Commit 0fafe786 by Alan Mishchenko

Improvements to the truth table computations.

parent 77fde55b
......@@ -1975,6 +1975,10 @@ SOURCE=.\src\opt\dau\dau.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\dau\dauCanon.c
# End Source File
# Begin Source File
SOURCE=.\src\opt\dau\dauCore.c
# End Source File
# Begin Source File
......
......@@ -202,8 +202,10 @@ void Abc_TruthNpnPerform( Abc_TtStore_t * p, int NpnType, int fVerbose )
{
for ( i = 0; i < p->nFuncs; i++ )
{
extern void Abc_TtConfactorTest( word * pTruth, int nVars, int i );
if ( fVerbose )
printf( "%7d : ", i );
Abc_TtConfactorTest( p->pFuncs[i], p->nVars, i );
if ( fVerbose )
Extra_PrintHex( stdout, (unsigned *)p->pFuncs[i], p->nVars ), printf( "\n" );
}
......
......@@ -119,6 +119,7 @@ extern int Extra_ReadHexadecimal( unsigned Sign[], char * pString, int
extern void Extra_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars );
extern void Extra_PrintHexadecimalString( char * pString, unsigned Sign[], int nVars );
extern void Extra_PrintHex( FILE * pFile, unsigned * pTruth, int nVars );
extern void Extra_PrintHexReverse( FILE * pFile, unsigned * pTruth, int nVars );
extern void Extra_PrintSymbols( FILE * pFile, char Char, int nTimes, int fPrintNewLine );
/*=== extraUtilReader.c ========================================================*/
......
......@@ -561,6 +561,24 @@ void Extra_PrintHex( FILE * pFile, unsigned * pTruth, int nVars )
}
// fprintf( pFile, "\n" );
}
void Extra_PrintHexReverse( FILE * pFile, unsigned * pTruth, int nVars )
{
int nMints, nDigits, Digit, k;
// write the number into the file
fprintf( pFile, "0x" );
nMints = (1 << nVars);
nDigits = nMints / 4;
for ( k = 0; k < nDigits; k++ )
{
Digit = ((pTruth[k/8] >> (k * 4)) & 15);
if ( Digit < 10 )
fprintf( pFile, "%d", Digit );
else
fprintf( pFile, "%c", 'A' + Digit-10 );
}
// fprintf( pFile, "\n" );
}
/**Function*************************************************************
......
......@@ -198,6 +198,7 @@ typedef unsigned __int64 ABC_UINT64_T;
#endif /* defined(PLATFORM) */
typedef ABC_UINT64_T word;
typedef ABC_INT64_T iword;
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
......
......@@ -44,6 +44,23 @@ static word s_Truths6[6] = {
0xFFFFFFFF00000000
};
static word s_Truths6Neg[6] = {
0x5555555555555555,
0x3333333333333333,
0x0F0F0F0F0F0F0F0F,
0x00FF00FF00FF00FF,
0x0000FFFF0000FFFF,
0x00000000FFFFFFFF
};
static word s_CMasks6[5] = {
0x1111111111111111,
0x0303030303030303,
0x000F000F000F000F,
0x000000FF000000FF,
0x000000000000FFFF
};
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
......@@ -76,6 +93,12 @@ static inline int Abc_TtWordNum( int nVars ) { return nVars <= 6 ? 1 : 1 << (nV
SeeAlso []
***********************************************************************/
static inline void Abc_TtNot( word * pOut, int nWords )
{
int w;
for ( w = 0; w < nWords; w++ )
pOut[w] = ~pOut[w];
}
static inline void Abc_TtCopy( word * pOut, word * pIn, int nWords, int fCompl )
{
int w;
......@@ -96,7 +119,318 @@ static inline void Abc_TtAnd( word * pOut, word * pIn1, word * pIn2, int nWords,
for ( w = 0; w < nWords; w++ )
pOut[w] = pIn1[w] & pIn2[w];
}
static inline int Abc_TtEqual( word * pIn1, word * pIn2, int nWords )
{
int w;
for ( w = 0; w < nWords; w++ )
if ( pIn1[w] != pIn2[w] )
return 0;
return 1;
}
static inline int Abc_TtCompare( word * pIn1, word * pIn2, int nWords )
{
int w;
for ( w = 0; w < nWords; w++ )
if ( pIn1[w] != pIn2[w] )
return (pIn1[w] < pIn2[w]) ? -1 : 1;
return 0;
}
static inline int Abc_TtCompareRev( word * pIn1, word * pIn2, int nWords )
{
int w;
for ( w = nWords - 1; w >= 0; w-- )
if ( pIn1[w] != pIn2[w] )
return (pIn1[w] < pIn2[w]) ? -1 : 1;
return 0;
}
/**Function*************************************************************
Synopsis [Compares Cof0 and Cof1.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCompare1VarCofs( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
{
word Cof0 = pTruth[0] & s_Truths6Neg[iVar];
word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
return 0;
}
if ( iVar <= 5 )
{
word Cof0, Cof1;
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
{
Cof0 = pTruth[w] & s_Truths6Neg[iVar];
Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
}
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
assert( nWords >= 2 );
for ( ; pTruth < pLimit; pTruth += 2*iStep )
for ( i = 0; i < iStep; i++ )
if ( pTruth[i] != pTruth[i + iStep] )
return pTruth[i] < pTruth[i + iStep] ? -1 : 1;
return 0;
}
}
static inline int Abc_TtCompare1VarCofsRev( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
{
word Cof0 = pTruth[0] & s_Truths6Neg[iVar];
word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
return 0;
}
if ( iVar <= 5 )
{
word Cof0, Cof1;
int w, shift = (1 << iVar);
for ( w = nWords - 1; w >= 0; w-- )
{
Cof0 = pTruth[w] & s_Truths6Neg[iVar];
Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar];
if ( Cof0 != Cof1 )
return Cof0 < Cof1 ? -1 : 1;
}
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
assert( nWords >= 2 );
for ( pLimit -= 2*iStep; pLimit >= pTruth; pLimit -= 2*iStep )
for ( i = iStep - 1; i >= 0; i-- )
if ( pLimit[i] != pLimit[i + iStep] )
return pLimit[i] < pLimit[i + iStep] ? -1 : 1;
return 0;
}
}
/**Function*************************************************************
Synopsis [Checks pairs of cofactors w.r.t. adjacent variables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCheckEqual2VarCofs( word * pTruth, int nWords, int iVar, int Num1, int Num2 )
{
assert( Num1 < Num2 && Num2 < 4 );
if ( nWords == 1 )
return ((pTruth[0] >> (Num2 * (1 << iVar))) & s_CMasks6[iVar]) == ((pTruth[0] >> (Num1 * (1 << iVar))) & s_CMasks6[iVar]);
if ( iVar <= 4 )
{
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
if ( ((pTruth[w] >> Num2 * shift) & s_CMasks6[iVar]) != ((pTruth[w] >> Num1 * shift) & s_CMasks6[iVar]) )
return 0;
return 1;
}
if ( iVar == 5 )
{
unsigned * pTruthU = (unsigned *)pTruth;
unsigned * pLimitU = (unsigned *)(pTruth + nWords);
assert( nWords >= 2 );
for ( ; pTruthU < pLimitU; pTruthU += 4 )
if ( pTruthU[Num2] != pTruthU[Num1] )
return 0;
return 1;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
assert( nWords >= 4 );
for ( ; pTruth < pLimit; pTruth += 4*iStep )
for ( i = 0; i < iStep; i++ )
if ( pTruth[i+Num2*iStep] != pTruth[i+Num1*iStep] )
return 0;
return 1;
}
}
static inline int Abc_TtCompare2VarCofs( word * pTruth, int nWords, int iVar, int Num1, int Num2 )
{
assert( Num1 < Num2 && Num2 < 4 );
if ( nWords == 1 )
{
word Cof1 = (pTruth[0] >> (Num1 * (1 << iVar))) & s_CMasks6[iVar];
word Cof2 = (pTruth[0] >> (Num2 * (1 << iVar))) & s_CMasks6[iVar];
if ( Cof1 != Cof2 )
return Cof1 < Cof2 ? -1 : 1;
return 0;
}
if ( iVar <= 4 )
{
word Cof1, Cof2;
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
{
Cof1 = (pTruth[w] >> Num1 * shift) & s_CMasks6[iVar];
Cof2 = (pTruth[w] >> Num2 * shift) & s_CMasks6[iVar];
if ( Cof1 != Cof2 )
return Cof1 < Cof2 ? -1 : 1;
}
return 0;
}
if ( iVar == 5 )
{
unsigned * pTruthU = (unsigned *)pTruth;
unsigned * pLimitU = (unsigned *)(pTruth + nWords);
assert( nWords >= 2 );
for ( ; pTruthU < pLimitU; pTruthU += 4 )
if ( pTruthU[Num1] != pTruthU[Num2] )
return pTruthU[Num1] < pTruthU[Num2] ? -1 : 1;
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
int Offset1 = Num1*iStep;
int Offset2 = Num2*iStep;
assert( nWords >= 4 );
for ( ; pTruth < pLimit; pTruth += 4*iStep )
for ( i = 0; i < iStep; i++ )
if ( pTruth[i + Offset1] != pTruth[i + Offset2] )
return pTruth[i + Offset1] < pTruth[i + Offset2] ? -1 : 1;
return 0;
}
}
static inline int Abc_TtCompare2VarCofsRev( word * pTruth, int nWords, int iVar, int Num1, int Num2 )
{
assert( Num1 < Num2 && Num2 < 4 );
if ( nWords == 1 )
{
word Cof1 = (pTruth[0] >> (Num1 * (1 << iVar))) & s_CMasks6[iVar];
word Cof2 = (pTruth[0] >> (Num2 * (1 << iVar))) & s_CMasks6[iVar];
if ( Cof1 != Cof2 )
return Cof1 < Cof2 ? -1 : 1;
return 0;
}
if ( iVar <= 4 )
{
word Cof1, Cof2;
int w, shift = (1 << iVar);
for ( w = nWords - 1; w >= 0; w-- )
{
Cof1 = (pTruth[w] >> Num1 * shift) & s_CMasks6[iVar];
Cof2 = (pTruth[w] >> Num2 * shift) & s_CMasks6[iVar];
if ( Cof1 != Cof2 )
return Cof1 < Cof2 ? -1 : 1;
}
return 0;
}
if ( iVar == 5 )
{
unsigned * pTruthU = (unsigned *)pTruth;
unsigned * pLimitU = (unsigned *)(pTruth + nWords);
assert( nWords >= 2 );
for ( pLimitU -= 4; pLimitU >= pTruthU; pLimitU -= 4 )
if ( pLimitU[Num1] != pLimitU[Num2] )
return pLimitU[Num1] < pLimitU[Num2] ? -1 : 1;
return 0;
}
// if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
int Offset1 = Num1*iStep;
int Offset2 = Num2*iStep;
assert( nWords >= 4 );
for ( pLimit -= 4*iStep; pLimit >= pTruth; pLimit -= 4*iStep )
for ( i = iStep - 1; i >= 0; i-- )
if ( pLimit[i + Offset1] != pLimit[i + Offset2] )
return pLimit[i + Offset1] < pLimit[i + Offset2] ? -1 : 1;
return 0;
}
}
/**Function*************************************************************
Synopsis [Checks pairs of cofactors w.r.t. two variables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCheckEqualCofs( word * pTruth, int nWords, int iVar, int jVar, int Num1, int Num2 )
{
assert( Num1 < Num2 && Num2 < 4 );
assert( iVar < jVar );
if ( nWords == 1 )
{
word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar];
int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar);
int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar);
return ((pTruth[0] >> shift1) & Mask) == ((pTruth[0] >> shift2) & Mask);
}
if ( jVar <= 5 )
{
word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar];
int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar);
int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar);
int w;
for ( w = 0; w < nWords; w++ )
if ( ((pTruth[w] >> shift1) & Mask) != ((pTruth[w] >> shift2) & Mask) )
return 0;
return 1;
}
if ( iVar <= 5 && jVar > 5 )
{
word * pLimit = pTruth + nWords;
int j, jStep = Abc_TtWordNum(jVar);
int shift1 = (Num1 & 1) * (1 << iVar);
int shift2 = (Num2 & 1) * (1 << iVar);
int Offset1 = (Num1 >> 1) * jStep;
int Offset2 = (Num2 >> 1) * jStep;
for ( ; pTruth < pLimit; pTruth += 2*jStep )
for ( j = 0; j < jStep; j++ )
if ( ((pTruth[j + Offset1] >> shift1) & s_Truths6Neg[iVar]) != ((pTruth[j + Offset2] >> shift2) & s_Truths6Neg[iVar]) )
return 0;
return 1;
}
{
word * pLimit = pTruth + nWords;
int j, jStep = Abc_TtWordNum(jVar);
int i, iStep = Abc_TtWordNum(iVar);
int Offset1 = (Num1 >> 1) * jStep + (Num1 & 1) * iStep;
int Offset2 = (Num2 >> 1) * jStep + (Num2 & 1) * iStep;
for ( ; pTruth < pLimit; pTruth += 2*jStep )
for ( i = 0; i < jStep; i += 2*iStep )
for ( j = 0; j < iStep; j++ )
if ( pTruth[Offset1 + i + j] != pTruth[Offset2 + i + j] )
return 0;
return 1;
}
}
/**Function*************************************************************
......@@ -109,13 +443,289 @@ static inline void Abc_TtAnd( word * pOut, word * pIn1, word * pIn2, int nWords,
SeeAlso []
***********************************************************************/
static inline void Abc_TtCofactor0( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
pTruth[0] = ((pTruth[0] & s_Truths6Neg[iVar]) << (1 << iVar)) | (pTruth[0] & s_Truths6Neg[iVar]);
else if ( iVar <= 5 )
{
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
pTruth[w] = ((pTruth[w] & s_Truths6Neg[iVar]) << shift) | (pTruth[w] & s_Truths6Neg[iVar]);
}
else // if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
for ( ; pTruth < pLimit; pTruth += 2*iStep )
for ( i = 0; i < iStep; i++ )
pTruth[i + iStep] = pTruth[i];
}
}
static inline void Abc_TtCofactor1( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
pTruth[0] = (pTruth[0] & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar));
else if ( iVar <= 5 )
{
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
pTruth[w] = (pTruth[w] & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift);
}
else // if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
for ( ; pTruth < pLimit; pTruth += 2*iStep )
for ( i = 0; i < iStep; i++ )
pTruth[i] = pTruth[i + iStep];
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_Tt6Cof0IsConst0( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == 0; }
static inline int Abc_Tt6Cof0IsConst1( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == s_Truths6Neg[iVar]; }
static inline int Abc_Tt6Cof1IsConst0( word t, int iVar ) { return (t & s_Truths6[iVar]) == 0; }
static inline int Abc_Tt6Cof1IsConst1( word t, int iVar ) { return (t & s_Truths6[iVar]) == s_Truths6[iVar]; }
static inline int Abc_Tt6CofsOpposite( word t, int iVar ) { return ((t >> (1 << iVar)) & s_Truths6Neg[iVar]) == (~t & s_Truths6Neg[iVar]); }
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtTruthIsConst0( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != 0 ) return 0; return 1; }
static inline int Abc_TtTruthIsConst1( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != ~(word)0 ) return 0; return 1; }
static inline int Abc_TtCof0IsConst0( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( t[i] & s_Truths6Neg[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] )
return 0;
return 1;
}
}
static inline int Abc_TtCof0IsConst1( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( (t[i] & s_Truths6Neg[iVar]) != s_Truths6Neg[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( ~t[i] )
return 0;
return 1;
}
}
static inline int Abc_TtCof1IsConst0( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( t[i] & s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i+Step] )
return 0;
return 1;
}
}
static inline int Abc_TtCof1IsConst1( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( (t[i] & s_Truths6[iVar]) != s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( ~t[i+Step] )
return 0;
return 1;
}
}
static inline int Abc_TtCofsOpposite( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( ((t[i] << Shift) & s_Truths6[iVar]) != (~t[i] & s_Truths6[iVar]) )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] != ~t[i+Step] )
return 0;
return 1;
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_TtPrintDigit( int Digit )
{
assert( Digit >= 0 && Digit < 16 );
if ( Digit < 10 )
printf( "%d", Digit );
else
printf( "%c", 'A' + Digit-10 );
}
static inline void Abc_TtPrintHex( word * pTruth, int nVars )
{
word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars);
int k, nDigits = 1 << (nVars-2);
assert( nVars >= 2 );
for ( pThis = pTruth; pThis < pLimit; pThis++ )
for ( k = 0; k < 16; k++ )
Abc_TtPrintDigit( (int)(pThis[0] >> (k << 2)) & 15 );
printf( "\n" );
}
static inline void Abc_TtPrintHexRev( word * pTruth, int nVars )
{
word * pThis;
int k, nDigits = 1 << (nVars-2);
assert( nVars >= 2 );
for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- )
for ( k = 15; k >= 0; k-- )
Abc_TtPrintDigit( (int)(pThis[0] >> (k << 2)) & 15 );
printf( "\n" );
}
static inline void Abc_TtPrintHexSpecial( word * pTruth, int nVars )
{
word * pThis;
int k, nDigits = 1 << (nVars-2);
assert( nVars >= 2 );
for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- )
for ( k = 0; k < 16; k++ )
Abc_TtPrintDigit( (int)(pThis[0] >> (k << 2)) & 15 );
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_TtPrintBinary( word * pTruth, int nVars )
{
word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars);
int k, nDigits = 1 << (nVars-2);
assert( nVars >= 2 );
for ( pThis = pTruth; pThis < pLimit; pThis++ )
for ( k = 0; k < 64; k++ )
printf( "%d", Abc_InfoHasBit( (unsigned *)pThis, k ) );
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtSuppFindFirst( int Supp )
{
int i;
assert( Supp > 0 );
for ( i = 0; i < 32; i++ )
if ( Supp & (1 << i) )
return i;
return -1;
}
static inline int Abc_TtSuppOnlyOne( int Supp )
{
assert( Supp > 0 );
return (Supp & (Supp-1)) == 0;
}
static inline int Abc_TtSuppIsMinBase( int Supp )
{
assert( Supp > 0 );
return (Supp & (Supp+1)) == 0;
}
static inline int Abc_Tt6HasVar( word t, int iVar )
{
return ((t << (1<<iVar)) & s_Truths6[iVar]) != (t & s_Truths6[iVar]);
return ((t >> (1<<iVar)) & s_Truths6Neg[iVar]) != (t & s_Truths6Neg[iVar]);
}
static inline int Abc_TtHasVar( word * t, int nVars, int iVar )
{
......@@ -125,7 +735,7 @@ static inline int Abc_TtHasVar( word * t, int nVars, int iVar )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( ((t[i] << Shift) & s_Truths6[iVar]) != (t[i] & s_Truths6[iVar]) )
if ( ((t[i] >> Shift) & s_Truths6Neg[iVar]) != (t[i] & s_Truths6Neg[iVar]) )
return 1;
return 0;
}
......@@ -188,6 +798,69 @@ static inline int Abc_Tt6SupportAndSize( word t, int nVars, int * pSuppSize )
SeeAlso []
***********************************************************************/
static inline void Abc_TtFlip( word * pTruth, int nWords, int iVar )
{
if ( nWords == 1 )
pTruth[0] = ((pTruth[0] << (1 << iVar)) & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar));
else if ( iVar <= 5 )
{
int w, shift = (1 << iVar);
for ( w = 0; w < nWords; w++ )
pTruth[w] = ((pTruth[w] << shift) & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift);
}
else // if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
for ( ; pTruth < pLimit; pTruth += 2*iStep )
for ( i = 0; i < iStep; i++ )
ABC_SWAP( word, pTruth[i], pTruth[i + iStep] );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_TtSwapAdjacent( word * pTruth, int nWords, int iVar )
{
static word PMasks[5][3] = {
{ 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 },
{ 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 },
{ 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 },
{ 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 },
{ 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 }
};
if ( iVar < 5 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
pTruth[i] = (pTruth[i] & PMasks[iVar][0]) | ((pTruth[i] & PMasks[iVar][1]) << Shift) | ((pTruth[i] & PMasks[iVar][2]) >> Shift);
}
else if ( iVar == 5 )
{
unsigned * pTruthU = (unsigned *)pTruth;
unsigned * pLimitU = (unsigned *)(pTruth + nWords);
for ( ; pTruthU < pLimitU; pTruthU += 4 )
ABC_SWAP( unsigned, pTruthU[1], pTruthU[2] );
}
else // if ( iVar > 5 )
{
word * pLimit = pTruth + nWords;
int i, iStep = Abc_TtWordNum(iVar);
for ( ; pTruth < pLimit; pTruth += 4*iStep )
for ( i = 0; i < iStep; i++ )
ABC_SWAP( word, pTruth[i + iStep], pTruth[i + 2*iStep] );
}
}
static inline void Abc_TtSwapVars( word * pTruth, int nVars, int iVar, int jVar )
{
static word PPMasks[5][6][3] = {
......@@ -270,106 +943,239 @@ static inline void Abc_TtSwapVars( word * pTruth, int nVars, int iVar, int jVar
}
else
{
word temp, * pLimit = pTruth + Abc_TtWordNum(nVars);
word * pLimit = pTruth + Abc_TtWordNum(nVars);
int i, iStep = Abc_TtWordNum(iVar);
int j, jStep = Abc_TtWordNum(jVar);
for ( ; pTruth < pLimit; pTruth += 2*jStep )
for ( i = 0; i < jStep; i += 2*iStep )
for ( j = 0; j < iStep; j++ )
{
temp = pTruth[iStep + i + j];
pTruth[iStep + i + j] = pTruth[jStep + i + j];
pTruth[jStep + i + j] = temp;
}
ABC_SWAP( word, pTruth[iStep + i + j], pTruth[jStep + i + j] );
}
}
}
static inline void Abc_TtSwapVars_( word * pTruth, int nVars, int iVar, int jVar )
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCountOnesSlow( word t )
{
static word PPMasks[6][6] = {
{ 0x2222222222222222, 0x0A0A0A0A0A0A0A0A, 0x00AA00AA00AA00AA, 0x0000AAAA0000AAAA, 0x00000000AAAAAAAA, 0xAAAAAAAAAAAAAAAA },
{ 0x0000000000000000, 0x0C0C0C0C0C0C0C0C, 0x00CC00CC00CC00CC, 0x0000CCCC0000CCCC, 0x00000000CCCCCCCC, 0xCCCCCCCCCCCCCCCC },
{ 0x0000000000000000, 0x0000000000000000, 0x00F000F000F000F0, 0x0000F0F00000F0F0, 0x00000000F0F0F0F0, 0xF0F0F0F0F0F0F0F0 },
{ 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000FF000000FF00, 0x00000000FF00FF00, 0xFF00FF00FF00FF00 },
{ 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x00000000FFFF0000, 0xFFFF0000FFFF0000 },
{ 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0xFFFFFFFF00000000 }
};
t = (t & 0x5555555555555555) + ((t>> 1) & 0x5555555555555555);
t = (t & 0x3333333333333333) + ((t>> 2) & 0x3333333333333333);
t = (t & 0x0F0F0F0F0F0F0F0F) + ((t>> 4) & 0x0F0F0F0F0F0F0F0F);
t = (t & 0x00FF00FF00FF00FF) + ((t>> 8) & 0x00FF00FF00FF00FF);
t = (t & 0x0000FFFF0000FFFF) + ((t>>16) & 0x0000FFFF0000FFFF);
return (t & 0x00000000FFFFFFFF) + (t>>32);
}
static inline int Abc_TtCountOnes( word x )
{
x = x - ((x >> 1) & 0x5555555555555555);
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
x = x + (x >> 32);
return (int)(x & 0xFF);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCountOnesInTruth( word * pTruth, int nVars )
{
int nWords = Abc_TtWordNum( nVars );
int k, Counter = 0;
for ( k = 0; k < nWords; k++ )
Counter += Abc_TtCountOnes( pTruth[k] );
return Counter;
}
static inline void Abc_TtCountOnesInCofs( word * pTruth, int nVars, int * pStore )
{
int i, k, Counter, nWords;
memset( pStore, 0, sizeof(int) * nVars );
if ( nVars <= 6 )
{
int shift;
word low2High, high2Low;
assert( iVar <= 5 && jVar <= 5 && iVar < jVar );
shift = (1 << jVar) - (1 << iVar);
low2High = (pTruth[0] & PPMasks[iVar][jVar - 1] ) << shift;
pTruth[0] &= ~PPMasks[iVar][jVar - 1];
high2Low = (pTruth[0] & (PPMasks[iVar][jVar - 1] << shift )) >> shift;
pTruth[0] &= ~(PPMasks[iVar][jVar - 1] << shift);
pTruth[0] |= low2High | high2Low;
}
else
{
word low2High, high2Low, temp;
int nWords = Abc_TtWordNum(nVars);
int shift, step, iStep, jStep;
int w = 0, i = 0, j = 0;
if ( iVar == jVar )
for ( i = 0; i < nVars; i++ )
pStore[i] = Abc_TtCountOnes( pTruth[0] & s_Truths6Neg[i] );
return;
if ( jVar < iVar )
ABC_SWAP( int, iVar, jVar );
if ( iVar <= 5 && jVar <= 5 )
{
shift = (1 << jVar) - (1 << iVar);
for ( w = 0; w < nWords; w++ )
{
low2High = (pTruth[w] & PPMasks[iVar][jVar - 1] ) << shift;
pTruth[w] &= ~PPMasks[iVar][jVar - 1];
high2Low = (pTruth[w] & (PPMasks[iVar][jVar - 1] << shift )) >> shift;
pTruth[w] &= ~(PPMasks[iVar][jVar - 1] << shift);
pTruth[w] |= low2High | high2Low;
}
}
else if ( iVar <= 5 && jVar > 5 )
{
step = Abc_TtWordNum(jVar + 1)/2;
shift = 1 << iVar;
for ( w = 0; w < nWords; w += 2*step )
assert( nVars > 6 );
nWords = Abc_TtWordNum( nVars );
for ( k = 0; k < nWords; k++ )
{
for (j = 0; j < step; j++)
{
low2High = (pTruth[w + j] & PPMasks[iVar][5]) >> shift;
pTruth[w + j] &= ~PPMasks[iVar][5];
high2Low = (pTruth[w + step + j] & (PPMasks[iVar][5] >> shift)) << shift;
pTruth[w + step + j] &= ~(PPMasks[iVar][5] >> shift);
pTruth[w + j] |= high2Low;
pTruth[w + step + j] |= low2High;
}
// count 1's for the first six variables
for ( i = 0; i < 6; i++ )
pStore[i] += Abc_TtCountOnes( (pTruth[k] & s_Truths6Neg[i]) | ((pTruth[k+1] & s_Truths6Neg[i]) << (1 << i)) );
// count 1's for all other variables
Counter = Abc_TtCountOnes( pTruth[k] );
for ( i = 6; i < nVars; i++ )
if ( (k & (1 << (i-6))) == 0 )
pStore[i] += Counter;
// count 1's for all other variables
Counter = Abc_TtCountOnes( pTruth[++k] );
for ( i = 6; i < nVars; i++ )
if ( (k & (1 << (i-6))) == 0 )
pStore[i] += Counter;
}
}
static inline void Abc_TtCountOnesInCofsSlow( word * pTruth, int nVars, int * pStore )
{
static int bit_count[256] = {
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
int i, k, nBytes;
unsigned char * pTruthC = (unsigned char *)pTruth;
nBytes = 8 * Abc_TtWordNum( nVars );
memset( pStore, 0, sizeof(int) * nVars );
for ( k = 0; k < nBytes; k++ )
{
pStore[0] += bit_count[ pTruthC[k] & 0x55 ];
pStore[1] += bit_count[ pTruthC[k] & 0x33 ];
pStore[2] += bit_count[ pTruthC[k] & 0x0F ];
for ( i = 3; i < nVars; i++ )
if ( (k & (1 << (i-3))) == 0 )
pStore[i] += bit_count[pTruthC[k]];
}
else
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline unsigned Abc_TtSemiCanonicize( word * pTruth, int nVars, char * pCanonPerm )
{
int pStore[16];
int nWords = Abc_TtWordNum( nVars );
int i, Temp, fChange, nOnes;
unsigned uCanonPhase = 0;
assert( nVars <= 16 );
// normalize polarity
nOnes = Abc_TtCountOnesInTruth( pTruth, nVars );
if ( nOnes > nWords * 32 )
{
iStep = Abc_TtWordNum(iVar + 1)/2;
jStep = Abc_TtWordNum(jVar + 1)/2;
for (w = 0; w < nWords; w += 2*jStep)
Abc_TtNot( pTruth, nWords );
nOnes = nWords*64 - nOnes;
uCanonPhase |= (1 << nVars);
}
// normalize phase
Abc_TtCountOnesInCofs( pTruth, nVars, pStore );
for ( i = 0; i < nVars; i++ )
{
for (i = 0; i < jStep; i += 2*iStep)
if ( pStore[i] >= nOnes - pStore[i] )
continue;
Abc_TtFlip( pTruth, nWords, i );
uCanonPhase |= (1 << i);
pStore[i] = nOnes - pStore[i];
}
do {
fChange = 0;
for ( i = 0; i < nVars-1; i++ )
{
for (j = 0; j < iStep; j++)
if ( pStore[i] <= pStore[i+1] )
continue;
Temp = pCanonPerm[i];
pCanonPerm[i] = pCanonPerm[i+1];
pCanonPerm[i+1] = Temp;
Temp = pStore[i];
pStore[i] = pStore[i+1];
pStore[i+1] = Temp;
if ( ((uCanonPhase >> i) & 1) != ((uCanonPhase >> (i+1)) & 1) )
{
temp = pTruth[w + iStep + i + j];
pTruth[w + iStep + i + j] = pTruth[w + jStep + i + j];
pTruth[w + jStep + i + j] = temp;
}
}
}
uCanonPhase ^= (1 << i);
uCanonPhase ^= (1 << (i+1));
}
Abc_TtSwapAdjacent( pTruth, nWords, i );
fChange = 1;
}
} while ( fChange );
return uCanonPhase;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_TtReverseVars( word * pTruth, int nVars )
{
int k;
for ( k = 0; k < nVars/2 ; k++ )
Abc_TtSwapVars( pTruth, nVars, k, nVars - 1 - k );
}
static inline void Abc_TtReverseBits( word * pTruth, int nVars )
{
static unsigned char pMirror[256] = {
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
};
unsigned char Temp, * pTruthC = (unsigned char *)pTruth;
int i, nBytes = (nVars > 6) ? (1 << (nVars - 3)) : 8;
for ( i = 0; i < nBytes/2; i++ )
{
Temp = pMirror[pTruthC[i]];
pTruthC[i] = pMirror[pTruthC[nBytes-1-i]];
pTruthC[nBytes-1-i] = Temp;
}
}
/**Function*************************************************************
Synopsis [Stretch truthtable to have more input variables.]
Description []
......@@ -379,7 +1185,7 @@ static inline void Abc_TtSwapVars_( word * pTruth, int nVars, int iVar, int jVar
SeeAlso []
***********************************************************************/
static void Abc_TtStretch5( unsigned * pInOut, int nVarS, int nVarB )
static inline void Abc_TtStretch5( unsigned * pInOut, int nVarS, int nVarB )
{
int w, i, step, nWords;
if ( nVarS == nVarB )
......@@ -394,7 +1200,7 @@ static void Abc_TtStretch5( unsigned * pInOut, int nVarS, int nVarB )
for ( i = 0; i < step; i++ )
pInOut[w + i] = pInOut[i];
}
static void Abc_TtStretch6( word * pInOut, int nVarS, int nVarB )
static inline void Abc_TtStretch6( word * pInOut, int nVarS, int nVarB )
{
int w, i, step, nWords;
if ( nVarS == nVarB )
......
......@@ -478,163 +478,6 @@ void Dau_DsdTestOne( word t, int i )
SeeAlso []
***********************************************************************/
static inline int Abc_TtTruthIsConst0( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != 0 ) return 0; return 1; }
static inline int Abc_TtTruthIsConst1( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != ~(word)0 ) return 0; return 1; }
static inline int Abc_TtCof0IsConst0( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( t[i] & ~s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] )
return 0;
return 1;
}
}
static inline int Abc_TtCof0IsConst1( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( (t[i] & ~s_Truths6[iVar]) != ~s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] != ~(word)0 )
return 0;
return 1;
}
}
static inline int Abc_TtCof1IsConst0( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( t[i] & s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i+Step] )
return 0;
return 1;
}
}
static inline int Abc_TtCof1IsConst1( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i;
for ( i = 0; i < nWords; i++ )
if ( (t[i] & s_Truths6[iVar]) != s_Truths6[iVar] )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i+Step] != ~(word)0 )
return 0;
return 1;
}
}
static inline int Abc_TtCofsOpposite( word * t, int nWords, int iVar )
{
if ( iVar < 6 )
{
int i, Shift = (1 << iVar);
for ( i = 0; i < nWords; i++ )
if ( ((t[i] << Shift) & s_Truths6[iVar]) != (~t[i] & s_Truths6[iVar]) )
return 0;
return 1;
}
else
{
int i, Step = (1 << (iVar - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] != ~t[i+Step] )
return 0;
return 1;
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_TtCof0HasVar( word * t, int nWords, int iVarI, int iVarJ )
{
assert( iVarI > iVarJ );
if ( iVarI < 6 )
{
int i, Shift = (1 << iVarJ);
for ( i = 0; i < nWords; i++ )
if ( (((t[i] & ~s_Truths6[iVarI]) << Shift) & s_Truths6[iVarJ]) != ((t[i] & ~s_Truths6[iVarI]) & s_Truths6[iVarJ]) )
return 0;
return 1;
}
else if ( iVarI == 6 )
{
}
else
{
int i, Step = (1 << (iVarJ - 6));
word * tLimit = t + nWords;
for ( ; t < tLimit; t += 2*Step )
for ( i = 0; i < Step; i++ )
if ( t[i] != t[i+Step] )
return 0;
return 1;
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Dau_DsdMinimize( word * p, int * pVars, int nVars )
{
int i, k;
......@@ -683,16 +526,18 @@ int Dau_DsdRun6_rec( word * p, int * pVars, int nVars, char * pBuffer, int Pos,
***********************************************************************/
int Dau_DsdRun_rec( word * p, int * pVars, int nVars, char * pBuffer, int Pos, char pStore[16][16], int Func )
{
int v, nWords = Abc_TtWordNum( nVars );
int v, u, nWords = Abc_TtWordNum( nVars );
nVars = Dau_DsdMinimize( p, pVars, nVars );
if ( nVars <= 6 )
return Dau_DsdRun6_rec( p, pVars, nVars, pBuffer, Pos, pStore, Func );
// consider negative cofactors
if ( p[0] & 1 )
{
// check for !(ax)
for ( v = 0; v < nVars; v++ )
if ( Abc_TtCof0IsConst0( p, nWords, v ) )
if ( Abc_TtCof0IsConst1( p, nWords, v ) )
{
pBuffer[Pos++] = '!';
pBuffer[Pos++] = '(';
pBuffer[Pos++] = 'a' + pVars[v];
Abc_TtSwapVars( p, nVars, v, nVars - 1 );
......@@ -706,9 +551,8 @@ int Dau_DsdRun_rec( word * p, int * pVars, int nVars, char * pBuffer, int Pos, c
{
// check for ax
for ( v = 0; v < nVars; v++ )
if ( Abc_TtCof0IsConst1( p, nWords, v ) )
if ( Abc_TtCof0IsConst0( p, nWords, v ) )
{
pBuffer[Pos++] = '!';
pBuffer[Pos++] = '(';
pBuffer[Pos++] = 'a' + pVars[v];
Abc_TtSwapVars( p, nVars, v, nVars - 1 );
......@@ -718,6 +562,7 @@ int Dau_DsdRun_rec( word * p, int * pVars, int nVars, char * pBuffer, int Pos, c
return Pos;
}
}
// consider positive cofactors
if ( (p[nWords-1] >> 63) & 1 )
{
// check for !(!ax)
......@@ -764,7 +609,85 @@ int Dau_DsdRun_rec( word * p, int * pVars, int nVars, char * pBuffer, int Pos, c
return Pos;
}
return 0;
// consider two-variable cofactors
for ( v = nVars - 1; v > 0; v-- )
{
unsigned uSupp0 = 0, uSupp1 = 0;
for ( u = v - 1; u >= 0; u-- )
{
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 0, 1 ) )
{
uSupp0 |= (1 << u);
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 2, 3 ) )
{
uSupp1 |= (1 << u);
// check XOR decomposition
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 0, 3 ) && Abc_TtCheckEqualCofs( p, nWords, u, v, 1, 2 ) )
{
// perform XOR (u, v)
return Pos;
}
}
else
{
// F(v=0) does not depend on u; F(v=1) depends on u
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 0, 2 ) )
{
// perform AND (u, v)
return Pos;
}
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 0, 3 ) )
{
// perform AND (u, v)
return Pos;
}
}
}
else if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 2, 3 ) )
{
uSupp1 |= (1 << u);
// F(v=0) depends on u; F(v=1) does not depend on u
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 0, 2 ) )
{
// perform AND (u, v)
return Pos;
}
if ( Abc_TtCheckEqualCofs( p, nWords, u, v, 1, 2 ) )
{
// perform AND (u, v)
return Pos;
}
}
else assert( 0 );
}
// check MUX decomposition w.r.t. u
if ( (uSupp0 & uSupp1) == 0 )
{
// perform MUX( v, F(v=1), F(v=0) )
}
// check MUX decomposition w.r.t. u
if ( Abc_TtSuppOnlyOne( uSupp0 & ~uSupp1 ) && Abc_TtSuppOnlyOne( ~uSupp0 & uSupp1 ) )
{
// check MUX
int iVar0 = Abc_TtSuppFindFirst( uSupp0 );
int iVar1 = Abc_TtSuppFindFirst( uSupp1 );
int fEqual0, fEqual1;
if ( iVar0 > iVar1 )
ABC_SWAP( int, iVar0, iVar1 );
// check existence conditions
assert( iVar0 < iVar1 );
fEqual0 = Abc_TtCheckEqualCofs( p, nWords, iVar0, iVar1, 0, 2 ) && Abc_TtCheckEqualCofs( p, nWords, iVar0, iVar1, 1, 3 );
fEqual1 = Abc_TtCheckEqualCofs( p, nWords, iVar0, iVar1, 0, 3 ) && Abc_TtCheckEqualCofs( p, nWords, iVar0, iVar1, 1, 2 );
if ( fEqual0 || fEqual1 )
{
// perform MUX( v, F(v=1), F(v=0) )
return Pos;
}
}
}
return Pos;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment