Commit 154f4b64 by Yen-Sheng Ho

merge

parents 40d29e78 59f09c10
...@@ -271,6 +271,10 @@ SOURCE=.\src\base\abci\abcDsd.c ...@@ -271,6 +271,10 @@ SOURCE=.\src\base\abci\abcDsd.c
# End Source File # End Source File
# Begin Source File # Begin Source File
SOURCE=.\src\base\abci\abcEco.c
# End Source File
# Begin Source File
SOURCE=.\src\base\abci\abcExact.c SOURCE=.\src\base\abci\abcExact.c
# End Source File # End Source File
# Begin Source File # Begin Source File
...@@ -695,6 +699,10 @@ SOURCE=.\src\base\io\ioWriteVerilog.c ...@@ -695,6 +699,10 @@ SOURCE=.\src\base\io\ioWriteVerilog.c
# PROP Default_Filter "" # PROP Default_Filter ""
# Begin Source File # Begin Source File
SOURCE=.\src\base\main\abcapis.h
# End Source File
# Begin Source File
SOURCE=.\src\base\main\libSupport.c SOURCE=.\src\base\main\libSupport.c
# End Source File # End Source File
# Begin Source File # Begin Source File
......
...@@ -37,7 +37,7 @@ struct Gli_Obj_t_ ...@@ -37,7 +37,7 @@ struct Gli_Obj_t_
unsigned nFanins : 3; // the number of fanins unsigned nFanins : 3; // the number of fanins
unsigned nFanouts : 25; // total number of fanouts unsigned nFanouts : 25; // total number of fanouts
unsigned Handle; // ID of the node unsigned Handle; // ID of the node
unsigned uTruth[2]; // truth table of the node word * pTruth; // truth table of the node
unsigned uSimInfo; // simulation info of the node unsigned uSimInfo; // simulation info of the node
union union
{ {
...@@ -333,7 +333,7 @@ static inline int Gli_NodeComputeValue( Gli_Obj_t * pNode ) ...@@ -333,7 +333,7 @@ static inline int Gli_NodeComputeValue( Gli_Obj_t * pNode )
int i, Phase = 0; int i, Phase = 0;
for ( i = 0; i < (int)pNode->nFanins; i++ ) for ( i = 0; i < (int)pNode->nFanins; i++ )
Phase |= (Gli_ObjFanin(pNode, i)->fPhase << i); Phase |= (Gli_ObjFanin(pNode, i)->fPhase << i);
return Abc_InfoHasBit( pNode->uTruth, Phase ); return Abc_InfoHasBit( (unsigned *)pNode->pTruth, Phase );
} }
/**Function************************************************************* /**Function*************************************************************
...@@ -352,7 +352,7 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode ) ...@@ -352,7 +352,7 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
int i, Phase = 0; int i, Phase = 0;
for ( i = 0; i < (int)pNode->nFanins; i++ ) for ( i = 0; i < (int)pNode->nFanins; i++ )
Phase |= (Gli_ObjFanin(pNode, i)->fPhase2 << i); Phase |= (Gli_ObjFanin(pNode, i)->fPhase2 << i);
return Abc_InfoHasBit( pNode->uTruth, Phase ); return Abc_InfoHasBit( (unsigned *)pNode->pTruth, Phase );
} }
/**Function************************************************************* /**Function*************************************************************
...@@ -366,16 +366,15 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode ) ...@@ -366,16 +366,15 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int Gli_ManCreateNode( Gli_Man_t * p, Vec_Int_t * vFanins, int nFanouts, unsigned * puTruth ) int Gli_ManCreateNode( Gli_Man_t * p, Vec_Int_t * vFanins, int nFanouts, word * pGateTruth )
{ {
Gli_Obj_t * pObj, * pFanin; Gli_Obj_t * pObj, * pFanin;
int i; int i;
assert( Vec_IntSize(vFanins) <= 6 ); assert( Vec_IntSize(vFanins) <= 16 );
pObj = Gli_ObjAlloc( p, Vec_IntSize(vFanins), nFanouts ); pObj = Gli_ObjAlloc( p, Vec_IntSize(vFanins), nFanouts );
Gli_ManForEachEntry( vFanins, p, pFanin, i ) Gli_ManForEachEntry( vFanins, p, pFanin, i )
Gli_ObjAddFanin( pObj, pFanin ); Gli_ObjAddFanin( pObj, pFanin );
pObj->uTruth[0] = puTruth[0]; pObj->pTruth = pGateTruth;
pObj->uTruth[1] = puTruth[Vec_IntSize(vFanins) == 6];
pObj->fPhase = pObj->fPhase2 = Gli_NodeComputeValue( pObj ); pObj->fPhase = pObj->fPhase2 = Gli_NodeComputeValue( pObj );
return pObj->Handle; return pObj->Handle;
} }
...@@ -584,7 +583,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode ) ...@@ -584,7 +583,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
int nFanins = Gli_ObjFaninNum(pNode); int nFanins = Gli_ObjFaninNum(pNode);
int i, k, Phase; int i, k, Phase;
Gli_Obj_t * pFanin; Gli_Obj_t * pFanin;
assert( nFanins <= 6 ); assert( nFanins <= 16 );
Gli_ObjForEachFanin( pNode, pFanin, i ) Gli_ObjForEachFanin( pNode, pFanin, i )
pSimInfos[i] = pFanin->uSimInfo; pSimInfos[i] = pFanin->uSimInfo;
for ( i = 0; i < 32; i++ ) for ( i = 0; i < 32; i++ )
...@@ -593,7 +592,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode ) ...@@ -593,7 +592,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
for ( k = 0; k < nFanins; k++ ) for ( k = 0; k < nFanins; k++ )
if ( (pSimInfos[k] >> i) & 1 ) if ( (pSimInfos[k] >> i) & 1 )
Phase |= (1 << k); Phase |= (1 << k);
if ( Abc_InfoHasBit( pNode->uTruth, Phase ) ) if ( Abc_InfoHasBit( (unsigned *)pNode->pTruth, Phase ) )
Result |= (1 << i); Result |= (1 << i);
} }
return Result; return Result;
...@@ -772,7 +771,7 @@ void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb ...@@ -772,7 +771,7 @@ void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb
} }
if ( fVerbose ) if ( fVerbose )
{ {
printf( "\nSimulated %d patterns. ", nPatterns ); printf( "Simulated %d patterns. Input transition probability %.2f. ", nPatterns, PiTransProb );
ABC_PRMn( "Memory", 4*p->nObjData ); ABC_PRMn( "Memory", 4*p->nObjData );
ABC_PRT( "Time", Abc_Clock() - clk ); ABC_PRT( "Time", Abc_Clock() - clk );
} }
......
...@@ -24,7 +24,7 @@ ABC_NAMESPACE_IMPL_START ...@@ -24,7 +24,7 @@ ABC_NAMESPACE_IMPL_START
#define ISO_MASK 0xFF #define ISO_MASK 0xFF
static int s_256Primes[ISO_MASK+1] = static unsigned int s_256Primes[ISO_MASK+1] =
{ {
0x984b6ad9,0x18a6eed3,0x950353e2,0x6222f6eb,0xdfbedd47,0xef0f9023,0xac932a26,0x590eaf55, 0x984b6ad9,0x18a6eed3,0x950353e2,0x6222f6eb,0xdfbedd47,0xef0f9023,0xac932a26,0x590eaf55,
0x97d0a034,0xdc36cd2e,0x22736b37,0xdc9066b0,0x2eb2f98b,0x5d9c7baf,0x85747c9e,0x8aca1055, 0x97d0a034,0xdc36cd2e,0x22736b37,0xdc9066b0,0x2eb2f98b,0x5d9c7baf,0x85747c9e,0x8aca1055,
......
...@@ -27,7 +27,7 @@ ABC_NAMESPACE_IMPL_START ...@@ -27,7 +27,7 @@ ABC_NAMESPACE_IMPL_START
#define ISO_MASK 0xFF #define ISO_MASK 0xFF
static int s_256Primes[ISO_MASK+1] = static unsigned int s_256Primes[ISO_MASK+1] =
{ {
0x984b6ad9,0x18a6eed3,0x950353e2,0x6222f6eb,0xdfbedd47,0xef0f9023,0xac932a26,0x590eaf55, 0x984b6ad9,0x18a6eed3,0x950353e2,0x6222f6eb,0xdfbedd47,0xef0f9023,0xac932a26,0x590eaf55,
0x97d0a034,0xdc36cd2e,0x22736b37,0xdc9066b0,0x2eb2f98b,0x5d9c7baf,0x85747c9e,0x8aca1055, 0x97d0a034,0xdc36cd2e,0x22736b37,0xdc9066b0,0x2eb2f98b,0x5d9c7baf,0x85747c9e,0x8aca1055,
......
/**CFile****************************************************************
FileName [ndr.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Format for word-level design representation.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 22, 2014.]
Revision [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
//ABC_NAMESPACE_HEADER_START
#ifdef _WIN32
#define inline __inline
#endif
/*
For the lack of a better name, this format is called New Data Representation (NDR).
NDR is based on the following principles:
- complex data is composed of individual records
- a record has one of several known types (module, name, range, fanins, etc)
- a record can be atomic, for example, a name or an operator type
- a record can be composed of other records (for example, a module is composed of objects, etc)
- the stored data should be easy to write into and read from a file, or pass around as a memory buffer
- the format should be simple, easy to use, low-memory, and extensible
- new record types can be added by the user as needed
The implementation is based on the following ideas:
- a record is composed of two parts (the header followed by the body)
- the header contains two items (the record type and the body size, measured in terms of 4-byte integers)
- the body contains as many entries as stated in the record size
- if a record is composed of other records, its body contains these records
As an example, consider a name. It can be a module name, an object name, or a net name.
A record storing one name has a header {NDR_NAME, 1} containing record type (NDR_NAME) and size (1),
The body of the record is composed of one unsigned integer representing the name (say, 357).
So the complete record looks as follows: { <header>, <body> } = { {NDR_NAME, 1}, {357} }.
As another example, consider a two-input AND-gate. In this case, the recent is composed
of a header {NDR_OBJECT, 4} containing record type (NDR_OBJECT) and the body size (4), followed
by an array of records creating the AND-gate: (a) name, (b) operation type, (c) fanins.
The complete record looks as follows: { {NDR_OBJECT, 5}, {{{NDR_NAME, 1}, 357}, {{NDR_OPERTYPE, 1}, WLC_OBJ_LOGIC_AND},
{{NDR_INPUT, 2}, {<id_fanin1>, <id_fanin2>}}} }. Please note that only body entries are counted towards size.
In the case of one name, there is only one body entry. In the case of the AND-gate, there are 4 body entries
(name ID, gate type, first fanin, second fanin).
Headers and bodies of all objects are stored differently. Headers are stored in an array of unsigned chars,
while bodies are stored in the array of 4-byte unsigned integers. This is important for memory efficiency.
However, the user does not see these details.
To estimate memory usage, we can assume that each header takes 1 byte and each body entry contains 4 bytes.
A name takes 5 bytes, and an AND-gate takes 1 * NumHeaders + 4 * NumBodyEntries = 1 * 4 + 4 * 4 = 20 bytes.
Not bad. The same as memory usage in a well-designed AIG package with structural hashing.
Comments:
- it is assumed that all port names, net names, and instance names are hashed into 1-based integer numbers called name IDs
- nets are not explicitly represented but their name ID are used to establish connectivity between the objects
- primary input and primary output objects have to be explicitly created (as shown in the example below)
- object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets
- objects can be added to a module in any order
- if the ordering of inputs/outputs/flops of a module is not provided as a separate record,
their ordering is determined by the order of their appearance of their records in the body of the module
- if range limits and signedness are all 0, it is assumed that it is a Boolean object
- if left limit and right limit of a range are equal, it is assumed that the range contains one bit
- instances of known operators can have types defined by Wlc_ObjType_t below
- instances of user modules have type equal to the name ID of the module plus 1000
- initial states of the flops are given as char-strings containing 0, 1, and 'x'
(for example, "4'b10XX" is an init state of a 4-bit flop with bit-level init states const1, const0, unknown, unknown)
- word-level constants are represented as char-strings given in the same way as they would appear in a Verilog file
(for example, the 16-bit constant 10 is represented as a string "4'b1010". This string contains 8 bytes,
including the char '\0' to denote the end of the string. It will take 2 unsigned ints, therefore
its record will look as follows { {NDR_FUNCTION, 2}, {"4'b1010"} }, but the user does not see these details.
The user only gives "4'b1010" as an argument (char * pFunction) to the above procedure Ndr_ModuleAddObject().
*/
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
// record types
typedef enum {
NDR_NONE = 0, // 0: unused
NDR_DESIGN, // 1: design (or library of modules)
NDR_MODULE, // 2: one module
NDR_OBJECT, // 3: object
NDR_INPUT, // 4: input
NDR_OUTPUT, // 5: output
NDR_OPERTYPE, // 6: operator type (buffer, shifter, adder, etc)
NDR_NAME, // 7: name
NDR_RANGE, // 8: bit range
NDR_FUNCTION, // 9: specified for some operators (PLAs, etc)
NDR_UNKNOWN // 10: unknown
} Ndr_RecordType_t;
// operator types
typedef enum {
WLC_OBJ_NONE = 0, // 00: unknown
WLC_OBJ_PI, // 01: primary input
WLC_OBJ_PO, // 02: primary output
WLC_OBJ_FO, // 03: flop output (unused)
WLC_OBJ_FI, // 04: flop input (unused)
WLC_OBJ_FF, // 05: flop
WLC_OBJ_CONST, // 06: constant
WLC_OBJ_BUF, // 07: buffer
WLC_OBJ_MUX, // 08: multiplexer
WLC_OBJ_SHIFT_R, // 09: shift right
WLC_OBJ_SHIFT_RA, // 10: shift right (arithmetic)
WLC_OBJ_SHIFT_L, // 11: shift left
WLC_OBJ_SHIFT_LA, // 12: shift left (arithmetic)
WLC_OBJ_ROTATE_R, // 13: rotate right
WLC_OBJ_ROTATE_L, // 14: rotate left
WLC_OBJ_BIT_NOT, // 15: bitwise NOT
WLC_OBJ_BIT_AND, // 16: bitwise AND
WLC_OBJ_BIT_OR, // 17: bitwise OR
WLC_OBJ_BIT_XOR, // 18: bitwise XOR
WLC_OBJ_BIT_NAND, // 19: bitwise AND
WLC_OBJ_BIT_NOR, // 20: bitwise OR
WLC_OBJ_BIT_NXOR, // 21: bitwise NXOR
WLC_OBJ_BIT_SELECT, // 22: bit selection
WLC_OBJ_BIT_CONCAT, // 23: bit concatenation
WLC_OBJ_BIT_ZEROPAD, // 24: zero padding
WLC_OBJ_BIT_SIGNEXT, // 25: sign extension
WLC_OBJ_LOGIC_NOT, // 26: logic NOT
WLC_OBJ_LOGIC_IMPL, // 27: logic implication
WLC_OBJ_LOGIC_AND, // 28: logic AND
WLC_OBJ_LOGIC_OR, // 29: logic OR
WLC_OBJ_LOGIC_XOR, // 30: logic XOR
WLC_OBJ_COMP_EQU, // 31: compare equal
WLC_OBJ_COMP_NOTEQU, // 32: compare not equal
WLC_OBJ_COMP_LESS, // 33: compare less
WLC_OBJ_COMP_MORE, // 34: compare more
WLC_OBJ_COMP_LESSEQU, // 35: compare less or equal
WLC_OBJ_COMP_MOREEQU, // 36: compare more or equal
WLC_OBJ_REDUCT_AND, // 37: reduction AND
WLC_OBJ_REDUCT_OR, // 38: reduction OR
WLC_OBJ_REDUCT_XOR, // 39: reduction XOR
WLC_OBJ_REDUCT_NAND, // 40: reduction NAND
WLC_OBJ_REDUCT_NOR, // 41: reduction NOR
WLC_OBJ_REDUCT_NXOR, // 42: reduction NXOR
WLC_OBJ_ARI_ADD, // 43: arithmetic addition
WLC_OBJ_ARI_SUB, // 44: arithmetic subtraction
WLC_OBJ_ARI_MULTI, // 45: arithmetic multiplier
WLC_OBJ_ARI_DIVIDE, // 46: arithmetic division
WLC_OBJ_ARI_REM, // 47: arithmetic remainder
WLC_OBJ_ARI_MODULUS, // 48: arithmetic modulus
WLC_OBJ_ARI_POWER, // 49: arithmetic power
WLC_OBJ_ARI_MINUS, // 50: arithmetic minus
WLC_OBJ_ARI_SQRT, // 51: integer square root
WLC_OBJ_ARI_SQUARE, // 52: integer square
WLC_OBJ_TABLE, // 53: bit table
WLC_OBJ_NUMBER // 54: unused
} Wlc_ObjType_t;
// printing operator types
static inline char * Ndr_OperName( int Type )
{
if ( Type == WLC_OBJ_NONE ) return NULL;
if ( Type == WLC_OBJ_PI ) return "pi"; // 01: primary input
if ( Type == WLC_OBJ_PO ) return "po"; // 02: primary output (unused)
if ( Type == WLC_OBJ_FO ) return "ff"; // 03: flop output
if ( Type == WLC_OBJ_FI ) return "bi"; // 04: flop input (unused)
if ( Type == WLC_OBJ_FF ) return "ff"; // 05: flop (unused)
if ( Type == WLC_OBJ_CONST ) return "const"; // 06: constant
if ( Type == WLC_OBJ_BUF ) return "buf"; // 07: buffer
if ( Type == WLC_OBJ_MUX ) return "mux"; // 08: multiplexer
if ( Type == WLC_OBJ_SHIFT_R ) return ">>"; // 09: shift right
if ( Type == WLC_OBJ_SHIFT_RA ) return ">>>"; // 10: shift right (arithmetic)
if ( Type == WLC_OBJ_SHIFT_L ) return "<<"; // 11: shift left
if ( Type == WLC_OBJ_SHIFT_LA ) return "<<<"; // 12: shift left (arithmetic)
if ( Type == WLC_OBJ_ROTATE_R ) return "rotR"; // 13: rotate right
if ( Type == WLC_OBJ_ROTATE_L ) return "rotL"; // 14: rotate left
if ( Type == WLC_OBJ_BIT_NOT ) return "~"; // 15: bitwise NOT
if ( Type == WLC_OBJ_BIT_AND ) return "&"; // 16: bitwise AND
if ( Type == WLC_OBJ_BIT_OR ) return "|"; // 17: bitwise OR
if ( Type == WLC_OBJ_BIT_XOR ) return "^"; // 18: bitwise XOR
if ( Type == WLC_OBJ_BIT_NAND ) return "~&"; // 19: bitwise NAND
if ( Type == WLC_OBJ_BIT_NOR ) return "~|"; // 20: bitwise NOR
if ( Type == WLC_OBJ_BIT_NXOR ) return "~^"; // 21: bitwise NXOR
if ( Type == WLC_OBJ_BIT_SELECT ) return "[:]"; // 22: bit selection
if ( Type == WLC_OBJ_BIT_CONCAT ) return "{}"; // 23: bit concatenation
if ( Type == WLC_OBJ_BIT_ZEROPAD ) return "zPad"; // 24: zero padding
if ( Type == WLC_OBJ_BIT_SIGNEXT ) return "sExt"; // 25: sign extension
if ( Type == WLC_OBJ_LOGIC_NOT ) return "!"; // 26: logic NOT
if ( Type == WLC_OBJ_LOGIC_IMPL ) return "=>"; // 27: logic implication
if ( Type == WLC_OBJ_LOGIC_AND ) return "&&"; // 28: logic AND
if ( Type == WLC_OBJ_LOGIC_OR ) return "||"; // 29: logic OR
if ( Type == WLC_OBJ_LOGIC_XOR ) return "^^"; // 30: logic XOR
if ( Type == WLC_OBJ_COMP_EQU ) return "=="; // 31: compare equal
if ( Type == WLC_OBJ_COMP_NOTEQU ) return "!="; // 32: compare not equal
if ( Type == WLC_OBJ_COMP_LESS ) return "<"; // 33: compare less
if ( Type == WLC_OBJ_COMP_MORE ) return ">"; // 34: compare more
if ( Type == WLC_OBJ_COMP_LESSEQU ) return "<="; // 35: compare less or equal
if ( Type == WLC_OBJ_COMP_MOREEQU ) return ">="; // 36: compare more or equal
if ( Type == WLC_OBJ_REDUCT_AND ) return "&"; // 37: reduction AND
if ( Type == WLC_OBJ_REDUCT_OR ) return "|"; // 38: reduction OR
if ( Type == WLC_OBJ_REDUCT_XOR ) return "^"; // 39: reduction XOR
if ( Type == WLC_OBJ_REDUCT_NAND ) return "~&"; // 40: reduction NAND
if ( Type == WLC_OBJ_REDUCT_NOR ) return "~|"; // 41: reduction NOR
if ( Type == WLC_OBJ_REDUCT_NXOR ) return "~^"; // 42: reduction NXOR
if ( Type == WLC_OBJ_ARI_ADD ) return "+"; // 43: arithmetic addition
if ( Type == WLC_OBJ_ARI_SUB ) return "-"; // 44: arithmetic subtraction
if ( Type == WLC_OBJ_ARI_MULTI ) return "*"; // 45: arithmetic multiplier
if ( Type == WLC_OBJ_ARI_DIVIDE ) return "/"; // 46: arithmetic division
if ( Type == WLC_OBJ_ARI_REM ) return "%"; // 47: arithmetic reminder
if ( Type == WLC_OBJ_ARI_MODULUS ) return "mod"; // 48: arithmetic modulus
if ( Type == WLC_OBJ_ARI_POWER ) return "**"; // 49: arithmetic power
if ( Type == WLC_OBJ_ARI_MINUS ) return "-"; // 50: arithmetic minus
if ( Type == WLC_OBJ_ARI_SQRT ) return "sqrt"; // 51: integer square root
if ( Type == WLC_OBJ_ARI_SQUARE ) return "squar"; // 52: integer square
if ( Type == WLC_OBJ_TABLE ) return "table"; // 53: bit table
if ( Type == WLC_OBJ_NUMBER ) return NULL; // 54: unused
return NULL;
}
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
// this is an internal procedure, which is not seen by the user
typedef struct Ndr_Data_t_ Ndr_Data_t;
struct Ndr_Data_t_
{
int nSize;
int nCap;
unsigned char * pHead;
unsigned int * pBody;
};
static inline int Ndr_DataType( Ndr_Data_t * p, int i ) { assert( p->pHead[i] ); return (int)p->pHead[i]; }
static inline int Ndr_DataSize( Ndr_Data_t * p, int i ) { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i]; }
static inline int Ndr_DataEntry( Ndr_Data_t * p, int i ) { return (int)p->pBody[i]; }
static inline int * Ndr_DataEntryP( Ndr_Data_t * p, int i ) { return (int *)p->pBody + i; }
static inline int Ndr_DataEnd( Ndr_Data_t * p, int i ) { return i + p->pBody[i]; }
static inline void Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add ) { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add; }
static inline void Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry ) { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry; }
////////////////////////////////////////////////////////////////////////
/// ITERATORS ///
////////////////////////////////////////////////////////////////////////
// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod ) \
for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else
// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj ) \
for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else
// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent ) \
for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )
// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) ) {} else
// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) || Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
////////////////////////////////////////////////////////////////////////
/// INTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
static inline void Ndr_DataResize( Ndr_Data_t * p, int Add )
{
if ( p->nSize + Add <= p->nCap )
return;
p->nCap *= 2;
p->pHead = (unsigned char*)realloc( p->pHead, p->nCap );
p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap );
}
static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness )
{
if ( fSignedness )
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
Ndr_DataPush( p, NDR_RANGE, fSignedness );
return;
}
if ( !RangeLeft && !RangeRight )
return;
if ( RangeLeft == RangeRight )
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
else
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
}
}
static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray )
{
if ( !nArray )
return;
assert( nArray > 0 );
Ndr_DataResize( p, nArray );
memset( p->pHead + p->nSize, Type, nArray );
memcpy( p->pBody + p->nSize, pArray, 4*nArray );
p->nSize += nArray;
}
static inline void Ndr_DataPushString( Ndr_Data_t * p, int Type, char * pFunc )
{
if ( !pFunc )
return;
Ndr_DataPushArray( p, Type, (strlen(pFunc) + 4) / 4, (int *)pFunc );
}
////////////////////////////////////////////////////////////////////////
/// VERILOG WRITING ///
////////////////////////////////////////////////////////////////////////
static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart )
{
int Ent, Counter = 0; *ppStart = NULL;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
{
Counter++;
if ( *ppStart == NULL )
*ppStart = (int *)p->pBody + Ent;
}
else if ( *ppStart )
return Counter;
return Counter;
}
static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE )
return (int)(Ndr_DataEntry(p, Ent) == Type);
return -1;
}
static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntryP(p, Ent);
return NULL;
}
static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile )
{
int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
if ( nArray == 0 )
return;
if ( nArray == 3 )
fprintf( pFile, "signed " );
if ( nArray == 1 )
fprintf( pFile, "[%d] ", pArray[0] );
else
fprintf( pFile, "[%d:%d] ", pArray[0], pArray[1] );
}
static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)];
}
static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)];
}
// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_ModuleWriteVerilog( char * pFileName, void * pModule, char ** pNames )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
int Mod = 0, Obj, nArray, * pArray, fFirst = 1;
FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout;
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
fprintf( pFile, "\nmodule %s (\n ", pNames[Ndr_ObjReadEntry(p, 0, NDR_NAME)] );
Ndr_ModForEachPi( p, Mod, Obj )
fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, "\n " );
Ndr_ModForEachPo( p, Mod, Obj )
fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0;
fprintf( pFile, "\n);\n\n" );
Ndr_ModForEachPi( p, Mod, Obj )
{
fprintf( pFile, " input " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
Ndr_ModForEachPo( p, Mod, Obj )
{
fprintf( pFile, " output " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadInName(p, Obj, pNames) );
}
Ndr_ModForEachNode( p, Mod, Obj )
{
fprintf( pFile, " wire " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
fprintf( pFile, "\n" );
Ndr_ModForEachNode( p, Mod, Obj )
{
fprintf( pFile, " assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
if ( nArray == 0 )
fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_BUF )
fprintf( pFile, "%s;\n", pNames[pArray[0]] );
else if ( nArray == 1 )
fprintf( pFile, "%s %s;\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] );
else if ( nArray == 2 )
fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] );
else if ( Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_MUX )
fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
else
fprintf( pFile, "<cannot write operation %s>;\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) );
}
fprintf( pFile, "\nendmodule\n\n" );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// EXTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
// creating a new module (returns pointer to the memory buffer storing the module info)
static inline void * Ndr_ModuleCreate( int Name )
{
Ndr_Data_t * p = malloc( sizeof(Ndr_Data_t) );
p->nSize = 0;
p->nCap = 16;
p->pHead = malloc( p->nCap );
p->pBody = malloc( p->nCap * 4 );
Ndr_DataPush( p, NDR_MODULE, 0 );
Ndr_DataPush( p, NDR_NAME, Name );
Ndr_DataAddTo( p, 0, p->nSize );
assert( p->nSize == 2 );
assert( Name );
return p;
}
// adding a new object (input/output/flop/intenal node) to an already module module
static inline void Ndr_ModuleAddObject( void * pModule, int Type, int InstName,
int RangeLeft, int RangeRight, int fSignedness,
int nInputs, int * pInputs,
int nOutputs, int * pOutputs,
char * pFunction )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
int Obj = p->nSize; assert( Type != 0 );
Ndr_DataResize( p, 6 );
Ndr_DataPush( p, NDR_OBJECT, 0 );
Ndr_DataPush( p, NDR_OPERTYPE, Type );
Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness );
if ( InstName )
Ndr_DataPush( p, NDR_NAME, InstName );
Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs );
Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs );
Ndr_DataPushString( p, NDR_FUNCTION, pFunction );
Ndr_DataAddTo( p, Obj, p->nSize - Obj );
Ndr_DataAddTo( p, 0, p->nSize - Obj );
assert( (int)p->pBody[0] == p->nSize );
}
// deallocate the memory buffer
static inline void Ndr_ModuleDelete( void * pModule )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
if ( !p ) return;
free( p->pHead );
free( p->pBody );
free( p );
}
////////////////////////////////////////////////////////////////////////
/// FILE READING AND WRITING ///
////////////////////////////////////////////////////////////////////////
// file reading/writing
static inline void * Ndr_ModuleRead( char * pFileName )
{
Ndr_Data_t * p; int nFileSize, RetValue;
FILE * pFile = fopen( pFileName, "rb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; }
// check file size
fseek( pFile, 0, SEEK_END );
nFileSize = ftell( pFile );
assert( nFileSize % 5 == 0 );
rewind( pFile );
// create structure
p = malloc( sizeof(Ndr_Data_t) );
p->nSize = p->nCap = nFileSize / 5;
p->pHead = malloc( p->nCap );
p->pBody = malloc( p->nCap * 4 );
RetValue = fread( p->pBody, 4, p->nCap, pFile );
RetValue = fread( p->pHead, 1, p->nCap, pFile );
assert( p->nSize == (int)p->pBody[0] );
fclose( pFile );
return p;
}
static inline void Ndr_ModuleWrite( char * pFileName, void * pModule )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule; int RetValue;
FILE * pFile = fopen( pFileName, "wb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
RetValue = fwrite( p->pBody, 4, p->pBody[0], pFile );
RetValue = fwrite( p->pHead, 1, p->pBody[0], pFile );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// TESTING PROCEDURE ///
////////////////////////////////////////////////////////////////////////
// This testing procedure creates and writes into a Verilog file the following module
// module add10 ( input [3:0] a, output [3:0] s );
// wire [3:0] const10 = 4'b1010;
// assign s = a + const10;
// endmodule
static inline void Ndr_ModuleTest()
{
// name IDs
int NameIdA = 2;
int NameIdS = 3;
int NameIdC = 4;
// array of fanins of node s
int Fanins[2] = { NameIdA, NameIdC };
// map name IDs into char strings
char * ppNames[5] = { NULL, "add10", "a", "s", "const10" };
// create a new module
void * pModule = Ndr_ModuleCreate( 1 );
// add objects to the modele
Ndr_ModuleAddObject( pModule, WLC_OBJ_PI, 0, 3, 0, 0, 0, NULL, 1, &NameIdA, NULL ); // no fanins
Ndr_ModuleAddObject( pModule, WLC_OBJ_CONST, 0, 3, 0, 0, 0, NULL, 1, &NameIdC, "4'b1010" ); // no fanins
Ndr_ModuleAddObject( pModule, WLC_OBJ_ARI_ADD, 0, 3, 0, 0, 2, Fanins, 1, &NameIdS, NULL ); // fanins are a and const10
Ndr_ModuleAddObject( pModule, WLC_OBJ_PO, 0, 3, 0, 0, 1, &NameIdS, 0, NULL, NULL ); // fanin is a
// write Verilog for verification
Ndr_ModuleWriteVerilog( NULL, pModule, ppNames );
Ndr_ModuleDelete( pModule );
}
//ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
...@@ -120,7 +120,7 @@ static int s_1kPrimes[ISO_MASK+1] = { ...@@ -120,7 +120,7 @@ static int s_1kPrimes[ISO_MASK+1] = {
*/ */
#define ISO_MASK 0x3FF #define ISO_MASK 0x3FF
static int s_1kPrimes[ISO_MASK+1] = static unsigned int s_1kPrimes[ISO_MASK+1] =
//#define ISO_MASK 0xFF //#define ISO_MASK 0xFF
//static int s_1kPrimes[0x3FF+1] = //static int s_1kPrimes[0x3FF+1] =
{ {
......
...@@ -825,6 +825,7 @@ extern ABC_DLL void Abc_NtkDontCareFree( Odc_Man_t * p ); ...@@ -825,6 +825,7 @@ extern ABC_DLL void Abc_NtkDontCareFree( Odc_Man_t * p );
extern ABC_DLL int Abc_NtkDontCareCompute( Odc_Man_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, unsigned * puTruth ); extern ABC_DLL int Abc_NtkDontCareCompute( Odc_Man_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, unsigned * puTruth );
/*=== abcPrint.c ==========================================================*/ /*=== abcPrint.c ==========================================================*/
extern ABC_DLL float Abc_NtkMfsTotalSwitching( Abc_Ntk_t * pNtk ); extern ABC_DLL float Abc_NtkMfsTotalSwitching( Abc_Ntk_t * pNtk );
extern ABC_DLL float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk, int nPats, int Prob, int fVerbose );
extern ABC_DLL void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDumpResult, int fUseLutLib, int fPrintMuxes, int fPower, int fGlitch, int fSkipBuf, int fSkipSmall, int fPrintMem ); extern ABC_DLL void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDumpResult, int fUseLutLib, int fPrintMuxes, int fPower, int fGlitch, int fSkipBuf, int fSkipSmall, int fPrintMem );
extern ABC_DLL void Abc_NtkPrintIo( FILE * pFile, Abc_Ntk_t * pNtk, int fPrintFlops ); extern ABC_DLL void Abc_NtkPrintIo( FILE * pFile, Abc_Ntk_t * pNtk, int fPrintFlops );
extern ABC_DLL void Abc_NtkPrintLatch( FILE * pFile, Abc_Ntk_t * pNtk ); extern ABC_DLL void Abc_NtkPrintLatch( FILE * pFile, Abc_Ntk_t * pNtk );
......
...@@ -122,6 +122,7 @@ static int Abc_CommandMfs ( Abc_Frame_t * pAbc, int argc, cha ...@@ -122,6 +122,7 @@ static int Abc_CommandMfs ( Abc_Frame_t * pAbc, int argc, cha
static int Abc_CommandMfs2 ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandMfs2 ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandMfs3 ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandMfs3 ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTrace ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandTrace ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandGlitch ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandSpeedup ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandSpeedup ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandPowerdown ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandPowerdown ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandAddBuffs ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandAddBuffs ( Abc_Frame_t * pAbc, int argc, char ** argv );
...@@ -316,6 +317,7 @@ static int Abc_CommandPSat ( Abc_Frame_t * pAbc, int argc, cha ...@@ -316,6 +317,7 @@ static int Abc_CommandPSat ( Abc_Frame_t * pAbc, int argc, cha
static int Abc_CommandProve ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandProve ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandIProve ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandIProve ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandDebug ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandDebug ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandEco ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmc ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandBmc ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmc2 ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandBmc2 ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandBmc3 ( Abc_Frame_t * pAbc, int argc, char ** argv ); static int Abc_CommandBmc3 ( Abc_Frame_t * pAbc, int argc, char ** argv );
...@@ -772,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc ) ...@@ -772,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Synthesis", "mfs2", Abc_CommandMfs2, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "mfs2", Abc_CommandMfs2, 1 );
Cmd_CommandAdd( pAbc, "Synthesis", "mfs3", Abc_CommandMfs3, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "mfs3", Abc_CommandMfs3, 1 );
Cmd_CommandAdd( pAbc, "Synthesis", "trace", Abc_CommandTrace, 0 ); Cmd_CommandAdd( pAbc, "Synthesis", "trace", Abc_CommandTrace, 0 );
Cmd_CommandAdd( pAbc, "Synthesis", "glitch", Abc_CommandGlitch, 0 );
Cmd_CommandAdd( pAbc, "Synthesis", "speedup", Abc_CommandSpeedup, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "speedup", Abc_CommandSpeedup, 1 );
Cmd_CommandAdd( pAbc, "Synthesis", "powerdown", Abc_CommandPowerdown, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "powerdown", Abc_CommandPowerdown, 1 );
Cmd_CommandAdd( pAbc, "Synthesis", "addbuffs", Abc_CommandAddBuffs, 1 ); Cmd_CommandAdd( pAbc, "Synthesis", "addbuffs", Abc_CommandAddBuffs, 1 );
...@@ -966,6 +969,7 @@ void Abc_Init( Abc_Frame_t * pAbc ) ...@@ -966,6 +969,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Verification", "prove", Abc_CommandProve, 1 ); Cmd_CommandAdd( pAbc, "Verification", "prove", Abc_CommandProve, 1 );
Cmd_CommandAdd( pAbc, "Verification", "iprove", Abc_CommandIProve, 1 ); Cmd_CommandAdd( pAbc, "Verification", "iprove", Abc_CommandIProve, 1 );
Cmd_CommandAdd( pAbc, "Verification", "debug", Abc_CommandDebug, 0 ); Cmd_CommandAdd( pAbc, "Verification", "debug", Abc_CommandDebug, 0 );
Cmd_CommandAdd( pAbc, "Verification", "eco", Abc_CommandEco, 0 );
Cmd_CommandAdd( pAbc, "Verification", "bmc", Abc_CommandBmc, 0 ); Cmd_CommandAdd( pAbc, "Verification", "bmc", Abc_CommandBmc, 0 );
Cmd_CommandAdd( pAbc, "Verification", "bmc2", Abc_CommandBmc2, 0 ); Cmd_CommandAdd( pAbc, "Verification", "bmc2", Abc_CommandBmc2, 0 );
Cmd_CommandAdd( pAbc, "Verification", "bmc3", Abc_CommandBmc3, 1 ); Cmd_CommandAdd( pAbc, "Verification", "bmc3", Abc_CommandBmc3, 1 );
...@@ -5718,6 +5722,88 @@ usage: ...@@ -5718,6 +5722,88 @@ usage:
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int Abc_CommandGlitch( Abc_Frame_t * pAbc, int argc, char ** argv )
{
Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc);
int nPats = 4000;
int Prob = 8;
int fVerbose = 1;
int c;
// set defaults
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "NPvh" ) ) != EOF )
{
switch ( c )
{
case 'N':
if ( globalUtilOptind >= argc )
{
Abc_Print( -1, "Command line switch \"-N\" should be followed by an integer.\n" );
goto usage;
}
nPats = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nPats < 1 )
goto usage;
break;
case 'P':
if ( globalUtilOptind >= argc )
{
Abc_Print( -1, "Command line switch \"-P\" should be followed by an integer.\n" );
goto usage;
}
Prob = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( Prob < 1 )
goto usage;
break;
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
if ( pNtk == NULL )
{
Abc_Print( -1, "Empty network.\n" );
return 1;
}
if ( !Abc_NtkIsLogic(pNtk) )
{
Abc_Print( -1, "This command can only be applied to a mapped logic network.\n" );
return 1;
}
if ( Abc_NtkIsMappedLogic(pNtk) || Abc_NtkGetFaninMax(pNtk) <= 6 )
Abc_Print( 1, "Glitching adds %7.2f %% of signal transitions, compared to switching.\n", Abc_NtkMfsTotalGlitching(pNtk, nPats, Prob, fVerbose) );
else
printf( "Currently computes glitching only for K-LUT networks with K <= 6.\n" );
return 0;
usage:
Abc_Print( -2, "usage: glitch [-NP <num>] [-vh]\n" );
Abc_Print( -2, "\t comparing glitching activity to switching activity\n" );
Abc_Print( -2, "\t-N <num> : the number of random patterns to use (0 < num < 1000000) [default = %d]\n", nPats );
Abc_Print( -2, "\t-P <num> : once in how many cycles an input changes its value [default = %d]\n", Prob );
Abc_Print( -2, "\t-v : toggle printing optimization summary [default = %s]\n", fVerbose? "yes": "no" );
Abc_Print( -2, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandSpeedup( Abc_Frame_t * pAbc, int argc, char ** argv ) int Abc_CommandSpeedup( Abc_Frame_t * pAbc, int argc, char ** argv )
{ {
Abc_Ntk_t * pNtk, * pNtkRes; Abc_Ntk_t * pNtk, * pNtkRes;
...@@ -23865,6 +23951,50 @@ usage: ...@@ -23865,6 +23951,50 @@ usage:
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int Abc_CommandEco( Abc_Frame_t * pAbc, int argc, char ** argv )
{
extern void Abc_NtkEco( char * pFileNames[3] );
char * pFileNames[3] = {NULL}; int c;
// set defaults
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "h" ) ) != EOF )
{
switch ( c )
{
case 'h':
goto usage;
default:
goto usage;
}
}
if ( globalUtilOptind + 3 != argc )
{
Abc_Print( -1, "Expecting three file names on the command line.\n" );
return 1;
}
for ( c = 0; c < 3; c++ )
pFileNames[c] = argv[globalUtilOptind+c];
Abc_NtkEco( pFileNames );
return 0;
usage:
Abc_Print( -2, "usage: eco [-h]\n" );
Abc_Print( -2, "\t performs experimental ECO computation\n" );
Abc_Print( -2, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv ) int Abc_CommandBmc( Abc_Frame_t * pAbc, int argc, char ** argv )
{ {
Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc); Abc_Ntk_t * pNtk = Abc_FrameReadNtk(pAbc);
/**CFile****************************************************************
FileName [abcEco.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Experimental procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcEco.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "base/main/main.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkEco( char * pFileNames[3] )
{
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
...@@ -923,9 +923,9 @@ void Abc_NtkPrintMiniMapping( int * pArray ) ...@@ -923,9 +923,9 @@ void Abc_NtkPrintMiniMapping( int * pArray )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int * Abc_NtkOutputMiniMapping( void * pAbc0 ) int * Abc_NtkOutputMiniMapping( Abc_Frame_t * pAbc )
{ {
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0; //Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk; Abc_Ntk_t * pNtk;
Vec_Int_t * vMapping; Vec_Int_t * vMapping;
int * pArray; int * pArray;
...@@ -977,9 +977,9 @@ void Abc_NtkTestMiniMapping( Abc_Ntk_t * p ) ...@@ -977,9 +977,9 @@ void Abc_NtkTestMiniMapping( Abc_Ntk_t * p )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall ) void Abc_NtkSetCiArrivalTime( Abc_Frame_t * pAbc, int iCi, float Rise, float Fall )
{ {
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0; //Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk; Abc_Ntk_t * pNtk;
Abc_Obj_t * pNode; Abc_Obj_t * pNode;
if ( pAbc == NULL ) if ( pAbc == NULL )
...@@ -1001,9 +1001,9 @@ void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall ) ...@@ -1001,9 +1001,9 @@ void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall )
pNode = Abc_NtkCi( pNtk, iCi ); pNode = Abc_NtkCi( pNtk, iCi );
Abc_NtkTimeSetArrival( pNtk, Abc_ObjId(pNode), Rise, Fall ); Abc_NtkTimeSetArrival( pNtk, Abc_ObjId(pNode), Rise, Fall );
} }
void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall ) void Abc_NtkSetCoRequiredTime( Abc_Frame_t * pAbc, int iCo, float Rise, float Fall )
{ {
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0; //Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk; Abc_Ntk_t * pNtk;
Abc_Obj_t * pNode; Abc_Obj_t * pNode;
if ( pAbc == NULL )\ if ( pAbc == NULL )\
...@@ -1037,9 +1037,9 @@ void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall ) ...@@ -1037,9 +1037,9 @@ void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
void Abc_NtkSetAndGateDelay( void * pAbc0, float Delay ) void Abc_NtkSetAndGateDelay( Abc_Frame_t * pAbc, float Delay )
{ {
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0; //Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk; Abc_Ntk_t * pNtk;
if ( pAbc == NULL ) if ( pAbc == NULL )
{ {
......
...@@ -351,9 +351,8 @@ void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDum ...@@ -351,9 +351,8 @@ void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDum
Abc_Print( 1," power =%7.2f", Abc_NtkMfsTotalSwitching(pNtk) ); Abc_Print( 1," power =%7.2f", Abc_NtkMfsTotalSwitching(pNtk) );
if ( fGlitch ) if ( fGlitch )
{ {
extern float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk );
if ( Abc_NtkIsLogic(pNtk) && Abc_NtkGetFaninMax(pNtk) <= 6 ) if ( Abc_NtkIsLogic(pNtk) && Abc_NtkGetFaninMax(pNtk) <= 6 )
Abc_Print( 1," glitch =%7.2f %%", Abc_NtkMfsTotalGlitching(pNtk) ); Abc_Print( 1," glitch =%7.2f %%", Abc_NtkMfsTotalGlitching(pNtk, 4000, 8, 0) );
else else
printf( "\nCurrently computes glitching only for K-LUT networks with K <= 6." ); printf( "\nCurrently computes glitching only for K-LUT networks with K <= 6." );
} }
...@@ -1744,7 +1743,7 @@ extern Gli_Man_t * Gli_ManAlloc( int nObjs, int nRegs, int nFanioPairs ); ...@@ -1744,7 +1743,7 @@ extern Gli_Man_t * Gli_ManAlloc( int nObjs, int nRegs, int nFanioPairs );
extern void Gli_ManStop( Gli_Man_t * p ); extern void Gli_ManStop( Gli_Man_t * p );
extern int Gli_ManCreateCi( Gli_Man_t * p, int nFanouts ); extern int Gli_ManCreateCi( Gli_Man_t * p, int nFanouts );
extern int Gli_ManCreateCo( Gli_Man_t * p, int iFanin ); extern int Gli_ManCreateCo( Gli_Man_t * p, int iFanin );
extern int Gli_ManCreateNode( Gli_Man_t * p, Vec_Int_t * vFanins, int nFanouts, unsigned * puTruth ); extern int Gli_ManCreateNode( Gli_Man_t * p, Vec_Int_t * vFanins, int nFanouts, word * pGateTruth );
extern void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb, int fVerbose ); extern void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb, int fVerbose );
extern int Gli_ObjNumSwitches( Gli_Man_t * p, int iNode ); extern int Gli_ObjNumSwitches( Gli_Man_t * p, int iNode );
...@@ -1761,13 +1760,14 @@ extern int Gli_ObjNumGlitches( Gli_Man_t * p, int iNode ); ...@@ -1761,13 +1760,14 @@ extern int Gli_ObjNumGlitches( Gli_Man_t * p, int iNode );
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk ) float Abc_NtkMfsTotalGlitchingLut( Abc_Ntk_t * pNtk, int nPats, int Prob, int fVerbose )
{ {
int nSwitches, nGlitches; int nSwitches, nGlitches;
Gli_Man_t * p; Gli_Man_t * p;
Vec_Ptr_t * vNodes; Vec_Ptr_t * vNodes;
Vec_Int_t * vFanins, * vTruth; Vec_Int_t * vFanins, * vTruth;
Abc_Obj_t * pObj, * pFanin; Abc_Obj_t * pObj, * pFanin;
Vec_Wrd_t * vTruths; word * pTruth;
unsigned * puTruth; unsigned * puTruth;
int i, k; int i, k;
assert( Abc_NtkIsLogic(pNtk) ); assert( Abc_NtkIsLogic(pNtk) );
...@@ -1781,6 +1781,7 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk ) ...@@ -1781,6 +1781,7 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
vNodes = Abc_NtkDfs( pNtk, 0 ); vNodes = Abc_NtkDfs( pNtk, 0 );
vFanins = Vec_IntAlloc( 6 ); vFanins = Vec_IntAlloc( 6 );
vTruth = Vec_IntAlloc( 1 << 12 ); vTruth = Vec_IntAlloc( 1 << 12 );
vTruths = Vec_WrdStart( Abc_NtkObjNumMax(pNtk) );
// derive network for glitch computation // derive network for glitch computation
p = Gli_ManAlloc( Vec_PtrSize(vNodes) + Abc_NtkCiNum(pNtk) + Abc_NtkCoNum(pNtk), p = Gli_ManAlloc( Vec_PtrSize(vNodes) + Abc_NtkCiNum(pNtk) + Abc_NtkCoNum(pNtk),
...@@ -1795,7 +1796,9 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk ) ...@@ -1795,7 +1796,9 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
Abc_ObjForEachFanin( pObj, pFanin, k ) Abc_ObjForEachFanin( pObj, pFanin, k )
Vec_IntPush( vFanins, pFanin->iTemp ); Vec_IntPush( vFanins, pFanin->iTemp );
puTruth = Hop_ManConvertAigToTruth( (Hop_Man_t *)pNtk->pManFunc, (Hop_Obj_t *)pObj->pData, Abc_ObjFaninNum(pObj), vTruth, 0 ); puTruth = Hop_ManConvertAigToTruth( (Hop_Man_t *)pNtk->pManFunc, (Hop_Obj_t *)pObj->pData, Abc_ObjFaninNum(pObj), vTruth, 0 );
pObj->iTemp = Gli_ManCreateNode( p, vFanins, Abc_ObjFanoutNum(pObj), puTruth ); pTruth = Vec_WrdEntryP( vTruths, Abc_ObjId(pObj) );
*pTruth = ((word)puTruth[Abc_ObjFaninNum(pObj) == 6] << 32) | (word)puTruth[0];
pObj->iTemp = Gli_ManCreateNode( p, vFanins, Abc_ObjFanoutNum(pObj), pTruth );
} }
Abc_NtkForEachCo( pNtk, pObj, i ) Abc_NtkForEachCo( pNtk, pObj, i )
Gli_ManCreateCo( p, Abc_ObjFanin0(pObj)->iTemp ); Gli_ManCreateCo( p, Abc_ObjFanin0(pObj)->iTemp );
...@@ -1816,6 +1819,72 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk ) ...@@ -1816,6 +1819,72 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
Vec_PtrFree( vNodes ); Vec_PtrFree( vNodes );
Vec_IntFree( vTruth ); Vec_IntFree( vTruth );
Vec_IntFree( vFanins ); Vec_IntFree( vFanins );
Vec_WrdFree( vTruths );
return nSwitches ? 100.0*(nGlitches-nSwitches)/nSwitches : 0.0;
}
/**Function*************************************************************
Synopsis [Returns the percentable of increased power due to glitching.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk, int nPats, int Prob, int fVerbose )
{
int nSwitches, nGlitches;
Gli_Man_t * p;
Vec_Ptr_t * vNodes;
Vec_Int_t * vFanins;
Abc_Obj_t * pObj, * pFanin;
int i, k, nFaninMax = Abc_NtkGetFaninMax(pNtk);
if ( !Abc_NtkIsMappedLogic(pNtk) )
return Abc_NtkMfsTotalGlitchingLut( pNtk, nPats, Prob, fVerbose );
assert( Abc_NtkIsMappedLogic(pNtk) );
if ( nFaninMax > 16 )
{
printf( "Abc_NtkMfsTotalGlitching() This procedure works only for mapped networks with LUTs size up to 6 inputs.\n" );
return -1.0;
}
vNodes = Abc_NtkDfs( pNtk, 0 );
vFanins = Vec_IntAlloc( 6 );
// derive network for glitch computation
p = Gli_ManAlloc( Vec_PtrSize(vNodes) + Abc_NtkCiNum(pNtk) + Abc_NtkCoNum(pNtk),
Abc_NtkLatchNum(pNtk), Abc_NtkGetTotalFanins(pNtk) + Abc_NtkCoNum(pNtk) );
Abc_NtkForEachObj( pNtk, pObj, i )
pObj->iTemp = -1;
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->iTemp = Gli_ManCreateCi( p, Abc_ObjFanoutNum(pObj) );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
{
Vec_IntClear( vFanins );
Abc_ObjForEachFanin( pObj, pFanin, k )
Vec_IntPush( vFanins, pFanin->iTemp );
pObj->iTemp = Gli_ManCreateNode( p, vFanins, Abc_ObjFanoutNum(pObj), Mio_GateReadTruthP((Mio_Gate_t *)pObj->pData) );
}
Abc_NtkForEachCo( pNtk, pObj, i )
Gli_ManCreateCo( p, Abc_ObjFanin0(pObj)->iTemp );
// compute glitching
Gli_ManSwitchesAndGlitches( p, nPats, 1.0/Prob, fVerbose );
// compute the ratio
nSwitches = nGlitches = 0;
Abc_NtkForEachObj( pNtk, pObj, i )
if ( pObj->iTemp >= 0 )
{
nSwitches += Abc_ObjFanoutNum(pObj) * Gli_ObjNumSwitches(p, pObj->iTemp);
nGlitches += Abc_ObjFanoutNum(pObj) * Gli_ObjNumGlitches(p, pObj->iTemp);
}
Gli_ManStop( p );
Vec_PtrFree( vNodes );
Vec_IntFree( vFanins );
return nSwitches ? 100.0*(nGlitches-nSwitches)/nSwitches : 0.0; return nSwitches ? 100.0*(nGlitches-nSwitches)/nSwitches : 0.0;
} }
......
...@@ -17,6 +17,7 @@ SRC += src/base/abci/abc.c \ ...@@ -17,6 +17,7 @@ SRC += src/base/abci/abc.c \
src/base/abci/abcDress2.c \ src/base/abci/abcDress2.c \
src/base/abci/abcDress3.c \ src/base/abci/abcDress3.c \
src/base/abci/abcDsd.c \ src/base/abci/abcDsd.c \
src/base/abci/abcEco.c \
src/base/abci/abcExact.c \ src/base/abci/abcExact.c \
src/base/abci/abcExtract.c \ src/base/abci/abcExtract.c \
src/base/abci/abcFraig.c \ src/base/abci/abcFraig.c \
......
...@@ -30,6 +30,8 @@ ABC_NAMESPACE_IMPL_START ...@@ -30,6 +30,8 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS /// /// DECLARATIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
#define ABC_USE_HISTORY 1
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS /// /// FUNCTION DEFINITIONS ///
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
...@@ -99,7 +101,7 @@ void Cmd_HistoryAddCommand( Abc_Frame_t * p, const char * command ) ...@@ -99,7 +101,7 @@ void Cmd_HistoryAddCommand( Abc_Frame_t * p, const char * command )
***********************************************************************/ ***********************************************************************/
void Cmd_HistoryRead( Abc_Frame_t * p ) void Cmd_HistoryRead( Abc_Frame_t * p )
{ {
#if defined(WIN32) #if defined(WIN32) && defined(ABC_USE_HISTORY)
char Buffer[ABC_MAX_STR]; char Buffer[ABC_MAX_STR];
FILE * pFile; FILE * pFile;
assert( Vec_PtrSize(p->aHistory) == 0 ); assert( Vec_PtrSize(p->aHistory) == 0 );
...@@ -130,7 +132,7 @@ void Cmd_HistoryRead( Abc_Frame_t * p ) ...@@ -130,7 +132,7 @@ void Cmd_HistoryRead( Abc_Frame_t * p )
***********************************************************************/ ***********************************************************************/
void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit ) void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit )
{ {
#if defined(WIN32) #if defined(WIN32) && defined(ABC_USE_HISTORY)
FILE * pFile; FILE * pFile;
char * pStr; char * pStr;
int i; int i;
...@@ -160,7 +162,7 @@ void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit ) ...@@ -160,7 +162,7 @@ void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit )
***********************************************************************/ ***********************************************************************/
void Cmd_HistoryPrint( Abc_Frame_t * p, int Limit ) void Cmd_HistoryPrint( Abc_Frame_t * p, int Limit )
{ {
#if defined(WIN32) #if defined(WIN32) && defined(ABC_USE_HISTORY)
char * pStr; char * pStr;
int i; int i;
Limit = Abc_MaxInt( 0, Vec_PtrSize(p->aHistory)-Limit ); Limit = Abc_MaxInt( 0, Vec_PtrSize(p->aHistory)-Limit );
......
/**CFile****************************************************************
FileName [abcapis.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Include this file in the external code calling ABC.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - September 29, 2012.]
Revision [$Id: abcapis.h,v 1.00 2012/09/29 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef MINI_AIG__abc_apis_h
#define MINI_AIG__abc_apis_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_HEADER_START
typedef struct Abc_Frame_t_ Abc_Frame_t;
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
#ifdef WIN32
#ifdef WIN32_NO_DLL
#define ABC_DLLEXPORT
#define ABC_DLLIMPORT
#else
#define ABC_DLLEXPORT __declspec(dllexport)
#define ABC_DLLIMPORT __declspec(dllimport)
#endif
#else /* defined(WIN32) */
#define ABC_DLLIMPORT
#endif /* defined(WIN32) */
#ifndef ABC_DLL
#define ABC_DLL ABC_DLLIMPORT
#endif
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// procedures to start and stop the ABC framework
extern ABC_DLL void Abc_Start();
extern ABC_DLL void Abc_Stop();
// procedures to get the ABC framework (pAbc) and execute commands in it
extern ABC_DLL Abc_Frame_t * Abc_FrameGetGlobalFrame();
extern ABC_DLL int Cmd_CommandExecute( Abc_Frame_t * pAbc, const char * pCommandLine );
// procedures to input/output 'mini AIG'
extern ABC_DLL void Abc_NtkInputMiniAig( Abc_Frame_t * pAbc, void * pMiniAig );
extern ABC_DLL void * Abc_NtkOutputMiniAig( Abc_Frame_t * pAbc );
extern ABC_DLL void Abc_FrameGiaInputMiniAig( Abc_Frame_t * pAbc, void * p );
extern ABC_DLL void * Abc_FrameGiaOutputMiniAig( Abc_Frame_t * pAbc );
extern ABC_DLL void Abc_NtkSetFlopNum( Abc_Frame_t * pAbc, int nFlops );
// procedures to input/output 'mini LUT'
extern ABC_DLL void Abc_FrameGiaInputMiniLut( Abc_Frame_t * pAbc, void * pMiniLut );
extern ABC_DLL void * Abc_FrameGiaOutputMiniLut( Abc_Frame_t * pAbc );
// procedures to set CI/CO arrival/required times
extern ABC_DLL void Abc_NtkSetCiArrivalTime( Abc_Frame_t * pAbc, int iCi, float Rise, float Fall );
extern ABC_DLL void Abc_NtkSetCoRequiredTime( Abc_Frame_t * pAbc, int iCo, float Rise, float Fall );
// procedure to set AND-gate delay to tech-independent synthesis and mapping
extern ABC_DLL void Abc_NtkSetAndGateDelay( Abc_Frame_t * pAbc, float Delay );
// procedures to return the mapped network
extern ABC_DLL int * Abc_NtkOutputMiniMapping( Abc_Frame_t * pAbc );
extern ABC_DLL void Abc_NtkPrintMiniMapping( int * pArray );
// procedures to access verifization status and a counter-example
extern ABC_DLL int Abc_FrameReadProbStatus( Abc_Frame_t * pAbc );
extern ABC_DLL void * Abc_FrameReadCex( Abc_Frame_t * pAbc );
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
...@@ -18,8 +18,8 @@ ...@@ -18,8 +18,8 @@
***********************************************************************/ ***********************************************************************/
#ifndef MINI_AIG__abc_apis_h #ifndef MINI_AIG__abc_apis_old_h
#define MINI_AIG__abc_apis_h #define MINI_AIG__abc_apis_old_h
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
/// INCLUDES /// /// INCLUDES ///
......
...@@ -34,10 +34,8 @@ ...@@ -34,10 +34,8 @@
#include "misc/vec/vec.h" #include "misc/vec/vec.h"
#include "misc/st/st.h" #include "misc/st/st.h"
ABC_NAMESPACE_HEADER_START // the framework containing all data is defined here
// the framework containing all data #include "abcapis.h"
typedef struct Abc_Frame_t_ Abc_Frame_t;
ABC_NAMESPACE_HEADER_END
#include "base/cmd/cmd.h" #include "base/cmd/cmd.h"
#include "base/io/ioAbc.h" #include "base/io/ioAbc.h"
...@@ -116,7 +114,7 @@ extern ABC_DLL void Abc_FrameSetBridgeMode(); ...@@ -116,7 +114,7 @@ extern ABC_DLL void Abc_FrameSetBridgeMode();
extern ABC_DLL int Abc_FrameReadBmcFrames( Abc_Frame_t * p ); extern ABC_DLL int Abc_FrameReadBmcFrames( Abc_Frame_t * p );
extern ABC_DLL int Abc_FrameReadProbStatus( Abc_Frame_t * p ); extern ABC_DLL int Abc_FrameReadProbStatus( Abc_Frame_t * p );
extern ABC_DLL Abc_Cex_t * Abc_FrameReadCex( Abc_Frame_t * p ); extern ABC_DLL void * Abc_FrameReadCex( Abc_Frame_t * p );
extern ABC_DLL Vec_Ptr_t * Abc_FrameReadCexVec( Abc_Frame_t * p ); extern ABC_DLL Vec_Ptr_t * Abc_FrameReadCexVec( Abc_Frame_t * p );
extern ABC_DLL Vec_Int_t * Abc_FrameReadStatusVec( Abc_Frame_t * p ); extern ABC_DLL Vec_Int_t * Abc_FrameReadStatusVec( Abc_Frame_t * p );
extern ABC_DLL Vec_Ptr_t * Abc_FrameReadPoEquivs( Abc_Frame_t * p ); extern ABC_DLL Vec_Ptr_t * Abc_FrameReadPoEquivs( Abc_Frame_t * p );
......
...@@ -69,7 +69,7 @@ char * Abc_FrameReadFlag( char * pFlag ) { return Cmd_FlagRe ...@@ -69,7 +69,7 @@ char * Abc_FrameReadFlag( char * pFlag ) { return Cmd_FlagRe
int Abc_FrameReadBmcFrames( Abc_Frame_t * p ) { return s_GlobalFrame->nFrames; } int Abc_FrameReadBmcFrames( Abc_Frame_t * p ) { return s_GlobalFrame->nFrames; }
int Abc_FrameReadProbStatus( Abc_Frame_t * p ) { return s_GlobalFrame->Status; } int Abc_FrameReadProbStatus( Abc_Frame_t * p ) { return s_GlobalFrame->Status; }
Abc_Cex_t * Abc_FrameReadCex( Abc_Frame_t * p ) { return s_GlobalFrame->pCex; } void * Abc_FrameReadCex( Abc_Frame_t * p ) { return s_GlobalFrame->pCex; }
Vec_Ptr_t * Abc_FrameReadCexVec( Abc_Frame_t * p ) { return s_GlobalFrame->vCexVec; } Vec_Ptr_t * Abc_FrameReadCexVec( Abc_Frame_t * p ) { return s_GlobalFrame->vCexVec; }
Vec_Int_t * Abc_FrameReadStatusVec( Abc_Frame_t * p ) { return s_GlobalFrame->vStatuses; } Vec_Int_t * Abc_FrameReadStatusVec( Abc_Frame_t * p ) { return s_GlobalFrame->vStatuses; }
Vec_Ptr_t * Abc_FrameReadPoEquivs( Abc_Frame_t * p ) { return s_GlobalFrame->vPoEquivs; } Vec_Ptr_t * Abc_FrameReadPoEquivs( Abc_Frame_t * p ) { return s_GlobalFrame->vPoEquivs; }
......
...@@ -239,7 +239,7 @@ int Wlc_StdinProcessSmt( Abc_Frame_t * pAbc, char * pCmd ) ...@@ -239,7 +239,7 @@ int Wlc_StdinProcessSmt( Abc_Frame_t * pAbc, char * pCmd )
return 0; return 0;
} }
// report value of this variable // report value of this variable
Wlc_NtkReport( (Wlc_Ntk_t *)pAbc->pAbcWlc, Abc_FrameReadCex(pAbc), pName, 16 ); Wlc_NtkReport( (Wlc_Ntk_t *)pAbc->pAbcWlc, (Abc_Cex_t *)Abc_FrameReadCex(pAbc), pName, 16 );
Vec_StrFree( vInput ); Vec_StrFree( vInput );
fflush( stdout ); fflush( stdout );
} }
......
...@@ -56,8 +56,8 @@ struct Scl_Con_t_ ...@@ -56,8 +56,8 @@ struct Scl_Con_t_
#define SCL_OUTPUT_REQ "output_required" #define SCL_OUTPUT_REQ "output_required"
#define SCL_OUTPUT_LOAD "output_load" #define SCL_OUTPUT_LOAD "output_load"
#define SCL_DIRECTIVE(ITEM) "."ITEM #define SCL_DIRECTIVE(ITEM) "."#ITEM
#define SCL_DEF_DIRECTIVE(ITEM) ".default_"ITEM #define SCL_DEF_DIRECTIVE(ITEM) ".default_"#ITEM
#define SCL_NUM 1000 #define SCL_NUM 1000
#define SCL_INFINITY (0x3FFFFFFF) #define SCL_INFINITY (0x3FFFFFFF)
......
...@@ -288,7 +288,7 @@ int * Pdr_ManSortByPriority( Pdr_Man_t * p, Pdr_Set_t * pCube ) ...@@ -288,7 +288,7 @@ int * Pdr_ManSortByPriority( Pdr_Man_t * p, Pdr_Set_t * pCube )
best_i = i; best_i = i;
for ( j = i+1; j < nSize; j++ ) for ( j = i+1; j < nSize; j++ )
// if ( pArray[j] < pArray[best_i] ) // if ( pArray[j] < pArray[best_i] )
if ( pPrios[pCube->Lits[pArray[j]]>>1] < pPrios[pCube->Lits[pArray[best_i]]>>1] ) if ( pPrios[pCube->Lits[pArray[j]]>>1] < pPrios[pCube->Lits[pArray[best_i]]>>1] ) // list lower priority first (these will be removed first)
best_i = j; best_i = j;
temp = pArray[i]; temp = pArray[i];
pArray[i] = pArray[best_i]; pArray[i] = pArray[best_i];
...@@ -488,7 +488,7 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred, ...@@ -488,7 +488,7 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
/**Function************************************************************* /**Function*************************************************************
Synopsis [Specialized sorting of flops based on cost.] Synopsis [Specialized sorting of flops based on priority.]
Description [] Description []
...@@ -497,17 +497,171 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred, ...@@ -497,17 +497,171 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
static inline void Vec_IntSelectSortCostReverseLit( int * pArray, int nSize, Vec_Int_t * vCosts ) static inline int Vec_IntSelectSortPrioReverseLit( int * pArray, int nSize, Vec_Int_t * vPrios )
{ {
int i, j, best_i; int i, j, best_i;
for ( i = 0; i < nSize-1; i++ ) for ( i = 0; i < nSize-1; i++ )
{ {
best_i = i; best_i = i;
for ( j = i+1; j < nSize; j++ ) for ( j = i+1; j < nSize; j++ )
if ( Vec_IntEntry(vCosts, Abc_Lit2Var(pArray[j])) > Vec_IntEntry(vCosts, Abc_Lit2Var(pArray[best_i])) ) if ( Vec_IntEntry(vPrios, Abc_Lit2Var(pArray[j])) > Vec_IntEntry(vPrios, Abc_Lit2Var(pArray[best_i])) ) // prefer higher priority
best_i = j; best_i = j;
ABC_SWAP( int, pArray[i], pArray[best_i] ); ABC_SWAP( int, pArray[i], pArray[best_i] );
} }
return 1;
}
/**Function*************************************************************
Synopsis [Performs generalization using a different idea.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppCubeMin )
{
int fUseMinAss = 0;
sat_solver * pSat = Pdr_ManFetchSolver( p, k );
int Order = Vec_IntSelectSortPrioReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
Vec_Int_t * vLits1 = Pdr_ManCubeToLits( p, k, pCube, 1, 0 );
int RetValue, Count = 0, iLit, Lits[2], nLits = Vec_IntSize( vLits1 );
// create free variables
int i, iUseVar, iAndVar;
iAndVar = Pdr_ManFreeVar(p, k);
for ( i = 1; i < nLits; i++ )
Pdr_ManFreeVar(p, k);
iUseVar = Pdr_ManFreeVar(p, k);
for ( i = 1; i < nLits; i++ )
Pdr_ManFreeVar(p, k);
assert( iUseVar == iAndVar + nLits );
// if there is only one positive literal, put it in front and always assume
if ( fUseMinAss )
{
for ( i = 0; i < pCube->nLits && Count < 2; i++ )
Count += !Abc_LitIsCompl(pCube->Lits[i]);
if ( Count == 1 )
{
for ( i = 0; i < pCube->nLits; i++ )
if ( !Abc_LitIsCompl(pCube->Lits[i]) )
break;
assert( i < pCube->nLits );
iLit = pCube->Lits[i];
for ( ; i > 0; i-- )
pCube->Lits[i] = pCube->Lits[i-1];
pCube->Lits[0] = iLit;
}
}
// add clauses for the additional AND-gates
Vec_IntForEachEntry( vLits1, iLit, i )
{
sat_solver_add_buffer_enable( pSat, iAndVar + i, Abc_Lit2Var(iLit), iUseVar + i, Abc_LitIsCompl(iLit) );
Vec_IntWriteEntry( vLits1, i, Abc_Var2Lit(iAndVar + i, 0) );
}
// add clauses for the additional OR-gate
RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits1), Vec_IntLimit(vLits1) );
assert( RetValue == 1 );
// add implications
vLits1 = Pdr_ManCubeToLits( p, k, pCube, 0, 1 );
assert( Vec_IntSize(vLits1) == nLits );
Vec_IntForEachEntry( vLits1, iLit, i )
{
Lits[0] = Abc_Var2Lit(iUseVar + i, 1);
Lits[1] = iLit;
RetValue = sat_solver_addclause( pSat, Lits, Lits+2 );
assert( RetValue == 1 );
Vec_IntWriteEntry( vLits1, i, Abc_Var2Lit(iUseVar + i, 0) );
}
sat_solver_compress( pSat );
// perform minimization
if ( fUseMinAss )
{
if ( Count == 1 ) // always assume the only positive literal
{
if ( !sat_solver_push(pSat, Vec_IntEntry(vLits1, 0)) ) // UNSAT with the first (mandatory) literal
nLits = 1;
else
nLits = 1 + sat_solver_minimize_assumptions2( pSat, Vec_IntArray(vLits1)+1, nLits-1, p->pPars->nConfLimit );
sat_solver_pop(pSat); // unassume the first literal
}
else
nLits = sat_solver_minimize_assumptions2( pSat, Vec_IntArray(vLits1), nLits, p->pPars->nConfLimit );
Vec_IntShrink( vLits1, nLits );
}
else
{
// try removing one literal at a time in the old-fashioned way
int k, Entry;
Vec_Int_t * vTemp = Vec_IntAlloc( nLits );
for ( i = nLits - 1; i >= 0; i-- )
{
// if we are about to remove a positive lit, make sure at least one positive lit remains
if ( !Abc_LitIsCompl(Vec_IntEntry(vLits1, i)) )
{
Vec_IntForEachEntry( vLits1, iLit, k )
if ( iLit != -1 && k != i && !Abc_LitIsCompl(iLit) )
break;
if ( k == Vec_IntSize(vLits1) ) // no other positive literals, except the i-th one
continue;
}
// load remaining literals
Vec_IntClear( vTemp );
Vec_IntForEachEntry( vLits1, Entry, k )
if ( Entry != -1 && k != i )
Vec_IntPush( vTemp, Entry );
else if ( Entry != -1 ) // assume opposite literal
Vec_IntPush( vTemp, Abc_LitNot(Entry) );
// solve with assumptions
RetValue = sat_solver_solve( pSat, Vec_IntArray(vTemp), Vec_IntLimit(vTemp), p->pPars->nConfLimit, 0, 0, 0 );
// commit the literal
if ( RetValue == l_False )
{
int LitNot = Abc_LitNot(Vec_IntEntry(vLits1, i));
int RetValue = sat_solver_addclause( pSat, &LitNot, &LitNot+1 );
assert( RetValue );
}
// update the clause
if ( RetValue == l_False )
Vec_IntWriteEntry( vLits1, i, -1 );
}
Vec_IntFree( vTemp );
// compact
k = 0;
Vec_IntForEachEntry( vLits1, Entry, i )
if ( Entry != -1 )
Vec_IntWriteEntry( vLits1, k++, Entry );
Vec_IntShrink( vLits1, k );
}
// remap auxiliary literals into original literals
Vec_IntForEachEntry( vLits1, iLit, i )
Vec_IntWriteEntry( vLits1, i, pCube->Lits[Abc_Lit2Var(iLit)-iUseVar] );
// make sure the cube has at least one positive literal
if ( fUseMinAss )
{
Vec_IntForEachEntry( vLits1, iLit, i )
if ( !Abc_LitIsCompl(iLit) )
break;
if ( i == Vec_IntSize(vLits1) ) // has no positive literals
{
// find positive lit in the cube
for ( i = 0; i < pCube->nLits; i++ )
if ( !Abc_LitIsCompl(pCube->Lits[i]) )
break;
assert( i < pCube->nLits );
Vec_IntPush( vLits1, pCube->Lits[i] );
// printf( "-" );
}
// else
// printf( "+" );
}
// create a subset cube
*ppCubeMin = Pdr_SetCreateSubset( pCube, Vec_IntArray(vLits1), Vec_IntSize(vLits1) );
assert( !Pdr_SetIsInit(*ppCubeMin, -1) );
Order = 0;
return 0;
} }
/**Function************************************************************* /**Function*************************************************************
...@@ -532,7 +686,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP ...@@ -532,7 +686,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
// if there is no induction, return // if there is no induction, return
*ppCubeMin = NULL; *ppCubeMin = NULL;
if ( p->pPars->fFlopOrder ) if ( p->pPars->fFlopOrder )
Vec_IntSelectSortCostReverseLit( pCube->Lits, pCube->nLits, p->vPrio ); Vec_IntSelectSortPrioReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
RetValue = Pdr_ManCheckCube( p, k, pCube, ppPred, p->pPars->nConfLimit, 0, 1 ); RetValue = Pdr_ManCheckCube( p, k, pCube, ppPred, p->pPars->nConfLimit, 0, 1 );
if ( p->pPars->fFlopOrder ) if ( p->pPars->fFlopOrder )
Vec_IntSelectSort( pCube->Lits, pCube->nLits ); Vec_IntSelectSort( pCube->Lits, pCube->nLits );
...@@ -543,8 +697,6 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP ...@@ -543,8 +697,6 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
p->tGeneral += clock() - clk; p->tGeneral += clock() - clk;
return 0; return 0;
} }
keep = p->pPars->fSkipDown ? NULL : Hash_IntAlloc( 1 );
// reduce clause using assumptions // reduce clause using assumptions
// pCubeMin = Pdr_SetDup( pCube ); // pCubeMin = Pdr_SetDup( pCube );
...@@ -552,6 +704,31 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP ...@@ -552,6 +704,31 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
if ( pCubeMin == NULL ) if ( pCubeMin == NULL )
pCubeMin = Pdr_SetDup( pCube ); pCubeMin = Pdr_SetDup( pCube );
// perform simplified generalization
if ( p->pPars->fSimpleGeneral )
{
assert( pCubeMin->nLits > 0 );
if ( pCubeMin->nLits > 1 )
{
RetValue = Pdr_ManGeneralize2( p, k, pCubeMin, ppCubeMin );
Pdr_SetDeref( pCubeMin );
assert( ppCubeMin != NULL );
pCubeMin = *ppCubeMin;
}
*ppCubeMin = pCubeMin;
if ( p->pPars->fVeryVerbose )
{
printf("Cube:\n");
for ( i = 0; i < pCubeMin->nLits; i++)
printf ("%d ", pCubeMin->Lits[i]);
printf("\n");
}
p->tGeneral += Abc_Clock() - clk;
return 1;
}
keep = p->pPars->fSkipDown ? NULL : Hash_IntAlloc( 1 );
// perform generalization // perform generalization
if ( !p->pPars->fSkipGeneral ) if ( !p->pPars->fSkipGeneral )
{ {
...@@ -691,9 +868,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP ...@@ -691,9 +868,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
{ {
printf("Cube:\n"); printf("Cube:\n");
for ( i = 0; i < pCubeMin->nLits; i++) for ( i = 0; i < pCubeMin->nLits; i++)
{ printf ("%d ", pCubeMin->Lits[i]);
printf ("%d ", pCubeMin->Lits[i]);
}
printf("\n"); printf("\n");
} }
*ppCubeMin = pCubeMin; *ppCubeMin = pCubeMin;
......
...@@ -353,11 +353,37 @@ int Bmc_CollapseIrredundantFull( Vec_Str_t * vSop, int nCubes, int nVars ) ...@@ -353,11 +353,37 @@ int Bmc_CollapseIrredundantFull( Vec_Str_t * vSop, int nCubes, int nVars )
SeeAlso [] SeeAlso []
***********************************************************************/ ***********************************************************************/
int Bmc_CollapseExpandRound2( sat_solver * pSat, Vec_Int_t * vLits, Vec_Int_t * vTemp, int nBTLimit, int fOnOffSetLit )
{
// put into new array
int i, iLit, nLits;
Vec_IntClear( vTemp );
Vec_IntForEachEntry( vLits, iLit, i )
if ( iLit != -1 )
Vec_IntPush( vTemp, iLit );
assert( Vec_IntSize(vTemp) > 0 );
// assume condition literal
if ( fOnOffSetLit >= 0 )
sat_solver_push( pSat, fOnOffSetLit );
// minimize
nLits = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vTemp), Vec_IntSize(vTemp), nBTLimit );
Vec_IntShrink( vTemp, nLits );
// assume conditional literal
if ( fOnOffSetLit >= 0 )
sat_solver_pop( pSat );
// modify output literas
Vec_IntForEachEntry( vLits, iLit, i )
if ( iLit != -1 && Vec_IntFind(vTemp, iLit) == -1 )
Vec_IntWriteEntry( vLits, i, -1 );
return 0;
}
int Bmc_CollapseExpandRound( sat_solver * pSat, sat_solver * pSatOn, Vec_Int_t * vLits, Vec_Int_t * vNums, Vec_Int_t * vTemp, int nBTLimit, int fCanon, int fOnOffSetLit ) int Bmc_CollapseExpandRound( sat_solver * pSat, sat_solver * pSatOn, Vec_Int_t * vLits, Vec_Int_t * vNums, Vec_Int_t * vTemp, int nBTLimit, int fCanon, int fOnOffSetLit )
{ {
int fProfile = 0; int fProfile = 0;
int k, n, iLit, status; int k, n, iLit, status;
abctime clk; abctime clk;
//return Bmc_CollapseExpandRound2( pSat, vLits, vTemp, nBTLimit, fOnOffSetLit );
// try removing one literal at a time // try removing one literal at a time
for ( k = Vec_IntSize(vLits) - 1; k >= 0; k-- ) for ( k = Vec_IntSize(vLits) - 1; k >= 0; k-- )
{ {
......
...@@ -2168,6 +2168,153 @@ int sat_solver_solve_lexsat( sat_solver* s, int * pLits, int nLits ) ...@@ -2168,6 +2168,153 @@ int sat_solver_solve_lexsat( sat_solver* s, int * pLits, int nLits )
return status; return status;
} }
// This procedure is called on a set of assumptions to minimize their number.
// The procedure relies on the fact that the current set of assumptions is UNSAT.
// It receives and returns SAT solver without assumptions. It returns the number
// of assumptions after minimization. The set of assumptions is returned in pLits.
int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int nConfLimit )
{
int i, k, nLitsL, nLitsR, nResL, nResR;
if ( nLits == 1 )
{
// since the problem is UNSAT, we will try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
int status = l_False;
int Temp = s->nConfLimit;
s->nConfLimit = nConfLimit;
status = sat_solver_solve_internal( s );
s->nConfLimit = Temp;
return (int)(status != l_False); // return 1 if the problem is not UNSAT
}
assert( nLits >= 2 );
nLitsL = nLits / 2;
nLitsR = nLits - nLitsL;
// assume the left lits
for ( i = 0; i < nLitsL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
return sat_solver_minimize_assumptions( s, pLits, i+1, nConfLimit );
}
// solve for the right lits
nResL = sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
for ( i = 0; i < nLitsL; i++ )
sat_solver_pop(s);
// swap literals
// assert( nResL <= nLitsL );
// for ( i = 0; i < nResL; i++ )
// ABC_SWAP( int, pLits[i], pLits[nLitsL+i] );
veci_resize( &s->temp_clause, 0 );
for ( i = 0; i < nLitsL; i++ )
veci_push( &s->temp_clause, pLits[i] );
for ( i = 0; i < nResL; i++ )
pLits[i] = pLits[nLitsL+i];
for ( i = 0; i < nLitsL; i++ )
pLits[nResL+i] = veci_begin(&s->temp_clause)[i];
// assume the right lits
for ( i = 0; i < nResL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
return sat_solver_minimize_assumptions( s, pLits, i+1, nConfLimit );
}
// solve for the left lits
nResR = sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
for ( i = 0; i < nResL; i++ )
sat_solver_pop(s);
return nResL + nResR;
}
// This is a specialized version of the above procedure with several custom changes:
// - makes sure that at least one of the marked literals is preserved in the clause
// - sets literals to zero when they do not have to be used
// - sets literals to zero for disproved variables
int sat_solver_minimize_assumptions2( sat_solver* s, int * pLits, int nLits, int nConfLimit )
{
int i, k, nLitsL, nLitsR, nResL, nResR;
if ( nLits == 1 )
{
// since the problem is UNSAT, we will try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
int RetValue = 1, LitNot = Abc_LitNot(pLits[0]);
int status = l_False;
int Temp = s->nConfLimit;
s->nConfLimit = nConfLimit;
RetValue = sat_solver_push( s, LitNot ); assert( RetValue );
status = sat_solver_solve_internal( s );
sat_solver_pop( s );
// if the problem is UNSAT, add clause
if ( status == l_False )
{
RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
s->nConfLimit = Temp;
return (int)(status != l_False); // return 1 if the problem is not UNSAT
}
assert( nLits >= 2 );
nLitsL = nLits / 2;
nLitsR = nLits - nLitsL;
// assume the left lits
for ( i = 0; i < nLitsL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
// add clauses for these literal
for ( k = i+1; k > nLitsL; k++ )
{
int LitNot = Abc_LitNot(pLits[i]);
int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
}
// solve for the right lits
nResL = sat_solver_minimize_assumptions2( s, pLits + nLitsL, nLitsR, nConfLimit );
for ( i = 0; i < nLitsL; i++ )
sat_solver_pop(s);
// swap literals
// assert( nResL <= nLitsL );
veci_resize( &s->temp_clause, 0 );
for ( i = 0; i < nLitsL; i++ )
veci_push( &s->temp_clause, pLits[i] );
for ( i = 0; i < nResL; i++ )
pLits[i] = pLits[nLitsL+i];
for ( i = 0; i < nLitsL; i++ )
pLits[nResL+i] = veci_begin(&s->temp_clause)[i];
// assume the right lits
for ( i = 0; i < nResL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
// add clauses for these literal
for ( k = i+1; k > nResL; k++ )
{
int LitNot = Abc_LitNot(pLits[i]);
int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
}
// solve for the left lits
nResR = sat_solver_minimize_assumptions2( s, pLits + nResL, nLitsL, nConfLimit );
for ( i = 0; i < nResL; i++ )
sat_solver_pop(s);
return nResL + nResR;
}
int sat_solver_nvars(sat_solver* s) int sat_solver_nvars(sat_solver* s)
{ {
......
...@@ -50,6 +50,8 @@ extern int sat_solver_simplify(sat_solver* s); ...@@ -50,6 +50,8 @@ extern int sat_solver_simplify(sat_solver* s);
extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern int sat_solver_solve_internal(sat_solver* s); extern int sat_solver_solve_internal(sat_solver* s);
extern int sat_solver_solve_lexsat(sat_solver* s, int * pLits, int nLits); extern int sat_solver_solve_lexsat(sat_solver* s, int * pLits, int nLits);
extern int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver_minimize_assumptions2( sat_solver* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver_push(sat_solver* s, int p); extern int sat_solver_push(sat_solver* s, int p);
extern void sat_solver_pop(sat_solver* s); extern void sat_solver_pop(sat_solver* s);
extern void sat_solver_set_resource_limits(sat_solver* s, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern void sat_solver_set_resource_limits(sat_solver* s, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment