Commit 1d5cb52e by Alan Mishchenko

Improvements to Boolean matching.

parent 61e58b2d
...@@ -23,12 +23,17 @@ ...@@ -23,12 +23,17 @@
#include "sat/bsat/satStore.h" #include "sat/bsat/satStore.h"
#include "sat/cnf/cnf.h" #include "sat/cnf/cnf.h"
#include "misc/extra/extra.h" #include "misc/extra/extra.h"
#include "bool/kit/kit.h"
ABC_NAMESPACE_IMPL_START ABC_NAMESPACE_IMPL_START
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// DECLARATIONS /// /// DECLARATIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
#define IFN_INS 11
#define IFN_WRD (IFN_INS > 6 ? 1 << (IFN_INS-6) : 1)
#define IFN_PAR 1024
// network types // network types
typedef enum { typedef enum {
...@@ -41,10 +46,119 @@ typedef enum { ...@@ -41,10 +46,119 @@ typedef enum {
IF_DSD_PRIME // 6: PRIME IF_DSD_PRIME // 6: PRIME
} If_DsdType_t; } If_DsdType_t;
// object types
static char * Ifn_Symbs[16] = {
NULL, // 0: unknown
"const", // 1: constant
"var", // 2: variable
"()", // 3: AND
"[]", // 4: XOR
"<>", // 5: MUX
"{}" // 6: PRIME
};
typedef struct Ift_Obj_t_ Ift_Obj_t;
typedef struct Ift_Ntk_t_ Ift_Ntk_t;
struct Ift_Obj_t_
{
unsigned Type : 3; // node type
unsigned nFanins : 5; // fanin counter
unsigned iFirst : 8; // first parameter
unsigned Var : 16; // current variable
int Fanins[IFN_INS]; // fanin IDs
};
struct Ift_Ntk_t_
{
// cell structure
int nInps; // inputs
int nObjs; // objects
Ift_Obj_t Nodes[2*IFN_INS]; // nodes
// constraints
int pConstr[IFN_INS]; // constraint pairs
int nConstr; // number of pairs
// user data
int nVars; // variables
int nWords; // truth table words
int nParsVNum; // selection parameters per variable
int nParsVIni; // first selection parameter
int nPars; // total parameters
word * pTruth; // user truth table
// matching procedures
int Values[IFN_PAR]; // variable values
word pTtElems[IFN_INS*IFN_WRD]; // elementary truth tables
word pTtObjs[2*IFN_INS*IFN_WRD]; // object truth tables
};
static inline word * Ift_ElemTruth( Ift_Ntk_t * p, int i ) { return p->pTtElems + i * Abc_TtWordNum(p->nInps); }
static inline word * Ift_ObjTruth( Ift_Ntk_t * p, int i ) { return p->pTtObjs + i * p->nWords; }
// variable ordering
// - primary inputs [0; p->nInps)
// - internal nodes [p->nInps; p->nObjs)
// - configuration params [p->nObjs; p->nParsVIni)
// - variable selection params [p->nParsVIni; p->pPars)
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS /// /// FUNCTION DEFINITIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Prepare network to check the given function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ifn_Prepare( Ift_Ntk_t * p, word * pTruth, int nVars )
{
int i, fVerbose = 0;
assert( nVars <= p->nInps );
p->pTruth = pTruth;
p->nVars = nVars;
p->nWords = Abc_TtWordNum(nVars);
p->nPars = p->nObjs;
for ( i = p->nInps; i < p->nObjs; i++ )
{
if ( p->Nodes[i].Type != IF_DSD_PRIME )
continue;
p->Nodes[i].iFirst = p->nPars;
p->nPars += (1 << p->Nodes[i].nFanins);
if ( fVerbose )
printf( "Node %d Start %d Vars %d\n", i, p->Nodes[i].iFirst, (1 << p->Nodes[i].nFanins) );
}
if ( fVerbose )
printf( "Groups start %d\n", p->nPars );
p->nParsVIni = p->nPars;
p->nParsVNum = Abc_Base2Log(nVars);
p->nPars += p->nParsVNum * p->nInps;
assert( p->nPars <= IFN_PAR );
memset( p->Values, 0xFF, sizeof(int) * p->nPars );
return p->nPars;
}
void Ifn_NtkPrint( Ift_Ntk_t * p )
{
int i, k;
if ( p == NULL )
printf( "String is empty.\n" );
if ( p == NULL )
return;
for ( i = p->nInps; i < p->nObjs; i++ )
{
printf( "%c=", 'a'+i );
printf( "%c", Ifn_Symbs[p->Nodes[i].Type][0] );
for ( k = 0; k < (int)p->Nodes[i].nFanins; k++ )
printf( "%c", 'a'+p->Nodes[i].Fanins[k] );
printf( "%c", Ifn_Symbs[p->Nodes[i].Type][1] );
printf( ";" );
}
printf( "\n" );
}
/**Function************************************************************* /**Function*************************************************************
Synopsis [] Synopsis []
...@@ -56,7 +170,7 @@ typedef enum { ...@@ -56,7 +170,7 @@ typedef enum {
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int If_ManStrCheck( char * pStr, int * pnVars, int * pnObjs ) int Ifn_ManStrCheck( char * pStr, int * pnInps, int * pnObjs )
{ {
int i, Marks[32] = {0}, MaxVar = 0, MaxDef = 0, RetValue = 1; int i, Marks[32] = {0}, MaxVar = 0, MaxDef = 0, RetValue = 1;
for ( i = 0; pStr[i]; i++ ) for ( i = 0; pStr[i]; i++ )
...@@ -110,141 +224,207 @@ int If_ManStrCheck( char * pStr, int * pnVars, int * pnObjs ) ...@@ -110,141 +224,207 @@ int If_ManStrCheck( char * pStr, int * pnVars, int * pnObjs )
printf( "String \"%s\" has no definition for internal variable (%c).\n", pStr, 'a' + i ), RetValue = 0; printf( "String \"%s\" has no definition for internal variable (%c).\n", pStr, 'a' + i ), RetValue = 0;
if ( !RetValue ) if ( !RetValue )
return 0; return 0;
*pnVars = MaxVar; *pnInps = MaxVar;
*pnObjs = MaxDef; *pnObjs = MaxDef;
return 1; return 1;
} }
int If_ManStrParse( char * pStr, int nVars, int nObjs, int * pTypes, int * pnFans, int ppFans[][6], int * pFirsts, int * pnSatVars ) Ift_Ntk_t * Ifn_ManStrParse( char * pStr )
{ {
int i, k, n, f, nPars = nVars; int i, k, n, f, nFans, iFan;
char Next = 0; static Ift_Ntk_t P, * p = &P;
assert( nVars < nObjs ); memset( p, 0, sizeof(Ift_Ntk_t) );
for ( i = nVars; i < nObjs; i++ ) if ( !Ifn_ManStrCheck(pStr, &p->nInps, &p->nObjs) )
return NULL;
if ( p->nInps > IFN_INS )
{ {
printf( "The number of variables (%d) exceeds predefined limit (%d). Recompile with different value of IFN_INS.\n", p->nInps, IFN_INS );
return NULL;
}
assert( p->nInps > 1 && p->nInps < p->nObjs && p->nInps <= IFN_INS && p->nObjs < 2*IFN_INS );
for ( i = p->nInps; i < p->nObjs; i++ )
{
char Next = 0;
for ( k = 0; pStr[k]; k++ ) for ( k = 0; pStr[k]; k++ )
if ( pStr[k] == 'a' + i && pStr[k+1] == '=' ) if ( pStr[k] == 'a' + i && pStr[k+1] == '=' )
break; break;
assert( pStr[k] ); if ( pStr[k] == 0 )
{
printf( "Cannot find definition of signal %c.\n", 'a' + i );
return NULL;
}
if ( pStr[k+2] == '(' ) if ( pStr[k+2] == '(' )
pTypes[i] = IF_DSD_AND, Next = ')'; p->Nodes[i].Type = IF_DSD_AND, Next = ')';
else if ( pStr[k+2] == '[' ) else if ( pStr[k+2] == '[' )
pTypes[i] = IF_DSD_XOR, Next = ']'; p->Nodes[i].Type = IF_DSD_XOR, Next = ']';
else if ( pStr[k+2] == '<' ) else if ( pStr[k+2] == '<' )
pTypes[i] = IF_DSD_MUX, Next = '>'; p->Nodes[i].Type = IF_DSD_MUX, Next = '>';
else if ( pStr[k+2] == '{' ) else if ( pStr[k+2] == '{' )
pTypes[i] = IF_DSD_PRIME, Next = '}'; p->Nodes[i].Type = IF_DSD_PRIME, Next = '}';
else assert( 0 ); else
{
printf( "Cannot find openning operation symbol in the defition of of signal %c.\n", 'a' + i );
return NULL;
}
for ( n = k + 3; pStr[n]; n++ ) for ( n = k + 3; pStr[n]; n++ )
if ( pStr[n] == Next ) if ( pStr[n] == Next )
break; break;
assert( pStr[k] ); if ( pStr[n] == 0 )
pnFans[i] = n - k - 3;
assert( pnFans[i] > 0 && pnFans[i] <= 6 );
for ( f = 0; f < pnFans[i]; f++ )
{ {
ppFans[i][f] = pStr[k + 3 + f] - 'a'; printf( "Cannot find closing operation symbol in the defition of of signal %c.\n", 'a' + i );
assert( ppFans[i][k] < i ); return NULL;
if ( ppFans[i][f] < 0 || ppFans[i][f] >= nObjs )
printf( "Error!\n" );
} }
if ( pTypes[i] != IF_DSD_PRIME ) nFans = n - k - 3;
continue; if ( nFans < 1 || nFans > 8 )
pFirsts[i] = nPars; {
nPars += (1 << pnFans[i]); printf( "Cannot find matching operation symbol in the defition of of signal %c.\n", 'a' + i );
return NULL;
}
for ( f = 0; f < nFans; f++ )
{
iFan = pStr[k + 3 + f] - 'a';
if ( iFan < 0 || iFan >= i )
{
printf( "Fanin number %d is signal %d is out of range.\n", f, 'a' + i );
return NULL;
}
p->Nodes[i].Fanins[f] = iFan;
}
p->Nodes[i].nFanins = nFans;
} }
*pnSatVars = nPars; // truth tables
return 1; Abc_TtElemInit2( p->pTtElems, p->nInps );
/*
// constraints
p->nConstr = 5;
p->pConstr[0] = (0 << 16) | 1;
p->pConstr[1] = (2 << 16) | 3;
p->pConstr[2] = (3 << 16) | 4;
p->pConstr[3] = (6 << 16) | 7;
p->pConstr[4] = (7 << 16) | 8;
*/
return p;
} }
Gia_Man_t * If_ManStrFindModel( int nVars, int nObjs, int nSatVars, int * pTypes, int * pnFans, int ppFans[][6], int * pFirsts )
/**Function*************************************************************
Synopsis [Derive truth table given the configulation values.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
word * Ift_NtkDeriveTruth( Ift_Ntk_t * p, int * pValues )
{ {
Gia_Man_t * pNew, * pTemp; int i, v, f, iVar, iStart;
int * pVarsPar, * pVarsObj; // elementary variables
int i, k, n, Step, iLit, nMints, nPars = 0; for ( i = 0; i < p->nInps; i++ )
pNew = Gia_ManStart( 1000 );
pNew->pName = Abc_UtilStrsav( "model" );
Gia_ManHashStart( pNew );
pVarsPar = ABC_ALLOC( int, nSatVars );
pVarsObj = ABC_ALLOC( int, nObjs );
for ( i = 0; i < nSatVars; i++ )
pVarsPar[i] = Gia_ManAppendCi(pNew);
for ( i = 0; i < nVars; i++ )
pVarsObj[i] = pVarsPar[nSatVars - nVars + i];
for ( i = nVars; i < nObjs; i++ )
{ {
if ( pTypes[i] == IF_DSD_AND ) // find variable
iStart = p->nParsVIni + i * p->nParsVNum;
for ( v = iVar = 0; v < p->nParsVNum; v++ )
if ( p->Values[iStart+v] )
iVar += (1 << v);
// assign variable
Abc_TtCopy( Ift_ObjTruth(p, i), Ift_ElemTruth(p, iVar), p->nWords, 0 );
}
// internal variables
for ( i = p->nInps; i < p->nObjs; i++ )
{
int nFans = p->Nodes[i].nFanins;
int * pFans = p->Nodes[i].Fanins;
word * pTruth = Ift_ObjTruth( p, i );
if ( p->Nodes[i].Type == IF_DSD_AND )
{ {
iLit = 1; Abc_TtFill( pTruth, p->nWords );
for ( k = 0; k < pnFans[i]; k++ ) for ( f = 0; f < nFans; f++ )
iLit = Gia_ManHashAnd( pNew, iLit, pVarsObj[ppFans[i][k]] ); Abc_TtAnd( pTruth, pTruth, Ift_ObjTruth(p, pFans[f]), p->nWords, 0 );
pVarsObj[i] = iLit;
} }
else if ( pTypes[i] == IF_DSD_XOR ) else if ( p->Nodes[i].Type == IF_DSD_XOR )
{ {
iLit = 0; Abc_TtClear( pTruth, p->nWords );
for ( k = 0; k < pnFans[i]; k++ ) for ( f = 0; f < nFans; f++ )
iLit = Gia_ManHashXor( pNew, iLit, pVarsObj[ppFans[i][k]] ); Abc_TtXor( pTruth, pTruth, Ift_ObjTruth(p, pFans[f]), p->nWords, 0 );
pVarsObj[i] = iLit;
} }
else if ( pTypes[i] == IF_DSD_MUX ) else if ( p->Nodes[i].Type == IF_DSD_MUX )
{ {
assert( pnFans[i] == 3 ); assert( nFans == 3 );
pVarsObj[i] = Gia_ManHashMux( pNew, pVarsObj[ppFans[i][0]], pVarsObj[ppFans[i][1]], pVarsObj[ppFans[i][2]] ); Abc_TtMux( pTruth, Ift_ObjTruth(p, pFans[0]), Ift_ObjTruth(p, pFans[1]), Ift_ObjTruth(p, pFans[2]), p->nWords );
} }
else if ( pTypes[i] == IF_DSD_PRIME ) else if ( p->Nodes[i].Type == IF_DSD_PRIME )
{ {
int pVarsData[64]; int nValues = (1 << nFans);
assert( pnFans[i] >= 1 && pnFans[i] <= 6 ); word * pTemp = Ift_ObjTruth(p, p->nObjs);
nMints = (1 << pnFans[i]); Abc_TtClear( pTruth, p->nWords );
for ( k = 0; k < nMints; k++ ) for ( v = 0; v < nValues; v++ )
pVarsData[k] = pVarsPar[nPars++]; {
for ( Step = 1, k = 0; k < pnFans[i]; k++, Step <<= 1 ) if ( pValues[p->Nodes[i].iFirst + v] == 0 )
for ( n = 0; n < nMints; n += Step << 1 ) continue;
pVarsData[n] = Gia_ManHashMux( pNew, pVarsObj[ppFans[i][k]], pVarsData[n+Step], pVarsData[n] ); Abc_TtFill( pTemp, p->nWords );
assert( Step == nMints ); for ( f = 0; f < nFans; f++ )
pVarsObj[i] = pVarsData[0]; if ( (v >> f) & 1 )
Abc_TtAnd( pTemp, pTemp, Ift_ObjTruth(p, pFans[f]), p->nWords, 0 );
else
Abc_TtSharp( pTemp, pTemp, Ift_ObjTruth(p, pFans[f]), p->nWords );
Abc_TtOr( pTruth, pTruth, pTemp, p->nWords );
}
} }
else assert( 0 ); else assert( 0 );
//Dau_DsdPrintFromTruth( pTruth, p->nVars );
} }
assert( nPars + nVars == nSatVars ); return Ift_ObjTruth(p, p->nObjs-1);
Gia_ManAppendCo( pNew, pVarsObj[nObjs-1] );
pNew = Gia_ManCleanup( pTemp = pNew );
Gia_ManStop( pTemp );
ABC_FREE( pVarsPar );
ABC_FREE( pVarsObj );
assert( Gia_ManPiNum(pNew) == nSatVars );
assert( Gia_ManPoNum(pNew) == 1 );
return pNew;
} }
Gia_Man_t * If_ManStrFindCofactors( int nPars, Gia_Man_t * p )
/**Function*************************************************************
Synopsis [Compute more or equal]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ift_TtComparisonConstr( word * pTruth, int nVars, int fMore, int fEqual )
{ {
Gia_Man_t * pNew, * pTemp; word Cond[4], Equa[4], Temp[4];
Gia_Obj_t * pObj; word s_TtElems[8][4] = {
int i, m, nMints = 1 << (Gia_ManCiNum(p) - nPars); ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA),
pNew = Gia_ManStart( Gia_ManObjNum(p) ); ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC),
pNew->pName = Abc_UtilStrsav( p->pName ); ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0),
Gia_ManHashAlloc( pNew ); ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00),
Gia_ManConst0(p)->Value = 0; ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000),
Gia_ManForEachCi( p, pObj, i ) ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000),
if ( i < nPars ) ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF),ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF),
pObj->Value = Gia_ManAppendCi( pNew ); ABC_CONST(0x0000000000000000),ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF),ABC_CONST(0xFFFFFFFFFFFFFFFF)
for ( m = 0; m < nMints; m++ ) };
int i, nWords = Abc_TtWordNum(2*nVars);
assert( nVars > 0 && nVars <= 4 );
Abc_TtClear( pTruth, nWords );
Abc_TtFill( Equa, nWords );
for ( i = nVars - 1; i >= 0; i-- )
{ {
Gia_ManForEachCi( p, pObj, i ) if ( fMore )
if ( i >= nPars ) Abc_TtSharp( Cond, s_TtElems[2*i+1], s_TtElems[2*i+0], nWords );
pObj->Value = ((m >> (i - nPars)) & 1); else
Gia_ManForEachAnd( p, pObj, i ) Abc_TtSharp( Cond, s_TtElems[2*i+0], s_TtElems[2*i+1], nWords );
pObj->Value = Gia_ManHashAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); Abc_TtAnd( Temp, Equa, Cond, nWords, 0 );
Gia_ManForEachPo( p, pObj, i ) Abc_TtOr( pTruth, pTruth, Temp, nWords );
pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); Abc_TtXor( Temp, s_TtElems[2*i+0], s_TtElems[2*i+1], nWords, 1 );
Abc_TtAnd( Equa, Equa, Temp, nWords, 0 );
} }
pNew = Gia_ManCleanup( pTemp = pNew ); if ( fEqual )
Gia_ManStop( pTemp ); Abc_TtNot( pTruth, nWords );
return pNew;
} }
/**Function************************************************************* /**Function*************************************************************
Synopsis [] Synopsis [Adds parameter constraints.]
Description [] Description []
...@@ -253,70 +433,86 @@ Gia_Man_t * If_ManStrFindCofactors( int nPars, Gia_Man_t * p ) ...@@ -253,70 +433,86 @@ Gia_Man_t * If_ManStrFindCofactors( int nPars, Gia_Man_t * p )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
static inline Cnf_Dat_t * Cnf_DeriveGiaRemapped( Gia_Man_t * p ) void Ift_AddClause( sat_solver * pSat, int * pBeg, int * pEnd )
{ {
Cnf_Dat_t * pCnf; int fVerbose = 0;
Aig_Man_t * pAig = Gia_ManToAigSimple( p ); int RetValue = sat_solver_addclause( pSat, pBeg, pEnd );
pAig->nRegs = 0; if ( fVerbose )
pCnf = Cnf_Derive( pAig, Aig_ManCoNum(pAig) ); {
Aig_ManStop( pAig ); for ( ; pBeg < pEnd; pBeg++ )
return pCnf; printf( "%c%d ", Abc_LitIsCompl(*pBeg) ? '-':'+', Abc_Lit2Var(*pBeg) );
printf( "\n" );
}
assert( RetValue );
} }
sat_solver * If_ManStrFindSolver( Gia_Man_t * p, Vec_Int_t ** pvPiVars, Vec_Int_t ** pvPoVars ) void Ift_NtkAddConstrOne( sat_solver * pSat, Vec_Int_t * vCover, int * pVars, int nVars )
{ {
sat_solver * pSat; int k, c, Cube, Literal, nLits, pLits[IFN_INS];
Gia_Obj_t * pObj; Vec_IntForEachEntry( vCover, Cube, c )
Cnf_Dat_t * pCnf; {
int i; nLits = 0;
pCnf = Cnf_DeriveGiaRemapped( p ); for ( k = 0; k < nVars; k++ )
// start the SAT solver {
pSat = sat_solver_new(); Literal = 3 & (Cube >> (k << 1));
sat_solver_setnvars( pSat, pCnf->nVars ); if ( Literal == 1 ) // '0' -> pos lit
// add timeframe clauses pLits[nLits++] = Abc_Var2Lit(pVars[k], 0);
for ( i = 0; i < pCnf->nClauses; i++ ) else if ( Literal == 2 ) // '1' -> neg lit
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) ) pLits[nLits++] = Abc_Var2Lit(pVars[k], 1);
assert( 0 ); else if ( Literal != 0 )
// inputs/outputs assert( 0 );
*pvPiVars = Vec_IntAlloc( Gia_ManPiNum(p) ); }
Gia_ManForEachCi( p, pObj, i ) Ift_AddClause( pSat, pLits, pLits + nLits );
Vec_IntPush( *pvPiVars, pCnf->pVarNums[Gia_ObjId(p, pObj)] ); }
*pvPoVars = Vec_IntAlloc( Gia_ManPoNum(p) );
Gia_ManForEachCo( p, pObj, i )
Vec_IntPush( *pvPoVars, pCnf->pVarNums[Gia_ObjId(p, pObj)] );
Cnf_DataFree( pCnf );
return pSat;
} }
void Ift_NtkAddConstraints( Ift_Ntk_t * p, sat_solver * pSat )
sat_solver * If_ManSatBuild( char * pStr, Vec_Int_t ** pvPiVars, Vec_Int_t ** pvPoVars )
{ {
int nVars, nObjs, nSatVars; int fAddConstr = 0;
int pTypes[32] = {0}; Vec_Int_t * vCover = Vec_IntAlloc( 0 );
int pnFans[32] = {0}; word uTruth = Abc_Tt6Stretch( ~Abc_Tt6Mask(p->nVars), p->nParsVNum );
int ppFans[32][6] = {{0}}; assert( p->nParsVNum <= 4 );
int pFirsts[32] = {0}; if ( uTruth )
Gia_Man_t * p1, * p2; {
sat_solver * pSat = NULL; int i, k, pVars[IFN_INS];
*pvPiVars = *pvPoVars = NULL; int RetValue = Kit_TruthIsop( (unsigned *)&uTruth, p->nParsVNum, vCover, 0 );
if ( !If_ManStrCheck(pStr, &nVars, &nObjs) ) assert( RetValue == 0 );
return NULL; // Dau_DsdPrintFromTruth( &uTruth, p->nParsVNum );
if ( !If_ManStrParse(pStr, nVars, nObjs, pTypes, pnFans, ppFans, pFirsts, &nSatVars) ) // add capacity constraints
return NULL; for ( i = 0; i < p->nInps; i++ )
p1 = If_ManStrFindModel(nVars, nObjs, nSatVars, pTypes, pnFans, ppFans, pFirsts); {
if ( p1 == NULL ) for ( k = 0; k < p->nParsVNum; k++ )
return NULL; pVars[k] = p->nParsVIni + i * p->nParsVNum + k;
// Gia_AigerWrite( p1, "satbuild.aig", 0, 0 ); Ift_NtkAddConstrOne( pSat, vCover, pVars, p->nParsVNum );
p2 = If_ManStrFindCofactors( nSatVars - nVars, p1 ); }
Gia_ManStop( p1 ); }
if ( p2 == NULL ) // ordering constraints
return NULL; if ( fAddConstr && p->nConstr )
// Gia_AigerWrite( p2, "satbuild2.aig", 0, 0 ); {
pSat = If_ManStrFindSolver( p2, pvPiVars, pvPoVars ); word pTruth[4];
Gia_ManStop( p2 ); int i, k, RetValue, pVars[2*IFN_INS];
return pSat; int fForceDiff = (p->nVars == p->nInps);
Ift_TtComparisonConstr( pTruth, p->nParsVNum, fForceDiff, fForceDiff );
RetValue = Kit_TruthIsop( (unsigned *)pTruth, 2*p->nParsVNum, vCover, 0 );
assert( RetValue == 0 );
// Kit_TruthIsopPrintCover( vCover, 2*p->nParsVNum, 0 );
for ( i = 0; i < p->nConstr; i++ )
{
int iVar1 = p->pConstr[i] >> 16;
int iVar2 = p->pConstr[i] & 0xFFFF;
for ( k = 0; k < p->nParsVNum; k++ )
{
pVars[2*k+0] = p->nParsVIni + iVar1 * p->nParsVNum + k;
pVars[2*k+1] = p->nParsVIni + iVar2 * p->nParsVNum + k;
}
Ift_NtkAddConstrOne( pSat, vCover, pVars, 2*p->nParsVNum );
// printf( "added constraint with %d clauses for %d and %d\n", Vec_IntSize(vCover), iVar1, iVar2 );
}
}
Vec_IntFree( vCover );
} }
/**Function************************************************************* /**Function*************************************************************
Synopsis [] Synopsis [Derive clauses given variable assignment.]
Description [] Description []
...@@ -325,70 +521,227 @@ sat_solver * If_ManSatBuild( char * pStr, Vec_Int_t ** pvPiVars, Vec_Int_t ** pv ...@@ -325,70 +521,227 @@ sat_solver * If_ManSatBuild( char * pStr, Vec_Int_t ** pvPiVars, Vec_Int_t ** pv
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
void If_ManSatPrintPerm( char * pPerms, int nVars ) int Ift_NtkAddClauses( Ift_Ntk_t * p, int * pValues, sat_solver * pSat )
{ {
int i; int i, f, v, nLits, pLits[IFN_INS+2], pLits2[IFN_INS+2];
for ( i = 0; i < nVars; i++ ) // assign new variables
printf( "%c", 'a' + pPerms[i] ); int nSatVars = sat_solver_nvars(pSat);
printf( "\n" ); for ( i = 0; i < p->nObjs-1; i++ )
} p->Nodes[i].Var = nSatVars++;
int If_ManSatCheckOne( sat_solver * pSat, Vec_Int_t * vPoVars, word * pTruth, int nVars, int * pPerm, int nVarsAll, Vec_Int_t * vLits ) p->Nodes[p->nObjs-1].Var = -ABC_INFINITY;
{ sat_solver_setnvars( pSat, nSatVars );
int v, Value, m, mNew, nMints = (1 << nVars); // verify variable values
assert( (1 << nVarsAll) == Vec_IntSize(vPoVars) ); for ( i = 0; i < p->nVars; i++ )
assert( nMints <= Vec_IntSize(vPoVars) ); assert( pValues[i] != -1 );
// remap minterms for ( i = p->nVars; i < p->nObjs-1; i++ )
Vec_IntFill( vLits, Vec_IntSize(vPoVars), -1 ); assert( pValues[i] == -1 );
for ( m = 0; m < nMints; m++ ) assert( pValues[p->nObjs-1] != -1 );
// internal variables
//printf( "\n" );
for ( i = 0; i < p->nInps; i++ )
{ {
mNew = 0; int iParStart = p->nParsVIni + i * p->nParsVNum;
for ( v = 0; v < nVarsAll; v++ ) for ( v = 0; v < p->nVars; v++ )
{ {
assert( pPerm[v] < nVars ); // add output literal
if ( ((m >> pPerm[v]) & 1) ) pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, pValues[v]==0 );
mNew |= (1 << v); // add clause literals
for ( f = 0; f < p->nParsVNum; f++ )
pLits[f+1] = Abc_Var2Lit( iParStart + f, (v >> f) & 1 );
Ift_AddClause( pSat, pLits, pLits+p->nParsVNum+1 );
} }
assert( Vec_IntEntry(vLits, mNew) == -1 );
Vec_IntWriteEntry( vLits, mNew, Abc_TtGetBit(pTruth, m) );
} }
// find assumptions //printf( "\n" );
v = 0; for ( i = p->nInps; i < p->nObjs; i++ )
Vec_IntForEachEntry( vLits, Value, m ) {
if ( Value >= 0 ) int nFans = p->Nodes[i].nFanins;
Vec_IntWriteEntry( vLits, v++, Abc_Var2Lit(Vec_IntEntry(vPoVars, m), !Value) ); int * pFans = p->Nodes[i].Fanins;
Vec_IntShrink( vLits, v ); if ( p->Nodes[i].Type == IF_DSD_AND )
// run SAT solver {
Value = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), 0, 0, 0, 0 ); nLits = 0;
return (int)(Value == l_True); pLits[nLits++] = Abc_Var2Lit( p->Nodes[i].Var, 0 );
for ( f = 0; f < nFans; f++ )
{
pLits[nLits++] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, 1 );
// add small clause
pLits2[0] = Abc_Var2Lit( p->Nodes[i].Var, 1 );
pLits2[1] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, 0 );
Ift_AddClause( pSat, pLits2, pLits2 + 2 );
}
// add big clause
Ift_AddClause( pSat, pLits, pLits + nLits );
}
else if ( p->Nodes[i].Type == IF_DSD_XOR )
{
assert( 0 );
}
else if ( p->Nodes[i].Type == IF_DSD_MUX )
{
assert( 0 );
}
else if ( p->Nodes[i].Type == IF_DSD_PRIME )
{
int nValues = (1 << nFans);
int iParStart = p->Nodes[i].iFirst;
for ( v = 0; v < nValues; v++ )
{
nLits = 0;
if ( pValues[i] == -1 )
{
pLits[nLits] = Abc_Var2Lit( p->Nodes[i].Var, 0 );
pLits2[nLits] = Abc_Var2Lit( p->Nodes[i].Var, 1 );
nLits++;
}
for ( f = 0; f < nFans; f++, nLits++ )
pLits[nLits] = pLits2[nLits] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, (v >> f) & 1 );
pLits[nLits] = Abc_Var2Lit( iParStart + v, 1 );
pLits2[nLits] = Abc_Var2Lit( iParStart + v, 0 );
nLits++;
if ( pValues[i] != 0 )
Ift_AddClause( pSat, pLits2, pLits2 + nLits );
if ( pValues[i] != 1 )
Ift_AddClause( pSat, pLits, pLits + nLits );
}
}
else assert( 0 );
//printf( "\n" );
}
return 1;
} }
void If_ManSatDeriveOne( sat_solver * pSat, Vec_Int_t * vPiVars, Vec_Int_t * vValues )
/**Function*************************************************************
Synopsis [Returns the minterm number for which there is a mismatch.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ift_SatPrintStatus( sat_solver * p, int Iter, int status, int iMint, int Value, abctime clk )
{ {
int i, iVar; printf( "Iter = %5d ", Iter );
Vec_IntClear( vValues ); printf( "Mint = %5d ", iMint );
Vec_IntForEachEntry( vPiVars, iVar, i ) printf( "Value = %2d ", Value );
Vec_IntPush( vValues, sat_solver_var_value(pSat, iVar) ); printf( "Var = %6d ", sat_solver_nvars(p) );
printf( "Cla = %6d ", sat_solver_nclauses(p) );
printf( "Conf = %6d ", sat_solver_nconflicts(p) );
if ( status == l_False )
printf( "status = unsat" );
else if ( status == l_True )
printf( "status = sat " );
else
printf( "status = undec" );
Abc_PrintTime( 1, "", clk );
} }
int If_ManSatCheckAll_int( sat_solver * pSat, Vec_Int_t * vPoVars, word * pTruth, int nVars, Vec_Int_t * vLits, char ** pPerms, int nPerms ) void Ift_SatPrintConfig( Ift_Ntk_t * p, sat_solver * pSat )
{ {
int pPerm[IF_MAX_FUNC_LUTSIZE]; int v;
int p, i; for ( v = p->nObjs; v < p->nPars; v++ )
for ( p = 0; p < nPerms; p++ )
{ {
for ( i = 0; i < nVars; i++ ) if ( v >= p->nParsVIni && (v - p->nParsVIni) % p->nParsVNum == 0 )
pPerm[i] = (int)pPerms[p][i]; printf( " %d=", (v - p->nParsVIni) / p->nParsVNum );
if ( If_ManSatCheckOne(pSat, vPoVars, pTruth, nVars, pPerm, nVars, vLits) ) printf( "%d", sat_solver_var_value(pSat, v) );
return p;
} }
return -1; printf( "\n" );
} }
int If_ManSatCheckAll( sat_solver * pSat, Vec_Int_t * vPoVars, word * pTruth, int nVars, Vec_Int_t * vLits, char ** pPerms, int nPerms )
int Ift_NtkMatch( Ift_Ntk_t * p, word * pTruth, int nVars, int fVerbose )
{ {
word * pTruth1;
int RetValue = 0;
int nIterMax = (1<<nVars);
int i, v, status, iMint = 0;
abctime clk = Abc_Clock(); abctime clk = Abc_Clock();
int RetValue = If_ManSatCheckAll_int( pSat, vPoVars, pTruth, nVars, vLits, pPerms, nPerms ); // abctime clkTru = 0, clkSat = 0, clk2;
Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); sat_solver * pSat = sat_solver_new();
Ifn_Prepare( p, pTruth, nVars );
sat_solver_setnvars( pSat, p->nPars );
Ift_NtkAddConstraints( p, pSat );
if ( fVerbose )
Ift_SatPrintStatus( pSat, 0, l_True, -1, -1, Abc_Clock() - clk );
for ( i = 0; i < nIterMax; i++ )
{
// get variable assignment
for ( v = 0; v < p->nObjs; v++ )
p->Values[v] = v < p->nVars ? (iMint >> v) & 1 : -1;
p->Values[p->nObjs-1] = Abc_TtGetBit( pTruth, iMint );
// derive clauses
if ( !Ift_NtkAddClauses( p, p->Values, pSat ) )
break;
// find assignment of parameters
// clk2 = Abc_Clock();
status = sat_solver_solve( pSat, NULL, NULL, 0, 0, 0, 0 );
// clkSat += Abc_Clock() - clk2;
if ( fVerbose )
Ift_SatPrintStatus( pSat, i+1, status, iMint, p->Values[p->nObjs-1], Abc_Clock() - clk );
if ( status == l_False )
break;
assert( status == l_True );
// collect assignment
for ( v = p->nObjs; v < p->nPars; v++ )
p->Values[v] = sat_solver_var_value(pSat, v);
// find truth table
// clk2 = Abc_Clock();
pTruth1 = Ift_NtkDeriveTruth( p, p->Values );
// clkTru += Abc_Clock() - clk2;
Abc_TtXor( pTruth1, pTruth1, p->pTruth, p->nWords, 0 );
// find mismatch if present
iMint = Abc_TtFindFirstBit( pTruth1, p->nVars );
if ( iMint == -1 )
{
Ift_SatPrintConfig( p, pSat );
RetValue = 1;
break;
}
}
assert( i < nIterMax );
sat_solver_delete( pSat );
printf( "Matching = %d Iters = %d. ", RetValue, i );
// Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
// Abc_PrintTime( 1, "Sat", clkSat );
// Abc_PrintTime( 1, "Tru", clkTru );
return RetValue; return RetValue;
} }
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ifn_NtkRead()
{
int RetValue;
int nVars = 9;
// int nVars = 8;
// int nVars = 3;
// word * pTruth = Dau_DsdToTruth( "(abcdefghi)", nVars );
word * pTruth = Dau_DsdToTruth( "1008{(1008{(ab)cde}f)ghi}", nVars );
// word * pTruth = Dau_DsdToTruth( "18{(1008{(ab)cde}f)gh}", nVars );
// word * pTruth = Dau_DsdToTruth( "1008{(1008{[ab]cde}f)ghi}", nVars );
// word * pTruth = Dau_DsdToTruth( "(abcd)", nVars );
// word * pTruth = Dau_DsdToTruth( "(abc)", nVars );
// char * pStr = "e={abc};f={ed};";
// char * pStr = "d={ab};e={cd};";
char * pStr = "j=(ab);k={jcde};l=(kf);m={lghi};";
// char * pStr = "i={abc};j={ide};k={ifg};l={jkh};";
// char * pStr = "h={abcde};i={abcdf};j=<ghi>;";
// char * pStr = "g=<abc>;h=<ade>;i={fgh};";
Ift_Ntk_t * p = Ifn_ManStrParse( pStr );
Ifn_NtkPrint( p );
Dau_DsdPrintFromTruth( pTruth, nVars );
// get the given function
RetValue = Ift_NtkMatch( p, pTruth, nVars, 1 );
}
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// END OF FILE /// /// END OF FILE ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
......
...@@ -341,6 +341,20 @@ static inline void Abc_TtElemInit( word ** pTtElems, int nVars ) ...@@ -341,6 +341,20 @@ static inline void Abc_TtElemInit( word ** pTtElems, int nVars )
for ( k = 0; k < nWords; k++ ) for ( k = 0; k < nWords; k++ )
pTtElems[i][k] = (k & (1 << (i-6))) ? ~(word)0 : 0; pTtElems[i][k] = (k & (1 << (i-6))) ? ~(word)0 : 0;
} }
static inline void Abc_TtElemInit2( word * pTtElems, int nVars )
{
int i, k, nWords = Abc_TtWordNum( nVars );
for ( i = 0; i < nVars; i++ )
{
word * pTruth = pTtElems + i * nWords;
if ( i < 6 )
for ( k = 0; k < nWords; k++ )
pTruth[k] = s_Truths6[i];
else
for ( k = 0; k < nWords; k++ )
pTruth[k] = (k & (1 << (i-6))) ? ~(word)0 : 0;
}
}
/**Function************************************************************* /**Function*************************************************************
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment