Commit 1dca7458 by Alan Mishchenko

Improved buffering.

parent 4c6804c3
...@@ -2451,10 +2451,6 @@ SOURCE=.\src\map\scl\scl.h ...@@ -2451,10 +2451,6 @@ SOURCE=.\src\map\scl\scl.h
# End Source File # End Source File
# Begin Source File # Begin Source File
SOURCE=.\src\map\scl\sclBuff.c
# End Source File
# Begin Source File
SOURCE=.\src\map\scl\sclBuffer.c SOURCE=.\src\map\scl\sclBuffer.c
# End Source File # End Source File
# Begin Source File # Begin Source File
......
...@@ -200,7 +200,7 @@ int Map_MatchNodePhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase ) ...@@ -200,7 +200,7 @@ int Map_MatchNodePhase( Map_Man_t * p, Map_Node_t * pNode, int fPhase )
for ( pCut = pNode->pCuts->pNext; pCut; pCut = pCut->pNext ) for ( pCut = pNode->pCuts->pNext; pCut; pCut = pCut->pNext )
{ {
// limit gate sizes based on fanout count // limit gate sizes based on fanout count
if ( (pNode->nRefs > 8 && pCut->nLeaves > 2) || (pNode->nRefs > 4 && pCut->nLeaves > 3) ) if ( (pNode->nRefs > 3 && pCut->nLeaves > 2) || (pNode->nRefs > 1 && pCut->nLeaves > 3) )
continue; continue;
pMatch = pCut->M + fPhase; pMatch = pCut->M + fPhase;
if ( pMatch->pSupers == NULL ) if ( pMatch->pSupers == NULL )
......
SRC += src/map/scl/scl.c \ SRC += src/map/scl/scl.c \
src/map/scl/sclBuff.c \
src/map/scl/sclBuffer.c \ src/map/scl/sclBuffer.c \
src/map/scl/sclDnsize.c \ src/map/scl/sclDnsize.c \
src/map/scl/sclLib.c \ src/map/scl/sclLib.c \
......
...@@ -554,14 +554,15 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv ) ...@@ -554,14 +554,15 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
{ {
Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc); Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc);
Abc_Ntk_t * pNtkRes; Abc_Ntk_t * pNtkRes;
int Degree, fUseInvs; int FanMin, FanMax, fUseInvs;
int c, fVerbose; int c, fVerbose;
int fOldAlgo = 0; int fOldAlgo = 0;
Degree = 4; FanMin = 6;
fUseInvs = 0; FanMax = 14;
fVerbose = 0; fUseInvs = 0;
fVerbose = 0;
Extra_UtilGetoptReset(); Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "Naivh" ) ) != EOF ) while ( ( c = Extra_UtilGetopt( argc, argv, "NMaivh" ) ) != EOF )
{ {
switch ( c ) switch ( c )
{ {
...@@ -571,9 +572,20 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv ) ...@@ -571,9 +572,20 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
Abc_Print( -1, "Command line switch \"-N\" should be followed by a positive integer.\n" ); Abc_Print( -1, "Command line switch \"-N\" should be followed by a positive integer.\n" );
goto usage; goto usage;
} }
Degree = atoi(argv[globalUtilOptind]); FanMin = atoi(argv[globalUtilOptind]);
globalUtilOptind++; globalUtilOptind++;
if ( Degree < 0 ) if ( FanMin < 0 )
goto usage;
break;
case 'M':
if ( globalUtilOptind >= argc )
{
Abc_Print( -1, "Command line switch \"-M\" should be followed by a positive integer.\n" );
goto usage;
}
FanMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( FanMax < 0 )
goto usage; goto usage;
break; break;
case 'a': case 'a':
...@@ -605,9 +617,9 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv ) ...@@ -605,9 +617,9 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
// modify the current network // modify the current network
if ( fOldAlgo ) if ( fOldAlgo )
pNtkRes = Abc_SclPerformBuffering( pNtk, Degree, fUseInvs, fVerbose ); pNtkRes = Abc_SclPerformBuffering( pNtk, FanMax, fUseInvs, fVerbose );
else else
pNtkRes = Abc_SclBufPerform( pNtk, fVerbose ); pNtkRes = Abc_SclBufPerform( pNtk, FanMin, FanMax, fVerbose );
if ( pNtkRes == NULL ) if ( pNtkRes == NULL )
{ {
Abc_Print( -1, "The command has failed.\n" ); Abc_Print( -1, "The command has failed.\n" );
...@@ -618,9 +630,10 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv ) ...@@ -618,9 +630,10 @@ int Scl_CommandBuffer( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0; return 0;
usage: usage:
fprintf( pAbc->Err, "usage: buffer [-N num] [-aivh]\n" ); fprintf( pAbc->Err, "usage: buffer [-NM num] [-aivh]\n" );
fprintf( pAbc->Err, "\t performs buffering of the mapped network\n" ); fprintf( pAbc->Err, "\t performs buffering of the mapped network\n" );
fprintf( pAbc->Err, "\t-N <num> : the max allowed fanout count of node/buffer [default = %d]\n", Degree ); fprintf( pAbc->Err, "\t-N <num> : the min fanout considered by the algorithm [default = %d]\n", FanMin );
fprintf( pAbc->Err, "\t-M <num> : the max allowed fanout count of node/buffer [default = %d]\n", FanMax );
fprintf( pAbc->Err, "\t-a : toggle using old algorithm [default = %s]\n", fOldAlgo? "yes": "no" ); fprintf( pAbc->Err, "\t-a : toggle using old algorithm [default = %s]\n", fOldAlgo? "yes": "no" );
fprintf( pAbc->Err, "\t-i : toggle using interters instead of buffers [default = %s]\n", fUseInvs? "yes": "no" ); fprintf( pAbc->Err, "\t-i : toggle using interters instead of buffers [default = %s]\n", fUseInvs? "yes": "no" );
fprintf( pAbc->Err, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" ); fprintf( pAbc->Err, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" );
......
/**CFile****************************************************************
FileName [sclBuff.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Buffering algorithms.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclBuff.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sclSize.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Make sure the network is in topo order without dangling nodes.]
Description [Returns 1 iff the network is fine.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose )
{
Abc_Obj_t * pObj, * pFanin;
int i, k, fFlag = 1;
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_NodeSetTravIdCurrent( pObj );
Abc_NtkForEachNode( p, pObj, i )
{
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( !Abc_NodeIsTravIdCurrent( pFanin ) )
printf( "obj %d and its fanin %d are not in the topo order\n", Abc_ObjId(pObj), Abc_ObjId(pFanin) ), fFlag = 0;
Abc_NodeSetTravIdCurrent( pObj );
if ( Abc_ObjFanoutNum(pObj) == 0 )
printf( "node %d has no fanout\n", Abc_ObjId(pObj) ), fFlag = 0;
if ( !fFlag )
break;
}
if ( fFlag && fVerbose )
printf( "The network is in topo order and no dangling nodes.\n" );
return fFlag;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk2( Abc_Ntk_t * p )
{
Abc_Obj_t * pObj, * pFanout;
int i, k;
Abc_NtkStartReverseLevels( p, 0 );
Abc_NtkForEachNode( p, pObj, i )
{
if ( Abc_ObjFanoutNum(pObj) <= 3 )
continue;
printf( "Node %5d (%2d) : fans = %3d ", i, Abc_ObjLevel(pObj), Abc_ObjFanoutNum(pObj) );
Abc_ObjForEachFanout( pObj, pFanout, k )
printf( "%d ", Abc_ObjReverseLevel(pFanout) );
printf( "\n" );
}
return 1;
}
/**Function*************************************************************
Synopsis [Performs buffering of the mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeCompareLevels( Abc_Obj_t ** pp1, Abc_Obj_t ** pp2 )
{
int Diff = Abc_ObjLevel(*pp1) - Abc_ObjLevel(*pp2);
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
Diff = (*pp1)->Id - (*pp2)->Id; // needed to make qsort() platform-infependent
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
return 0;
}
int Abc_SclComputeReverseLevel( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i, Level = 0;
Abc_ObjForEachFanout( pObj, pFanout, i )
Level = Abc_MaxInt( Level, pFanout->Level );
return Level + 1;
}
Abc_Obj_t * Abc_SclPerformBufferingOne( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose )
{
Vec_Ptr_t * vFanouts;
Abc_Obj_t * pBuffer, * pFanout;
int i, Degree0 = Degree;
assert( Abc_ObjFanoutNum(pObj) > Degree );
// collect fanouts and sort by reverse level
vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) );
Abc_NodeCollectFanouts( pObj, vFanouts );
Vec_PtrSort( vFanouts, (int (*)(void))Abc_NodeCompareLevels );
// select the first Degree fanouts
if ( fUseInvs )
pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL );
else
pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL );
// check if it is possible to not increase level
if ( Vec_PtrSize(vFanouts) < 2 * Degree )
{
Abc_Obj_t * pFanPrev = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Vec_PtrSize(vFanouts)-1-Degree);
Abc_Obj_t * pFanThis = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Degree-1);
Abc_Obj_t * pFanLast = (Abc_Obj_t *)Vec_PtrEntryLast(vFanouts);
if ( Abc_ObjLevel(pFanThis) == Abc_ObjLevel(pFanLast) &&
Abc_ObjLevel(pFanPrev) < Abc_ObjLevel(pFanThis) )
{
// find the first one whose level is the same as last
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
if ( Abc_ObjLevel(pFanout) == Abc_ObjLevel(pFanLast) )
break;
assert( i < Vec_PtrSize(vFanouts) );
if ( i > 1 )
Degree = i;
}
// make the last two more well-balanced
if ( Degree == Degree0 && Degree > Vec_PtrSize(vFanouts) - Degree )
Degree = Vec_PtrSize(vFanouts)/2 + (Vec_PtrSize(vFanouts) & 1);
assert( Degree <= Degree0 );
}
// select fanouts
Vec_PtrForEachEntryStop( Abc_Obj_t *, vFanouts, pFanout, i, Degree )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
if ( fVerbose )
{
printf( "%5d : ", Abc_ObjId(pObj) );
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
printf( "%d%s ", Abc_ObjLevel(pFanout), i == Degree-1 ? " " : "" );
printf( "\n" );
}
Vec_PtrFree( vFanouts );
Abc_ObjAddFanin( pBuffer, pObj );
pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer );
return pBuffer;
}
void Abc_SclPerformBuffering_rec( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose )
{
Abc_Obj_t * pFanout;
int i;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
pObj->Level = 0;
if ( Abc_ObjIsCo(pObj) )
return;
assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) );
// buffer fanouts and collect reverse levels
Abc_ObjForEachFanout( pObj, pFanout, i )
Abc_SclPerformBuffering_rec( pFanout, Degree, fUseInvs, fVerbose );
// perform buffering as long as needed
while ( Abc_ObjFanoutNum(pObj) > Degree )
Abc_SclPerformBufferingOne( pObj, Degree, fUseInvs, fVerbose );
// compute the new level of the node
pObj->Level = Abc_SclComputeReverseLevel( pObj );
}
Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fUseInvs, int fVerbose )
{
Vec_Int_t * vCiLevs;
Abc_Ntk_t * pNew;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkHasMapping(p) );
if ( fUseInvs )
printf( "Warning!!! Using inverters instead of buffers.\n" );
// remember CI levels
vCiLevs = Vec_IntAlloc( Abc_NtkCiNum(p) );
Abc_NtkForEachCi( p, pObj, i )
Vec_IntPush( vCiLevs, Abc_ObjLevel(pObj) );
// perform buffering
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_SclPerformBuffering_rec( pObj, Degree, fUseInvs, fVerbose );
// recompute logic levels
Abc_NtkForEachCi( p, pObj, i )
pObj->Level = Vec_IntEntry( vCiLevs, i );
Abc_NtkForEachNode( p, pObj, i )
Abc_ObjLevelNew( pObj );
Vec_IntFree( vCiLevs );
// duplication in topo order
pNew = Abc_NtkDupDfs( p );
Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
...@@ -59,6 +59,7 @@ struct Buf_Man_t_ ...@@ -59,6 +59,7 @@ struct Buf_Man_t_
int nDuplicate; int nDuplicate;
int nBranch0; int nBranch0;
int nBranch1; int nBranch1;
int nBranchCrit;
}; };
static inline int Abc_BufNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vArr, Abc_ObjId(pObj) ); } static inline int Abc_BufNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vArr, Abc_ObjId(pObj) ); }
...@@ -76,6 +77,177 @@ static inline int Abc_BufEdgeSlack( Buf_Man_t * p, Abc_Obj_t * pObj, Abc_Obj_t ...@@ -76,6 +77,177 @@ static inline int Abc_BufEdgeSlack( Buf_Man_t * p, Abc_Obj_t * pObj, Abc_Obj_t
/**Function************************************************************* /**Function*************************************************************
Synopsis [Make sure the network is in topo order without dangling nodes.]
Description [Returns 1 iff the network is fine.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose )
{
Abc_Obj_t * pObj, * pFanin;
int i, k, fFlag = 1;
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_NodeSetTravIdCurrent( pObj );
Abc_NtkForEachNode( p, pObj, i )
{
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( !Abc_NodeIsTravIdCurrent( pFanin ) )
printf( "obj %d and its fanin %d are not in the topo order\n", Abc_ObjId(pObj), Abc_ObjId(pFanin) ), fFlag = 0;
Abc_NodeSetTravIdCurrent( pObj );
if ( Abc_ObjFanoutNum(pObj) == 0 )
printf( "node %d has no fanout\n", Abc_ObjId(pObj) ), fFlag = 0;
if ( !fFlag )
break;
}
if ( fFlag && fVerbose )
printf( "The network is in topo order and no dangling nodes.\n" );
return fFlag;
}
/**Function*************************************************************
Synopsis [Performs buffering of the mapped network (old code).]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeCompareLevels( Abc_Obj_t ** pp1, Abc_Obj_t ** pp2 )
{
int Diff = Abc_ObjLevel(*pp1) - Abc_ObjLevel(*pp2);
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
Diff = (*pp1)->Id - (*pp2)->Id; // needed to make qsort() platform-infependent
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
return 0;
}
int Abc_SclComputeReverseLevel( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i, Level = 0;
Abc_ObjForEachFanout( pObj, pFanout, i )
Level = Abc_MaxInt( Level, pFanout->Level );
return Level + 1;
}
Abc_Obj_t * Abc_SclPerformBufferingOne( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose )
{
Vec_Ptr_t * vFanouts;
Abc_Obj_t * pBuffer, * pFanout;
int i, Degree0 = Degree;
assert( Abc_ObjFanoutNum(pObj) > Degree );
// collect fanouts and sort by reverse level
vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) );
Abc_NodeCollectFanouts( pObj, vFanouts );
Vec_PtrSort( vFanouts, (int (*)(void))Abc_NodeCompareLevels );
// select the first Degree fanouts
if ( fUseInvs )
pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL );
else
pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL );
// check if it is possible to not increase level
if ( Vec_PtrSize(vFanouts) < 2 * Degree )
{
Abc_Obj_t * pFanPrev = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Vec_PtrSize(vFanouts)-1-Degree);
Abc_Obj_t * pFanThis = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Degree-1);
Abc_Obj_t * pFanLast = (Abc_Obj_t *)Vec_PtrEntryLast(vFanouts);
if ( Abc_ObjLevel(pFanThis) == Abc_ObjLevel(pFanLast) &&
Abc_ObjLevel(pFanPrev) < Abc_ObjLevel(pFanThis) )
{
// find the first one whose level is the same as last
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
if ( Abc_ObjLevel(pFanout) == Abc_ObjLevel(pFanLast) )
break;
assert( i < Vec_PtrSize(vFanouts) );
if ( i > 1 )
Degree = i;
}
// make the last two more well-balanced
if ( Degree == Degree0 && Degree > Vec_PtrSize(vFanouts) - Degree )
Degree = Vec_PtrSize(vFanouts)/2 + (Vec_PtrSize(vFanouts) & 1);
assert( Degree <= Degree0 );
}
// select fanouts
Vec_PtrForEachEntryStop( Abc_Obj_t *, vFanouts, pFanout, i, Degree )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
if ( fVerbose )
{
printf( "%5d : ", Abc_ObjId(pObj) );
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
printf( "%d%s ", Abc_ObjLevel(pFanout), i == Degree-1 ? " " : "" );
printf( "\n" );
}
Vec_PtrFree( vFanouts );
Abc_ObjAddFanin( pBuffer, pObj );
pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer );
return pBuffer;
}
void Abc_SclPerformBuffering_rec( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose )
{
Abc_Obj_t * pFanout;
int i;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
pObj->Level = 0;
if ( Abc_ObjIsCo(pObj) )
return;
assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) );
// buffer fanouts and collect reverse levels
Abc_ObjForEachFanout( pObj, pFanout, i )
Abc_SclPerformBuffering_rec( pFanout, Degree, fUseInvs, fVerbose );
// perform buffering as long as needed
while ( Abc_ObjFanoutNum(pObj) > Degree )
Abc_SclPerformBufferingOne( pObj, Degree, fUseInvs, fVerbose );
// compute the new level of the node
pObj->Level = Abc_SclComputeReverseLevel( pObj );
}
Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fUseInvs, int fVerbose )
{
Vec_Int_t * vCiLevs;
Abc_Ntk_t * pNew;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkHasMapping(p) );
if ( fUseInvs )
printf( "Warning!!! Using inverters instead of buffers.\n" );
// remember CI levels
vCiLevs = Vec_IntAlloc( Abc_NtkCiNum(p) );
Abc_NtkForEachCi( p, pObj, i )
Vec_IntPush( vCiLevs, Abc_ObjLevel(pObj) );
// perform buffering
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_SclPerformBuffering_rec( pObj, Degree, fUseInvs, fVerbose );
// recompute logic levels
Abc_NtkForEachCi( p, pObj, i )
pObj->Level = Vec_IntEntry( vCiLevs, i );
Abc_NtkForEachNode( p, pObj, i )
Abc_ObjLevelNew( pObj );
Vec_IntFree( vCiLevs );
// duplication in topo order
pNew = Abc_NtkDupDfs( p );
Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew;
}
/**Function*************************************************************
Synopsis [] Synopsis []
Description [] Description []
...@@ -134,8 +306,10 @@ void Abc_BufAddToQue( Buf_Man_t * p, Abc_Obj_t * pObj ) ...@@ -134,8 +306,10 @@ void Abc_BufAddToQue( Buf_Man_t * p, Abc_Obj_t * pObj )
if ( Abc_ObjFanoutNum(pObj) < p->nFanMin ) if ( Abc_ObjFanoutNum(pObj) < p->nFanMin )
return; return;
Vec_FltWriteEntry( p->vCounts, Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) ); Vec_FltWriteEntry( p->vCounts, Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) );
assert( !Vec_QueIsMember(p->vQue, Abc_ObjId(pObj)) ); if ( Vec_QueIsMember(p->vQue, Abc_ObjId(pObj)) )
Vec_QuePush( p->vQue, Abc_ObjId(pObj) ); Vec_QueUpdate( p->vQue, Abc_ObjId(pObj) );
else
Vec_QuePush( p->vQue, Abc_ObjId(pObj) );
} }
...@@ -241,7 +415,7 @@ void Abc_BufUpdateDep( Buf_Man_t * p, Abc_Obj_t * pObj ) ...@@ -241,7 +415,7 @@ void Abc_BufUpdateDep( Buf_Man_t * p, Abc_Obj_t * pObj )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk ) Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk, int FanMin, int FanMax )
{ {
Buf_Man_t * p; Buf_Man_t * p;
Abc_Obj_t * pObj; Abc_Obj_t * pObj;
...@@ -249,8 +423,8 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk ) ...@@ -249,8 +423,8 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk )
int i; int i;
p = ABC_CALLOC( Buf_Man_t, 1 ); p = ABC_CALLOC( Buf_Man_t, 1 );
p->pNtk = pNtk; p->pNtk = pNtk;
p->nFanMin = 6; p->nFanMin = FanMin;
// p->nFanMax = 16; p->nFanMax = FanMax;
// allocate arrays // allocate arrays
p->nObjStart = Abc_NtkObjNumMax(p->pNtk); p->nObjStart = Abc_NtkObjNumMax(p->pNtk);
p->nObjAlloc = (6 * Abc_NtkObjNumMax(p->pNtk) / 3) + 100; p->nObjAlloc = (6 * Abc_NtkObjNumMax(p->pNtk) / 3) + 100;
...@@ -279,15 +453,14 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk ) ...@@ -279,15 +453,14 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk )
Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i ) Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufComputeDep( p, pObj ); Abc_BufComputeDep( p, pObj );
Abc_BufUpdateGlobal( p ); Abc_BufUpdateGlobal( p );
// Abc_NtkForEachNode( p->pNtk, pObj, i )
// printf( "%4d : %4d %4d\n", i, Abc_BufNodeArr(p, pObj), Abc_BufNodeDep(p, pObj) );
// create fanout queue // create fanout queue
Abc_NtkForEachCi( p->pNtk, pObj, i ) Abc_NtkForEachCi( p->pNtk, pObj, i )
Abc_BufAddToQue( p, pObj ); Abc_BufAddToQue( p, pObj );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufAddToQue( p, pObj ); Abc_BufAddToQue( p, pObj );
Vec_PtrFree( vNodes ); Vec_PtrFree( vNodes );
// print everything
// Abc_NtkForEachNode( p->pNtk, pObj, i )
// printf( "%4d : %4d %4d\n", i, Abc_BufNodeArr(p, pObj), Abc_BufNodeDep(p, pObj) );
p->vDelays = Vec_IntAlloc( 100 ); p->vDelays = Vec_IntAlloc( 100 );
p->vOrder = Vec_IntAlloc( 100 ); p->vOrder = Vec_IntAlloc( 100 );
p->vNonCrit = Vec_IntAlloc( 100 ); p->vNonCrit = Vec_IntAlloc( 100 );
...@@ -297,8 +470,8 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk ) ...@@ -297,8 +470,8 @@ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk )
} }
void Buf_ManStop( Buf_Man_t * p ) void Buf_ManStop( Buf_Man_t * p )
{ {
printf( "Sep = %d. Dup = %d. Br0 = %d. Br1 = %d. ", printf( "Sep = %d. Dup = %d. Br0 = %d. Br1 = %d. BrC = %d. ",
p->nSeparate, p->nDuplicate, p->nBranch0, p->nBranch1 ); p->nSeparate, p->nDuplicate, p->nBranch0, p->nBranch1, p->nBranchCrit );
printf( "Orig = %d. Add = %d. Rem = %d.\n", printf( "Orig = %d. Add = %d. Rem = %d.\n",
p->nObjStart, Abc_NtkObjNumMax(p->pNtk) - p->nObjStart, p->nObjStart, Abc_NtkObjNumMax(p->pNtk) - p->nObjStart,
p->nObjAlloc - Abc_NtkObjNumMax(p->pNtk) ); p->nObjAlloc - Abc_NtkObjNumMax(p->pNtk) );
...@@ -337,17 +510,14 @@ Vec_Int_t * Abc_BufSortByDelay( Buf_Man_t * p, int iPivot ) ...@@ -337,17 +510,14 @@ Vec_Int_t * Abc_BufSortByDelay( Buf_Man_t * p, int iPivot )
Abc_ObjForEachFanout( pObj, pFanout, i ) Abc_ObjForEachFanout( pObj, pFanout, i )
{ {
int Slack = Abc_BufEdgeSlack(p, pObj, pFanout); int Slack = Abc_BufEdgeSlack(p, pObj, pFanout);
if ( Slack < 0 ) assert( Slack >= 0 );
printf( "%d ", Slack );
Vec_IntPush( p->vDelays, Abc_MaxInt(0, Slack) ); Vec_IntPush( p->vDelays, Abc_MaxInt(0, Slack) );
} }
pOrder = Abc_QuickSortCost( Vec_IntArray(p->vDelays), Vec_IntSize(p->vDelays), 0 ); pOrder = Abc_QuickSortCost( Vec_IntArray(p->vDelays), Vec_IntSize(p->vDelays), 0 );
//Vec_IntPrint( p->vDelays );
Vec_IntClear( p->vOrder ); Vec_IntClear( p->vOrder );
for ( i = 0; i < Vec_IntSize(p->vDelays); i++ ) for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
Vec_IntPush( p->vOrder, Abc_ObjId(Abc_ObjFanout(pObj, pOrder[i])) ); Vec_IntPush( p->vOrder, Abc_ObjId(Abc_ObjFanout(pObj, pOrder[i])) );
ABC_FREE( pOrder ); ABC_FREE( pOrder );
// print
// for ( i = 0; i < Vec_IntSize(p->vDelays); i++ ) // for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
// printf( "%5d - %5d ", Vec_IntEntry(p->vOrder, i), Abc_BufEdgeSlack(p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(p->vOrder, i))) ); // printf( "%5d - %5d ", Vec_IntEntry(p->vOrder, i), Abc_BufEdgeSlack(p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(p->vOrder, i))) );
return p->vOrder; return p->vOrder;
...@@ -379,6 +549,34 @@ void Abc_BufPrintOne( Buf_Man_t * p, int iPivot ) ...@@ -379,6 +549,34 @@ void Abc_BufPrintOne( Buf_Man_t * p, int iPivot )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
void Abc_BufReplaceBufsByInvs( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj, * pInv;
int i, Counter = 0;
Abc_NtkForEachNode( pNtk, pObj, i )
{
if ( !Abc_NodeIsBuf(pObj) )
continue;
assert( pObj->pData == Mio_LibraryReadBuf((Mio_Library_t *)pNtk->pManFunc) );
pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc);
pInv = Abc_NtkCreateNodeInv( pNtk, Abc_ObjFanin0(pObj) );
Abc_ObjPatchFanin( pObj, Abc_ObjFanin0(pObj), pInv );
Counter++;
}
printf( "Replaced %d buffers by invertor pairs.\n", Counter );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder ) int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
{ {
Abc_Obj_t * pObj, * pFanout; Abc_Obj_t * pObj, * pFanout;
...@@ -388,17 +586,6 @@ int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder ) ...@@ -388,17 +586,6 @@ int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
Average += Abc_BufEdgeSlack( p, pObj, pFanout ); Average += Abc_BufEdgeSlack( p, pObj, pFanout );
return Average / Vec_IntSize(vOrder); return Average / Vec_IntSize(vOrder);
} }
int Abc_BufCountNonCritical_( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
{
Abc_Obj_t * pObj, * pFanout;
int i;
Vec_IntClear( p->vNonCrit );
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 5*BUF_SCALE/2 )
Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) );
return Vec_IntSize(p->vNonCrit);
}
Abc_Obj_t * Abc_BufFindNonBuffDriver( Buf_Man_t * p, Abc_Obj_t * pObj ) Abc_Obj_t * Abc_BufFindNonBuffDriver( Buf_Man_t * p, Abc_Obj_t * pObj )
{ {
return (Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj)) ? Abc_BufFindNonBuffDriver(p, Abc_ObjFanin0(pObj)) : pObj; return (Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj)) ? Abc_BufFindNonBuffDriver(p, Abc_ObjFanin0(pObj)) : pObj;
...@@ -421,35 +608,30 @@ int Abc_BufCountNonCritical( Buf_Man_t * p, Abc_Obj_t * pObj ) ...@@ -421,35 +608,30 @@ int Abc_BufCountNonCritical( Buf_Man_t * p, Abc_Obj_t * pObj )
int i; int i;
Vec_IntClear( p->vNonCrit ); Vec_IntClear( p->vNonCrit );
Abc_ObjForEachFanout( pObj, pFanout, i ) Abc_ObjForEachFanout( pObj, pFanout, i )
if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 3*BUF_SCALE ) if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 5*BUF_SCALE/2 )
Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) ); Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) );
return Vec_IntSize(p->vNonCrit); return Vec_IntSize(p->vNonCrit);
} }
void Abc_BufPerformOne( Buf_Man_t * p, int iPivot, int fVerbose ) void Abc_BufPerformOne( Buf_Man_t * p, int iPivot, int fVerbose )
{ {
Abc_Obj_t * pObj, * pFanout; Abc_Obj_t * pObj, * pFanout;
Vec_Int_t * vOrder;
int Fastest, Slowest, Average;
int i, j, nCrit, nNonCrit; int i, j, nCrit, nNonCrit;
int DelayMax = p->DelayMax; int DelayMax = p->DelayMax;
assert( Abc_NtkObjNumMax(p->pNtk) + 30 < p->nObjAlloc );
pObj = Abc_NtkObj( p->pNtk, iPivot ); pObj = Abc_NtkObj( p->pNtk, iPivot );
// assert( Vec_FltEntry(p->vCounts, iPivot) == (float)Abc_ObjFanoutNum(pObj) );
nNonCrit = Abc_BufCountNonCritical( p, pObj ); nNonCrit = Abc_BufCountNonCritical( p, pObj );
nCrit = Abc_ObjFanoutNum(pObj) - nNonCrit; nCrit = Abc_ObjFanoutNum(pObj) - nNonCrit;
if ( fVerbose ) if ( fVerbose )
{ {
vOrder = Abc_BufSortByDelay( p, iPivot );
//Abc_BufPrintOne( p, iPivot ); //Abc_BufPrintOne( p, iPivot );
Fastest = Abc_BufEdgeSlack( p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(vOrder,0)) ); printf( "ObjId = %6d : %-10s FI = %d. FO =%4d. Crit =%4d. ",
Slowest = Abc_BufEdgeSlack( p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntryLast(vOrder)) ); Abc_ObjId(pObj), Mio_GateReadName((Mio_Gate_t *)pObj->pData), Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), nCrit );
Average = Abc_BufComputeAverage( p, iPivot, vOrder );
printf( "FI =%2d. FO =%4d. ", Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj) );
printf( "Fastest =%5d. Slowest =%5d. Ave =%5d. Crit =%3d. NonCrit =%3d. ", Fastest, Slowest, Average, nCrit, nNonCrit );
} }
// decide based on these // consider three cases
assert( Abc_NtkObjNumMax(p->pNtk) + 30 < p->nObjAlloc );
if ( nCrit > 0 && nNonCrit > 1 ) if ( nCrit > 0 && nNonCrit > 1 )
{ {
// separate using buffer // (1) both critical and non-critical are present - split them by adding buffer
Abc_Obj_t * pBuffer = Abc_NtkCreateNodeBuf( p->pNtk, pObj ); Abc_Obj_t * pBuffer = Abc_NtkCreateNodeBuf( p->pNtk, pObj );
Abc_NtkForEachObjVec( p->vNonCrit, p->pNtk, pFanout, i ) Abc_NtkForEachObjVec( p->vNonCrit, p->pNtk, pFanout, i )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer ); Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
...@@ -463,10 +645,9 @@ printf( "Fastest =%5d. Slowest =%5d. Ave =%5d. Crit =%3d. NonCrit =%3d. ", Fas ...@@ -463,10 +645,9 @@ printf( "Fastest =%5d. Slowest =%5d. Ave =%5d. Crit =%3d. NonCrit =%3d. ", Fas
if ( fVerbose ) if ( fVerbose )
printf( "Adding buffer\n" ); printf( "Adding buffer\n" );
} }
else if ( nCrit > 0 && Abc_ObjIsNode(pObj) && Abc_ObjFanoutNum(pObj) > p->nFanMin )//&& Abc_ObjFaninNum(pObj) < 2 )
else if ( nNonCrit < 2 && Abc_ObjFanoutNum(pObj) > 4 && Abc_ObjFanoutNum(pObj) < 12 && Abc_ObjIsNode(pObj) )
{ {
// duplicate // (2) only critical are present - duplicate
Abc_Obj_t * pClone = Abc_NtkDupObj( p->pNtk, pObj, 0 ); Abc_Obj_t * pClone = Abc_NtkDupObj( p->pNtk, pObj, 0 );
Abc_ObjForEachFanin( pObj, pFanout, i ) Abc_ObjForEachFanin( pObj, pFanout, i )
Abc_ObjAddFanin( pClone, pFanout ); Abc_ObjAddFanin( pClone, pFanout );
...@@ -480,26 +661,24 @@ printf( "Adding buffer\n" ); ...@@ -480,26 +661,24 @@ printf( "Adding buffer\n" );
Abc_BufUpdateDep( p, pClone ); Abc_BufUpdateDep( p, pClone );
Abc_BufAddToQue( p, pObj ); Abc_BufAddToQue( p, pObj );
Abc_BufAddToQue( p, pClone ); Abc_BufAddToQue( p, pClone );
Abc_ObjForEachFanin( pObj, pFanout, i )
Abc_BufAddToQue( p, pFanout );
p->nDuplicate++; p->nDuplicate++;
// add fanins to queue
if ( fVerbose ) if ( fVerbose )
printf( "Duplicating node\n" ); printf( "Duplicating node\n" );
} }
else if ( (nCrit > 0 && Abc_ObjFanoutNum(pObj) > 8) || Abc_ObjFanoutNum(pObj) > p->nFanMax )
else if ( Abc_ObjFanoutNum(pObj) >= 12 )
{ {
// branch (consider buffer) // (2) only critical or only non-critical - add buffer/inverter tree
// int nFan = Abc_ObjFanoutNum(pObj); int nDegree, n1Degree, n1Number, nFirst;
int nFan = 64;
double Res = pow(nFan, 0.34);
int Temp = (int)pow(Abc_ObjFanoutNum(pObj), 0.34);
int nDegree = Abc_MinInt( 4, (int)pow(Abc_ObjFanoutNum(pObj), 0.34) );
int n1Degree = Abc_ObjFanoutNum(pObj) / nDegree + 1;
int n1Number = Abc_ObjFanoutNum(pObj) % nDegree;
int nFirst = n1Degree * n1Number;
// Abc_Obj_t * pNonBuff = Abc_BufFindNonBuffDriver( p, pObj );
// create inverters
int iFirstBuf = Abc_NtkObjNumMax( p->pNtk ); int iFirstBuf = Abc_NtkObjNumMax( p->pNtk );
// nDegree = Abc_MinInt( 3, (int)pow(Abc_ObjFanoutNum(pObj), 0.34) );
nDegree = Abc_MinInt( 10, (int)pow(Abc_ObjFanoutNum(pObj), 0.5) );
n1Degree = Abc_ObjFanoutNum(pObj) / nDegree + 1;
n1Number = Abc_ObjFanoutNum(pObj) % nDegree;
nFirst = n1Degree * n1Number;
p->nBranchCrit += (nCrit > 0);
// create inverters
Abc_NodeCollectFanouts( pObj, p->vFanouts ); Abc_NodeCollectFanouts( pObj, p->vFanouts );
if ( Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj) ) if ( Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj) )
{ {
...@@ -520,16 +699,13 @@ printf( "Adding %d inverters\n", nDegree ); ...@@ -520,16 +699,13 @@ printf( "Adding %d inverters\n", nDegree );
if ( fVerbose ) if ( fVerbose )
printf( "Adding %d buffers\n", nDegree ); printf( "Adding %d buffers\n", nDegree );
} }
// create inverters // connect inverters
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanouts, pFanout, i ) Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanouts, pFanout, i )
{ {
j = (i < nFirst) ? i/n1Degree : n1Number + ((i - nFirst)/(n1Degree - 1)); j = (i < nFirst) ? i/n1Degree : n1Number + ((i - nFirst)/(n1Degree - 1));
assert( j >= 0 && j < nDegree ); assert( j >= 0 && j < nDegree );
Abc_ObjPatchFanin( pFanout, pObj, Abc_NtkObj(p->pNtk, iFirstBuf + j) ); Abc_ObjPatchFanin( pFanout, pObj, Abc_NtkObj(p->pNtk, iFirstBuf + j) );
} }
// remove node
// if ( Abc_ObjIsNode(pObj) && Abc_ObjFanoutNum(pObj) == 0 )
// Abc_NtkDeleteObj_rec( pObj, 1 );
// update timing // update timing
for ( i = 0; i < nDegree; i++ ) for ( i = 0; i < nDegree; i++ )
Abc_BufCreateEdges( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) ); Abc_BufCreateEdges( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
...@@ -548,19 +724,18 @@ printf( "Doing nothing\n" ); ...@@ -548,19 +724,18 @@ printf( "Doing nothing\n" );
// if ( DelayMax != p->DelayMax ) // if ( DelayMax != p->DelayMax )
// printf( "%d (%.2f) ", p->DelayMax, 1.0 * p->DelayMax * p->DelayInv / BUF_SCALE ); // printf( "%d (%.2f) ", p->DelayMax, 1.0 * p->DelayMax * p->DelayInv / BUF_SCALE );
} }
Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int fVerbose ) Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fVerbose )
{ {
Abc_Ntk_t * pNew; Abc_Ntk_t * pNew;
Buf_Man_t * p = Buf_ManStart( pNtk ); Buf_Man_t * p = Buf_ManStart( pNtk, FanMin, FanMax );
int i, Limit = ABC_INFINITY; int i, Limit = ABC_INFINITY;
// int i, Limit = 3;
for ( i = 0; i < Limit && Vec_QueSize(p->vQue); i++ ) for ( i = 0; i < Limit && Vec_QueSize(p->vQue); i++ )
Abc_BufPerformOne( p, Vec_QuePop(p->vQue), fVerbose ); Abc_BufPerformOne( p, Vec_QuePop(p->vQue), fVerbose );
Buf_ManStop( p ); Buf_ManStop( p );
// duplication in topo order // Abc_BufReplaceBufsByInvs( pNtk );
// duplicate network in topo order
pNew = Abc_NtkDupDfs( pNtk ); pNew = Abc_NtkDupDfs( pNtk );
Abc_SclCheckNtk( pNew, fVerbose ); Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew; return pNew;
} }
......
...@@ -711,14 +711,16 @@ void Abc_SclHashCells( SC_Lib * p ) ...@@ -711,14 +711,16 @@ void Abc_SclHashCells( SC_Lib * p )
} }
int Abc_SclCellFind( SC_Lib * p, char * pName ) int Abc_SclCellFind( SC_Lib * p, char * pName )
{ {
return *Abc_SclHashLookup( p, pName ); int *pPlace = Abc_SclHashLookup( p, pName );
return pPlace ? *pPlace : -1;
} }
int Abc_SclClassCellNum( SC_Cell * pClass ) int Abc_SclClassCellNum( SC_Cell * pClass )
{ {
SC_Cell * pCell; SC_Cell * pCell;
int i, Count = 0; int i, Count = 0;
SC_RingForEachCell( pClass, pCell, i ) SC_RingForEachCell( pClass, pCell, i )
Count++; if ( !pCell->fSkip )
Count++;
return Count; return Count;
} }
...@@ -955,14 +957,15 @@ float Abc_SclComputeDelayClassPin( SC_Lib * p, SC_Cell * pRepr, int iPin, float ...@@ -955,14 +957,15 @@ float Abc_SclComputeDelayClassPin( SC_Lib * p, SC_Cell * pRepr, int iPin, float
float Delay = 0; float Delay = 0;
int i, Count = 0; int i, Count = 0;
SC_RingForEachCell( pRepr, pCell, i ) SC_RingForEachCell( pRepr, pCell, i )
Count++;
SC_RingForEachCell( pRepr, pCell, i )
{ {
if ( pRepr == pCell && Count > 1 ) // skip the first gate if ( pCell->fSkip )
continue; continue;
// if ( pRepr == pCell ) // skip the first gate
// continue;
Delay += Abc_SclComputeDelayCellPin( p, pCell, iPin, Slew, Gain ); Delay += Abc_SclComputeDelayCellPin( p, pCell, iPin, Slew, Gain );
Count++;
} }
return Delay / Abc_MaxInt(1, Count-1); return Delay / Abc_MaxInt(1, Count);
} }
float Abc_SclComputeAreaClass( SC_Cell * pRepr ) float Abc_SclComputeAreaClass( SC_Cell * pRepr )
{ {
...@@ -971,6 +974,8 @@ float Abc_SclComputeAreaClass( SC_Cell * pRepr ) ...@@ -971,6 +974,8 @@ float Abc_SclComputeAreaClass( SC_Cell * pRepr )
int i, Count = 0; int i, Count = 0;
SC_RingForEachCell( pRepr, pCell, i ) SC_RingForEachCell( pRepr, pCell, i )
{ {
if ( pCell->fSkip )
continue;
Area += pCell->area; Area += pCell->area;
Count++; Count++;
} }
...@@ -988,6 +993,35 @@ float Abc_SclComputeAreaClass( SC_Cell * pRepr ) ...@@ -988,6 +993,35 @@ float Abc_SclComputeAreaClass( SC_Cell * pRepr )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
void Abc_SclMarkSkippedCells( SC_Lib * p )
{
char FileName[1000];
char Buffer[1000], * pName;
SC_Cell * pCell;
FILE * pFile;
int CellId, nSkipped = 0;
sprintf( FileName, "%s.skip", p->pName );
pFile = fopen( FileName, "rb" );
if ( pFile == NULL )
return;
while ( fgets( Buffer, 999, pFile ) != NULL )
{
pName = strtok( Buffer, "\r\n\t " );
if ( pName == NULL )
continue;
CellId = Abc_SclCellFind( p, pName );
if ( CellId == -1 )
{
printf( "Cannot find cell \"%s\" in the library \"%s\".\n", pName, p->pName );
continue;
}
pCell = SC_LibCell( p, CellId );
pCell->fSkip = 1;
nSkipped++;
}
fclose( pFile );
printf( "Marked %d cells for skipping in the library \"%s\".\n", nSkipped, p->pName );
}
void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain ) void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain )
{ {
SC_Cell * pCell, * pRepr; SC_Cell * pCell, * pRepr;
...@@ -998,6 +1032,7 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain ) ...@@ -998,6 +1032,7 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain )
printf( "has %d cells in %d classes. ", printf( "has %d cells in %d classes. ",
Vec_PtrSize(p->vCells), Vec_PtrSize(p->vCellClasses) ); Vec_PtrSize(p->vCells), Vec_PtrSize(p->vCellClasses) );
printf( "Delay estimate is based on slew %.2f and gain %.2f.\n", Slew, Gain ); printf( "Delay estimate is based on slew %.2f and gain %.2f.\n", Slew, Gain );
Abc_SclMarkSkippedCells( p );
// find the longest name // find the longest name
SC_LibForEachCellClass( p, pRepr, k ) SC_LibForEachCellClass( p, pRepr, k )
SC_RingForEachCell( pRepr, pCell, i ) SC_RingForEachCell( pRepr, pCell, i )
...@@ -1017,7 +1052,9 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain ) ...@@ -1017,7 +1052,9 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain )
SC_RingForEachCell( pRepr, pCell, i ) SC_RingForEachCell( pRepr, pCell, i )
{ {
Abc_SclComputeParametersCell( p, pCell, Slew, &ED, &PD ); Abc_SclComputeParametersCell( p, pCell, Slew, &ED, &PD );
printf( " %3d : ", i+1 ); printf( " %3d ", i+1 );
printf( "%s", pCell->fSkip ? "s" : " " );
printf( " : " );
printf( "%-*s ", nLength, pCell->pName ); printf( "%-*s ", nLength, pCell->pName );
printf( "%2d ", pCell->drive_strength ); printf( "%2d ", pCell->drive_strength );
printf( "A =%8.2f ", pCell->area ); printf( "A =%8.2f ", pCell->area );
...@@ -1027,7 +1064,7 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain ) ...@@ -1027,7 +1064,7 @@ void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain )
printf( "C =%5.1f ff ", Abc_SclGatePinCapAve(p, pCell) ); printf( "C =%5.1f ff ", Abc_SclGatePinCapAve(p, pCell) );
printf( "Lm =%5.1f ff ", 0.01 * Gain * Abc_SclGatePinCapAve(p, pCell) ); printf( "Lm =%5.1f ff ", 0.01 * Gain * Abc_SclGatePinCapAve(p, pCell) );
// printf( "MaxS =%5.1f ps ", SC_CellPin(pCell, pCell->n_inputs)->max_out_slew ); // printf( "MaxS =%5.1f ps ", SC_CellPin(pCell, pCell->n_inputs)->max_out_slew );
printf( "Lm2 =%5.0f ff", SC_CellPin(pCell, pCell->n_inputs)->max_out_cap ); printf( "Lm2 =%5.0f ff ", SC_CellPin(pCell, pCell->n_inputs)->max_out_cap );
printf( "\n" ); printf( "\n" );
} }
} }
...@@ -1052,6 +1089,7 @@ Vec_Str_t * Abc_SclDeriveGenlibStr( SC_Lib * p, float Slew, float Gain, int nGat ...@@ -1052,6 +1089,7 @@ Vec_Str_t * Abc_SclDeriveGenlibStr( SC_Lib * p, float Slew, float Gain, int nGat
SC_Cell * pRepr; SC_Cell * pRepr;
SC_Pin * pPin; SC_Pin * pPin;
int i, k, Count = 2; int i, k, Count = 2;
Abc_SclMarkSkippedCells( p );
vStr = Vec_StrAlloc( 1000 ); vStr = Vec_StrAlloc( 1000 );
Vec_StrPrintStr( vStr, "GATE _const0_ 0.00 z=CONST0;\n" ); Vec_StrPrintStr( vStr, "GATE _const0_ 0.00 z=CONST0;\n" );
Vec_StrPrintStr( vStr, "GATE _const1_ 0.00 z=CONST1;\n" ); Vec_StrPrintStr( vStr, "GATE _const1_ 0.00 z=CONST1;\n" );
...@@ -1078,6 +1116,7 @@ Vec_Str_t * Abc_SclDeriveGenlibStr( SC_Lib * p, float Slew, float Gain, int nGat ...@@ -1078,6 +1116,7 @@ Vec_Str_t * Abc_SclDeriveGenlibStr( SC_Lib * p, float Slew, float Gain, int nGat
SC_CellForEachPinIn( pRepr, pPin, k ) SC_CellForEachPinIn( pRepr, pPin, k )
{ {
float Delay = Abc_SclComputeDelayClassPin( p, pRepr, k, Slew, Gain ); float Delay = Abc_SclComputeDelayClassPin( p, pRepr, k, Slew, Gain );
assert( Delay > 0 );
Vec_StrPrintStr( vStr, " PIN " ); Vec_StrPrintStr( vStr, " PIN " );
sprintf( Buffer, "%-4s", pPin->pName ); sprintf( Buffer, "%-4s", pPin->pName );
Vec_StrPrintStr( vStr, Buffer ); Vec_StrPrintStr( vStr, Buffer );
......
...@@ -166,6 +166,7 @@ struct SC_Cell_ ...@@ -166,6 +166,7 @@ struct SC_Cell_
{ {
char * pName; char * pName;
int Id; int Id;
int fSkip; // skip this cell during genlib computation
int seq; // -- set to TRUE by parser if a sequential element int seq; // -- set to TRUE by parser if a sequential element
int unsupp; // -- set to TRUE by parser if cell contains information we cannot handle int unsupp; // -- set to TRUE by parser if cell contains information we cannot handle
float area; float area;
......
...@@ -358,25 +358,37 @@ static inline SC_Cell * Abc_SclObjResiable( SC_Man * p, Abc_Obj_t * pObj, int fU ...@@ -358,25 +358,37 @@ static inline SC_Cell * Abc_SclObjResiable( SC_Man * p, Abc_Obj_t * pObj, int fU
***********************************************************************/ ***********************************************************************/
static inline void Abc_SclDumpStats( SC_Man * p, char * pFileName, abctime Time ) static inline void Abc_SclDumpStats( SC_Man * p, char * pFileName, abctime Time )
{ {
static char FileNameOld[1000] = {0};
static int nNodesOld, nAreaOld, nDelayOld;
FILE * pTable; FILE * pTable;
pTable = fopen( pFileName, "a+" ); pTable = fopen( pFileName, "a+" );
fprintf( pTable, "%s ", p->pNtk->pName ); if ( strcmp( FileNameOld, p->pNtk->pName ) )
fprintf( pTable, "%d ", Abc_NtkPiNum(p->pNtk) ); {
fprintf( pTable, "%d ", Abc_NtkPoNum(p->pNtk) ); sprintf( FileNameOld, "%s", p->pNtk->pName );
fprintf( pTable, "%d ", Abc_NtkNodeNum(p->pNtk) ); fprintf( pTable, "\n" );
fprintf( pTable, "%d ", (int)p->SumArea ); fprintf( pTable, "%s ", p->pNtk->pName );
fprintf( pTable, "%d ", (int)p->ReportDelay ); fprintf( pTable, "%d ", Abc_NtkPiNum(p->pNtk) );
// fprintf( pTable, "%.2f ", 1.0*Time/CLOCKS_PER_SEC ); fprintf( pTable, "%d ", Abc_NtkPoNum(p->pNtk) );
fprintf( pTable, "\n" ); fprintf( pTable, "%d ", (nNodesOld = Abc_NtkNodeNum(p->pNtk)) );
fprintf( pTable, "%d ", (nAreaOld = (int)p->SumArea) );
fprintf( pTable, "%d ", (nDelayOld = (int)p->ReportDelay) );
}
else
{
fprintf( pTable, " " );
fprintf( pTable, "%.1f ", 100.0 * Abc_NtkNodeNum(p->pNtk) / nNodesOld );
fprintf( pTable, "%.1f ", 100.0 * (int)p->SumArea / nAreaOld );
fprintf( pTable, "%.1f ", 100.0 * (int)p->ReportDelay / nDelayOld );
}
// fprintf( pTable, "%.2f ", 1.0*Time/CLOCKS_PER_SEC );
fclose( pTable ); fclose( pTable );
} }
/*=== sclBuff.c ===============================================================*/ /*=== sclBuffer.c ===============================================================*/
extern int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose ); extern int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose );
extern Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fUseInvs, int fVerbose ); extern Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int Degree, int fUseInvs, int fVerbose );
/*=== sclBuffer.c ===============================================================*/ extern Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fVerbose );
extern Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int fVerbose );
/*=== sclDnsize.c ===============================================================*/ /*=== sclDnsize.c ===============================================================*/
extern void Abc_SclDnsizePerform( SC_Lib * pLib, Abc_Ntk_t * pNtk, SC_SizePars * pPars ); extern void Abc_SclDnsizePerform( SC_Lib * pLib, Abc_Ntk_t * pNtk, SC_SizePars * pPars );
/*=== sclLoad.c ===============================================================*/ /*=== sclLoad.c ===============================================================*/
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment