Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
abc
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
abc
Commits
154f4b64
Commit
154f4b64
authored
Mar 03, 2017
by
Yen-Sheng Ho
Browse files
Options
Browse Files
Download
Plain Diff
merge
parents
40d29e78
59f09c10
Hide whitespace changes
Inline
Side-by-side
Showing
23 changed files
with
1385 additions
and
50 deletions
+1385
-50
abclib.dsp
+8
-0
src/aig/gia/giaGlitch.c
+9
-10
src/aig/gia/giaIso.c
+1
-1
src/aig/gia/giaIso2.c
+1
-1
src/aig/miniaig/ndr.h
+614
-0
src/aig/saig/saigIsoSlow.c
+1
-1
src/base/abc/abc.h
+1
-0
src/base/abci/abc.c
+130
-0
src/base/abci/abcEco.c
+58
-0
src/base/abci/abcMap.c
+8
-8
src/base/abci/abcPrint.c
+74
-5
src/base/abci/module.make
+1
-0
src/base/cmd/cmdHist.c
+5
-3
src/base/main/abcapis.h
+105
-0
src/base/main/abcapis_old.h
+2
-2
src/base/main/main.h
+3
-5
src/base/main/mainFrame.c
+1
-1
src/base/wlc/wlcStdin.c
+1
-1
src/map/scl/sclCon.h
+2
-2
src/proof/pdr/pdrCore.c
+185
-10
src/sat/bmc/bmcClp.c
+26
-0
src/sat/bsat/satSolver.c
+147
-0
src/sat/bsat/satSolver.h
+2
-0
No files found.
abclib.dsp
View file @
154f4b64
...
@@ -271,6 +271,10 @@ SOURCE=.\src\base\abci\abcDsd.c
...
@@ -271,6 +271,10 @@ SOURCE=.\src\base\abci\abcDsd.c
# End Source File
# End Source File
# Begin Source File
# Begin Source File
SOURCE=.\src\base\abci\abcEco.c
# End Source File
# Begin Source File
SOURCE=.\src\base\abci\abcExact.c
SOURCE=.\src\base\abci\abcExact.c
# End Source File
# End Source File
# Begin Source File
# Begin Source File
...
@@ -695,6 +699,10 @@ SOURCE=.\src\base\io\ioWriteVerilog.c
...
@@ -695,6 +699,10 @@ SOURCE=.\src\base\io\ioWriteVerilog.c
# PROP Default_Filter ""
# PROP Default_Filter ""
# Begin Source File
# Begin Source File
SOURCE=.\src\base\main\abcapis.h
# End Source File
# Begin Source File
SOURCE=.\src\base\main\libSupport.c
SOURCE=.\src\base\main\libSupport.c
# End Source File
# End Source File
# Begin Source File
# Begin Source File
...
...
src/aig/gia/giaGlitch.c
View file @
154f4b64
...
@@ -37,7 +37,7 @@ struct Gli_Obj_t_
...
@@ -37,7 +37,7 @@ struct Gli_Obj_t_
unsigned
nFanins
:
3
;
// the number of fanins
unsigned
nFanins
:
3
;
// the number of fanins
unsigned
nFanouts
:
25
;
// total number of fanouts
unsigned
nFanouts
:
25
;
// total number of fanouts
unsigned
Handle
;
// ID of the node
unsigned
Handle
;
// ID of the node
unsigned
uTruth
[
2
];
// truth table of the node
word
*
pTruth
;
// truth table of the node
unsigned
uSimInfo
;
// simulation info of the node
unsigned
uSimInfo
;
// simulation info of the node
union
union
{
{
...
@@ -333,7 +333,7 @@ static inline int Gli_NodeComputeValue( Gli_Obj_t * pNode )
...
@@ -333,7 +333,7 @@ static inline int Gli_NodeComputeValue( Gli_Obj_t * pNode )
int
i
,
Phase
=
0
;
int
i
,
Phase
=
0
;
for
(
i
=
0
;
i
<
(
int
)
pNode
->
nFanins
;
i
++
)
for
(
i
=
0
;
i
<
(
int
)
pNode
->
nFanins
;
i
++
)
Phase
|=
(
Gli_ObjFanin
(
pNode
,
i
)
->
fPhase
<<
i
);
Phase
|=
(
Gli_ObjFanin
(
pNode
,
i
)
->
fPhase
<<
i
);
return
Abc_InfoHasBit
(
pNode
->
u
Truth
,
Phase
);
return
Abc_InfoHasBit
(
(
unsigned
*
)
pNode
->
p
Truth
,
Phase
);
}
}
/**Function*************************************************************
/**Function*************************************************************
...
@@ -352,7 +352,7 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
...
@@ -352,7 +352,7 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
int
i
,
Phase
=
0
;
int
i
,
Phase
=
0
;
for
(
i
=
0
;
i
<
(
int
)
pNode
->
nFanins
;
i
++
)
for
(
i
=
0
;
i
<
(
int
)
pNode
->
nFanins
;
i
++
)
Phase
|=
(
Gli_ObjFanin
(
pNode
,
i
)
->
fPhase2
<<
i
);
Phase
|=
(
Gli_ObjFanin
(
pNode
,
i
)
->
fPhase2
<<
i
);
return
Abc_InfoHasBit
(
pNode
->
u
Truth
,
Phase
);
return
Abc_InfoHasBit
(
(
unsigned
*
)
pNode
->
p
Truth
,
Phase
);
}
}
/**Function*************************************************************
/**Function*************************************************************
...
@@ -366,16 +366,15 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
...
@@ -366,16 +366,15 @@ static inline int Gli_NodeComputeValue2( Gli_Obj_t * pNode )
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
int
Gli_ManCreateNode
(
Gli_Man_t
*
p
,
Vec_Int_t
*
vFanins
,
int
nFanouts
,
unsigned
*
pu
Truth
)
int
Gli_ManCreateNode
(
Gli_Man_t
*
p
,
Vec_Int_t
*
vFanins
,
int
nFanouts
,
word
*
pGate
Truth
)
{
{
Gli_Obj_t
*
pObj
,
*
pFanin
;
Gli_Obj_t
*
pObj
,
*
pFanin
;
int
i
;
int
i
;
assert
(
Vec_IntSize
(
vFanins
)
<=
6
);
assert
(
Vec_IntSize
(
vFanins
)
<=
1
6
);
pObj
=
Gli_ObjAlloc
(
p
,
Vec_IntSize
(
vFanins
),
nFanouts
);
pObj
=
Gli_ObjAlloc
(
p
,
Vec_IntSize
(
vFanins
),
nFanouts
);
Gli_ManForEachEntry
(
vFanins
,
p
,
pFanin
,
i
)
Gli_ManForEachEntry
(
vFanins
,
p
,
pFanin
,
i
)
Gli_ObjAddFanin
(
pObj
,
pFanin
);
Gli_ObjAddFanin
(
pObj
,
pFanin
);
pObj
->
uTruth
[
0
]
=
puTruth
[
0
];
pObj
->
pTruth
=
pGateTruth
;
pObj
->
uTruth
[
1
]
=
puTruth
[
Vec_IntSize
(
vFanins
)
==
6
];
pObj
->
fPhase
=
pObj
->
fPhase2
=
Gli_NodeComputeValue
(
pObj
);
pObj
->
fPhase
=
pObj
->
fPhase2
=
Gli_NodeComputeValue
(
pObj
);
return
pObj
->
Handle
;
return
pObj
->
Handle
;
}
}
...
@@ -584,7 +583,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
...
@@ -584,7 +583,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
int
nFanins
=
Gli_ObjFaninNum
(
pNode
);
int
nFanins
=
Gli_ObjFaninNum
(
pNode
);
int
i
,
k
,
Phase
;
int
i
,
k
,
Phase
;
Gli_Obj_t
*
pFanin
;
Gli_Obj_t
*
pFanin
;
assert
(
nFanins
<=
6
);
assert
(
nFanins
<=
1
6
);
Gli_ObjForEachFanin
(
pNode
,
pFanin
,
i
)
Gli_ObjForEachFanin
(
pNode
,
pFanin
,
i
)
pSimInfos
[
i
]
=
pFanin
->
uSimInfo
;
pSimInfos
[
i
]
=
pFanin
->
uSimInfo
;
for
(
i
=
0
;
i
<
32
;
i
++
)
for
(
i
=
0
;
i
<
32
;
i
++
)
...
@@ -593,7 +592,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
...
@@ -593,7 +592,7 @@ unsigned Gli_ManSimulateSeqNode( Gli_Man_t * p, Gli_Obj_t * pNode )
for
(
k
=
0
;
k
<
nFanins
;
k
++
)
for
(
k
=
0
;
k
<
nFanins
;
k
++
)
if
(
(
pSimInfos
[
k
]
>>
i
)
&
1
)
if
(
(
pSimInfos
[
k
]
>>
i
)
&
1
)
Phase
|=
(
1
<<
k
);
Phase
|=
(
1
<<
k
);
if
(
Abc_InfoHasBit
(
pNode
->
u
Truth
,
Phase
)
)
if
(
Abc_InfoHasBit
(
(
unsigned
*
)
pNode
->
p
Truth
,
Phase
)
)
Result
|=
(
1
<<
i
);
Result
|=
(
1
<<
i
);
}
}
return
Result
;
return
Result
;
...
@@ -772,7 +771,7 @@ void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb
...
@@ -772,7 +771,7 @@ void Gli_ManSwitchesAndGlitches( Gli_Man_t * p, int nPatterns, float PiTransProb
}
}
if
(
fVerbose
)
if
(
fVerbose
)
{
{
printf
(
"
\n
Simulated %d patterns. "
,
nPatterns
);
printf
(
"
Simulated %d patterns. Input transition probability %.2f. "
,
nPatterns
,
PiTransProb
);
ABC_PRMn
(
"Memory"
,
4
*
p
->
nObjData
);
ABC_PRMn
(
"Memory"
,
4
*
p
->
nObjData
);
ABC_PRT
(
"Time"
,
Abc_Clock
()
-
clk
);
ABC_PRT
(
"Time"
,
Abc_Clock
()
-
clk
);
}
}
...
...
src/aig/gia/giaIso.c
View file @
154f4b64
...
@@ -24,7 +24,7 @@ ABC_NAMESPACE_IMPL_START
...
@@ -24,7 +24,7 @@ ABC_NAMESPACE_IMPL_START
#define ISO_MASK 0xFF
#define ISO_MASK 0xFF
static
int
s_256Primes
[
ISO_MASK
+
1
]
=
static
unsigned
int
s_256Primes
[
ISO_MASK
+
1
]
=
{
{
0x984b6ad9
,
0x18a6eed3
,
0x950353e2
,
0x6222f6eb
,
0xdfbedd47
,
0xef0f9023
,
0xac932a26
,
0x590eaf55
,
0x984b6ad9
,
0x18a6eed3
,
0x950353e2
,
0x6222f6eb
,
0xdfbedd47
,
0xef0f9023
,
0xac932a26
,
0x590eaf55
,
0x97d0a034
,
0xdc36cd2e
,
0x22736b37
,
0xdc9066b0
,
0x2eb2f98b
,
0x5d9c7baf
,
0x85747c9e
,
0x8aca1055
,
0x97d0a034
,
0xdc36cd2e
,
0x22736b37
,
0xdc9066b0
,
0x2eb2f98b
,
0x5d9c7baf
,
0x85747c9e
,
0x8aca1055
,
...
...
src/aig/gia/giaIso2.c
View file @
154f4b64
...
@@ -27,7 +27,7 @@ ABC_NAMESPACE_IMPL_START
...
@@ -27,7 +27,7 @@ ABC_NAMESPACE_IMPL_START
#define ISO_MASK 0xFF
#define ISO_MASK 0xFF
static
int
s_256Primes
[
ISO_MASK
+
1
]
=
static
unsigned
int
s_256Primes
[
ISO_MASK
+
1
]
=
{
{
0x984b6ad9
,
0x18a6eed3
,
0x950353e2
,
0x6222f6eb
,
0xdfbedd47
,
0xef0f9023
,
0xac932a26
,
0x590eaf55
,
0x984b6ad9
,
0x18a6eed3
,
0x950353e2
,
0x6222f6eb
,
0xdfbedd47
,
0xef0f9023
,
0xac932a26
,
0x590eaf55
,
0x97d0a034
,
0xdc36cd2e
,
0x22736b37
,
0xdc9066b0
,
0x2eb2f98b
,
0x5d9c7baf
,
0x85747c9e
,
0x8aca1055
,
0x97d0a034
,
0xdc36cd2e
,
0x22736b37
,
0xdc9066b0
,
0x2eb2f98b
,
0x5d9c7baf
,
0x85747c9e
,
0x8aca1055
,
...
...
src/aig/miniaig/ndr.h
0 → 100644
View file @
154f4b64
/**CFile****************************************************************
FileName [ndr.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Format for word-level design representation.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 22, 2014.]
Revision [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
//ABC_NAMESPACE_HEADER_START
#ifdef _WIN32
#define inline __inline
#endif
/*
For the lack of a better name, this format is called New Data Representation (NDR).
NDR is based on the following principles:
- complex data is composed of individual records
- a record has one of several known types (module, name, range, fanins, etc)
- a record can be atomic, for example, a name or an operator type
- a record can be composed of other records (for example, a module is composed of objects, etc)
- the stored data should be easy to write into and read from a file, or pass around as a memory buffer
- the format should be simple, easy to use, low-memory, and extensible
- new record types can be added by the user as needed
The implementation is based on the following ideas:
- a record is composed of two parts (the header followed by the body)
- the header contains two items (the record type and the body size, measured in terms of 4-byte integers)
- the body contains as many entries as stated in the record size
- if a record is composed of other records, its body contains these records
As an example, consider a name. It can be a module name, an object name, or a net name.
A record storing one name has a header {NDR_NAME, 1} containing record type (NDR_NAME) and size (1),
The body of the record is composed of one unsigned integer representing the name (say, 357).
So the complete record looks as follows: { <header>, <body> } = { {NDR_NAME, 1}, {357} }.
As another example, consider a two-input AND-gate. In this case, the recent is composed
of a header {NDR_OBJECT, 4} containing record type (NDR_OBJECT) and the body size (4), followed
by an array of records creating the AND-gate: (a) name, (b) operation type, (c) fanins.
The complete record looks as follows: { {NDR_OBJECT, 5}, {{{NDR_NAME, 1}, 357}, {{NDR_OPERTYPE, 1}, WLC_OBJ_LOGIC_AND},
{{NDR_INPUT, 2}, {<id_fanin1>, <id_fanin2>}}} }. Please note that only body entries are counted towards size.
In the case of one name, there is only one body entry. In the case of the AND-gate, there are 4 body entries
(name ID, gate type, first fanin, second fanin).
Headers and bodies of all objects are stored differently. Headers are stored in an array of unsigned chars,
while bodies are stored in the array of 4-byte unsigned integers. This is important for memory efficiency.
However, the user does not see these details.
To estimate memory usage, we can assume that each header takes 1 byte and each body entry contains 4 bytes.
A name takes 5 bytes, and an AND-gate takes 1 * NumHeaders + 4 * NumBodyEntries = 1 * 4 + 4 * 4 = 20 bytes.
Not bad. The same as memory usage in a well-designed AIG package with structural hashing.
Comments:
- it is assumed that all port names, net names, and instance names are hashed into 1-based integer numbers called name IDs
- nets are not explicitly represented but their name ID are used to establish connectivity between the objects
- primary input and primary output objects have to be explicitly created (as shown in the example below)
- object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets
- objects can be added to a module in any order
- if the ordering of inputs/outputs/flops of a module is not provided as a separate record,
their ordering is determined by the order of their appearance of their records in the body of the module
- if range limits and signedness are all 0, it is assumed that it is a Boolean object
- if left limit and right limit of a range are equal, it is assumed that the range contains one bit
- instances of known operators can have types defined by Wlc_ObjType_t below
- instances of user modules have type equal to the name ID of the module plus 1000
- initial states of the flops are given as char-strings containing 0, 1, and 'x'
(for example, "4'b10XX" is an init state of a 4-bit flop with bit-level init states const1, const0, unknown, unknown)
- word-level constants are represented as char-strings given in the same way as they would appear in a Verilog file
(for example, the 16-bit constant 10 is represented as a string "4'b1010". This string contains 8 bytes,
including the char '\0' to denote the end of the string. It will take 2 unsigned ints, therefore
its record will look as follows { {NDR_FUNCTION, 2}, {"4'b1010"} }, but the user does not see these details.
The user only gives "4'b1010" as an argument (char * pFunction) to the above procedure Ndr_ModuleAddObject().
*/
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
// record types
typedef
enum
{
NDR_NONE
=
0
,
// 0: unused
NDR_DESIGN
,
// 1: design (or library of modules)
NDR_MODULE
,
// 2: one module
NDR_OBJECT
,
// 3: object
NDR_INPUT
,
// 4: input
NDR_OUTPUT
,
// 5: output
NDR_OPERTYPE
,
// 6: operator type (buffer, shifter, adder, etc)
NDR_NAME
,
// 7: name
NDR_RANGE
,
// 8: bit range
NDR_FUNCTION
,
// 9: specified for some operators (PLAs, etc)
NDR_UNKNOWN
// 10: unknown
}
Ndr_RecordType_t
;
// operator types
typedef
enum
{
WLC_OBJ_NONE
=
0
,
// 00: unknown
WLC_OBJ_PI
,
// 01: primary input
WLC_OBJ_PO
,
// 02: primary output
WLC_OBJ_FO
,
// 03: flop output (unused)
WLC_OBJ_FI
,
// 04: flop input (unused)
WLC_OBJ_FF
,
// 05: flop
WLC_OBJ_CONST
,
// 06: constant
WLC_OBJ_BUF
,
// 07: buffer
WLC_OBJ_MUX
,
// 08: multiplexer
WLC_OBJ_SHIFT_R
,
// 09: shift right
WLC_OBJ_SHIFT_RA
,
// 10: shift right (arithmetic)
WLC_OBJ_SHIFT_L
,
// 11: shift left
WLC_OBJ_SHIFT_LA
,
// 12: shift left (arithmetic)
WLC_OBJ_ROTATE_R
,
// 13: rotate right
WLC_OBJ_ROTATE_L
,
// 14: rotate left
WLC_OBJ_BIT_NOT
,
// 15: bitwise NOT
WLC_OBJ_BIT_AND
,
// 16: bitwise AND
WLC_OBJ_BIT_OR
,
// 17: bitwise OR
WLC_OBJ_BIT_XOR
,
// 18: bitwise XOR
WLC_OBJ_BIT_NAND
,
// 19: bitwise AND
WLC_OBJ_BIT_NOR
,
// 20: bitwise OR
WLC_OBJ_BIT_NXOR
,
// 21: bitwise NXOR
WLC_OBJ_BIT_SELECT
,
// 22: bit selection
WLC_OBJ_BIT_CONCAT
,
// 23: bit concatenation
WLC_OBJ_BIT_ZEROPAD
,
// 24: zero padding
WLC_OBJ_BIT_SIGNEXT
,
// 25: sign extension
WLC_OBJ_LOGIC_NOT
,
// 26: logic NOT
WLC_OBJ_LOGIC_IMPL
,
// 27: logic implication
WLC_OBJ_LOGIC_AND
,
// 28: logic AND
WLC_OBJ_LOGIC_OR
,
// 29: logic OR
WLC_OBJ_LOGIC_XOR
,
// 30: logic XOR
WLC_OBJ_COMP_EQU
,
// 31: compare equal
WLC_OBJ_COMP_NOTEQU
,
// 32: compare not equal
WLC_OBJ_COMP_LESS
,
// 33: compare less
WLC_OBJ_COMP_MORE
,
// 34: compare more
WLC_OBJ_COMP_LESSEQU
,
// 35: compare less or equal
WLC_OBJ_COMP_MOREEQU
,
// 36: compare more or equal
WLC_OBJ_REDUCT_AND
,
// 37: reduction AND
WLC_OBJ_REDUCT_OR
,
// 38: reduction OR
WLC_OBJ_REDUCT_XOR
,
// 39: reduction XOR
WLC_OBJ_REDUCT_NAND
,
// 40: reduction NAND
WLC_OBJ_REDUCT_NOR
,
// 41: reduction NOR
WLC_OBJ_REDUCT_NXOR
,
// 42: reduction NXOR
WLC_OBJ_ARI_ADD
,
// 43: arithmetic addition
WLC_OBJ_ARI_SUB
,
// 44: arithmetic subtraction
WLC_OBJ_ARI_MULTI
,
// 45: arithmetic multiplier
WLC_OBJ_ARI_DIVIDE
,
// 46: arithmetic division
WLC_OBJ_ARI_REM
,
// 47: arithmetic remainder
WLC_OBJ_ARI_MODULUS
,
// 48: arithmetic modulus
WLC_OBJ_ARI_POWER
,
// 49: arithmetic power
WLC_OBJ_ARI_MINUS
,
// 50: arithmetic minus
WLC_OBJ_ARI_SQRT
,
// 51: integer square root
WLC_OBJ_ARI_SQUARE
,
// 52: integer square
WLC_OBJ_TABLE
,
// 53: bit table
WLC_OBJ_NUMBER
// 54: unused
}
Wlc_ObjType_t
;
// printing operator types
static
inline
char
*
Ndr_OperName
(
int
Type
)
{
if
(
Type
==
WLC_OBJ_NONE
)
return
NULL
;
if
(
Type
==
WLC_OBJ_PI
)
return
"pi"
;
// 01: primary input
if
(
Type
==
WLC_OBJ_PO
)
return
"po"
;
// 02: primary output (unused)
if
(
Type
==
WLC_OBJ_FO
)
return
"ff"
;
// 03: flop output
if
(
Type
==
WLC_OBJ_FI
)
return
"bi"
;
// 04: flop input (unused)
if
(
Type
==
WLC_OBJ_FF
)
return
"ff"
;
// 05: flop (unused)
if
(
Type
==
WLC_OBJ_CONST
)
return
"const"
;
// 06: constant
if
(
Type
==
WLC_OBJ_BUF
)
return
"buf"
;
// 07: buffer
if
(
Type
==
WLC_OBJ_MUX
)
return
"mux"
;
// 08: multiplexer
if
(
Type
==
WLC_OBJ_SHIFT_R
)
return
">>"
;
// 09: shift right
if
(
Type
==
WLC_OBJ_SHIFT_RA
)
return
">>>"
;
// 10: shift right (arithmetic)
if
(
Type
==
WLC_OBJ_SHIFT_L
)
return
"<<"
;
// 11: shift left
if
(
Type
==
WLC_OBJ_SHIFT_LA
)
return
"<<<"
;
// 12: shift left (arithmetic)
if
(
Type
==
WLC_OBJ_ROTATE_R
)
return
"rotR"
;
// 13: rotate right
if
(
Type
==
WLC_OBJ_ROTATE_L
)
return
"rotL"
;
// 14: rotate left
if
(
Type
==
WLC_OBJ_BIT_NOT
)
return
"~"
;
// 15: bitwise NOT
if
(
Type
==
WLC_OBJ_BIT_AND
)
return
"&"
;
// 16: bitwise AND
if
(
Type
==
WLC_OBJ_BIT_OR
)
return
"|"
;
// 17: bitwise OR
if
(
Type
==
WLC_OBJ_BIT_XOR
)
return
"^"
;
// 18: bitwise XOR
if
(
Type
==
WLC_OBJ_BIT_NAND
)
return
"~&"
;
// 19: bitwise NAND
if
(
Type
==
WLC_OBJ_BIT_NOR
)
return
"~|"
;
// 20: bitwise NOR
if
(
Type
==
WLC_OBJ_BIT_NXOR
)
return
"~^"
;
// 21: bitwise NXOR
if
(
Type
==
WLC_OBJ_BIT_SELECT
)
return
"[:]"
;
// 22: bit selection
if
(
Type
==
WLC_OBJ_BIT_CONCAT
)
return
"{}"
;
// 23: bit concatenation
if
(
Type
==
WLC_OBJ_BIT_ZEROPAD
)
return
"zPad"
;
// 24: zero padding
if
(
Type
==
WLC_OBJ_BIT_SIGNEXT
)
return
"sExt"
;
// 25: sign extension
if
(
Type
==
WLC_OBJ_LOGIC_NOT
)
return
"!"
;
// 26: logic NOT
if
(
Type
==
WLC_OBJ_LOGIC_IMPL
)
return
"=>"
;
// 27: logic implication
if
(
Type
==
WLC_OBJ_LOGIC_AND
)
return
"&&"
;
// 28: logic AND
if
(
Type
==
WLC_OBJ_LOGIC_OR
)
return
"||"
;
// 29: logic OR
if
(
Type
==
WLC_OBJ_LOGIC_XOR
)
return
"^^"
;
// 30: logic XOR
if
(
Type
==
WLC_OBJ_COMP_EQU
)
return
"=="
;
// 31: compare equal
if
(
Type
==
WLC_OBJ_COMP_NOTEQU
)
return
"!="
;
// 32: compare not equal
if
(
Type
==
WLC_OBJ_COMP_LESS
)
return
"<"
;
// 33: compare less
if
(
Type
==
WLC_OBJ_COMP_MORE
)
return
">"
;
// 34: compare more
if
(
Type
==
WLC_OBJ_COMP_LESSEQU
)
return
"<="
;
// 35: compare less or equal
if
(
Type
==
WLC_OBJ_COMP_MOREEQU
)
return
">="
;
// 36: compare more or equal
if
(
Type
==
WLC_OBJ_REDUCT_AND
)
return
"&"
;
// 37: reduction AND
if
(
Type
==
WLC_OBJ_REDUCT_OR
)
return
"|"
;
// 38: reduction OR
if
(
Type
==
WLC_OBJ_REDUCT_XOR
)
return
"^"
;
// 39: reduction XOR
if
(
Type
==
WLC_OBJ_REDUCT_NAND
)
return
"~&"
;
// 40: reduction NAND
if
(
Type
==
WLC_OBJ_REDUCT_NOR
)
return
"~|"
;
// 41: reduction NOR
if
(
Type
==
WLC_OBJ_REDUCT_NXOR
)
return
"~^"
;
// 42: reduction NXOR
if
(
Type
==
WLC_OBJ_ARI_ADD
)
return
"+"
;
// 43: arithmetic addition
if
(
Type
==
WLC_OBJ_ARI_SUB
)
return
"-"
;
// 44: arithmetic subtraction
if
(
Type
==
WLC_OBJ_ARI_MULTI
)
return
"*"
;
// 45: arithmetic multiplier
if
(
Type
==
WLC_OBJ_ARI_DIVIDE
)
return
"/"
;
// 46: arithmetic division
if
(
Type
==
WLC_OBJ_ARI_REM
)
return
"%"
;
// 47: arithmetic reminder
if
(
Type
==
WLC_OBJ_ARI_MODULUS
)
return
"mod"
;
// 48: arithmetic modulus
if
(
Type
==
WLC_OBJ_ARI_POWER
)
return
"**"
;
// 49: arithmetic power
if
(
Type
==
WLC_OBJ_ARI_MINUS
)
return
"-"
;
// 50: arithmetic minus
if
(
Type
==
WLC_OBJ_ARI_SQRT
)
return
"sqrt"
;
// 51: integer square root
if
(
Type
==
WLC_OBJ_ARI_SQUARE
)
return
"squar"
;
// 52: integer square
if
(
Type
==
WLC_OBJ_TABLE
)
return
"table"
;
// 53: bit table
if
(
Type
==
WLC_OBJ_NUMBER
)
return
NULL
;
// 54: unused
return
NULL
;
}
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
// this is an internal procedure, which is not seen by the user
typedef
struct
Ndr_Data_t_
Ndr_Data_t
;
struct
Ndr_Data_t_
{
int
nSize
;
int
nCap
;
unsigned
char
*
pHead
;
unsigned
int
*
pBody
;
};
static
inline
int
Ndr_DataType
(
Ndr_Data_t
*
p
,
int
i
)
{
assert
(
p
->
pHead
[
i
]
);
return
(
int
)
p
->
pHead
[
i
];
}
static
inline
int
Ndr_DataSize
(
Ndr_Data_t
*
p
,
int
i
)
{
return
Ndr_DataType
(
p
,
i
)
>
NDR_OBJECT
?
1
:
p
->
pBody
[
i
];
}
static
inline
int
Ndr_DataEntry
(
Ndr_Data_t
*
p
,
int
i
)
{
return
(
int
)
p
->
pBody
[
i
];
}
static
inline
int
*
Ndr_DataEntryP
(
Ndr_Data_t
*
p
,
int
i
)
{
return
(
int
*
)
p
->
pBody
+
i
;
}
static
inline
int
Ndr_DataEnd
(
Ndr_Data_t
*
p
,
int
i
)
{
return
i
+
p
->
pBody
[
i
];
}
static
inline
void
Ndr_DataAddTo
(
Ndr_Data_t
*
p
,
int
i
,
int
Add
)
{
assert
(
Ndr_DataType
(
p
,
i
)
<=
NDR_OBJECT
);
p
->
pBody
[
i
]
+=
Add
;
}
static
inline
void
Ndr_DataPush
(
Ndr_Data_t
*
p
,
int
Type
,
int
Entry
)
{
p
->
pHead
[
p
->
nSize
]
=
Type
;
p
->
pBody
[
p
->
nSize
++
]
=
Entry
;
}
////////////////////////////////////////////////////////////////////////
/// ITERATORS ///
////////////////////////////////////////////////////////////////////////
// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod ) \
for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else
// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj ) \
for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else
// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent ) \
for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )
// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) ) {} else
// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) || Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
////////////////////////////////////////////////////////////////////////
/// INTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
static
inline
void
Ndr_DataResize
(
Ndr_Data_t
*
p
,
int
Add
)
{
if
(
p
->
nSize
+
Add
<=
p
->
nCap
)
return
;
p
->
nCap
*=
2
;
p
->
pHead
=
(
unsigned
char
*
)
realloc
(
p
->
pHead
,
p
->
nCap
);
p
->
pBody
=
(
unsigned
int
*
)
realloc
(
p
->
pBody
,
4
*
p
->
nCap
);
}
static
inline
void
Ndr_DataPushRange
(
Ndr_Data_t
*
p
,
int
RangeLeft
,
int
RangeRight
,
int
fSignedness
)
{
if
(
fSignedness
)
{
Ndr_DataPush
(
p
,
NDR_RANGE
,
RangeLeft
);
Ndr_DataPush
(
p
,
NDR_RANGE
,
RangeRight
);
Ndr_DataPush
(
p
,
NDR_RANGE
,
fSignedness
);
return
;
}
if
(
!
RangeLeft
&&
!
RangeRight
)
return
;
if
(
RangeLeft
==
RangeRight
)
Ndr_DataPush
(
p
,
NDR_RANGE
,
RangeLeft
);
else
{
Ndr_DataPush
(
p
,
NDR_RANGE
,
RangeLeft
);
Ndr_DataPush
(
p
,
NDR_RANGE
,
RangeRight
);
}
}
static
inline
void
Ndr_DataPushArray
(
Ndr_Data_t
*
p
,
int
Type
,
int
nArray
,
int
*
pArray
)
{
if
(
!
nArray
)
return
;
assert
(
nArray
>
0
);
Ndr_DataResize
(
p
,
nArray
);
memset
(
p
->
pHead
+
p
->
nSize
,
Type
,
nArray
);
memcpy
(
p
->
pBody
+
p
->
nSize
,
pArray
,
4
*
nArray
);
p
->
nSize
+=
nArray
;
}
static
inline
void
Ndr_DataPushString
(
Ndr_Data_t
*
p
,
int
Type
,
char
*
pFunc
)
{
if
(
!
pFunc
)
return
;
Ndr_DataPushArray
(
p
,
Type
,
(
strlen
(
pFunc
)
+
4
)
/
4
,
(
int
*
)
pFunc
);
}
////////////////////////////////////////////////////////////////////////
/// VERILOG WRITING ///
////////////////////////////////////////////////////////////////////////
static
inline
int
Ndr_ObjReadEntry
(
Ndr_Data_t
*
p
,
int
Obj
,
int
Type
)
{
int
Ent
;
Ndr_ObjForEachEntry
(
p
,
Obj
,
Ent
)
if
(
Ndr_DataType
(
p
,
Ent
)
==
Type
)
return
Ndr_DataEntry
(
p
,
Ent
);
return
-
1
;
}
static
inline
int
Ndr_ObjReadArray
(
Ndr_Data_t
*
p
,
int
Obj
,
int
Type
,
int
**
ppStart
)
{
int
Ent
,
Counter
=
0
;
*
ppStart
=
NULL
;
Ndr_ObjForEachEntry
(
p
,
Obj
,
Ent
)
if
(
Ndr_DataType
(
p
,
Ent
)
==
Type
)
{
Counter
++
;
if
(
*
ppStart
==
NULL
)
*
ppStart
=
(
int
*
)
p
->
pBody
+
Ent
;
}
else
if
(
*
ppStart
)
return
Counter
;
return
Counter
;
}
static
inline
int
Ndr_ObjIsType
(
Ndr_Data_t
*
p
,
int
Obj
,
int
Type
)
{
int
Ent
;
Ndr_ObjForEachEntry
(
p
,
Obj
,
Ent
)
if
(
Ndr_DataType
(
p
,
Ent
)
==
NDR_OPERTYPE
)
return
(
int
)(
Ndr_DataEntry
(
p
,
Ent
)
==
Type
);
return
-
1
;
}
static
inline
int
Ndr_ObjReadBody
(
Ndr_Data_t
*
p
,
int
Obj
,
int
Type
)
{
int
Ent
;
Ndr_ObjForEachEntry
(
p
,
Obj
,
Ent
)
if
(
Ndr_DataType
(
p
,
Ent
)
==
Type
)
return
Ndr_DataEntry
(
p
,
Ent
);
return
-
1
;
}
static
inline
int
*
Ndr_ObjReadBodyP
(
Ndr_Data_t
*
p
,
int
Obj
,
int
Type
)
{
int
Ent
;
Ndr_ObjForEachEntry
(
p
,
Obj
,
Ent
)
if
(
Ndr_DataType
(
p
,
Ent
)
==
Type
)
return
Ndr_DataEntryP
(
p
,
Ent
);
return
NULL
;
}
static
inline
void
Ndr_ObjWriteRange
(
Ndr_Data_t
*
p
,
int
Obj
,
FILE
*
pFile
)
{
int
*
pArray
,
nArray
=
Ndr_ObjReadArray
(
p
,
Obj
,
NDR_RANGE
,
&
pArray
);
if
(
nArray
==
0
)
return
;
if
(
nArray
==
3
)
fprintf
(
pFile
,
"signed "
);
if
(
nArray
==
1
)
fprintf
(
pFile
,
"[%d] "
,
pArray
[
0
]
);
else
fprintf
(
pFile
,
"[%d:%d] "
,
pArray
[
0
],
pArray
[
1
]
);
}
static
inline
char
*
Ndr_ObjReadOutName
(
Ndr_Data_t
*
p
,
int
Obj
,
char
**
pNames
)
{
return
pNames
[
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OUTPUT
)];
}
static
inline
char
*
Ndr_ObjReadInName
(
Ndr_Data_t
*
p
,
int
Obj
,
char
**
pNames
)
{
return
pNames
[
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_INPUT
)];
}
// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static
inline
void
Ndr_ModuleWriteVerilog
(
char
*
pFileName
,
void
*
pModule
,
char
**
pNames
)
{
Ndr_Data_t
*
p
=
(
Ndr_Data_t
*
)
pModule
;
int
Mod
=
0
,
Obj
,
nArray
,
*
pArray
,
fFirst
=
1
;
FILE
*
pFile
=
pFileName
?
fopen
(
pFileName
,
"wb"
)
:
stdout
;
if
(
pFile
==
NULL
)
{
printf
(
"Cannot open file
\"
%s
\"
for writing.
\n
"
,
pFileName
);
return
;
}
fprintf
(
pFile
,
"
\n
module %s (
\n
"
,
pNames
[
Ndr_ObjReadEntry
(
p
,
0
,
NDR_NAME
)]
);
Ndr_ModForEachPi
(
p
,
Mod
,
Obj
)
fprintf
(
pFile
,
"%s, "
,
Ndr_ObjReadOutName
(
p
,
Obj
,
pNames
)
);
fprintf
(
pFile
,
"
\n
"
);
Ndr_ModForEachPo
(
p
,
Mod
,
Obj
)
fprintf
(
pFile
,
"%s%s"
,
fFirst
?
""
:
", "
,
Ndr_ObjReadInName
(
p
,
Obj
,
pNames
)
),
fFirst
=
0
;
fprintf
(
pFile
,
"
\n
);
\n\n
"
);
Ndr_ModForEachPi
(
p
,
Mod
,
Obj
)
{
fprintf
(
pFile
,
" input "
);
Ndr_ObjWriteRange
(
p
,
Obj
,
pFile
);
fprintf
(
pFile
,
"%s;
\n
"
,
Ndr_ObjReadOutName
(
p
,
Obj
,
pNames
)
);
}
Ndr_ModForEachPo
(
p
,
Mod
,
Obj
)
{
fprintf
(
pFile
,
" output "
);
Ndr_ObjWriteRange
(
p
,
Obj
,
pFile
);
fprintf
(
pFile
,
"%s;
\n
"
,
Ndr_ObjReadInName
(
p
,
Obj
,
pNames
)
);
}
Ndr_ModForEachNode
(
p
,
Mod
,
Obj
)
{
fprintf
(
pFile
,
" wire "
);
Ndr_ObjWriteRange
(
p
,
Obj
,
pFile
);
fprintf
(
pFile
,
"%s;
\n
"
,
Ndr_ObjReadOutName
(
p
,
Obj
,
pNames
)
);
}
fprintf
(
pFile
,
"
\n
"
);
Ndr_ModForEachNode
(
p
,
Mod
,
Obj
)
{
fprintf
(
pFile
,
" assign %s = "
,
Ndr_ObjReadOutName
(
p
,
Obj
,
pNames
)
);
nArray
=
Ndr_ObjReadArray
(
p
,
Obj
,
NDR_INPUT
,
&
pArray
);
if
(
nArray
==
0
)
fprintf
(
pFile
,
"%s;
\n
"
,
(
char
*
)
Ndr_ObjReadBodyP
(
p
,
Obj
,
NDR_FUNCTION
)
);
else
if
(
nArray
==
1
&&
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OPERTYPE
)
==
WLC_OBJ_BUF
)
fprintf
(
pFile
,
"%s;
\n
"
,
pNames
[
pArray
[
0
]]
);
else
if
(
nArray
==
1
)
fprintf
(
pFile
,
"%s %s;
\n
"
,
Ndr_OperName
(
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OPERTYPE
)),
pNames
[
pArray
[
0
]]
);
else
if
(
nArray
==
2
)
fprintf
(
pFile
,
"%s %s %s;
\n
"
,
pNames
[
pArray
[
0
]],
Ndr_OperName
(
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OPERTYPE
)),
pNames
[
pArray
[
1
]]
);
else
if
(
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OPERTYPE
)
==
WLC_OBJ_MUX
)
fprintf
(
pFile
,
"%s ? %s : %s;
\n
"
,
pNames
[
pArray
[
0
]],
pNames
[
pArray
[
1
]],
pNames
[
pArray
[
2
]]
);
else
fprintf
(
pFile
,
"<cannot write operation %s>;
\n
"
,
Ndr_OperName
(
Ndr_ObjReadBody
(
p
,
Obj
,
NDR_OPERTYPE
))
);
}
fprintf
(
pFile
,
"
\n
endmodule
\n\n
"
);
fclose
(
pFile
);
}
////////////////////////////////////////////////////////////////////////
/// EXTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
// creating a new module (returns pointer to the memory buffer storing the module info)
static
inline
void
*
Ndr_ModuleCreate
(
int
Name
)
{
Ndr_Data_t
*
p
=
malloc
(
sizeof
(
Ndr_Data_t
)
);
p
->
nSize
=
0
;
p
->
nCap
=
16
;
p
->
pHead
=
malloc
(
p
->
nCap
);
p
->
pBody
=
malloc
(
p
->
nCap
*
4
);
Ndr_DataPush
(
p
,
NDR_MODULE
,
0
);
Ndr_DataPush
(
p
,
NDR_NAME
,
Name
);
Ndr_DataAddTo
(
p
,
0
,
p
->
nSize
);
assert
(
p
->
nSize
==
2
);
assert
(
Name
);
return
p
;
}
// adding a new object (input/output/flop/intenal node) to an already module module
static
inline
void
Ndr_ModuleAddObject
(
void
*
pModule
,
int
Type
,
int
InstName
,
int
RangeLeft
,
int
RangeRight
,
int
fSignedness
,
int
nInputs
,
int
*
pInputs
,
int
nOutputs
,
int
*
pOutputs
,
char
*
pFunction
)
{
Ndr_Data_t
*
p
=
(
Ndr_Data_t
*
)
pModule
;
int
Obj
=
p
->
nSize
;
assert
(
Type
!=
0
);
Ndr_DataResize
(
p
,
6
);
Ndr_DataPush
(
p
,
NDR_OBJECT
,
0
);
Ndr_DataPush
(
p
,
NDR_OPERTYPE
,
Type
);
Ndr_DataPushRange
(
p
,
RangeLeft
,
RangeRight
,
fSignedness
);
if
(
InstName
)
Ndr_DataPush
(
p
,
NDR_NAME
,
InstName
);
Ndr_DataPushArray
(
p
,
NDR_INPUT
,
nInputs
,
pInputs
);
Ndr_DataPushArray
(
p
,
NDR_OUTPUT
,
nOutputs
,
pOutputs
);
Ndr_DataPushString
(
p
,
NDR_FUNCTION
,
pFunction
);
Ndr_DataAddTo
(
p
,
Obj
,
p
->
nSize
-
Obj
);
Ndr_DataAddTo
(
p
,
0
,
p
->
nSize
-
Obj
);
assert
(
(
int
)
p
->
pBody
[
0
]
==
p
->
nSize
);
}
// deallocate the memory buffer
static
inline
void
Ndr_ModuleDelete
(
void
*
pModule
)
{
Ndr_Data_t
*
p
=
(
Ndr_Data_t
*
)
pModule
;
if
(
!
p
)
return
;
free
(
p
->
pHead
);
free
(
p
->
pBody
);
free
(
p
);
}
////////////////////////////////////////////////////////////////////////
/// FILE READING AND WRITING ///
////////////////////////////////////////////////////////////////////////
// file reading/writing
static
inline
void
*
Ndr_ModuleRead
(
char
*
pFileName
)
{
Ndr_Data_t
*
p
;
int
nFileSize
,
RetValue
;
FILE
*
pFile
=
fopen
(
pFileName
,
"rb"
);
if
(
pFile
==
NULL
)
{
printf
(
"Cannot open file
\"
%s
\"
for reading.
\n
"
,
pFileName
);
return
NULL
;
}
// check file size
fseek
(
pFile
,
0
,
SEEK_END
);
nFileSize
=
ftell
(
pFile
);
assert
(
nFileSize
%
5
==
0
);
rewind
(
pFile
);
// create structure
p
=
malloc
(
sizeof
(
Ndr_Data_t
)
);
p
->
nSize
=
p
->
nCap
=
nFileSize
/
5
;
p
->
pHead
=
malloc
(
p
->
nCap
);
p
->
pBody
=
malloc
(
p
->
nCap
*
4
);
RetValue
=
fread
(
p
->
pBody
,
4
,
p
->
nCap
,
pFile
);
RetValue
=
fread
(
p
->
pHead
,
1
,
p
->
nCap
,
pFile
);
assert
(
p
->
nSize
==
(
int
)
p
->
pBody
[
0
]
);
fclose
(
pFile
);
return
p
;
}
static
inline
void
Ndr_ModuleWrite
(
char
*
pFileName
,
void
*
pModule
)
{
Ndr_Data_t
*
p
=
(
Ndr_Data_t
*
)
pModule
;
int
RetValue
;
FILE
*
pFile
=
fopen
(
pFileName
,
"wb"
);
if
(
pFile
==
NULL
)
{
printf
(
"Cannot open file
\"
%s
\"
for writing.
\n
"
,
pFileName
);
return
;
}
RetValue
=
fwrite
(
p
->
pBody
,
4
,
p
->
pBody
[
0
],
pFile
);
RetValue
=
fwrite
(
p
->
pHead
,
1
,
p
->
pBody
[
0
],
pFile
);
fclose
(
pFile
);
}
////////////////////////////////////////////////////////////////////////
/// TESTING PROCEDURE ///
////////////////////////////////////////////////////////////////////////
// This testing procedure creates and writes into a Verilog file the following module
// module add10 ( input [3:0] a, output [3:0] s );
// wire [3:0] const10 = 4'b1010;
// assign s = a + const10;
// endmodule
static
inline
void
Ndr_ModuleTest
()
{
// name IDs
int
NameIdA
=
2
;
int
NameIdS
=
3
;
int
NameIdC
=
4
;
// array of fanins of node s
int
Fanins
[
2
]
=
{
NameIdA
,
NameIdC
};
// map name IDs into char strings
char
*
ppNames
[
5
]
=
{
NULL
,
"add10"
,
"a"
,
"s"
,
"const10"
};
// create a new module
void
*
pModule
=
Ndr_ModuleCreate
(
1
);
// add objects to the modele
Ndr_ModuleAddObject
(
pModule
,
WLC_OBJ_PI
,
0
,
3
,
0
,
0
,
0
,
NULL
,
1
,
&
NameIdA
,
NULL
);
// no fanins
Ndr_ModuleAddObject
(
pModule
,
WLC_OBJ_CONST
,
0
,
3
,
0
,
0
,
0
,
NULL
,
1
,
&
NameIdC
,
"4'b1010"
);
// no fanins
Ndr_ModuleAddObject
(
pModule
,
WLC_OBJ_ARI_ADD
,
0
,
3
,
0
,
0
,
2
,
Fanins
,
1
,
&
NameIdS
,
NULL
);
// fanins are a and const10
Ndr_ModuleAddObject
(
pModule
,
WLC_OBJ_PO
,
0
,
3
,
0
,
0
,
1
,
&
NameIdS
,
0
,
NULL
,
NULL
);
// fanin is a
// write Verilog for verification
Ndr_ModuleWriteVerilog
(
NULL
,
pModule
,
ppNames
);
Ndr_ModuleDelete
(
pModule
);
}
//ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
src/aig/saig/saigIsoSlow.c
View file @
154f4b64
...
@@ -120,7 +120,7 @@ static int s_1kPrimes[ISO_MASK+1] = {
...
@@ -120,7 +120,7 @@ static int s_1kPrimes[ISO_MASK+1] = {
*/
*/
#define ISO_MASK 0x3FF
#define ISO_MASK 0x3FF
static
int
s_1kPrimes
[
ISO_MASK
+
1
]
=
static
unsigned
int
s_1kPrimes
[
ISO_MASK
+
1
]
=
//#define ISO_MASK 0xFF
//#define ISO_MASK 0xFF
//static int s_1kPrimes[0x3FF+1] =
//static int s_1kPrimes[0x3FF+1] =
{
{
...
...
src/base/abc/abc.h
View file @
154f4b64
...
@@ -825,6 +825,7 @@ extern ABC_DLL void Abc_NtkDontCareFree( Odc_Man_t * p );
...
@@ -825,6 +825,7 @@ extern ABC_DLL void Abc_NtkDontCareFree( Odc_Man_t * p );
extern
ABC_DLL
int
Abc_NtkDontCareCompute
(
Odc_Man_t
*
p
,
Abc_Obj_t
*
pNode
,
Vec_Ptr_t
*
vLeaves
,
unsigned
*
puTruth
);
extern
ABC_DLL
int
Abc_NtkDontCareCompute
(
Odc_Man_t
*
p
,
Abc_Obj_t
*
pNode
,
Vec_Ptr_t
*
vLeaves
,
unsigned
*
puTruth
);
/*=== abcPrint.c ==========================================================*/
/*=== abcPrint.c ==========================================================*/
extern
ABC_DLL
float
Abc_NtkMfsTotalSwitching
(
Abc_Ntk_t
*
pNtk
);
extern
ABC_DLL
float
Abc_NtkMfsTotalSwitching
(
Abc_Ntk_t
*
pNtk
);
extern
ABC_DLL
float
Abc_NtkMfsTotalGlitching
(
Abc_Ntk_t
*
pNtk
,
int
nPats
,
int
Prob
,
int
fVerbose
);
extern
ABC_DLL
void
Abc_NtkPrintStats
(
Abc_Ntk_t
*
pNtk
,
int
fFactored
,
int
fSaveBest
,
int
fDumpResult
,
int
fUseLutLib
,
int
fPrintMuxes
,
int
fPower
,
int
fGlitch
,
int
fSkipBuf
,
int
fSkipSmall
,
int
fPrintMem
);
extern
ABC_DLL
void
Abc_NtkPrintStats
(
Abc_Ntk_t
*
pNtk
,
int
fFactored
,
int
fSaveBest
,
int
fDumpResult
,
int
fUseLutLib
,
int
fPrintMuxes
,
int
fPower
,
int
fGlitch
,
int
fSkipBuf
,
int
fSkipSmall
,
int
fPrintMem
);
extern
ABC_DLL
void
Abc_NtkPrintIo
(
FILE
*
pFile
,
Abc_Ntk_t
*
pNtk
,
int
fPrintFlops
);
extern
ABC_DLL
void
Abc_NtkPrintIo
(
FILE
*
pFile
,
Abc_Ntk_t
*
pNtk
,
int
fPrintFlops
);
extern
ABC_DLL
void
Abc_NtkPrintLatch
(
FILE
*
pFile
,
Abc_Ntk_t
*
pNtk
);
extern
ABC_DLL
void
Abc_NtkPrintLatch
(
FILE
*
pFile
,
Abc_Ntk_t
*
pNtk
);
...
...
src/base/abci/abc.c
View file @
154f4b64
...
@@ -122,6 +122,7 @@ static int Abc_CommandMfs ( Abc_Frame_t * pAbc, int argc, cha
...
@@ -122,6 +122,7 @@ static int Abc_CommandMfs ( Abc_Frame_t * pAbc, int argc, cha
static
int
Abc_CommandMfs2
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandMfs2
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandMfs3
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandMfs3
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandTrace
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandTrace
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandGlitch
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandSpeedup
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandSpeedup
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandPowerdown
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandPowerdown
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAddBuffs
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandAddBuffs
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
...
@@ -316,6 +317,7 @@ static int Abc_CommandPSat ( Abc_Frame_t * pAbc, int argc, cha
...
@@ -316,6 +317,7 @@ static int Abc_CommandPSat ( Abc_Frame_t * pAbc, int argc, cha
static
int
Abc_CommandProve
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandProve
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandIProve
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandIProve
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandDebug
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandDebug
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandEco
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc2
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc2
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc3
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
static
int
Abc_CommandBmc3
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
);
...
@@ -772,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
...
@@ -772,6 +774,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"mfs2"
,
Abc_CommandMfs2
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"mfs2"
,
Abc_CommandMfs2
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"mfs3"
,
Abc_CommandMfs3
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"mfs3"
,
Abc_CommandMfs3
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"trace"
,
Abc_CommandTrace
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"trace"
,
Abc_CommandTrace
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"glitch"
,
Abc_CommandGlitch
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"speedup"
,
Abc_CommandSpeedup
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"speedup"
,
Abc_CommandSpeedup
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"powerdown"
,
Abc_CommandPowerdown
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"powerdown"
,
Abc_CommandPowerdown
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"addbuffs"
,
Abc_CommandAddBuffs
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Synthesis"
,
"addbuffs"
,
Abc_CommandAddBuffs
,
1
);
...
@@ -966,6 +969,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
...
@@ -966,6 +969,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"prove"
,
Abc_CommandProve
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"prove"
,
Abc_CommandProve
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"iprove"
,
Abc_CommandIProve
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"iprove"
,
Abc_CommandIProve
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"debug"
,
Abc_CommandDebug
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"debug"
,
Abc_CommandDebug
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"eco"
,
Abc_CommandEco
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc"
,
Abc_CommandBmc
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc"
,
Abc_CommandBmc
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc2"
,
Abc_CommandBmc2
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc2"
,
Abc_CommandBmc2
,
0
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc3"
,
Abc_CommandBmc3
,
1
);
Cmd_CommandAdd
(
pAbc
,
"Verification"
,
"bmc3"
,
Abc_CommandBmc3
,
1
);
...
@@ -5718,6 +5722,88 @@ usage:
...
@@ -5718,6 +5722,88 @@ usage:
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
int
Abc_CommandGlitch
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
Abc_Ntk_t
*
pNtk
=
Abc_FrameReadNtk
(
pAbc
);
int
nPats
=
4000
;
int
Prob
=
8
;
int
fVerbose
=
1
;
int
c
;
// set defaults
Extra_UtilGetoptReset
();
while
(
(
c
=
Extra_UtilGetopt
(
argc
,
argv
,
"NPvh"
)
)
!=
EOF
)
{
switch
(
c
)
{
case
'N'
:
if
(
globalUtilOptind
>=
argc
)
{
Abc_Print
(
-
1
,
"Command line switch
\"
-N
\"
should be followed by an integer.
\n
"
);
goto
usage
;
}
nPats
=
atoi
(
argv
[
globalUtilOptind
]);
globalUtilOptind
++
;
if
(
nPats
<
1
)
goto
usage
;
break
;
case
'P'
:
if
(
globalUtilOptind
>=
argc
)
{
Abc_Print
(
-
1
,
"Command line switch
\"
-P
\"
should be followed by an integer.
\n
"
);
goto
usage
;
}
Prob
=
atoi
(
argv
[
globalUtilOptind
]);
globalUtilOptind
++
;
if
(
Prob
<
1
)
goto
usage
;
break
;
case
'v'
:
fVerbose
^=
1
;
break
;
case
'h'
:
goto
usage
;
default:
goto
usage
;
}
}
if
(
pNtk
==
NULL
)
{
Abc_Print
(
-
1
,
"Empty network.
\n
"
);
return
1
;
}
if
(
!
Abc_NtkIsLogic
(
pNtk
)
)
{
Abc_Print
(
-
1
,
"This command can only be applied to a mapped logic network.
\n
"
);
return
1
;
}
if
(
Abc_NtkIsMappedLogic
(
pNtk
)
||
Abc_NtkGetFaninMax
(
pNtk
)
<=
6
)
Abc_Print
(
1
,
"Glitching adds %7.2f %% of signal transitions, compared to switching.
\n
"
,
Abc_NtkMfsTotalGlitching
(
pNtk
,
nPats
,
Prob
,
fVerbose
)
);
else
printf
(
"Currently computes glitching only for K-LUT networks with K <= 6.
\n
"
);
return
0
;
usage:
Abc_Print
(
-
2
,
"usage: glitch [-NP <num>] [-vh]
\n
"
);
Abc_Print
(
-
2
,
"
\t
comparing glitching activity to switching activity
\n
"
);
Abc_Print
(
-
2
,
"
\t
-N <num> : the number of random patterns to use (0 < num < 1000000) [default = %d]
\n
"
,
nPats
);
Abc_Print
(
-
2
,
"
\t
-P <num> : once in how many cycles an input changes its value [default = %d]
\n
"
,
Prob
);
Abc_Print
(
-
2
,
"
\t
-v : toggle printing optimization summary [default = %s]
\n
"
,
fVerbose
?
"yes"
:
"no"
);
Abc_Print
(
-
2
,
"
\t
-h : print the command usage
\n
"
);
return
1
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Abc_CommandSpeedup
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
int
Abc_CommandSpeedup
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
{
Abc_Ntk_t
*
pNtk
,
*
pNtkRes
;
Abc_Ntk_t
*
pNtk
,
*
pNtkRes
;
...
@@ -23865,6 +23951,50 @@ usage:
...
@@ -23865,6 +23951,50 @@ usage:
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
int
Abc_CommandEco
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
extern
void
Abc_NtkEco
(
char
*
pFileNames
[
3
]
);
char
*
pFileNames
[
3
]
=
{
NULL
};
int
c
;
// set defaults
Extra_UtilGetoptReset
();
while
(
(
c
=
Extra_UtilGetopt
(
argc
,
argv
,
"h"
)
)
!=
EOF
)
{
switch
(
c
)
{
case
'h'
:
goto
usage
;
default:
goto
usage
;
}
}
if
(
globalUtilOptind
+
3
!=
argc
)
{
Abc_Print
(
-
1
,
"Expecting three file names on the command line.
\n
"
);
return
1
;
}
for
(
c
=
0
;
c
<
3
;
c
++
)
pFileNames
[
c
]
=
argv
[
globalUtilOptind
+
c
];
Abc_NtkEco
(
pFileNames
);
return
0
;
usage:
Abc_Print
(
-
2
,
"usage: eco [-h]
\n
"
);
Abc_Print
(
-
2
,
"
\t
performs experimental ECO computation
\n
"
);
Abc_Print
(
-
2
,
"
\t
-h : print the command usage
\n
"
);
return
1
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Abc_CommandBmc
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
int
Abc_CommandBmc
(
Abc_Frame_t
*
pAbc
,
int
argc
,
char
**
argv
)
{
{
Abc_Ntk_t
*
pNtk
=
Abc_FrameReadNtk
(
pAbc
);
Abc_Ntk_t
*
pNtk
=
Abc_FrameReadNtk
(
pAbc
);
src/base/abci/abcEco.c
0 → 100644
View file @
154f4b64
/**CFile****************************************************************
FileName [abcEco.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Experimental procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcEco.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "base/main/main.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Abc_NtkEco
(
char
*
pFileNames
[
3
]
)
{
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
src/base/abci/abcMap.c
View file @
154f4b64
...
@@ -923,9 +923,9 @@ void Abc_NtkPrintMiniMapping( int * pArray )
...
@@ -923,9 +923,9 @@ void Abc_NtkPrintMiniMapping( int * pArray )
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
int
*
Abc_NtkOutputMiniMapping
(
void
*
pAbc0
)
int
*
Abc_NtkOutputMiniMapping
(
Abc_Frame_t
*
pAbc
)
{
{
Abc_Frame_t
*
pAbc
=
(
Abc_Frame_t
*
)
pAbc0
;
//
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t
*
pNtk
;
Abc_Ntk_t
*
pNtk
;
Vec_Int_t
*
vMapping
;
Vec_Int_t
*
vMapping
;
int
*
pArray
;
int
*
pArray
;
...
@@ -977,9 +977,9 @@ void Abc_NtkTestMiniMapping( Abc_Ntk_t * p )
...
@@ -977,9 +977,9 @@ void Abc_NtkTestMiniMapping( Abc_Ntk_t * p )
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
void
Abc_NtkSetCiArrivalTime
(
void
*
pAbc0
,
int
iCi
,
float
Rise
,
float
Fall
)
void
Abc_NtkSetCiArrivalTime
(
Abc_Frame_t
*
pAbc
,
int
iCi
,
float
Rise
,
float
Fall
)
{
{
Abc_Frame_t
*
pAbc
=
(
Abc_Frame_t
*
)
pAbc0
;
//
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t
*
pNtk
;
Abc_Ntk_t
*
pNtk
;
Abc_Obj_t
*
pNode
;
Abc_Obj_t
*
pNode
;
if
(
pAbc
==
NULL
)
if
(
pAbc
==
NULL
)
...
@@ -1001,9 +1001,9 @@ void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall )
...
@@ -1001,9 +1001,9 @@ void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall )
pNode
=
Abc_NtkCi
(
pNtk
,
iCi
);
pNode
=
Abc_NtkCi
(
pNtk
,
iCi
);
Abc_NtkTimeSetArrival
(
pNtk
,
Abc_ObjId
(
pNode
),
Rise
,
Fall
);
Abc_NtkTimeSetArrival
(
pNtk
,
Abc_ObjId
(
pNode
),
Rise
,
Fall
);
}
}
void
Abc_NtkSetCoRequiredTime
(
void
*
pAbc0
,
int
iCo
,
float
Rise
,
float
Fall
)
void
Abc_NtkSetCoRequiredTime
(
Abc_Frame_t
*
pAbc
,
int
iCo
,
float
Rise
,
float
Fall
)
{
{
Abc_Frame_t
*
pAbc
=
(
Abc_Frame_t
*
)
pAbc0
;
//
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t
*
pNtk
;
Abc_Ntk_t
*
pNtk
;
Abc_Obj_t
*
pNode
;
Abc_Obj_t
*
pNode
;
if
(
pAbc
==
NULL
)
\
if
(
pAbc
==
NULL
)
\
...
@@ -1037,9 +1037,9 @@ void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall )
...
@@ -1037,9 +1037,9 @@ void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall )
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
void
Abc_NtkSetAndGateDelay
(
void
*
pAbc0
,
float
Delay
)
void
Abc_NtkSetAndGateDelay
(
Abc_Frame_t
*
pAbc
,
float
Delay
)
{
{
Abc_Frame_t
*
pAbc
=
(
Abc_Frame_t
*
)
pAbc0
;
//
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t
*
pNtk
;
Abc_Ntk_t
*
pNtk
;
if
(
pAbc
==
NULL
)
if
(
pAbc
==
NULL
)
{
{
...
...
src/base/abci/abcPrint.c
View file @
154f4b64
...
@@ -351,9 +351,8 @@ void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDum
...
@@ -351,9 +351,8 @@ void Abc_NtkPrintStats( Abc_Ntk_t * pNtk, int fFactored, int fSaveBest, int fDum
Abc_Print
(
1
,
" power =%7.2f"
,
Abc_NtkMfsTotalSwitching
(
pNtk
)
);
Abc_Print
(
1
,
" power =%7.2f"
,
Abc_NtkMfsTotalSwitching
(
pNtk
)
);
if
(
fGlitch
)
if
(
fGlitch
)
{
{
extern
float
Abc_NtkMfsTotalGlitching
(
Abc_Ntk_t
*
pNtk
);
if
(
Abc_NtkIsLogic
(
pNtk
)
&&
Abc_NtkGetFaninMax
(
pNtk
)
<=
6
)
if
(
Abc_NtkIsLogic
(
pNtk
)
&&
Abc_NtkGetFaninMax
(
pNtk
)
<=
6
)
Abc_Print
(
1
,
" glitch =%7.2f %%"
,
Abc_NtkMfsTotalGlitching
(
pNtk
)
);
Abc_Print
(
1
,
" glitch =%7.2f %%"
,
Abc_NtkMfsTotalGlitching
(
pNtk
,
4000
,
8
,
0
)
);
else
else
printf
(
"
\n
Currently computes glitching only for K-LUT networks with K <= 6."
);
printf
(
"
\n
Currently computes glitching only for K-LUT networks with K <= 6."
);
}
}
...
@@ -1744,7 +1743,7 @@ extern Gli_Man_t * Gli_ManAlloc( int nObjs, int nRegs, int nFanioPairs );
...
@@ -1744,7 +1743,7 @@ extern Gli_Man_t * Gli_ManAlloc( int nObjs, int nRegs, int nFanioPairs );
extern
void
Gli_ManStop
(
Gli_Man_t
*
p
);
extern
void
Gli_ManStop
(
Gli_Man_t
*
p
);
extern
int
Gli_ManCreateCi
(
Gli_Man_t
*
p
,
int
nFanouts
);
extern
int
Gli_ManCreateCi
(
Gli_Man_t
*
p
,
int
nFanouts
);
extern
int
Gli_ManCreateCo
(
Gli_Man_t
*
p
,
int
iFanin
);
extern
int
Gli_ManCreateCo
(
Gli_Man_t
*
p
,
int
iFanin
);
extern
int
Gli_ManCreateNode
(
Gli_Man_t
*
p
,
Vec_Int_t
*
vFanins
,
int
nFanouts
,
unsigned
*
pu
Truth
);
extern
int
Gli_ManCreateNode
(
Gli_Man_t
*
p
,
Vec_Int_t
*
vFanins
,
int
nFanouts
,
word
*
pGate
Truth
);
extern
void
Gli_ManSwitchesAndGlitches
(
Gli_Man_t
*
p
,
int
nPatterns
,
float
PiTransProb
,
int
fVerbose
);
extern
void
Gli_ManSwitchesAndGlitches
(
Gli_Man_t
*
p
,
int
nPatterns
,
float
PiTransProb
,
int
fVerbose
);
extern
int
Gli_ObjNumSwitches
(
Gli_Man_t
*
p
,
int
iNode
);
extern
int
Gli_ObjNumSwitches
(
Gli_Man_t
*
p
,
int
iNode
);
...
@@ -1761,13 +1760,14 @@ extern int Gli_ObjNumGlitches( Gli_Man_t * p, int iNode );
...
@@ -1761,13 +1760,14 @@ extern int Gli_ObjNumGlitches( Gli_Man_t * p, int iNode );
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
float
Abc_NtkMfsTotalGlitching
(
Abc_Ntk_t
*
pNtk
)
float
Abc_NtkMfsTotalGlitching
Lut
(
Abc_Ntk_t
*
pNtk
,
int
nPats
,
int
Prob
,
int
fVerbose
)
{
{
int
nSwitches
,
nGlitches
;
int
nSwitches
,
nGlitches
;
Gli_Man_t
*
p
;
Gli_Man_t
*
p
;
Vec_Ptr_t
*
vNodes
;
Vec_Ptr_t
*
vNodes
;
Vec_Int_t
*
vFanins
,
*
vTruth
;
Vec_Int_t
*
vFanins
,
*
vTruth
;
Abc_Obj_t
*
pObj
,
*
pFanin
;
Abc_Obj_t
*
pObj
,
*
pFanin
;
Vec_Wrd_t
*
vTruths
;
word
*
pTruth
;
unsigned
*
puTruth
;
unsigned
*
puTruth
;
int
i
,
k
;
int
i
,
k
;
assert
(
Abc_NtkIsLogic
(
pNtk
)
);
assert
(
Abc_NtkIsLogic
(
pNtk
)
);
...
@@ -1781,6 +1781,7 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
...
@@ -1781,6 +1781,7 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
vNodes
=
Abc_NtkDfs
(
pNtk
,
0
);
vNodes
=
Abc_NtkDfs
(
pNtk
,
0
);
vFanins
=
Vec_IntAlloc
(
6
);
vFanins
=
Vec_IntAlloc
(
6
);
vTruth
=
Vec_IntAlloc
(
1
<<
12
);
vTruth
=
Vec_IntAlloc
(
1
<<
12
);
vTruths
=
Vec_WrdStart
(
Abc_NtkObjNumMax
(
pNtk
)
);
// derive network for glitch computation
// derive network for glitch computation
p
=
Gli_ManAlloc
(
Vec_PtrSize
(
vNodes
)
+
Abc_NtkCiNum
(
pNtk
)
+
Abc_NtkCoNum
(
pNtk
),
p
=
Gli_ManAlloc
(
Vec_PtrSize
(
vNodes
)
+
Abc_NtkCiNum
(
pNtk
)
+
Abc_NtkCoNum
(
pNtk
),
...
@@ -1795,7 +1796,9 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
...
@@ -1795,7 +1796,9 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
Abc_ObjForEachFanin
(
pObj
,
pFanin
,
k
)
Abc_ObjForEachFanin
(
pObj
,
pFanin
,
k
)
Vec_IntPush
(
vFanins
,
pFanin
->
iTemp
);
Vec_IntPush
(
vFanins
,
pFanin
->
iTemp
);
puTruth
=
Hop_ManConvertAigToTruth
(
(
Hop_Man_t
*
)
pNtk
->
pManFunc
,
(
Hop_Obj_t
*
)
pObj
->
pData
,
Abc_ObjFaninNum
(
pObj
),
vTruth
,
0
);
puTruth
=
Hop_ManConvertAigToTruth
(
(
Hop_Man_t
*
)
pNtk
->
pManFunc
,
(
Hop_Obj_t
*
)
pObj
->
pData
,
Abc_ObjFaninNum
(
pObj
),
vTruth
,
0
);
pObj
->
iTemp
=
Gli_ManCreateNode
(
p
,
vFanins
,
Abc_ObjFanoutNum
(
pObj
),
puTruth
);
pTruth
=
Vec_WrdEntryP
(
vTruths
,
Abc_ObjId
(
pObj
)
);
*
pTruth
=
((
word
)
puTruth
[
Abc_ObjFaninNum
(
pObj
)
==
6
]
<<
32
)
|
(
word
)
puTruth
[
0
];
pObj
->
iTemp
=
Gli_ManCreateNode
(
p
,
vFanins
,
Abc_ObjFanoutNum
(
pObj
),
pTruth
);
}
}
Abc_NtkForEachCo
(
pNtk
,
pObj
,
i
)
Abc_NtkForEachCo
(
pNtk
,
pObj
,
i
)
Gli_ManCreateCo
(
p
,
Abc_ObjFanin0
(
pObj
)
->
iTemp
);
Gli_ManCreateCo
(
p
,
Abc_ObjFanin0
(
pObj
)
->
iTemp
);
...
@@ -1816,6 +1819,72 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
...
@@ -1816,6 +1819,72 @@ float Abc_NtkMfsTotalGlitching( Abc_Ntk_t * pNtk )
Vec_PtrFree
(
vNodes
);
Vec_PtrFree
(
vNodes
);
Vec_IntFree
(
vTruth
);
Vec_IntFree
(
vTruth
);
Vec_IntFree
(
vFanins
);
Vec_IntFree
(
vFanins
);
Vec_WrdFree
(
vTruths
);
return
nSwitches
?
100
.
0
*
(
nGlitches
-
nSwitches
)
/
nSwitches
:
0
.
0
;
}
/**Function*************************************************************
Synopsis [Returns the percentable of increased power due to glitching.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float
Abc_NtkMfsTotalGlitching
(
Abc_Ntk_t
*
pNtk
,
int
nPats
,
int
Prob
,
int
fVerbose
)
{
int
nSwitches
,
nGlitches
;
Gli_Man_t
*
p
;
Vec_Ptr_t
*
vNodes
;
Vec_Int_t
*
vFanins
;
Abc_Obj_t
*
pObj
,
*
pFanin
;
int
i
,
k
,
nFaninMax
=
Abc_NtkGetFaninMax
(
pNtk
);
if
(
!
Abc_NtkIsMappedLogic
(
pNtk
)
)
return
Abc_NtkMfsTotalGlitchingLut
(
pNtk
,
nPats
,
Prob
,
fVerbose
);
assert
(
Abc_NtkIsMappedLogic
(
pNtk
)
);
if
(
nFaninMax
>
16
)
{
printf
(
"Abc_NtkMfsTotalGlitching() This procedure works only for mapped networks with LUTs size up to 6 inputs.
\n
"
);
return
-
1
.
0
;
}
vNodes
=
Abc_NtkDfs
(
pNtk
,
0
);
vFanins
=
Vec_IntAlloc
(
6
);
// derive network for glitch computation
p
=
Gli_ManAlloc
(
Vec_PtrSize
(
vNodes
)
+
Abc_NtkCiNum
(
pNtk
)
+
Abc_NtkCoNum
(
pNtk
),
Abc_NtkLatchNum
(
pNtk
),
Abc_NtkGetTotalFanins
(
pNtk
)
+
Abc_NtkCoNum
(
pNtk
)
);
Abc_NtkForEachObj
(
pNtk
,
pObj
,
i
)
pObj
->
iTemp
=
-
1
;
Abc_NtkForEachCi
(
pNtk
,
pObj
,
i
)
pObj
->
iTemp
=
Gli_ManCreateCi
(
p
,
Abc_ObjFanoutNum
(
pObj
)
);
Vec_PtrForEachEntry
(
Abc_Obj_t
*
,
vNodes
,
pObj
,
i
)
{
Vec_IntClear
(
vFanins
);
Abc_ObjForEachFanin
(
pObj
,
pFanin
,
k
)
Vec_IntPush
(
vFanins
,
pFanin
->
iTemp
);
pObj
->
iTemp
=
Gli_ManCreateNode
(
p
,
vFanins
,
Abc_ObjFanoutNum
(
pObj
),
Mio_GateReadTruthP
((
Mio_Gate_t
*
)
pObj
->
pData
)
);
}
Abc_NtkForEachCo
(
pNtk
,
pObj
,
i
)
Gli_ManCreateCo
(
p
,
Abc_ObjFanin0
(
pObj
)
->
iTemp
);
// compute glitching
Gli_ManSwitchesAndGlitches
(
p
,
nPats
,
1
.
0
/
Prob
,
fVerbose
);
// compute the ratio
nSwitches
=
nGlitches
=
0
;
Abc_NtkForEachObj
(
pNtk
,
pObj
,
i
)
if
(
pObj
->
iTemp
>=
0
)
{
nSwitches
+=
Abc_ObjFanoutNum
(
pObj
)
*
Gli_ObjNumSwitches
(
p
,
pObj
->
iTemp
);
nGlitches
+=
Abc_ObjFanoutNum
(
pObj
)
*
Gli_ObjNumGlitches
(
p
,
pObj
->
iTemp
);
}
Gli_ManStop
(
p
);
Vec_PtrFree
(
vNodes
);
Vec_IntFree
(
vFanins
);
return
nSwitches
?
100
.
0
*
(
nGlitches
-
nSwitches
)
/
nSwitches
:
0
.
0
;
return
nSwitches
?
100
.
0
*
(
nGlitches
-
nSwitches
)
/
nSwitches
:
0
.
0
;
}
}
...
...
src/base/abci/module.make
View file @
154f4b64
...
@@ -17,6 +17,7 @@ SRC += src/base/abci/abc.c \
...
@@ -17,6 +17,7 @@ SRC += src/base/abci/abc.c \
src/base/abci/abcDress2.c
\
src/base/abci/abcDress2.c
\
src/base/abci/abcDress3.c
\
src/base/abci/abcDress3.c
\
src/base/abci/abcDsd.c
\
src/base/abci/abcDsd.c
\
src/base/abci/abcEco.c
\
src/base/abci/abcExact.c
\
src/base/abci/abcExact.c
\
src/base/abci/abcExtract.c
\
src/base/abci/abcExtract.c
\
src/base/abci/abcFraig.c
\
src/base/abci/abcFraig.c
\
...
...
src/base/cmd/cmdHist.c
View file @
154f4b64
...
@@ -30,6 +30,8 @@ ABC_NAMESPACE_IMPL_START
...
@@ -30,6 +30,8 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS ///
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
#define ABC_USE_HISTORY 1
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
...
@@ -99,7 +101,7 @@ void Cmd_HistoryAddCommand( Abc_Frame_t * p, const char * command )
...
@@ -99,7 +101,7 @@ void Cmd_HistoryAddCommand( Abc_Frame_t * p, const char * command )
***********************************************************************/
***********************************************************************/
void
Cmd_HistoryRead
(
Abc_Frame_t
*
p
)
void
Cmd_HistoryRead
(
Abc_Frame_t
*
p
)
{
{
#if defined(WIN32)
#if defined(WIN32)
&& defined(ABC_USE_HISTORY)
char
Buffer
[
ABC_MAX_STR
];
char
Buffer
[
ABC_MAX_STR
];
FILE
*
pFile
;
FILE
*
pFile
;
assert
(
Vec_PtrSize
(
p
->
aHistory
)
==
0
);
assert
(
Vec_PtrSize
(
p
->
aHistory
)
==
0
);
...
@@ -130,7 +132,7 @@ void Cmd_HistoryRead( Abc_Frame_t * p )
...
@@ -130,7 +132,7 @@ void Cmd_HistoryRead( Abc_Frame_t * p )
***********************************************************************/
***********************************************************************/
void
Cmd_HistoryWrite
(
Abc_Frame_t
*
p
,
int
Limit
)
void
Cmd_HistoryWrite
(
Abc_Frame_t
*
p
,
int
Limit
)
{
{
#if defined(WIN32)
#if defined(WIN32)
&& defined(ABC_USE_HISTORY)
FILE
*
pFile
;
FILE
*
pFile
;
char
*
pStr
;
char
*
pStr
;
int
i
;
int
i
;
...
@@ -160,7 +162,7 @@ void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit )
...
@@ -160,7 +162,7 @@ void Cmd_HistoryWrite( Abc_Frame_t * p, int Limit )
***********************************************************************/
***********************************************************************/
void
Cmd_HistoryPrint
(
Abc_Frame_t
*
p
,
int
Limit
)
void
Cmd_HistoryPrint
(
Abc_Frame_t
*
p
,
int
Limit
)
{
{
#if defined(WIN32)
#if defined(WIN32)
&& defined(ABC_USE_HISTORY)
char
*
pStr
;
char
*
pStr
;
int
i
;
int
i
;
Limit
=
Abc_MaxInt
(
0
,
Vec_PtrSize
(
p
->
aHistory
)
-
Limit
);
Limit
=
Abc_MaxInt
(
0
,
Vec_PtrSize
(
p
->
aHistory
)
-
Limit
);
...
...
src/base/main/abcapis.h
0 → 100644
View file @
154f4b64
/**CFile****************************************************************
FileName [abcapis.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Include this file in the external code calling ABC.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - September 29, 2012.]
Revision [$Id: abcapis.h,v 1.00 2012/09/29 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef MINI_AIG__abc_apis_h
#define MINI_AIG__abc_apis_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_HEADER_START
typedef
struct
Abc_Frame_t_
Abc_Frame_t
;
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
#ifdef WIN32
#ifdef WIN32_NO_DLL
#define ABC_DLLEXPORT
#define ABC_DLLIMPORT
#else
#define ABC_DLLEXPORT __declspec(dllexport)
#define ABC_DLLIMPORT __declspec(dllimport)
#endif
#else
/* defined(WIN32) */
#define ABC_DLLIMPORT
#endif
/* defined(WIN32) */
#ifndef ABC_DLL
#define ABC_DLL ABC_DLLIMPORT
#endif
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// procedures to start and stop the ABC framework
extern
ABC_DLL
void
Abc_Start
();
extern
ABC_DLL
void
Abc_Stop
();
// procedures to get the ABC framework (pAbc) and execute commands in it
extern
ABC_DLL
Abc_Frame_t
*
Abc_FrameGetGlobalFrame
();
extern
ABC_DLL
int
Cmd_CommandExecute
(
Abc_Frame_t
*
pAbc
,
const
char
*
pCommandLine
);
// procedures to input/output 'mini AIG'
extern
ABC_DLL
void
Abc_NtkInputMiniAig
(
Abc_Frame_t
*
pAbc
,
void
*
pMiniAig
);
extern
ABC_DLL
void
*
Abc_NtkOutputMiniAig
(
Abc_Frame_t
*
pAbc
);
extern
ABC_DLL
void
Abc_FrameGiaInputMiniAig
(
Abc_Frame_t
*
pAbc
,
void
*
p
);
extern
ABC_DLL
void
*
Abc_FrameGiaOutputMiniAig
(
Abc_Frame_t
*
pAbc
);
extern
ABC_DLL
void
Abc_NtkSetFlopNum
(
Abc_Frame_t
*
pAbc
,
int
nFlops
);
// procedures to input/output 'mini LUT'
extern
ABC_DLL
void
Abc_FrameGiaInputMiniLut
(
Abc_Frame_t
*
pAbc
,
void
*
pMiniLut
);
extern
ABC_DLL
void
*
Abc_FrameGiaOutputMiniLut
(
Abc_Frame_t
*
pAbc
);
// procedures to set CI/CO arrival/required times
extern
ABC_DLL
void
Abc_NtkSetCiArrivalTime
(
Abc_Frame_t
*
pAbc
,
int
iCi
,
float
Rise
,
float
Fall
);
extern
ABC_DLL
void
Abc_NtkSetCoRequiredTime
(
Abc_Frame_t
*
pAbc
,
int
iCo
,
float
Rise
,
float
Fall
);
// procedure to set AND-gate delay to tech-independent synthesis and mapping
extern
ABC_DLL
void
Abc_NtkSetAndGateDelay
(
Abc_Frame_t
*
pAbc
,
float
Delay
);
// procedures to return the mapped network
extern
ABC_DLL
int
*
Abc_NtkOutputMiniMapping
(
Abc_Frame_t
*
pAbc
);
extern
ABC_DLL
void
Abc_NtkPrintMiniMapping
(
int
*
pArray
);
// procedures to access verifization status and a counter-example
extern
ABC_DLL
int
Abc_FrameReadProbStatus
(
Abc_Frame_t
*
pAbc
);
extern
ABC_DLL
void
*
Abc_FrameReadCex
(
Abc_Frame_t
*
pAbc
);
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
src/
aig/miniaig/abcapis
.h
→
src/
base/main/abcapis_old
.h
View file @
154f4b64
...
@@ -18,8 +18,8 @@
...
@@ -18,8 +18,8 @@
***********************************************************************/
***********************************************************************/
#ifndef MINI_AIG__abc_apis_h
#ifndef MINI_AIG__abc_apis_
old_
h
#define MINI_AIG__abc_apis_h
#define MINI_AIG__abc_apis_
old_
h
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
/// INCLUDES ///
...
...
src/base/main/main.h
View file @
154f4b64
...
@@ -34,10 +34,8 @@
...
@@ -34,10 +34,8 @@
#include "misc/vec/vec.h"
#include "misc/vec/vec.h"
#include "misc/st/st.h"
#include "misc/st/st.h"
ABC_NAMESPACE_HEADER_START
// the framework containing all data is defined here
// the framework containing all data
#include "abcapis.h"
typedef
struct
Abc_Frame_t_
Abc_Frame_t
;
ABC_NAMESPACE_HEADER_END
#include "base/cmd/cmd.h"
#include "base/cmd/cmd.h"
#include "base/io/ioAbc.h"
#include "base/io/ioAbc.h"
...
@@ -116,7 +114,7 @@ extern ABC_DLL void Abc_FrameSetBridgeMode();
...
@@ -116,7 +114,7 @@ extern ABC_DLL void Abc_FrameSetBridgeMode();
extern
ABC_DLL
int
Abc_FrameReadBmcFrames
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
int
Abc_FrameReadBmcFrames
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
int
Abc_FrameReadProbStatus
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
int
Abc_FrameReadProbStatus
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Abc_Cex_t
*
Abc_FrameReadCex
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
void
*
Abc_FrameReadCex
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Ptr_t
*
Abc_FrameReadCexVec
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Ptr_t
*
Abc_FrameReadCexVec
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Int_t
*
Abc_FrameReadStatusVec
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Int_t
*
Abc_FrameReadStatusVec
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Ptr_t
*
Abc_FrameReadPoEquivs
(
Abc_Frame_t
*
p
);
extern
ABC_DLL
Vec_Ptr_t
*
Abc_FrameReadPoEquivs
(
Abc_Frame_t
*
p
);
...
...
src/base/main/mainFrame.c
View file @
154f4b64
...
@@ -69,7 +69,7 @@ char * Abc_FrameReadFlag( char * pFlag ) { return Cmd_FlagRe
...
@@ -69,7 +69,7 @@ char * Abc_FrameReadFlag( char * pFlag ) { return Cmd_FlagRe
int
Abc_FrameReadBmcFrames
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
nFrames
;
}
int
Abc_FrameReadBmcFrames
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
nFrames
;
}
int
Abc_FrameReadProbStatus
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
Status
;
}
int
Abc_FrameReadProbStatus
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
Status
;
}
Abc_Cex_t
*
Abc_FrameReadCex
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
pCex
;
}
void
*
Abc_FrameReadCex
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
pCex
;
}
Vec_Ptr_t
*
Abc_FrameReadCexVec
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vCexVec
;
}
Vec_Ptr_t
*
Abc_FrameReadCexVec
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vCexVec
;
}
Vec_Int_t
*
Abc_FrameReadStatusVec
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vStatuses
;
}
Vec_Int_t
*
Abc_FrameReadStatusVec
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vStatuses
;
}
Vec_Ptr_t
*
Abc_FrameReadPoEquivs
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vPoEquivs
;
}
Vec_Ptr_t
*
Abc_FrameReadPoEquivs
(
Abc_Frame_t
*
p
)
{
return
s_GlobalFrame
->
vPoEquivs
;
}
...
...
src/base/wlc/wlcStdin.c
View file @
154f4b64
...
@@ -239,7 +239,7 @@ int Wlc_StdinProcessSmt( Abc_Frame_t * pAbc, char * pCmd )
...
@@ -239,7 +239,7 @@ int Wlc_StdinProcessSmt( Abc_Frame_t * pAbc, char * pCmd )
return
0
;
return
0
;
}
}
// report value of this variable
// report value of this variable
Wlc_NtkReport
(
(
Wlc_Ntk_t
*
)
pAbc
->
pAbcWlc
,
Abc_FrameReadCex
(
pAbc
),
pName
,
16
);
Wlc_NtkReport
(
(
Wlc_Ntk_t
*
)
pAbc
->
pAbcWlc
,
(
Abc_Cex_t
*
)
Abc_FrameReadCex
(
pAbc
),
pName
,
16
);
Vec_StrFree
(
vInput
);
Vec_StrFree
(
vInput
);
fflush
(
stdout
);
fflush
(
stdout
);
}
}
...
...
src/map/scl/sclCon.h
View file @
154f4b64
...
@@ -56,8 +56,8 @@ struct Scl_Con_t_
...
@@ -56,8 +56,8 @@ struct Scl_Con_t_
#define SCL_OUTPUT_REQ "output_required"
#define SCL_OUTPUT_REQ "output_required"
#define SCL_OUTPUT_LOAD "output_load"
#define SCL_OUTPUT_LOAD "output_load"
#define SCL_DIRECTIVE(ITEM) "."ITEM
#define SCL_DIRECTIVE(ITEM) "."
#
ITEM
#define SCL_DEF_DIRECTIVE(ITEM) ".default_"ITEM
#define SCL_DEF_DIRECTIVE(ITEM) ".default_"
#
ITEM
#define SCL_NUM 1000
#define SCL_NUM 1000
#define SCL_INFINITY (0x3FFFFFFF)
#define SCL_INFINITY (0x3FFFFFFF)
...
...
src/proof/pdr/pdrCore.c
View file @
154f4b64
...
@@ -288,7 +288,7 @@ int * Pdr_ManSortByPriority( Pdr_Man_t * p, Pdr_Set_t * pCube )
...
@@ -288,7 +288,7 @@ int * Pdr_ManSortByPriority( Pdr_Man_t * p, Pdr_Set_t * pCube )
best_i
=
i
;
best_i
=
i
;
for
(
j
=
i
+
1
;
j
<
nSize
;
j
++
)
for
(
j
=
i
+
1
;
j
<
nSize
;
j
++
)
// if ( pArray[j] < pArray[best_i] )
// if ( pArray[j] < pArray[best_i] )
if
(
pPrios
[
pCube
->
Lits
[
pArray
[
j
]]
>>
1
]
<
pPrios
[
pCube
->
Lits
[
pArray
[
best_i
]]
>>
1
]
)
if
(
pPrios
[
pCube
->
Lits
[
pArray
[
j
]]
>>
1
]
<
pPrios
[
pCube
->
Lits
[
pArray
[
best_i
]]
>>
1
]
)
// list lower priority first (these will be removed first)
best_i
=
j
;
best_i
=
j
;
temp
=
pArray
[
i
];
temp
=
pArray
[
i
];
pArray
[
i
]
=
pArray
[
best_i
];
pArray
[
i
]
=
pArray
[
best_i
];
...
@@ -488,7 +488,7 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
...
@@ -488,7 +488,7 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
/**Function*************************************************************
/**Function*************************************************************
Synopsis [Specialized sorting of flops based on
cost
.]
Synopsis [Specialized sorting of flops based on
priority
.]
Description []
Description []
...
@@ -497,17 +497,171 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
...
@@ -497,17 +497,171 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
static
inline
void
Vec_IntSelectSortCostReverseLit
(
int
*
pArray
,
int
nSize
,
Vec_Int_t
*
vCost
s
)
static
inline
int
Vec_IntSelectSortPrioReverseLit
(
int
*
pArray
,
int
nSize
,
Vec_Int_t
*
vPrio
s
)
{
{
int
i
,
j
,
best_i
;
int
i
,
j
,
best_i
;
for
(
i
=
0
;
i
<
nSize
-
1
;
i
++
)
for
(
i
=
0
;
i
<
nSize
-
1
;
i
++
)
{
{
best_i
=
i
;
best_i
=
i
;
for
(
j
=
i
+
1
;
j
<
nSize
;
j
++
)
for
(
j
=
i
+
1
;
j
<
nSize
;
j
++
)
if
(
Vec_IntEntry
(
v
Costs
,
Abc_Lit2Var
(
pArray
[
j
]))
>
Vec_IntEntry
(
vCosts
,
Abc_Lit2Var
(
pArray
[
best_i
]))
)
if
(
Vec_IntEntry
(
v
Prios
,
Abc_Lit2Var
(
pArray
[
j
]))
>
Vec_IntEntry
(
vPrios
,
Abc_Lit2Var
(
pArray
[
best_i
]))
)
// prefer higher priority
best_i
=
j
;
best_i
=
j
;
ABC_SWAP
(
int
,
pArray
[
i
],
pArray
[
best_i
]
);
ABC_SWAP
(
int
,
pArray
[
i
],
pArray
[
best_i
]
);
}
}
return
1
;
}
/**Function*************************************************************
Synopsis [Performs generalization using a different idea.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Pdr_ManGeneralize2
(
Pdr_Man_t
*
p
,
int
k
,
Pdr_Set_t
*
pCube
,
Pdr_Set_t
**
ppCubeMin
)
{
int
fUseMinAss
=
0
;
sat_solver
*
pSat
=
Pdr_ManFetchSolver
(
p
,
k
);
int
Order
=
Vec_IntSelectSortPrioReverseLit
(
pCube
->
Lits
,
pCube
->
nLits
,
p
->
vPrio
);
Vec_Int_t
*
vLits1
=
Pdr_ManCubeToLits
(
p
,
k
,
pCube
,
1
,
0
);
int
RetValue
,
Count
=
0
,
iLit
,
Lits
[
2
],
nLits
=
Vec_IntSize
(
vLits1
);
// create free variables
int
i
,
iUseVar
,
iAndVar
;
iAndVar
=
Pdr_ManFreeVar
(
p
,
k
);
for
(
i
=
1
;
i
<
nLits
;
i
++
)
Pdr_ManFreeVar
(
p
,
k
);
iUseVar
=
Pdr_ManFreeVar
(
p
,
k
);
for
(
i
=
1
;
i
<
nLits
;
i
++
)
Pdr_ManFreeVar
(
p
,
k
);
assert
(
iUseVar
==
iAndVar
+
nLits
);
// if there is only one positive literal, put it in front and always assume
if
(
fUseMinAss
)
{
for
(
i
=
0
;
i
<
pCube
->
nLits
&&
Count
<
2
;
i
++
)
Count
+=
!
Abc_LitIsCompl
(
pCube
->
Lits
[
i
]);
if
(
Count
==
1
)
{
for
(
i
=
0
;
i
<
pCube
->
nLits
;
i
++
)
if
(
!
Abc_LitIsCompl
(
pCube
->
Lits
[
i
])
)
break
;
assert
(
i
<
pCube
->
nLits
);
iLit
=
pCube
->
Lits
[
i
];
for
(
;
i
>
0
;
i
--
)
pCube
->
Lits
[
i
]
=
pCube
->
Lits
[
i
-
1
];
pCube
->
Lits
[
0
]
=
iLit
;
}
}
// add clauses for the additional AND-gates
Vec_IntForEachEntry
(
vLits1
,
iLit
,
i
)
{
sat_solver_add_buffer_enable
(
pSat
,
iAndVar
+
i
,
Abc_Lit2Var
(
iLit
),
iUseVar
+
i
,
Abc_LitIsCompl
(
iLit
)
);
Vec_IntWriteEntry
(
vLits1
,
i
,
Abc_Var2Lit
(
iAndVar
+
i
,
0
)
);
}
// add clauses for the additional OR-gate
RetValue
=
sat_solver_addclause
(
pSat
,
Vec_IntArray
(
vLits1
),
Vec_IntLimit
(
vLits1
)
);
assert
(
RetValue
==
1
);
// add implications
vLits1
=
Pdr_ManCubeToLits
(
p
,
k
,
pCube
,
0
,
1
);
assert
(
Vec_IntSize
(
vLits1
)
==
nLits
);
Vec_IntForEachEntry
(
vLits1
,
iLit
,
i
)
{
Lits
[
0
]
=
Abc_Var2Lit
(
iUseVar
+
i
,
1
);
Lits
[
1
]
=
iLit
;
RetValue
=
sat_solver_addclause
(
pSat
,
Lits
,
Lits
+
2
);
assert
(
RetValue
==
1
);
Vec_IntWriteEntry
(
vLits1
,
i
,
Abc_Var2Lit
(
iUseVar
+
i
,
0
)
);
}
sat_solver_compress
(
pSat
);
// perform minimization
if
(
fUseMinAss
)
{
if
(
Count
==
1
)
// always assume the only positive literal
{
if
(
!
sat_solver_push
(
pSat
,
Vec_IntEntry
(
vLits1
,
0
))
)
// UNSAT with the first (mandatory) literal
nLits
=
1
;
else
nLits
=
1
+
sat_solver_minimize_assumptions2
(
pSat
,
Vec_IntArray
(
vLits1
)
+
1
,
nLits
-
1
,
p
->
pPars
->
nConfLimit
);
sat_solver_pop
(
pSat
);
// unassume the first literal
}
else
nLits
=
sat_solver_minimize_assumptions2
(
pSat
,
Vec_IntArray
(
vLits1
),
nLits
,
p
->
pPars
->
nConfLimit
);
Vec_IntShrink
(
vLits1
,
nLits
);
}
else
{
// try removing one literal at a time in the old-fashioned way
int
k
,
Entry
;
Vec_Int_t
*
vTemp
=
Vec_IntAlloc
(
nLits
);
for
(
i
=
nLits
-
1
;
i
>=
0
;
i
--
)
{
// if we are about to remove a positive lit, make sure at least one positive lit remains
if
(
!
Abc_LitIsCompl
(
Vec_IntEntry
(
vLits1
,
i
))
)
{
Vec_IntForEachEntry
(
vLits1
,
iLit
,
k
)
if
(
iLit
!=
-
1
&&
k
!=
i
&&
!
Abc_LitIsCompl
(
iLit
)
)
break
;
if
(
k
==
Vec_IntSize
(
vLits1
)
)
// no other positive literals, except the i-th one
continue
;
}
// load remaining literals
Vec_IntClear
(
vTemp
);
Vec_IntForEachEntry
(
vLits1
,
Entry
,
k
)
if
(
Entry
!=
-
1
&&
k
!=
i
)
Vec_IntPush
(
vTemp
,
Entry
);
else
if
(
Entry
!=
-
1
)
// assume opposite literal
Vec_IntPush
(
vTemp
,
Abc_LitNot
(
Entry
)
);
// solve with assumptions
RetValue
=
sat_solver_solve
(
pSat
,
Vec_IntArray
(
vTemp
),
Vec_IntLimit
(
vTemp
),
p
->
pPars
->
nConfLimit
,
0
,
0
,
0
);
// commit the literal
if
(
RetValue
==
l_False
)
{
int
LitNot
=
Abc_LitNot
(
Vec_IntEntry
(
vLits1
,
i
));
int
RetValue
=
sat_solver_addclause
(
pSat
,
&
LitNot
,
&
LitNot
+
1
);
assert
(
RetValue
);
}
// update the clause
if
(
RetValue
==
l_False
)
Vec_IntWriteEntry
(
vLits1
,
i
,
-
1
);
}
Vec_IntFree
(
vTemp
);
// compact
k
=
0
;
Vec_IntForEachEntry
(
vLits1
,
Entry
,
i
)
if
(
Entry
!=
-
1
)
Vec_IntWriteEntry
(
vLits1
,
k
++
,
Entry
);
Vec_IntShrink
(
vLits1
,
k
);
}
// remap auxiliary literals into original literals
Vec_IntForEachEntry
(
vLits1
,
iLit
,
i
)
Vec_IntWriteEntry
(
vLits1
,
i
,
pCube
->
Lits
[
Abc_Lit2Var
(
iLit
)
-
iUseVar
]
);
// make sure the cube has at least one positive literal
if
(
fUseMinAss
)
{
Vec_IntForEachEntry
(
vLits1
,
iLit
,
i
)
if
(
!
Abc_LitIsCompl
(
iLit
)
)
break
;
if
(
i
==
Vec_IntSize
(
vLits1
)
)
// has no positive literals
{
// find positive lit in the cube
for
(
i
=
0
;
i
<
pCube
->
nLits
;
i
++
)
if
(
!
Abc_LitIsCompl
(
pCube
->
Lits
[
i
])
)
break
;
assert
(
i
<
pCube
->
nLits
);
Vec_IntPush
(
vLits1
,
pCube
->
Lits
[
i
]
);
// printf( "-" );
}
// else
// printf( "+" );
}
// create a subset cube
*
ppCubeMin
=
Pdr_SetCreateSubset
(
pCube
,
Vec_IntArray
(
vLits1
),
Vec_IntSize
(
vLits1
)
);
assert
(
!
Pdr_SetIsInit
(
*
ppCubeMin
,
-
1
)
);
Order
=
0
;
return
0
;
}
}
/**Function*************************************************************
/**Function*************************************************************
...
@@ -532,7 +686,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
...
@@ -532,7 +686,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
// if there is no induction, return
// if there is no induction, return
*
ppCubeMin
=
NULL
;
*
ppCubeMin
=
NULL
;
if
(
p
->
pPars
->
fFlopOrder
)
if
(
p
->
pPars
->
fFlopOrder
)
Vec_IntSelectSort
Cost
ReverseLit
(
pCube
->
Lits
,
pCube
->
nLits
,
p
->
vPrio
);
Vec_IntSelectSort
Prio
ReverseLit
(
pCube
->
Lits
,
pCube
->
nLits
,
p
->
vPrio
);
RetValue
=
Pdr_ManCheckCube
(
p
,
k
,
pCube
,
ppPred
,
p
->
pPars
->
nConfLimit
,
0
,
1
);
RetValue
=
Pdr_ManCheckCube
(
p
,
k
,
pCube
,
ppPred
,
p
->
pPars
->
nConfLimit
,
0
,
1
);
if
(
p
->
pPars
->
fFlopOrder
)
if
(
p
->
pPars
->
fFlopOrder
)
Vec_IntSelectSort
(
pCube
->
Lits
,
pCube
->
nLits
);
Vec_IntSelectSort
(
pCube
->
Lits
,
pCube
->
nLits
);
...
@@ -543,8 +697,6 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
...
@@ -543,8 +697,6 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
p
->
tGeneral
+=
clock
()
-
clk
;
p
->
tGeneral
+=
clock
()
-
clk
;
return
0
;
return
0
;
}
}
keep
=
p
->
pPars
->
fSkipDown
?
NULL
:
Hash_IntAlloc
(
1
);
// reduce clause using assumptions
// reduce clause using assumptions
// pCubeMin = Pdr_SetDup( pCube );
// pCubeMin = Pdr_SetDup( pCube );
...
@@ -552,6 +704,31 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
...
@@ -552,6 +704,31 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
if
(
pCubeMin
==
NULL
)
if
(
pCubeMin
==
NULL
)
pCubeMin
=
Pdr_SetDup
(
pCube
);
pCubeMin
=
Pdr_SetDup
(
pCube
);
// perform simplified generalization
if
(
p
->
pPars
->
fSimpleGeneral
)
{
assert
(
pCubeMin
->
nLits
>
0
);
if
(
pCubeMin
->
nLits
>
1
)
{
RetValue
=
Pdr_ManGeneralize2
(
p
,
k
,
pCubeMin
,
ppCubeMin
);
Pdr_SetDeref
(
pCubeMin
);
assert
(
ppCubeMin
!=
NULL
);
pCubeMin
=
*
ppCubeMin
;
}
*
ppCubeMin
=
pCubeMin
;
if
(
p
->
pPars
->
fVeryVerbose
)
{
printf
(
"Cube:
\n
"
);
for
(
i
=
0
;
i
<
pCubeMin
->
nLits
;
i
++
)
printf
(
"%d "
,
pCubeMin
->
Lits
[
i
]);
printf
(
"
\n
"
);
}
p
->
tGeneral
+=
Abc_Clock
()
-
clk
;
return
1
;
}
keep
=
p
->
pPars
->
fSkipDown
?
NULL
:
Hash_IntAlloc
(
1
);
// perform generalization
// perform generalization
if
(
!
p
->
pPars
->
fSkipGeneral
)
if
(
!
p
->
pPars
->
fSkipGeneral
)
{
{
...
@@ -691,9 +868,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
...
@@ -691,9 +868,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
{
{
printf
(
"Cube:
\n
"
);
printf
(
"Cube:
\n
"
);
for
(
i
=
0
;
i
<
pCubeMin
->
nLits
;
i
++
)
for
(
i
=
0
;
i
<
pCubeMin
->
nLits
;
i
++
)
{
printf
(
"%d "
,
pCubeMin
->
Lits
[
i
]);
printf
(
"%d "
,
pCubeMin
->
Lits
[
i
]);
}
printf
(
"
\n
"
);
printf
(
"
\n
"
);
}
}
*
ppCubeMin
=
pCubeMin
;
*
ppCubeMin
=
pCubeMin
;
...
...
src/sat/bmc/bmcClp.c
View file @
154f4b64
...
@@ -353,11 +353,37 @@ int Bmc_CollapseIrredundantFull( Vec_Str_t * vSop, int nCubes, int nVars )
...
@@ -353,11 +353,37 @@ int Bmc_CollapseIrredundantFull( Vec_Str_t * vSop, int nCubes, int nVars )
SeeAlso []
SeeAlso []
***********************************************************************/
***********************************************************************/
int
Bmc_CollapseExpandRound2
(
sat_solver
*
pSat
,
Vec_Int_t
*
vLits
,
Vec_Int_t
*
vTemp
,
int
nBTLimit
,
int
fOnOffSetLit
)
{
// put into new array
int
i
,
iLit
,
nLits
;
Vec_IntClear
(
vTemp
);
Vec_IntForEachEntry
(
vLits
,
iLit
,
i
)
if
(
iLit
!=
-
1
)
Vec_IntPush
(
vTemp
,
iLit
);
assert
(
Vec_IntSize
(
vTemp
)
>
0
);
// assume condition literal
if
(
fOnOffSetLit
>=
0
)
sat_solver_push
(
pSat
,
fOnOffSetLit
);
// minimize
nLits
=
sat_solver_minimize_assumptions
(
pSat
,
Vec_IntArray
(
vTemp
),
Vec_IntSize
(
vTemp
),
nBTLimit
);
Vec_IntShrink
(
vTemp
,
nLits
);
// assume conditional literal
if
(
fOnOffSetLit
>=
0
)
sat_solver_pop
(
pSat
);
// modify output literas
Vec_IntForEachEntry
(
vLits
,
iLit
,
i
)
if
(
iLit
!=
-
1
&&
Vec_IntFind
(
vTemp
,
iLit
)
==
-
1
)
Vec_IntWriteEntry
(
vLits
,
i
,
-
1
);
return
0
;
}
int
Bmc_CollapseExpandRound
(
sat_solver
*
pSat
,
sat_solver
*
pSatOn
,
Vec_Int_t
*
vLits
,
Vec_Int_t
*
vNums
,
Vec_Int_t
*
vTemp
,
int
nBTLimit
,
int
fCanon
,
int
fOnOffSetLit
)
int
Bmc_CollapseExpandRound
(
sat_solver
*
pSat
,
sat_solver
*
pSatOn
,
Vec_Int_t
*
vLits
,
Vec_Int_t
*
vNums
,
Vec_Int_t
*
vTemp
,
int
nBTLimit
,
int
fCanon
,
int
fOnOffSetLit
)
{
{
int
fProfile
=
0
;
int
fProfile
=
0
;
int
k
,
n
,
iLit
,
status
;
int
k
,
n
,
iLit
,
status
;
abctime
clk
;
abctime
clk
;
//return Bmc_CollapseExpandRound2( pSat, vLits, vTemp, nBTLimit, fOnOffSetLit );
// try removing one literal at a time
// try removing one literal at a time
for
(
k
=
Vec_IntSize
(
vLits
)
-
1
;
k
>=
0
;
k
--
)
for
(
k
=
Vec_IntSize
(
vLits
)
-
1
;
k
>=
0
;
k
--
)
{
{
...
...
src/sat/bsat/satSolver.c
View file @
154f4b64
...
@@ -2168,6 +2168,153 @@ int sat_solver_solve_lexsat( sat_solver* s, int * pLits, int nLits )
...
@@ -2168,6 +2168,153 @@ int sat_solver_solve_lexsat( sat_solver* s, int * pLits, int nLits )
return
status
;
return
status
;
}
}
// This procedure is called on a set of assumptions to minimize their number.
// The procedure relies on the fact that the current set of assumptions is UNSAT.
// It receives and returns SAT solver without assumptions. It returns the number
// of assumptions after minimization. The set of assumptions is returned in pLits.
int
sat_solver_minimize_assumptions
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
,
int
nConfLimit
)
{
int
i
,
k
,
nLitsL
,
nLitsR
,
nResL
,
nResR
;
if
(
nLits
==
1
)
{
// since the problem is UNSAT, we will try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
int
status
=
l_False
;
int
Temp
=
s
->
nConfLimit
;
s
->
nConfLimit
=
nConfLimit
;
status
=
sat_solver_solve_internal
(
s
);
s
->
nConfLimit
=
Temp
;
return
(
int
)(
status
!=
l_False
);
// return 1 if the problem is not UNSAT
}
assert
(
nLits
>=
2
);
nLitsL
=
nLits
/
2
;
nLitsR
=
nLits
-
nLitsL
;
// assume the left lits
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
if
(
!
sat_solver_push
(
s
,
pLits
[
i
])
)
{
for
(
k
=
i
;
k
>=
0
;
k
--
)
sat_solver_pop
(
s
);
return
sat_solver_minimize_assumptions
(
s
,
pLits
,
i
+
1
,
nConfLimit
);
}
// solve for the right lits
nResL
=
sat_solver_minimize_assumptions
(
s
,
pLits
+
nLitsL
,
nLitsR
,
nConfLimit
);
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
sat_solver_pop
(
s
);
// swap literals
// assert( nResL <= nLitsL );
// for ( i = 0; i < nResL; i++ )
// ABC_SWAP( int, pLits[i], pLits[nLitsL+i] );
veci_resize
(
&
s
->
temp_clause
,
0
);
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
veci_push
(
&
s
->
temp_clause
,
pLits
[
i
]
);
for
(
i
=
0
;
i
<
nResL
;
i
++
)
pLits
[
i
]
=
pLits
[
nLitsL
+
i
];
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
pLits
[
nResL
+
i
]
=
veci_begin
(
&
s
->
temp_clause
)[
i
];
// assume the right lits
for
(
i
=
0
;
i
<
nResL
;
i
++
)
if
(
!
sat_solver_push
(
s
,
pLits
[
i
])
)
{
for
(
k
=
i
;
k
>=
0
;
k
--
)
sat_solver_pop
(
s
);
return
sat_solver_minimize_assumptions
(
s
,
pLits
,
i
+
1
,
nConfLimit
);
}
// solve for the left lits
nResR
=
sat_solver_minimize_assumptions
(
s
,
pLits
+
nResL
,
nLitsL
,
nConfLimit
);
for
(
i
=
0
;
i
<
nResL
;
i
++
)
sat_solver_pop
(
s
);
return
nResL
+
nResR
;
}
// This is a specialized version of the above procedure with several custom changes:
// - makes sure that at least one of the marked literals is preserved in the clause
// - sets literals to zero when they do not have to be used
// - sets literals to zero for disproved variables
int
sat_solver_minimize_assumptions2
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
,
int
nConfLimit
)
{
int
i
,
k
,
nLitsL
,
nLitsR
,
nResL
,
nResR
;
if
(
nLits
==
1
)
{
// since the problem is UNSAT, we will try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
int
RetValue
=
1
,
LitNot
=
Abc_LitNot
(
pLits
[
0
]);
int
status
=
l_False
;
int
Temp
=
s
->
nConfLimit
;
s
->
nConfLimit
=
nConfLimit
;
RetValue
=
sat_solver_push
(
s
,
LitNot
);
assert
(
RetValue
);
status
=
sat_solver_solve_internal
(
s
);
sat_solver_pop
(
s
);
// if the problem is UNSAT, add clause
if
(
status
==
l_False
)
{
RetValue
=
sat_solver_addclause
(
s
,
&
LitNot
,
&
LitNot
+
1
);
assert
(
RetValue
);
}
s
->
nConfLimit
=
Temp
;
return
(
int
)(
status
!=
l_False
);
// return 1 if the problem is not UNSAT
}
assert
(
nLits
>=
2
);
nLitsL
=
nLits
/
2
;
nLitsR
=
nLits
-
nLitsL
;
// assume the left lits
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
if
(
!
sat_solver_push
(
s
,
pLits
[
i
])
)
{
for
(
k
=
i
;
k
>=
0
;
k
--
)
sat_solver_pop
(
s
);
// add clauses for these literal
for
(
k
=
i
+
1
;
k
>
nLitsL
;
k
++
)
{
int
LitNot
=
Abc_LitNot
(
pLits
[
i
]);
int
RetValue
=
sat_solver_addclause
(
s
,
&
LitNot
,
&
LitNot
+
1
);
assert
(
RetValue
);
}
return
sat_solver_minimize_assumptions2
(
s
,
pLits
,
i
+
1
,
nConfLimit
);
}
// solve for the right lits
nResL
=
sat_solver_minimize_assumptions2
(
s
,
pLits
+
nLitsL
,
nLitsR
,
nConfLimit
);
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
sat_solver_pop
(
s
);
// swap literals
// assert( nResL <= nLitsL );
veci_resize
(
&
s
->
temp_clause
,
0
);
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
veci_push
(
&
s
->
temp_clause
,
pLits
[
i
]
);
for
(
i
=
0
;
i
<
nResL
;
i
++
)
pLits
[
i
]
=
pLits
[
nLitsL
+
i
];
for
(
i
=
0
;
i
<
nLitsL
;
i
++
)
pLits
[
nResL
+
i
]
=
veci_begin
(
&
s
->
temp_clause
)[
i
];
// assume the right lits
for
(
i
=
0
;
i
<
nResL
;
i
++
)
if
(
!
sat_solver_push
(
s
,
pLits
[
i
])
)
{
for
(
k
=
i
;
k
>=
0
;
k
--
)
sat_solver_pop
(
s
);
// add clauses for these literal
for
(
k
=
i
+
1
;
k
>
nResL
;
k
++
)
{
int
LitNot
=
Abc_LitNot
(
pLits
[
i
]);
int
RetValue
=
sat_solver_addclause
(
s
,
&
LitNot
,
&
LitNot
+
1
);
assert
(
RetValue
);
}
return
sat_solver_minimize_assumptions2
(
s
,
pLits
,
i
+
1
,
nConfLimit
);
}
// solve for the left lits
nResR
=
sat_solver_minimize_assumptions2
(
s
,
pLits
+
nResL
,
nLitsL
,
nConfLimit
);
for
(
i
=
0
;
i
<
nResL
;
i
++
)
sat_solver_pop
(
s
);
return
nResL
+
nResR
;
}
int
sat_solver_nvars
(
sat_solver
*
s
)
int
sat_solver_nvars
(
sat_solver
*
s
)
{
{
...
...
src/sat/bsat/satSolver.h
View file @
154f4b64
...
@@ -50,6 +50,8 @@ extern int sat_solver_simplify(sat_solver* s);
...
@@ -50,6 +50,8 @@ extern int sat_solver_simplify(sat_solver* s);
extern
int
sat_solver_solve
(
sat_solver
*
s
,
lit
*
begin
,
lit
*
end
,
ABC_INT64_T
nConfLimit
,
ABC_INT64_T
nInsLimit
,
ABC_INT64_T
nConfLimitGlobal
,
ABC_INT64_T
nInsLimitGlobal
);
extern
int
sat_solver_solve
(
sat_solver
*
s
,
lit
*
begin
,
lit
*
end
,
ABC_INT64_T
nConfLimit
,
ABC_INT64_T
nInsLimit
,
ABC_INT64_T
nConfLimitGlobal
,
ABC_INT64_T
nInsLimitGlobal
);
extern
int
sat_solver_solve_internal
(
sat_solver
*
s
);
extern
int
sat_solver_solve_internal
(
sat_solver
*
s
);
extern
int
sat_solver_solve_lexsat
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
);
extern
int
sat_solver_solve_lexsat
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
);
extern
int
sat_solver_minimize_assumptions
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
,
int
nConfLimit
);
extern
int
sat_solver_minimize_assumptions2
(
sat_solver
*
s
,
int
*
pLits
,
int
nLits
,
int
nConfLimit
);
extern
int
sat_solver_push
(
sat_solver
*
s
,
int
p
);
extern
int
sat_solver_push
(
sat_solver
*
s
,
int
p
);
extern
void
sat_solver_pop
(
sat_solver
*
s
);
extern
void
sat_solver_pop
(
sat_solver
*
s
);
extern
void
sat_solver_set_resource_limits
(
sat_solver
*
s
,
ABC_INT64_T
nConfLimit
,
ABC_INT64_T
nInsLimit
,
ABC_INT64_T
nConfLimitGlobal
,
ABC_INT64_T
nInsLimitGlobal
);
extern
void
sat_solver_set_resource_limits
(
sat_solver
*
s
,
ABC_INT64_T
nConfLimit
,
ABC_INT64_T
nInsLimit
,
ABC_INT64_T
nConfLimitGlobal
,
ABC_INT64_T
nInsLimitGlobal
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment