heuristic measurement of the activity of a variable.
double var_inc; // Amount to bump next variable with.
OccLists<Lit, vec<Watcher>, WatcherDeleted>
watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
vec<lbool> assigns; // The current assignments.
vec<char> polarity; // The preferred polarity of each variable.
vec<char> decision; // Declares if a variable is eligible for selection in the decision heuristic.
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
vec<VarData> vardata; // Stores reason and level for each variable.
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
double progress_estimate;// Set by 'search()'.
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
ClauseAllocator ca;
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
// used, exept 'seen' wich is used in several places.
//
vec<char> seen;
vec<Lit> analyze_stack;
vec<Lit> analyze_toclear;
vec<Lit> add_tmp;
double max_learnts;
double learntsize_adjust_confl;
int learntsize_adjust_cnt;
// Resource contraints:
//
int64_t conflict_budget; // -1 means no budget.
int64_t propagation_budget; // -1 means no budget.
bool asynch_interrupt;
// Main internal methods:
//
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
Lit pickBranchLit (); // Return the next decision variable.
void newDecisionLevel (); // Begins a new decision level.
void uncheckedEnqueue (Lit p, CRef from = CRef_Undef); // Enqueue a literal. Assumes value of literal is undefined.
bool enqueue (Lit p, CRef from = CRef_Undef); // Test if fact 'p' contradicts current state, enqueue otherwise.
CRef propagate (); // Perform unit propagation. Returns possibly conflicting clause.
void cancelUntil (int level); // Backtrack until a certain level.
void analyze (CRef confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
lbool search (int nof_conflicts); // Search for a given number of conflicts.
lbool solve_ (); // Main solve method (assumptions given in 'assumptions').
void reduceDB (); // Reduce the set of learnt clauses.
void removeSatisfied (vec<CRef>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
void rebuildOrderHeap ();
// Maintaining Variable/Clause activity:
//
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
void varBumpActivity (Var v, double inc); // Increase a variable with the current 'bump' value.
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
// Operations on clauses:
//
void attachClause (CRef cr); // Attach a clause to watcher lists.
void detachClause (CRef cr, bool strict = false); // Detach a clause to watcher lists.
void removeClause (CRef cr); // Detach and free a clause.
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
void relocAll (ClauseAllocator& to);
// Misc:
//
int decisionLevel () const; // Gives the current decisionlevel.
uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
CRef reason (Var x) const;
int level (Var x) const;
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
bool withinBudget () const;
// Static helpers:
//
// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double& seed) {
seed *= 1389796;
int q = (int)(seed / 2147483647);
seed -= (double)q * 2147483647;
return seed / 2147483647; }
// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double& seed, int size) {
return (int)(drand(seed) * size); }
};
//=================================================================================================
// Implementation of inline methods:
inline CRef Solver::reason(Var x) const { return vardata[x].reason; }
inline int Solver::level (Var x) const { return vardata[x].level; }
inline void Solver::insertVarOrder(Var x) {
if (!order_heap.inHeap(x) && decision[x]) order_heap.insert(x); }
inline void Solver::varDecayActivity() { var_inc *= (1 / var_decay); }
inline void Solver::varBumpActivity(Var v) { varBumpActivity(v, var_inc); }
inline void Solver::varBumpActivity(Var v, double inc) {
if ( (activity[v] += inc) > 1e100 ) {
// Rescale:
for (int i = 0; i < nVars(); i++)
activity[i] *= 1e-100;
var_inc *= 1e-100; }
// Update order_heap with respect to new activity:
if (order_heap.inHeap(v))
order_heap.decrease(v); }
inline void Solver::claDecayActivity() { cla_inc *= (1 / clause_decay); }
inline void Solver::claBumpActivity (Clause& c) {
if ( (c.activity() += cla_inc) > 1e20 ) {
// Rescale:
for (int i = 0; i < learnts.size(); i++)
ca[learnts[i]].activity() *= (float)1e-20;
cla_inc *= 1e-20; } }
inline void Solver::checkGarbage(void){ checkGarbage(garbage_frac); }
inline void Solver::checkGarbage(double gf){
if (ca.wasted() > ca.size() * gf)
garbageCollect(); }
// NOTE: enqueue does not set the ok flag! (only public methods do)
inline bool Solver::enqueue (Lit p, CRef from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
inline bool Solver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
inline bool Solver::addEmptyClause () { add_tmp.clear(); return addClause_(add_tmp); }
inline bool Solver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
inline bool Solver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
inline bool Solver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
inline bool Solver::locked (const Clause& c) const { return value(c[0]) == l_True && reason(var(c[0])) != CRef_Undef && ca.lea(reason(var(c[0]))) == &c; }
inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
inline int Solver::decisionLevel () const { return trail_lim.size(); }
inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level(x) & 31); }
inline lbool Solver::value (Var x) const { return assigns[x]; }
inline lbool Solver::value (Lit p) const { return assigns[var(p)] ^ sign(p); }
inline lbool Solver::modelValue (Var x) const { return model[x]; }
inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
inline int Solver::nAssigns () const { return trail.size(); }
inline int Solver::nClauses () const { return clauses.size(); }
inline int Solver::nLearnts () const { return learnts.size(); }
inline int Solver::nVars () const { return vardata.size(); }
inline int Solver::nFreeVars () const { return (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]); }
inline void Solver::setPolarity (Var v, bool b) { polarity[v] = b; }
inline void Solver::setDecisionVar(Var v, bool b)
{
if ( b && !decision[v]) dec_vars++;
else if (!b && decision[v]) dec_vars--;
decision[v] = b;
insertVarOrder(v);
}
inline void Solver::setConfBudget(int64_t x){ conflict_budget = conflicts + x; }
inline void Solver::setPropBudget(int64_t x){ propagation_budget = propagations + x; }
inline void Solver::interrupt(){ asynch_interrupt = true; }
inline void Solver::clearInterrupt(){ asynch_interrupt = false; }
inline void Solver::budgetOff(){ conflict_budget = propagation_budget = -1; }
inline bool Solver::withinBudget() const {
return !asynch_interrupt &&
(conflict_budget < 0 || conflicts < (uint64_t)conflict_budget) &&
(propagation_budget < 0 || propagations < (uint64_t)propagation_budget); }
// FIXME: after the introduction of asynchronous interrruptions the solve-versions that return a
// pure bool do not give a safe interface. Either interrupts must be possible to turn off here, or
// all calls to solve must return an 'lbool'. I'm not yet sure which I prefer.
inline bool Solver::solve () { budgetOff(); assumptions.clear(); return solve_() == l_True; }
inline bool Solver::solve (Lit p) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_() == l_True; }
inline bool Solver::solve (Lit p, Lit q) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_() == l_True; }
inline bool Solver::solve (Lit p, Lit q, Lit r) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_() == l_True; }
inline bool Solver::solve (const vec<Lit>& assumps){ budgetOff(); assumps.copyTo(assumptions); return solve_() == l_True; }
inline lbool Solver::solveLimited (const vec<Lit>& assumps){ assumps.copyTo(assumptions); return solve_(); }
inline bool Solver::okay () const { return ok; }
inline void Solver::toDimacs (const char* file){ vec<Lit> as; toDimacs(file, as); }
inline void Solver::toDimacs (const char* file, Lit p){ vec<Lit> as; as.push(p); toDimacs(file, as); }
inline void Solver::toDimacs (const char* file, Lit p, Lit q){ vec<Lit> as; as.push(p); as.push(q); toDimacs(file, as); }
inline void Solver::toDimacs (const char* file, Lit p, Lit q, Lit r){ vec<Lit> as; as.push(p); as.push(q); as.push(r); toDimacs(file, as); }
//=================================================================================================
// Debug etc:
//=================================================================================================
}
#endif
/***********************************************************************************[SolverTypes.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_SolverTypes_h
#define Minisat_SolverTypes_h
#include <assert.h>
#include "IntTypes.h"
#include "Alg.h"
#include "Vec.h"
#include "Map.h"
#include "Alloc.h"
namespace Minisat {
//=================================================================================================
// Variables, literals, lifted booleans, clauses:
// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
// so that they can be used as array indices.
typedef int Var;
#define var_Undef (-1)
struct Lit {
int x;
// Use this as a constructor:
friend Lit mkLit(Var var, bool sign = false);
bool operator == (Lit p) const { return x == p.x; }
bool operator != (Lit p) const { return x != p.x; }
bool operator < (Lit p) const { return x < p.x; } // '<' makes p, ~p adjacent in the ordering.
};
inline Lit mkLit (Var var, bool sign) { Lit p; p.x = var + var + (int)sign; return p; }
inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
inline Lit operator ^(Lit p, bool b) { Lit q; q.x = p.x ^ (unsigned int)b; return q; }
inline bool sign (Lit p) { return p.x & 1; }
inline int var (Lit p) { return p.x >> 1; }
// Mapping Literals to and from compact integers suitable for array indexing:
inline int toInt (Var v) { return v; }
inline int toInt (Lit p) { return p.x; }
inline Lit toLit (int i) { Lit p; p.x = i; return p; }
//const Lit lit_Undef = mkLit(var_Undef, false); // }- Useful special constants.
//const Lit lit_Error = mkLit(var_Undef, true ); // }
const Lit lit_Undef = { -2 }; // }- Useful special constants.
const Lit lit_Error = { -1 }; // }
//=================================================================================================
// Lifted booleans:
//
// NOTE: this implementation is optimized for the case when comparisons between values are mostly
// between one variable and one constant. Some care had to be taken to make sure that gcc
// does enough constant propagation to produce sensible code, and this appears to be somewhat
// fragile unfortunately.
#define l_True (lbool((uint8_t)0)) // gcc does not do constant propagation if these are real constants.
#define l_False (lbool((uint8_t)1))
#define l_Undef (lbool((uint8_t)2))
class lbool {
uint8_t value;
public:
explicit lbool(uint8_t v) : value(v) { }
lbool() : value(0) { }
explicit lbool(bool x) : value(!x) { }
bool operator == (lbool b) const { return ((b.value&2) & (value&2)) | (!(b.value&2)&(value == b.value)); }
bool operator != (lbool b) const { return !(*this == b); }
lbool operator ^ (bool b) const { return lbool((uint8_t)(value^(uint8_t)b)); }
lbool operator && (lbool b) const {
uint8_t sel = (this->value << 1) | (b.value << 3);
uint8_t v = (0xF7F755F4 >> sel) & 3;
return lbool(v); }
lbool operator || (lbool b) const {
uint8_t sel = (this->value << 1) | (b.value << 3);
uint8_t v = (0xFCFCF400 >> sel) & 3;
return lbool(v); }
friend int toInt (lbool l);
friend lbool toLbool(int v);
};
inline int toInt (lbool l) { return l.value; }
inline lbool toLbool(int v) { return lbool((uint8_t)v); }
//=================================================================================================
// Clause -- a simple class for representing a clause:
class Clause;
typedef RegionAllocator<uint32_t>::Ref CRef;
class Clause {
struct {
unsigned mark : 2;
unsigned learnt : 1;
unsigned has_extra : 1;
unsigned reloced : 1;
unsigned size : 27; } header;
union { Lit lit; float act; uint32_t abs; CRef rel; } data[0];
friend class ClauseAllocator;
// NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
template<class V>
Clause(const V& ps, bool use_extra, bool learnt) {
header.mark = 0;
header.learnt = learnt;
header.has_extra = use_extra;
header.reloced = 0;
header.size = ps.size();
for (int i = 0; i < ps.size(); i++)
data[i].lit = ps[i];
if (header.has_extra){
if (header.learnt)
data[header.size].act = 0;
else
calcAbstraction(); }
}
public:
void calcAbstraction() {
assert(header.has_extra);
uint32_t abstraction = 0;
for (int i = 0; i < size(); i++)
abstraction |= 1 << (var(data[i].lit) & 31);
data[header.size].abs = abstraction; }
int size () const { return header.size; }
void shrink (int i) { assert(i <= size()); if (header.has_extra) data[header.size-i] = data[header.size]; header.size -= i; }
void pop () { shrink(1); }
bool learnt () const { return header.learnt; }
bool has_extra () const { return header.has_extra; }
uint32_t mark () const { return header.mark; }
void mark (uint32_t m) { header.mark = m; }
const Lit& last () const { return data[header.size-1].lit; }
bool reloced () const { return header.reloced; }
CRef relocation () const { return data[0].rel; }
void relocate (CRef c) { header.reloced = 1; data[0].rel = c; }
// NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
// subsumption operations to behave correctly.
Lit& operator [] (int i) { return data[i].lit; }
Lit operator [] (int i) const { return data[i].lit; }
operator const Lit* (void) const { return (Lit*)data; }
float& activity () { assert(header.has_extra); return data[header.size].act; }
uint32_t abstraction () const { assert(header.has_extra); return data[header.size].abs; }
Lit subsumes (const Clause& other) const;
void strengthen (Lit p);
};
//=================================================================================================
// ClauseAllocator -- a simple class for allocating memory for clauses:
const CRef CRef_Undef = RegionAllocator<uint32_t>::Ref_Undef;
class ClauseAllocator : public RegionAllocator<uint32_t>
{
static int clauseWord32Size(int size, bool has_extra){
return (sizeof(Clause) + (sizeof(Lit) * (size + (int)has_extra))) / sizeof(uint32_t); }
public:
bool extra_clause_field;
ClauseAllocator(uint32_t start_cap) : RegionAllocator<uint32_t>(start_cap), extra_clause_field(false){}
ClauseAllocator() : extra_clause_field(false){}
void moveTo(ClauseAllocator& to){
to.extra_clause_field = extra_clause_field;
RegionAllocator<uint32_t>::moveTo(to); }
template<class Lits>
CRef alloc(const Lits& ps, bool learnt = false)
{
assert(sizeof(Lit) == sizeof(uint32_t));
assert(sizeof(float) == sizeof(uint32_t));
bool use_extra = learnt | extra_clause_field;
CRef cid = RegionAllocator<uint32_t>::alloc(clauseWord32Size(ps.size(), use_extra));
new (lea(cid)) Clause(ps, use_extra, learnt);
return cid;
}
// Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
Clause& operator[](Ref r) { return (Clause&)RegionAllocator<uint32_t>::operator[](r); }
const Clause& operator[](Ref r) const { return (Clause&)RegionAllocator<uint32_t>::operator[](r); }
Clause* lea (Ref r) { return (Clause*)RegionAllocator<uint32_t>::lea(r); }
const Clause* lea (Ref r) const { return (Clause*)RegionAllocator<uint32_t>::lea(r); }
Ref ael (const Clause* t){ return RegionAllocator<uint32_t>::ael((uint32_t*)t); }
void _free(CRef cid)
{
Clause& c = operator[](cid);
RegionAllocator<uint32_t>::_free(clauseWord32Size(c.size(), c.has_extra()));
}
void reloc(CRef& cr, ClauseAllocator& to)
{
Clause& c = operator[](cr);
if (c.reloced()) { cr = c.relocation(); return; }
cr = to.alloc(c, c.learnt());
c.relocate(cr);
// Copy extra data-fields:
// (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
to[cr].mark(c.mark());
if (to[cr].learnt()) to[cr].activity() = c.activity();
else if (to[cr].has_extra()) to[cr].calcAbstraction();
}
};
//=================================================================================================
// OccLists -- a class for maintaining occurence lists with lazy deletion:
template<class Idx, class Vec, class Deleted>
class OccLists
{
vec<Vec> occs;
vec<char> dirty;
vec<Idx> dirties;
Deleted deleted;
public:
OccLists(const Deleted& d) : deleted(d) {}
void init (const Idx& idx){ occs.growTo(toInt(idx)+1); dirty.growTo(toInt(idx)+1, 0); }
// Vec& operator[](const Idx& idx){ return occs[toInt(idx)]; }
Vec& operator[](const Idx& idx){ return occs[toInt(idx)]; }
Vec& lookup (const Idx& idx){ if (dirty[toInt(idx)]) clean(idx); return occs[toInt(idx)]; }
void cleanAll ();
void clean (const Idx& idx);
void smudge (const Idx& idx){
if (dirty[toInt(idx)] == 0){
dirty[toInt(idx)] = 1;
dirties.push(idx);
}
}
void clear(bool free = true){
occs .clear(free);
dirty .clear(free);
dirties.clear(free);
}
};
template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::cleanAll()
{
for (int i = 0; i < dirties.size(); i++)
// Dirties may contain duplicates so check here if a variable is already cleaned:
if (dirty[toInt(dirties[i])])
clean(dirties[i]);
dirties.clear();
}
template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::clean(const Idx& idx)
{
Vec& vec = occs[toInt(idx)];
int i, j;
for (i = j = 0; i < vec.size(); i++)
if (!deleted(vec[i]))
vec[j++] = vec[i];
vec.shrink(i - j);
dirty[toInt(idx)] = 0;
}
//=================================================================================================
// CMap -- a class for mapping clauses to values:
template<class T>
class CMap
{
struct CRefHash {
uint32_t operator()(CRef cr) const { return (uint32_t)cr; } };
typedef Map<CRef, T, CRefHash> HashTable;
HashTable map;
public:
// Size-operations:
void clear () { map.clear(); }
int size () const { return map.elems(); }
// Insert/Remove/Test mapping:
void insert (CRef cr, const T& t){ map.insert(cr, t); }
void growTo (CRef cr, const T& t){ map.insert(cr, t); } // NOTE: for compatibility
void remove (CRef cr) { map.remove(cr); }
bool has (CRef cr, T& t) { return map.peek(cr, t); }
// Vector interface (the clause 'c' must already exist):
const T& operator [] (CRef cr) const { return map[cr]; }
T& operator [] (CRef cr) { return map[cr]; }
// Iteration (not transparent at all at the moment):
int bucket_count() const { return map.bucket_count(); }
const vec<typename HashTable::Pair>& bucket(int i) const { return map.bucket(i); }
// Move contents to other map:
void moveTo(CMap& other){ map.moveTo(other.map); }
// TMP debug:
void debug(){
printf(" --- size = %d, bucket_count = %d\n", size(), map.bucket_count()); }
};
/*_________________________________________________________________________________________________
|
| subsumes : (other : const Clause&) -> Lit
|
| Description:
| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
| by subsumption resolution.
|
| Result:
| lit_Error - No subsumption or simplification
| lit_Undef - Clause subsumes 'other'
| p - The literal p can be deleted from 'other'
|________________________________________________________________________________________________@*/
inline Lit Clause::subsumes(const Clause& other) const
{
//if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
//if (other.size() < size() || (!learnt() && !other.learnt() && (extra.abst & ~other.extra.abst) != 0))
assert(!header.learnt); assert(!other.header.learnt);
assert(header.has_extra); assert(other.header.has_extra);
if (other.header.size < header.size || (data[header.size].abs & ~other.data[other.header.size].abs) != 0)
return lit_Error;
Lit ret = lit_Undef;
const Lit* c = (const Lit*)(*this);
const Lit* d = (const Lit*)other;
for (unsigned i = 0; i < header.size; i++) {
// search for c[i] or ~c[i]
for (unsigned j = 0; j < other.header.size; j++)
if (c[i] == d[j])
goto ok;
else if (ret == lit_Undef && c[i] == ~d[j]){
ret = c[i];
goto ok;
}
// did not find it
return lit_Error;
ok:;
}
return ret;
}
inline void Clause::strengthen(Lit p)
{
remove(*this, p);
calcAbstraction();
}
//=================================================================================================
}
#endif
/******************************************************************************************[Sort.h]
Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Sort_h
#define Minisat_Sort_h
#include "Vec.h"
//=================================================================================================
// Some sorting algorithms for vec's
namespace Minisat {
template<class T>
struct LessThan_default {
bool operator () (T x, T y) { return x < y; }
};
template <class T, class LessThan>
void selectionSort(T* array, int size, LessThan lt)
{
int i, j, best_i;
T tmp;
for (i = 0; i < size-1; i++){
best_i = i;
for (j = i+1; j < size; j++){
if (lt(array[j], array[best_i]))
best_i = j;
}
tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
}
}
template <class T> static inline void selectionSort(T* array, int size) {
selectionSort(array, size, LessThan_default<T>()); }
template <class T, class LessThan>
void sort(T* array, int size, LessThan lt)
{
if (size <= 15)
selectionSort(array, size, lt);
else{
T pivot = array[size / 2];
T tmp;
int i = -1;
int j = size;
for(;;){
do i++; while(lt(array[i], pivot));
do j--; while(lt(pivot, array[j]));
if (i >= j) break;
tmp = array[i]; array[i] = array[j]; array[j] = tmp;
}
sort(array , i , lt);
sort(&array[i], size-i, lt);
}
}
template <class T> static inline void sort(T* array, int size) {
sort(array, size, LessThan_default<T>()); }
//=================================================================================================
// For 'vec's:
template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
sort((T*)v, v.size(), lt); }
template <class T> void sort(vec<T>& v) {
sort(v, LessThan_default<T>()); }
//=================================================================================================
}
#endif
/***************************************************************************************[System.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "System.h"
#if defined(__linux__)
#include <stdio.h>
#include <stdlib.h>
using namespace Minisat;
// TODO: split the memory reading functions into two: one for reading high-watermark of RSS, and
// one for reading the current virtual memory size.
static inline int memReadStat(int field)
{
char name[256];
pid_t pid = getpid();
int value;
sprintf(name, "/proc/%d/statm", pid);
FILE* in = fopen(name, "rb");
if (in == NULL) return 0;
for (; field >= 0; field--)
if (fscanf(in, "%d", &value) != 1)
printf("ERROR! Failed to parse memory statistics from \"/proc\".\n"), exit(1);
fclose(in);
return value;
}
static inline int memReadPeak(void)
{
char name[256];
pid_t pid = getpid();
sprintf(name, "/proc/%d/status", pid);
FILE* in = fopen(name, "rb");
if (in == NULL) return 0;
// Find the correct line, beginning with "VmPeak:":
int peak_kb = 0;
while (!feof(in) && fscanf(in, "VmPeak: %d kB", &peak_kb) != 1)
while (!feof(in) && fgetc(in) != '\n')
;
fclose(in);
return peak_kb;
}
double Minisat::memUsed() { return (double)memReadStat(0) * (double)getpagesize() / (1024*1024); }
double Minisat::memUsedPeak() {
double peak = memReadPeak() / 1024;
return peak == 0 ? memUsed() : peak; }
#elif defined(__FreeBSD__)
double Minisat::memUsed(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return (double)ru.ru_maxrss / 1024; }
double MiniSat::memUsedPeak(void) { return memUsed(); }
#elif defined(__APPLE__)
#include <malloc/malloc.h>
double Minisat::memUsed(void) {
malloc_statistics_t t;
malloc_zone_statistics(NULL, &t);
return (double)t.max_size_in_use / (1024*1024); }
#else
double Minisat::memUsed() { return 0; }
double Minisat::memUsedPeak() { return 0; }
#endif
/****************************************************************************************[System.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_System_h
#define Minisat_System_h
#if defined(__linux__)
#include <fpu_control.h>
#endif
#include "IntTypes.h"
//-------------------------------------------------------------------------------------------------
namespace Minisat {
static inline double cpuTime(void); // CPU-time in seconds.
extern double memUsed(); // Memory in mega bytes (returns 0 for unsupported architectures).
extern double memUsedPeak(); // Peak-memory in mega bytes (returns 0 for unsupported architectures).
}
//-------------------------------------------------------------------------------------------------
// Implementation of inline functions:
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <time.h>
static inline double Minisat::cpuTime(void) { return (double)clock() / CLOCKS_PER_SEC; }
#else
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
static inline double Minisat::cpuTime(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
#endif
#endif
/*******************************************************************************************[Vec.h]
Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_Vec_h
#define Minisat_Vec_h
#include <assert.h>
#include <new>
#include "IntTypes.h"
#include "XAlloc.h"
namespace Minisat {
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class vec {
T* data;
int sz;
int cap;
// Don't allow copying (error prone):
vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
vec (vec<T>& other) { assert(0); }
// Helpers for calculating next capacity:
static inline int imax (int x, int y) { int mask = (y-x) >> (sizeof(int)*8-1); return (x&mask) + (y&(~mask)); }
//static inline void nextCap(int& cap){ cap += ((cap >> 1) + 2) & ~1; }
static inline void nextCap(int& cap){ cap += ((cap >> 1) + 2) & ~1; }
public:
// Constructors:
vec() : data(NULL) , sz(0) , cap(0) { }
explicit vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
~vec() { clear(true); }
// Pointer to first element:
operator T* (void) { return data; }
// Size operations:
int size (void) const { return sz; }
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
void shrink_ (int nelems) { assert(nelems <= sz); sz -= nelems; }
int capacity (void) const { return cap; }
void capacity (int min_cap);
void growTo (int size);
void growTo (int size, const T& pad);
void clear (bool dealloc = false);
// Stack interface:
void push (void) { if (sz == cap) capacity(sz+1); new (&data[sz]) T(); sz++; }
void push (const T& elem) { if (sz == cap) capacity(sz+1); data[sz++] = elem; }
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
void pop (void) { assert(sz > 0); sz--, data[sz].~T(); }
// NOTE: it seems possible that overflow can happen in the 'sz+1' expression of 'push()', but
// in fact it can not since it requires that 'cap' is equal to INT_MAX. This in turn can not
// happen given the way capacities are calculated (below). Essentially, all capacities are
// even, but INT_MAX is odd.
const T& last (void) const { return data[sz-1]; }
T& last (void) { return data[sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return data[index]; }
T& operator [] (int index) { return data[index]; }
// Duplicatation (preferred instead):
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) copy[i] = data[i]; }
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
};
template<class T>
void vec<T>::capacity(int min_cap) {
if (cap >= min_cap) return;
int add = imax((min_cap - cap + 1) & ~1, ((cap >> 1) + 2) & ~1); // NOTE: grow by approximately 3/2
if (add > INT_MAX - cap || ((data = (T*)::realloc(data, (cap += add) * sizeof(T))) == NULL) && errno == ENOMEM)
throw OutOfMemoryException();
}
template<class T>
void vec<T>::growTo(int size, const T& pad) {
if (sz >= size) return;
capacity(size);
for (int i = sz; i < size; i++) data[i] = pad;
sz = size; }
template<class T>
void vec<T>::growTo(int size) {
if (sz >= size) return;
capacity(size);
for (int i = sz; i < size; i++) new (&data[i]) T();
sz = size; }
template<class T>
void vec<T>::clear(bool dealloc) {
if (data != NULL){
for (int i = 0; i < sz; i++) data[i].~T();
sz = 0;
if (dealloc) free(data), data = NULL, cap = 0; } }
//=================================================================================================
}
#endif
/****************************************************************************************[XAlloc.h]
Copyright (c) 2009-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Minisat_XAlloc_h
#define Minisat_XAlloc_h
#include <errno.h>
#include <stdlib.h>
namespace Minisat {
//=================================================================================================
// Simple layer on top of malloc/realloc to catch out-of-memory situtaions and provide some typing:
class OutOfMemoryException{};
static inline void* xrealloc(void *ptr, size_t size)
{
void* mem = realloc(ptr, size);
if (mem == NULL && errno == ENOMEM){
throw OutOfMemoryException();
}else
return mem;
}
//=================================================================================================
}
#endif
SRC += src/sat/bsat2/AbcApi.cpp \
src/sat/bsat2/MainSat.cpp \
src/sat/bsat2/MainSimp.cpp \
src/sat/bsat2/Options.cpp \
src/sat/bsat2/SimpSolver.cpp \
src/sat/bsat2/Solver.cpp \
src/sat/bsat2/System.cpp
/* A portable stdint.h
****************************************************************************
* BSD License:
****************************************************************************
*
* Copyright (c) 2005-2014 Paul Hsieh
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************
*
* Version 0.1.14
*
* The ANSI C standard committee, for the C99 standard, specified the
* inclusion of a new standard include file called stdint.h. This is
* a very useful and long desired include file which contains several
* very precise definitions for integer scalar types that is
* critically important for making portable several classes of
* applications including cryptography, hashing, variable length
* integer libraries and so on. But for most developers its likely
* useful just for programming sanity.
*
* The problem is that most compiler vendors have decided not to
* implement the C99 standard, and the next C++ language standard
* (which has a lot more mindshare these days) will be a long time in
* coming and its unknown whether or not it will include stdint.h or
* how much adoption it will have. Either way, it will be a long time
* before all compilers come with a stdint.h and it also does nothing
* for the extremely large number of compilers available today which
* do not include this file, or anything comparable to it.
*
* So that's what this file is all about. Its an attempt to build a
* single universal include file that works on as many platforms as
* possible to deliver what stdint.h is supposed to. A few things
* that should be noted about this file:
*
* 1) It is not guaranteed to be portable and/or present an identical
* interface on all platforms. The extreme variability of the
* ANSI C standard makes this an impossibility right from the
* very get go. Its really only meant to be useful for the vast
* majority of platforms that possess the capability of
* implementing usefully and precisely defined, standard sized
* integer scalars. Systems which are not intrinsically 2s
* complement may produce invalid constants.
*
* 2) There is an unavoidable use of non-reserved symbols.
*
* 3) Other standard include files are invoked.
*
* 4) This file may come in conflict with future platforms that do
* include stdint.h. The hope is that one or the other can be
* used with no real difference.
*
* 5) In the current verison, if your platform can't represent
* int32_t, int16_t and int8_t, it just dumps out with a compiler
* error.
*
* 6) 64 bit integers may or may not be defined. Test for their
* presence with the test: #ifdef INT64_MAX or #ifdef UINT64_MAX.
* Note that this is different from the C99 specification which
* requires the existence of 64 bit support in the compiler. If
* this is not defined for your platform, yet it is capable of
* dealing with 64 bits then it is because this file has not yet
* been extended to cover all of your system's capabilities.
*
* 7) (u)intptr_t may or may not be defined. Test for its presence
* with the test: #ifdef PTRDIFF_MAX. If this is not defined
* for your platform, then it is because this file has not yet
* been extended to cover all of your system's capabilities, not
* because its optional.
*
* 8) The following might not been defined even if your platform is
* capable of defining it:
*
* WCHAR_MIN
* WCHAR_MAX
* (u)int64_t
* PTRDIFF_MIN
* PTRDIFF_MAX
* (u)intptr_t
*
* 9) The following have not been defined:
*
* WINT_MIN
* WINT_MAX
*
* 10) The criteria for defining (u)int_least(*)_t isn't clear,
* except for systems which don't have a type that precisely
* defined 8, 16, or 32 bit types (which this include file does
* not support anyways). Default definitions have been given.
*
* 11) The criteria for defining (u)int_fast(*)_t isn't something I
* would trust to any particular compiler vendor or the ANSI C
* committee. It is well known that "compatible systems" are
* commonly created that have very different performance
* characteristics from the systems they are compatible with,
* especially those whose vendors make both the compiler and the
* system. Default definitions have been given, but its strongly
* recommended that users never use these definitions for any
* reason (they do *NOT* deliver any serious guarantee of
* improved performance -- not in this file, nor any vendor's
* stdint.h).
*
* 12) The following macros:
*
* PRINTF_INTMAX_MODIFIER
* PRINTF_INT64_MODIFIER
* PRINTF_INT32_MODIFIER
* PRINTF_INT16_MODIFIER
* PRINTF_LEAST64_MODIFIER
* PRINTF_LEAST32_MODIFIER
* PRINTF_LEAST16_MODIFIER
* PRINTF_INTPTR_MODIFIER
*
* are strings which have been defined as the modifiers required
* for the "d", "u" and "x" printf formats to correctly output
* (u)intmax_t, (u)int64_t, (u)int32_t, (u)int16_t, (u)least64_t,
* (u)least32_t, (u)least16_t and (u)intptr_t types respectively.
* PRINTF_INTPTR_MODIFIER is not defined for some systems which
* provide their own stdint.h. PRINTF_INT64_MODIFIER is not
* defined if INT64_MAX is not defined. These are an extension
* beyond what C99 specifies must be in stdint.h.
*
* In addition, the following macros are defined:
*
* PRINTF_INTMAX_HEX_WIDTH
* PRINTF_INT64_HEX_WIDTH
* PRINTF_INT32_HEX_WIDTH
* PRINTF_INT16_HEX_WIDTH
* PRINTF_INT8_HEX_WIDTH
* PRINTF_INTMAX_DEC_WIDTH
* PRINTF_INT64_DEC_WIDTH
* PRINTF_INT32_DEC_WIDTH
* PRINTF_INT16_DEC_WIDTH
* PRINTF_INT8_DEC_WIDTH
*
* Which specifies the maximum number of characters required to
* print the number of that type in either hexadecimal or decimal.
* These are an extension beyond what C99 specifies must be in
* stdint.h.
*
* Compilers tested (all with 0 warnings at their highest respective
* settings): Borland Turbo C 2.0, WATCOM C/C++ 11.0 (16 bits and 32
* bits), Microsoft Visual C++ 6.0 (32 bit), Microsoft Visual Studio
* .net (VC7), Intel C++ 4.0, GNU gcc v3.3.3
*
* This file should be considered a work in progress. Suggestions for
* improvements, especially those which increase coverage are strongly
* encouraged.
*
* Acknowledgements
*
* The following people have made significant contributions to the
* development and testing of this file:
*
* Chris Howie
* John Steele Scott
* Dave Thorup
* John Dill
* Florian Wobbe
* Christopher Sean Morrison
*
*/
#include <stddef.h>
#include <limits.h>
#include <signal.h>
/*
* For gcc with _STDINT_H, fill in the PRINTF_INT*_MODIFIER macros, and
* do nothing else. On the Mac OS X version of gcc this is _STDINT_H_.
*/
#if ((defined(__STDC__) && __STDC__ && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined (__WATCOMC__) && (defined (_STDINT_H_INCLUDED) || __WATCOMC__ >= 1250)) || (defined(__GNUC__) && (__GNUC__ > 3 || defined(_STDINT_H) || defined(_STDINT_H_) || defined (__UINT_FAST64_TYPE__)) )) && !defined (_PSTDINT_H_INCLUDED)
#include <stdint.h>
#define _PSTDINT_H_INCLUDED
# if defined(__GNUC__) && (defined(__x86_64__) || defined(__ppc64__))
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "l"
# endif
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER ""
# endif
# else
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "ll"
# endif
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER "l"
# endif
# endif
# ifndef PRINTF_INT16_MODIFIER
# define PRINTF_INT16_MODIFIER "h"
# endif
# ifndef PRINTF_INTMAX_MODIFIER
# define PRINTF_INTMAX_MODIFIER PRINTF_INT64_MODIFIER
# endif
# ifndef PRINTF_INT64_HEX_WIDTH
# define PRINTF_INT64_HEX_WIDTH "16"
# endif
# ifndef PRINTF_INT32_HEX_WIDTH
# define PRINTF_INT32_HEX_WIDTH "8"
# endif
# ifndef PRINTF_INT16_HEX_WIDTH
# define PRINTF_INT16_HEX_WIDTH "4"
# endif
# ifndef PRINTF_INT8_HEX_WIDTH
# define PRINTF_INT8_HEX_WIDTH "2"
# endif
# ifndef PRINTF_INT64_DEC_WIDTH
# define PRINTF_INT64_DEC_WIDTH "20"
# endif
# ifndef PRINTF_INT32_DEC_WIDTH
# define PRINTF_INT32_DEC_WIDTH "10"
# endif
# ifndef PRINTF_INT16_DEC_WIDTH
# define PRINTF_INT16_DEC_WIDTH "5"
# endif
# ifndef PRINTF_INT8_DEC_WIDTH
# define PRINTF_INT8_DEC_WIDTH "3"
# endif
# ifndef PRINTF_INTMAX_HEX_WIDTH
# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT64_HEX_WIDTH
# endif
# ifndef PRINTF_INTMAX_DEC_WIDTH
# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT64_DEC_WIDTH
# endif
/*
* Something really weird is going on with Open Watcom. Just pull some of
* these duplicated definitions from Open Watcom's stdint.h file for now.
*/
# if defined (__WATCOMC__) && __WATCOMC__ >= 1250
# if !defined (INT64_C)
# define INT64_C(x) (x + (INT64_MAX - INT64_MAX))
# endif
# if !defined (UINT64_C)
# define UINT64_C(x) (x + (UINT64_MAX - UINT64_MAX))
# endif
# if !defined (INT32_C)
# define INT32_C(x) (x + (INT32_MAX - INT32_MAX))
# endif
# if !defined (UINT32_C)
# define UINT32_C(x) (x + (UINT32_MAX - UINT32_MAX))
# endif
# if !defined (INT16_C)
# define INT16_C(x) (x)
# endif
# if !defined (UINT16_C)
# define UINT16_C(x) (x)
# endif
# if !defined (INT8_C)
# define INT8_C(x) (x)
# endif
# if !defined (UINT8_C)
# define UINT8_C(x) (x)
# endif
# if !defined (UINT64_MAX)
# define UINT64_MAX 18446744073709551615ULL
# endif
# if !defined (INT64_MAX)
# define INT64_MAX 9223372036854775807LL
# endif
# if !defined (UINT32_MAX)
# define UINT32_MAX 4294967295UL
# endif
# if !defined (INT32_MAX)
# define INT32_MAX 2147483647L
# endif
# if !defined (INTMAX_MAX)
# define INTMAX_MAX INT64_MAX
# endif
# if !defined (INTMAX_MIN)
# define INTMAX_MIN INT64_MIN
# endif
# endif
#endif
#ifndef _PSTDINT_H_INCLUDED
#define _PSTDINT_H_INCLUDED
#ifndef SIZE_MAX
# define SIZE_MAX (~(size_t)0)
#endif
/*
* Deduce the type assignments from limits.h under the assumption that
* integer sizes in bits are powers of 2, and follow the ANSI
* definitions.
*/
#ifndef UINT8_MAX
# define UINT8_MAX 0xff
#endif
#if !defined(uint8_t) && !defined(_UINT8_T)
# if (UCHAR_MAX == UINT8_MAX) || defined (S_SPLINT_S)
typedef unsigned char uint8_t;
# define UINT8_C(v) ((uint8_t) v)
# else
# error "Platform not supported"
# endif
#endif
#ifndef INT8_MAX
# define INT8_MAX 0x7f
#endif
#ifndef INT8_MIN
# define INT8_MIN INT8_C(0x80)
#endif
#if !defined(int8_t) && !defined(_INT8_T)
# if (SCHAR_MAX == INT8_MAX) || defined (S_SPLINT_S)
typedef signed char int8_t;
# define INT8_C(v) ((int8_t) v)
# else
# error "Platform not supported"
# endif
#endif
#ifndef UINT16_MAX
# define UINT16_MAX 0xffff
#endif
#if !defined(uint16_t) && !defined(_UINT16_T)
#if (UINT_MAX == UINT16_MAX) || defined (S_SPLINT_S)
typedef unsigned int uint16_t;
# ifndef PRINTF_INT16_MODIFIER
# define PRINTF_INT16_MODIFIER ""
# endif
# define UINT16_C(v) ((uint16_t) (v))
#elif (USHRT_MAX == UINT16_MAX)
typedef unsigned short uint16_t;
# define UINT16_C(v) ((uint16_t) (v))
# ifndef PRINTF_INT16_MODIFIER
# define PRINTF_INT16_MODIFIER "h"
# endif
#else
#error "Platform not supported"
#endif
#endif
#ifndef INT16_MAX
# define INT16_MAX 0x7fff
#endif
#ifndef INT16_MIN
# define INT16_MIN INT16_C(0x8000)
#endif
#if !defined(int16_t) && !defined(_INT16_T)
#if (INT_MAX == INT16_MAX) || defined (S_SPLINT_S)
typedef signed int int16_t;
# define INT16_C(v) ((int16_t) (v))
# ifndef PRINTF_INT16_MODIFIER
# define PRINTF_INT16_MODIFIER ""
# endif
#elif (SHRT_MAX == INT16_MAX)
typedef signed short int16_t;
# define INT16_C(v) ((int16_t) (v))
# ifndef PRINTF_INT16_MODIFIER
# define PRINTF_INT16_MODIFIER "h"
# endif
#else
#error "Platform not supported"
#endif
#endif
#ifndef UINT32_MAX
# define UINT32_MAX (0xffffffffUL)
#endif
#if !defined(uint32_t) && !defined(_UINT32_T)
#if (ULONG_MAX == UINT32_MAX) || defined (S_SPLINT_S)
typedef unsigned long uint32_t;
# define UINT32_C(v) v ## UL
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER "l"
# endif
#elif (UINT_MAX == UINT32_MAX)
typedef unsigned int uint32_t;
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER ""
# endif
# define UINT32_C(v) v ## U
#elif (USHRT_MAX == UINT32_MAX)
typedef unsigned short uint32_t;
# define UINT32_C(v) ((unsigned short) (v))
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER ""
# endif
#else
#error "Platform not supported"
#endif
#endif
#ifndef INT32_MAX
# define INT32_MAX (0x7fffffffL)
#endif
#ifndef INT32_MIN
# define INT32_MIN INT32_C(0x80000000)
#endif
#if !defined(int32_t) && !defined(_INT32_T)
#if (LONG_MAX == INT32_MAX) || defined (S_SPLINT_S)
typedef signed long int32_t;
# define INT32_C(v) v ## L
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER "l"
# endif
#elif (INT_MAX == INT32_MAX)
typedef signed int int32_t;
# define INT32_C(v) v
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER ""
# endif
#elif (SHRT_MAX == INT32_MAX)
typedef signed short int32_t;
# define INT32_C(v) ((short) (v))
# ifndef PRINTF_INT32_MODIFIER
# define PRINTF_INT32_MODIFIER ""
# endif
#else
#error "Platform not supported"
#endif
#endif
/*
* The macro stdint_int64_defined is temporarily used to record
* whether or not 64 integer support is available. It must be
* defined for any 64 integer extensions for new platforms that are
* added.
*/
#undef stdint_int64_defined
#if (defined(__STDC__) && defined(__STDC_VERSION__)) || defined (S_SPLINT_S)
# if (__STDC__ && __STDC_VERSION__ >= 199901L) || defined (S_SPLINT_S)
# define stdint_int64_defined
typedef long long int64_t;
typedef unsigned long long uint64_t;
# define UINT64_C(v) v ## ULL
# define INT64_C(v) v ## LL
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "ll"
# endif
# endif
#endif
#if !defined (stdint_int64_defined)
# if defined(__GNUC__)
# define stdint_int64_defined
__extension__ typedef long long int64_t;
__extension__ typedef unsigned long long uint64_t;
# define UINT64_C(v) v ## ULL
# define INT64_C(v) v ## LL
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "ll"
# endif
# elif defined(__MWERKS__) || defined (__SUNPRO_C) || defined (__SUNPRO_CC) || defined (__APPLE_CC__) || defined (_LONG_LONG) || defined (_CRAYC) || defined (S_SPLINT_S)
# define stdint_int64_defined
typedef long long int64_t;
typedef unsigned long long uint64_t;
# define UINT64_C(v) v ## ULL
# define INT64_C(v) v ## LL
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "ll"
# endif
# elif (defined(__WATCOMC__) && defined(__WATCOM_INT64__)) || (defined(_MSC_VER) && _INTEGRAL_MAX_BITS >= 64) || (defined (__BORLANDC__) && __BORLANDC__ > 0x460) || defined (__alpha) || defined (__DECC)
# define stdint_int64_defined
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
# define UINT64_C(v) v ## UI64
# define INT64_C(v) v ## I64
# ifndef PRINTF_INT64_MODIFIER
# define PRINTF_INT64_MODIFIER "I64"
# endif
# endif
#endif
#if !defined (LONG_LONG_MAX) && defined (INT64_C)
# define LONG_LONG_MAX INT64_C (9223372036854775807)
#endif
#ifndef ULONG_LONG_MAX
# define ULONG_LONG_MAX UINT64_C (18446744073709551615)
#endif
#if !defined (INT64_MAX) && defined (INT64_C)
# define INT64_MAX INT64_C (9223372036854775807)
#endif
#if !defined (INT64_MIN) && defined (INT64_C)
# define INT64_MIN INT64_C (-9223372036854775808)
#endif
#if !defined (UINT64_MAX) && defined (INT64_C)
# define UINT64_MAX UINT64_C (18446744073709551615)
#endif
/*
* Width of hexadecimal for number field.
*/
#ifndef PRINTF_INT64_HEX_WIDTH
# define PRINTF_INT64_HEX_WIDTH "16"
#endif
#ifndef PRINTF_INT32_HEX_WIDTH
# define PRINTF_INT32_HEX_WIDTH "8"
#endif
#ifndef PRINTF_INT16_HEX_WIDTH
# define PRINTF_INT16_HEX_WIDTH "4"
#endif
#ifndef PRINTF_INT8_HEX_WIDTH
# define PRINTF_INT8_HEX_WIDTH "2"
#endif
#ifndef PRINTF_INT64_DEC_WIDTH
# define PRINTF_INT64_DEC_WIDTH "20"
#endif
#ifndef PRINTF_INT32_DEC_WIDTH
# define PRINTF_INT32_DEC_WIDTH "10"
#endif
#ifndef PRINTF_INT16_DEC_WIDTH
# define PRINTF_INT16_DEC_WIDTH "5"
#endif
#ifndef PRINTF_INT8_DEC_WIDTH
# define PRINTF_INT8_DEC_WIDTH "3"
#endif
/*
* Ok, lets not worry about 128 bit integers for now. Moore's law says
* we don't need to worry about that until about 2040 at which point
* we'll have bigger things to worry about.
*/
#ifdef stdint_int64_defined
typedef int64_t intmax_t;
typedef uint64_t uintmax_t;
# define INTMAX_MAX INT64_MAX
# define INTMAX_MIN INT64_MIN
# define UINTMAX_MAX UINT64_MAX
# define UINTMAX_C(v) UINT64_C(v)
# define INTMAX_C(v) INT64_C(v)
# ifndef PRINTF_INTMAX_MODIFIER
# define PRINTF_INTMAX_MODIFIER PRINTF_INT64_MODIFIER
# endif
# ifndef PRINTF_INTMAX_HEX_WIDTH
# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT64_HEX_WIDTH
# endif
# ifndef PRINTF_INTMAX_DEC_WIDTH
# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT64_DEC_WIDTH
# endif
#else
typedef int32_t intmax_t;
typedef uint32_t uintmax_t;
# define INTMAX_MAX INT32_MAX
# define UINTMAX_MAX UINT32_MAX
# define UINTMAX_C(v) UINT32_C(v)
# define INTMAX_C(v) INT32_C(v)
# ifndef PRINTF_INTMAX_MODIFIER
# define PRINTF_INTMAX_MODIFIER PRINTF_INT32_MODIFIER
# endif
# ifndef PRINTF_INTMAX_HEX_WIDTH
# define PRINTF_INTMAX_HEX_WIDTH PRINTF_INT32_HEX_WIDTH
# endif
# ifndef PRINTF_INTMAX_DEC_WIDTH
# define PRINTF_INTMAX_DEC_WIDTH PRINTF_INT32_DEC_WIDTH
# endif
#endif
/*
* Because this file currently only supports platforms which have
* precise powers of 2 as bit sizes for the default integers, the
* least definitions are all trivial. Its possible that a future
* version of this file could have different definitions.
*/
#ifndef stdint_least_defined
typedef int8_t int_least8_t;
typedef uint8_t uint_least8_t;
typedef int16_t int_least16_t;
typedef uint16_t uint_least16_t;
typedef int32_t int_least32_t;
typedef uint32_t uint_least32_t;
# define PRINTF_LEAST32_MODIFIER PRINTF_INT32_MODIFIER
# define PRINTF_LEAST16_MODIFIER PRINTF_INT16_MODIFIER
# define UINT_LEAST8_MAX UINT8_MAX
# define INT_LEAST8_MAX INT8_MAX
# define UINT_LEAST16_MAX UINT16_MAX
# define INT_LEAST16_MAX INT16_MAX
# define UINT_LEAST32_MAX UINT32_MAX
# define INT_LEAST32_MAX INT32_MAX
# define INT_LEAST8_MIN INT8_MIN
# define INT_LEAST16_MIN INT16_MIN
# define INT_LEAST32_MIN INT32_MIN
# ifdef stdint_int64_defined
typedef int64_t int_least64_t;
typedef uint64_t uint_least64_t;
# define PRINTF_LEAST64_MODIFIER PRINTF_INT64_MODIFIER
# define UINT_LEAST64_MAX UINT64_MAX
# define INT_LEAST64_MAX INT64_MAX
# define INT_LEAST64_MIN INT64_MIN
# endif
#endif
#undef stdint_least_defined
/*
* The ANSI C committee pretending to know or specify anything about
* performance is the epitome of misguided arrogance. The mandate of
* this file is to *ONLY* ever support that absolute minimum
* definition of the fast integer types, for compatibility purposes.
* No extensions, and no attempt to suggest what may or may not be a
* faster integer type will ever be made in this file. Developers are
* warned to stay away from these types when using this or any other
* stdint.h.
*/
typedef int_least8_t int_fast8_t;
typedef uint_least8_t uint_fast8_t;
typedef int_least16_t int_fast16_t;
typedef uint_least16_t uint_fast16_t;
typedef int_least32_t int_fast32_t;
typedef uint_least32_t uint_fast32_t;
#define UINT_FAST8_MAX UINT_LEAST8_MAX
#define INT_FAST8_MAX INT_LEAST8_MAX
#define UINT_FAST16_MAX UINT_LEAST16_MAX
#define INT_FAST16_MAX INT_LEAST16_MAX
#define UINT_FAST32_MAX UINT_LEAST32_MAX
#define INT_FAST32_MAX INT_LEAST32_MAX
#define INT_FAST8_MIN INT_LEAST8_MIN
#define INT_FAST16_MIN INT_LEAST16_MIN
#define INT_FAST32_MIN INT_LEAST32_MIN
#ifdef stdint_int64_defined
typedef int_least64_t int_fast64_t;
typedef uint_least64_t uint_fast64_t;
# define UINT_FAST64_MAX UINT_LEAST64_MAX
# define INT_FAST64_MAX INT_LEAST64_MAX
# define INT_FAST64_MIN INT_LEAST64_MIN
#endif
#undef stdint_int64_defined
/*
* Whatever piecemeal, per compiler thing we can do about the wchar_t
* type limits.
*/
#if defined(__WATCOMC__) || defined(_MSC_VER) || defined (__GNUC__)
# include <wchar.h>
# ifndef WCHAR_MIN
# define WCHAR_MIN 0
# endif
# ifndef WCHAR_MAX
# define WCHAR_MAX ((wchar_t)-1)
# endif
#endif
/*
* Whatever piecemeal, per compiler/platform thing we can do about the
* (u)intptr_t types and limits.
*/
#if (defined (_MSC_VER) && defined (_UINTPTR_T_DEFINED)) || defined (_UINTPTR_T)
# define STDINT_H_UINTPTR_T_DEFINED
#endif
#ifndef STDINT_H_UINTPTR_T_DEFINED
# if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) || defined (_WIN64) || defined (__ppc64__)
# define stdint_intptr_bits 64
# elif defined (__WATCOMC__) || defined (__TURBOC__)
# if defined(__TINY__) || defined(__SMALL__) || defined(__MEDIUM__)
# define stdint_intptr_bits 16
# else
# define stdint_intptr_bits 32
# endif
# elif defined (__i386__) || defined (_WIN32) || defined (WIN32) || defined (__ppc64__)
# define stdint_intptr_bits 32
# elif defined (__INTEL_COMPILER)
/* TODO -- what did Intel do about x86-64? */
# else
/* #error "This platform might not be supported yet" */
# endif
# ifdef stdint_intptr_bits
# define stdint_intptr_glue3_i(a,b,c) a##b##c
# define stdint_intptr_glue3(a,b,c) stdint_intptr_glue3_i(a,b,c)
# ifndef PRINTF_INTPTR_MODIFIER
# define PRINTF_INTPTR_MODIFIER stdint_intptr_glue3(PRINTF_INT,stdint_intptr_bits,_MODIFIER)
# endif
# ifndef PTRDIFF_MAX
# define PTRDIFF_MAX stdint_intptr_glue3(INT,stdint_intptr_bits,_MAX)
# endif
# ifndef PTRDIFF_MIN
# define PTRDIFF_MIN stdint_intptr_glue3(INT,stdint_intptr_bits,_MIN)
# endif
# ifndef UINTPTR_MAX
# define UINTPTR_MAX stdint_intptr_glue3(UINT,stdint_intptr_bits,_MAX)
# endif
# ifndef INTPTR_MAX
# define INTPTR_MAX stdint_intptr_glue3(INT,stdint_intptr_bits,_MAX)
# endif
# ifndef INTPTR_MIN
# define INTPTR_MIN stdint_intptr_glue3(INT,stdint_intptr_bits,_MIN)
# endif
# ifndef INTPTR_C
# define INTPTR_C(x) stdint_intptr_glue3(INT,stdint_intptr_bits,_C)(x)
# endif
# ifndef UINTPTR_C
# define UINTPTR_C(x) stdint_intptr_glue3(UINT,stdint_intptr_bits,_C)(x)
# endif
typedef stdint_intptr_glue3(uint,stdint_intptr_bits,_t) uintptr_t;
typedef stdint_intptr_glue3( int,stdint_intptr_bits,_t) intptr_t;
# else
/* TODO -- This following is likely wrong for some platforms, and does
nothing for the definition of uintptr_t. */
typedef ptrdiff_t intptr_t;
# endif
# define STDINT_H_UINTPTR_T_DEFINED
#endif
/*
* Assumes sig_atomic_t is signed and we have a 2s complement machine.
*/
#ifndef SIG_ATOMIC_MAX
# define SIG_ATOMIC_MAX ((((sig_atomic_t) 1) << (sizeof (sig_atomic_t)*CHAR_BIT-1)) - 1)
#endif
#endif
#if defined (__TEST_PSTDINT_FOR_CORRECTNESS)
/*
* Please compile with the maximum warning settings to make sure macros are not
* defined more than once.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define glue3_aux(x,y,z) x ## y ## z
#define glue3(x,y,z) glue3_aux(x,y,z)
#define DECLU(bits) glue3(uint,bits,_t) glue3(u,bits,) = glue3(UINT,bits,_C) (0);
#define DECLI(bits) glue3(int,bits,_t) glue3(i,bits,) = glue3(INT,bits,_C) (0);
#define DECL(us,bits) glue3(DECL,us,) (bits)
#define TESTUMAX(bits) glue3(u,bits,) = ~glue3(u,bits,); if (glue3(UINT,bits,_MAX) != glue3(u,bits,)) printf ("Something wrong with UINT%d_MAX\n", bits)
int main () {
DECL(I,8)
DECL(U,8)
DECL(I,16)
DECL(U,16)
DECL(I,32)
DECL(U,32)
#ifdef INT64_MAX
DECL(I,64)
DECL(U,64)
#endif
intmax_t imax = INTMAX_C(0);
uintmax_t umax = UINTMAX_C(0);
char str0[256], str1[256];
sprintf (str0, "%d %x\n", 0, ~0);
sprintf (str1, "%d %x\n", i8, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with i8 : %s\n", str1);
sprintf (str1, "%u %x\n", u8, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with u8 : %s\n", str1);
sprintf (str1, "%d %x\n", i16, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with i16 : %s\n", str1);
sprintf (str1, "%u %x\n", u16, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with u16 : %s\n", str1);
sprintf (str1, "%" PRINTF_INT32_MODIFIER "d %x\n", i32, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with i32 : %s\n", str1);
sprintf (str1, "%" PRINTF_INT32_MODIFIER "u %x\n", u32, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with u32 : %s\n", str1);
#ifdef INT64_MAX
sprintf (str1, "%" PRINTF_INT64_MODIFIER "d %x\n", i64, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with i64 : %s\n", str1);
#endif
sprintf (str1, "%" PRINTF_INTMAX_MODIFIER "d %x\n", imax, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with imax : %s\n", str1);
sprintf (str1, "%" PRINTF_INTMAX_MODIFIER "u %x\n", umax, ~0);
if (0 != strcmp (str0, str1)) printf ("Something wrong with umax : %s\n", str1);
TESTUMAX(8);
TESTUMAX(16);
TESTUMAX(32);
#ifdef INT64_MAX
TESTUMAX(64);
#endif
return EXIT_SUCCESS;
}
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment