Commit 06a8d505 by Yen-Sheng Ho

%pdra: cleanup, refactor

parent 3974ff75
......@@ -48,18 +48,13 @@ struct Int_Pair_t_
typedef struct Wla_Man_t_ Wla_Man_t;
struct Wla_Man_t_
{
Pdr_Man_t * pPdr;
Wlc_Ntk_t * p;
Wlc_Par_t * pPars;
Pdr_Par_t * pPdrPars;
Vec_Vec_t * vClauses;
Vec_Int_t * vBlacks;
Aig_Man_t * pAig;
Abc_Cex_t * pCex;
Vec_Int_t * vPisNew;
Vec_Int_t * vRefine;
Gia_Man_t * pGia;
Wlc_Ntk_t * pAbs;
Wlc_Ntk_t * p;
Wlc_Par_t * pPars;
Vec_Bit_t * vUnmark;
int nIters;
......@@ -1208,32 +1203,34 @@ Vec_Int_t * Wlc_NtkFlopsRemap( Wlc_Ntk_t * p, Vec_Int_t * vFfOld, Vec_Int_t * vF
Wlc_Ntk_t * Wla_ManCreateAbs( Wla_Man_t * pWla )
{
// get abstracted GIA and the set of pseudo-PIs (vPisNew)
Wlc_Ntk_t * pAbs;
// get abstracted GIA and the set of pseudo-PIs (vBlacks)
if ( pWla->vBlacks == NULL )
pWla->vBlacks = Wlc_NtkGetBlacks( pWla->p, pWla->pPars );
else
Wlc_NtkUpdateBlacks( pWla->p, pWla->pPars, &pWla->vBlacks, pWla->vUnmark );
pWla->pAbs = Wlc_NtkAbs2( pWla->p, pWla->vBlacks, NULL );
pWla->vPisNew = Vec_IntDup( pWla->vBlacks );
pAbs = Wlc_NtkAbs2( pWla->p, pWla->vBlacks, NULL );
return pWla->pAbs;
return pAbs;
}
Aig_Man_t * Wla_ManBitBlast( Wla_Man_t * pWla )
Aig_Man_t * Wla_ManBitBlast( Wla_Man_t * pWla, Wlc_Ntk_t * pAbs )
{
int nDcFlops;
Gia_Man_t * pTemp;
Aig_Man_t * pAig;
pWla->pGia = Wlc_NtkBitBlast( pWla->pAbs, NULL, -1, 0, 0, 0, 0, 0 );
pWla->pGia = Wlc_NtkBitBlast( pAbs, NULL, -1, 0, 0, 0, 0, 0 );
// if the abstraction has flops with DC-init state,
// new PIs were introduced by bit-blasting at the end of the PI list
// here we move these variables to be *before* PPIs, because
// PPIs are supposed to be at the end of the PI list for refinement
nDcFlops = Wlc_NtkDcFlopNum(pWla->pAbs);
nDcFlops = Wlc_NtkDcFlopNum(pAbs);
if ( nDcFlops > 0 ) // DC-init flops are present
{
pWla->pGia = Gia_ManPermuteInputs( pTemp = pWla->pGia, Wlc_NtkCountObjBits(pWla->p, pWla->vPisNew), nDcFlops );
pWla->pGia = Gia_ManPermuteInputs( pTemp = pWla->pGia, Wlc_NtkCountObjBits(pWla->p, pWla->vBlacks), nDcFlops );
Gia_ManStop( pTemp );
}
// if the word-level outputs have to be XORs, this is a place to do it
......@@ -1244,28 +1241,25 @@ Aig_Man_t * Wla_ManBitBlast( Wla_Man_t * pWla )
}
if ( pWla->pPars->fVerbose )
{
printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pWla->pAbs), Vec_IntSize(pWla->vPisNew) );
printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pAbs), Vec_IntSize(pWla->vBlacks) );
Gia_ManPrintStats( pWla->pGia, NULL );
}
// try to prove abstracted GIA by converting it to AIG and calling PDR
pWla->pAig = Gia_ManToAigSimple( pWla->pGia );
pAig = Gia_ManToAigSimple( pWla->pGia );
Wlc_NtkFree( pWla->pAbs );
return pWla->pAig;
return pAig;
}
int Wla_ManSolve( Wla_Man_t * pWla )
int Wla_ManSolve( Wla_Man_t * pWla, Aig_Man_t * pAig )
{
abctime clk;
Pdr_Man_t * pPdr;
int RetValue = -1;
if ( pWla->vClauses && pWla->pPars->fCheckCombUnsat )
{
Pdr_Man_t * pPdr2;
if ( Aig_ManAndNum( pWla->pAig ) <= 20000 )
if ( Aig_ManAndNum( pAig ) <= 20000 )
{
Aig_Man_t * pAigScorr;
Ssw_Pars_t ScorrPars, * pScorrPars = &ScorrPars;
......@@ -1276,7 +1270,7 @@ int Wla_ManSolve( Wla_Man_t * pWla )
Ssw_ManSetDefaultParams( pScorrPars );
pScorrPars->fStopWhenGone = 1;
pScorrPars->nFramesK = 1;
pAigScorr = Ssw_SignalCorrespondence( pWla->pAig, pScorrPars );
pAigScorr = Ssw_SignalCorrespondence( pAig, pScorrPars );
assert ( pAigScorr );
nAnds = Aig_ManAndNum( pAigScorr);
Aig_ManStop( pAigScorr );
......@@ -1297,9 +1291,9 @@ int Wla_ManSolve( Wla_Man_t * pWla )
clk = Abc_Clock();
pWla->pPdrPars->fVerbose = 0;
pPdr2 = Pdr_ManStart( pWla->pAig, pWla->pPdrPars, NULL );
RetValue = IPdr_ManCheckCombUnsat( pPdr2 );
Pdr_ManStop( pPdr2 );
pPdr = Pdr_ManStart( pAig, pWla->pPdrPars, NULL );
RetValue = IPdr_ManCheckCombUnsat( pPdr );
Pdr_ManStop( pPdr );
pWla->pPdrPars->fVerbose = pWla->pPars->fPdrVerbose;
pWla->tPdr += Abc_Clock() - clk;
......@@ -1316,19 +1310,20 @@ int Wla_ManSolve( Wla_Man_t * pWla )
}
clk = Abc_Clock();
pWla->pPdr = Pdr_ManStart( pWla->pAig, pWla->pPdrPars, NULL );
pPdr = Pdr_ManStart( pAig, pWla->pPdrPars, NULL );
if ( pWla->vClauses ) {
assert( Vec_VecSize( pWla->vClauses) >= 2 );
IPdr_ManRestore( pWla->pPdr, pWla->vClauses, NULL );
IPdr_ManRestore( pPdr, pWla->vClauses, NULL );
}
if ( !pWla->vClauses || RetValue != 1 )
RetValue = IPdr_ManSolveInt( pWla->pPdr, pWla->pPars->fCheckClauses, pWla->pPars->fPushClauses );
pWla->pPdr->tTotal += Abc_Clock() - clk;
pWla->tPdr += pWla->pPdr->tTotal;
RetValue = IPdr_ManSolveInt( pPdr, pWla->pPars->fCheckClauses, pWla->pPars->fPushClauses );
pPdr->tTotal += Abc_Clock() - clk;
pWla->tPdr += pPdr->tTotal;
pWla->vClauses = IPdr_ManSaveClauses( pPdr, 0 );
Pdr_ManStop( pPdr );
pWla->pCex = pWla->pAig->pSeqModel;
pWla->pAig->pSeqModel = NULL;
pWla->pCex = pAig->pSeqModel;
pAig->pSeqModel = NULL;
// consider outcomes
if ( pWla->pCex == NULL )
......@@ -1348,25 +1343,25 @@ void Wla_ManRefine( Wla_Man_t * pWla )
{
abctime clk;
int nNodes;
Vec_Int_t * vRefine = NULL;
// perform refinement
if ( pWla->pPars->fHybrid || !pWla->pPars->fProofRefine )
{
clk = Abc_Clock();
pWla->vRefine = Wlc_NtkAbsRefinement( pWla->p, pWla->pGia, pWla->pCex, pWla->vPisNew );
vRefine = Wlc_NtkAbsRefinement( pWla->p, pWla->pGia, pWla->pCex, pWla->vBlacks );
pWla->tCbr += Abc_Clock() - clk;
}
else // proof-based only
{
pWla->vRefine = Vec_IntDup( pWla->vPisNew );
vRefine = Vec_IntDup( pWla->vBlacks );
}
if ( pWla->pPars->fProofRefine )
{
clk = Abc_Clock();
Wlc_NtkProofRefine( pWla->p, pWla->pPars, pWla->pCex, pWla->vPisNew, &pWla->vRefine );
Wlc_NtkProofRefine( pWla->p, pWla->pPars, pWla->pCex, pWla->vBlacks, &vRefine );
pWla->tPbr += Abc_Clock() - clk;
}
pWla->vClauses = IPdr_ManSaveClauses( pWla->pPdr, 0 );
if ( pWla->vClauses && pWla->pPars->fVerbose )
{
int i;
......@@ -1379,15 +1374,15 @@ void Wla_ManRefine( Wla_Man_t * pWla )
clk = Abc_Clock();
if ( pWla->pPars->fMFFC )
{
nNodes = Wlc_NtkRemoveFromAbstraction( pWla->p, pWla->vRefine, pWla->vUnmark );
nNodes = Wlc_NtkRemoveFromAbstraction( pWla->p, vRefine, pWla->vUnmark );
if ( pWla->pPars->fVerbose )
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pWla->pCex->iFrame, Vec_IntSize(pWla->vRefine), nNodes );
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pWla->pCex->iFrame, Vec_IntSize(vRefine), nNodes );
}
else
{
nNodes = Wlc_NtkUnmarkRefinement( pWla->p, pWla->vRefine, pWla->vUnmark );
nNodes = Wlc_NtkUnmarkRefinement( pWla->p, vRefine, pWla->vUnmark );
if ( pWla->pPars->fVerbose )
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs.\n", pWla->pCex->iFrame, Vec_IntSize(pWla->vRefine) );
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs.\n", pWla->pCex->iFrame, Vec_IntSize(vRefine) );
}
/*
......@@ -1399,12 +1394,9 @@ void Wla_ManRefine( Wla_Man_t * pWla )
*/
pWla->tCbr += Abc_Clock() - clk;
Pdr_ManStop( pWla->pPdr ); pWla->pPdr = NULL;
Vec_IntFree( vRefine );
Gia_ManStop( pWla->pGia ); pWla->pGia = NULL;
Vec_IntFree( pWla->vPisNew ); pWla->vPisNew = NULL;
Vec_IntFree( pWla->vRefine ); pWla->vRefine = NULL;
Abc_CexFree( pWla->pCex ); pWla->pCex = NULL;
Aig_ManStop( pWla->pAig ); pWla->pAig = NULL;
}
Wla_Man_t * Wla_ManStart( Wlc_Ntk_t * pNtk, Wlc_Par_t * pPars )
......@@ -1439,12 +1431,8 @@ Wla_Man_t * Wla_ManStart( Wlc_Ntk_t * pNtk, Wlc_Par_t * pPars )
void Wla_ManStop( Wla_Man_t * p )
{
if ( p->vBlacks ) Vec_IntFree( p->vBlacks );
if ( p->pPdr ) Pdr_ManStop( p->pPdr );
if ( p->pGia ) Gia_ManStop( p->pGia );
if ( p->vPisNew ) Vec_IntFree( p->vPisNew );
if ( p->vRefine ) Vec_IntFree( p->vRefine );
if ( p->pCex ) Abc_CexFree( p->pCex );
if ( p->pAig ) Aig_ManStop( p->pAig );
Vec_BitFree( p->vUnmark );
ABC_FREE( p->pPdrPars );
ABC_FREE( p );
......@@ -1455,6 +1443,9 @@ int Wlc_NtkPdrAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
abctime clk = Abc_Clock();
abctime tTotal;
Wla_Man_t * pWla = NULL;
Wlc_Ntk_t * pAbs = NULL;
Aig_Man_t * pAig = NULL;
int RetValue = -1;
pWla = Wla_ManStart( p, pPars );
......@@ -1465,10 +1456,13 @@ int Wlc_NtkPdrAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
if ( pPars->fVerbose )
printf( "\nIteration %d:\n", pWla->nIters );
Wla_ManCreateAbs( pWla );
Wla_ManBitBlast( pWla );
pAbs = Wla_ManCreateAbs( pWla );
RetValue = Wla_ManSolve( pWla );
pAig = Wla_ManBitBlast( pWla, pAbs );
Wlc_NtkFree( pAbs );
RetValue = Wla_ManSolve( pWla, pAig );
Aig_ManStop( pAig );
if ( RetValue != -1 )
break;
......@@ -1506,307 +1500,6 @@ int Wlc_NtkPdrAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
return RetValue;
}
/*
int Wlc_NtkPdrAbs2( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
{
abctime clk = Abc_Clock();
abctime clk2;
abctime tPdr = 0, tCbr = 0, tPbr = 0, tTotal = 0;
Pdr_Man_t * pPdr;
Vec_Vec_t * vClauses = NULL;
Vec_Int_t * vFfOld = NULL, * vFfNew = NULL, * vMap = NULL;
Vec_Int_t * vBlacks = NULL;
int nIters, nNodes, nDcFlops, RetValue = -1, nGiaFfNumOld = -1;
int nTotalCla = 0;
int nDisj = 0, nNDisj = 0;
// start the bitmap to mark objects that cannot be abstracted because of refinement
// currently, this bitmap is empty because abstraction begins without refinement
Vec_Bit_t * vUnmark = Vec_BitStart( Wlc_NtkObjNumMax(p) );
// set up parameters to run PDR
Pdr_Par_t PdrPars, * pPdrPars = &PdrPars;
Pdr_ManSetDefaultParams( pPdrPars );
pPdrPars->fVerbose = pPars->fPdrVerbose;
pPdrPars->fVeryVerbose = 0;
if ( pPars->fPdra )
{
pPdrPars->fUseAbs = 1; // use 'pdr -t' (on-the-fly abstraction)
pPdrPars->fCtgs = 1; // use 'pdr -nc' (improved generalization)
pPdrPars->fSkipDown = 0; // use 'pdr -nc' (improved generalization)
pPdrPars->nRestLimit = 500; // reset queue or proof-obligations when it gets larger than this
}
// perform refinement iterations
for ( nIters = 1; nIters < pPars->nIterMax; nIters++ )
{
Aig_Man_t * pAig;
Abc_Cex_t * pCex;
Vec_Int_t * vPisNew = NULL;
Vec_Int_t * vRefine;
Gia_Man_t * pGia, * pTemp;
Wlc_Ntk_t * pAbs;
if ( pPars->fVerbose )
printf( "\nIteration %d:\n", nIters );
// get abstracted GIA and the set of pseudo-PIs (vPisNew)
if ( pPars->fAbs2 || pPars->fProofRefine )
{
if ( vBlacks == NULL )
vBlacks = Wlc_NtkGetBlacks( p, pPars );
else
Wlc_NtkUpdateBlacks( p, pPars, &vBlacks, vUnmark );
pAbs = Wlc_NtkAbs2( p, vBlacks, &vFfNew );
vPisNew = Vec_IntDup( vBlacks );
}
else
{
if ( nIters == 1 && pPars->nLimit < ABC_INFINITY )
Wlc_NtkSetUnmark( p, pPars, vUnmark );
pAbs = Wlc_NtkAbs( p, pPars, vUnmark, &vPisNew, &vFfNew, pPars->fVerbose );
}
pGia = Wlc_NtkBitBlast( pAbs, NULL, -1, 0, 0, 0, 0, 0 );
// map old flops into new flops
if ( vFfOld )
{
assert( nGiaFfNumOld >= 0 );
vMap = Wlc_NtkFlopsRemap( p, vFfOld, vFfNew );
//Vec_IntPrint( vMap );
// if reset flop was added in the previous iteration, it will be added again in this iteration
// remap the last flop (reset flop) into the last flop (reset flop) of the current AIG
if ( Vec_IntSize(vMap) + 1 == nGiaFfNumOld )
Vec_IntPush( vMap, Gia_ManRegNum(pGia)-1 );
assert( Vec_IntSize(vMap) == nGiaFfNumOld );
Vec_IntFreeP( &vFfOld );
}
ABC_SWAP( Vec_Int_t *, vFfOld, vFfNew );
nGiaFfNumOld = Gia_ManRegNum(pGia);
// if the abstraction has flops with DC-init state,
// new PIs were introduced by bit-blasting at the end of the PI list
// here we move these variables to be *before* PPIs, because
// PPIs are supposed to be at the end of the PI list for refinement
nDcFlops = Wlc_NtkDcFlopNum(pAbs);
if ( nDcFlops > 0 ) // DC-init flops are present
{
pGia = Gia_ManPermuteInputs( pTemp = pGia, Wlc_NtkCountObjBits(p, vPisNew), nDcFlops );
Gia_ManStop( pTemp );
}
// if the word-level outputs have to be XORs, this is a place to do it
if ( pPars->fXorOutput )
{
pGia = Gia_ManTransformMiter2( pTemp = pGia );
Gia_ManStop( pTemp );
}
if ( pPars->fVerbose )
{
printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pAbs), Vec_IntSize(vPisNew) );
Gia_ManPrintStats( pGia, NULL );
}
Wlc_NtkFree( pAbs );
// Gia_AigerWrite( pGia, "abs.aig", 0, 0 );
// try to prove abstracted GIA by converting it to AIG and calling PDR
pAig = Gia_ManToAigSimple( pGia );
if ( vClauses && pPars->fCheckCombUnsat )
{
Pdr_Man_t * pPdr2;
if ( Aig_ManAndNum( pAig ) <= 20000 )
{
Aig_Man_t * pAigScorr;
Ssw_Pars_t ScorrPars, * pScorrPars = &ScorrPars;
int nAnds;
clk2 = Abc_Clock();
Ssw_ManSetDefaultParams( pScorrPars );
pScorrPars->fStopWhenGone = 1;
pScorrPars->nFramesK = 1;
pAigScorr = Ssw_SignalCorrespondence( pAig, pScorrPars );
assert ( pAigScorr );
nAnds = Aig_ManAndNum( pAigScorr);
Aig_ManStop( pAigScorr );
if ( nAnds == 0 )
{
if ( pPars->fVerbose )
Abc_PrintTime( 1, "SCORR proved UNSAT. Time", Abc_Clock() - clk2 );
RetValue = 1;
Gia_ManStop( pGia );
Vec_IntFree( vPisNew );
Aig_ManStop( pAig );
break;
}
else if ( pPars->fVerbose )
{
Abc_Print( 1, "SCORR failed with %d ANDs. ", nAnds);
Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 );
}
}
clk2 = Abc_Clock();
pPdrPars->fVerbose = 0;
pPdr2 = Pdr_ManStart( pAig, pPdrPars, NULL );
RetValue = IPdr_ManCheckCombUnsat( pPdr2 );
Pdr_ManStop( pPdr2 );
pPdrPars->fVerbose = pPars->fPdrVerbose;
tPdr += Abc_Clock() - clk2;
if ( RetValue == 1 )
{
if ( pPars->fVerbose )
Abc_PrintTime( 1, "ABS becomes combinationally UNSAT. Time", Abc_Clock() - clk2 );
Gia_ManStop( pGia );
Vec_IntFree( vPisNew );
Aig_ManStop( pAig );
break;
}
if ( pPars->fVerbose )
Abc_PrintTime( 1, "Check comb. unsat failed. Time", Abc_Clock() - clk2 );
}
clk2 = Abc_Clock();
pPdr = Pdr_ManStart( pAig, pPdrPars, NULL );
if ( vClauses ) {
assert( Vec_VecSize( vClauses) >= 2 );
IPdr_ManRestore( pPdr, vClauses, vMap );
}
Vec_IntFreeP( &vMap );
if ( !vClauses || RetValue != 1 )
RetValue = IPdr_ManSolveInt( pPdr, pPars->fCheckClauses, pPars->fPushClauses );
pPdr->tTotal += Abc_Clock() - clk2;
tPdr += pPdr->tTotal;
pCex = pAig->pSeqModel; pAig->pSeqModel = NULL;
// consider outcomes
if ( pCex == NULL )
{
assert( RetValue ); // proved or undecided
Gia_ManStop( pGia );
Vec_IntFree( vPisNew );
Pdr_ManStop( pPdr );
Aig_ManStop( pAig );
break;
}
// verify CEX
if ( Wlc_NtkCexIsReal( p, pCex ) )
{
vRefine = NULL;
Abc_CexFree( pCex ); // return CEX in the future
Pdr_ManStop( pPdr );
Aig_ManStop( pAig );
break;
}
// perform refinement
if ( pPars->fHybrid || !pPars->fProofRefine )
{
clk2 = Abc_Clock();
vRefine = Wlc_NtkAbsRefinement( p, pGia, pCex, vPisNew );
tCbr += Abc_Clock() - clk2;
}
else // proof-based only
{
vRefine = Vec_IntDup( vPisNew );
}
if ( pPars->fProofRefine )
{
clk2 = Abc_Clock();
Wlc_NtkProofRefine( p, pPars, pCex, vPisNew, &vRefine );
tPbr += Abc_Clock() - clk2;
}
Gia_ManStop( pGia );
Vec_IntFree( vPisNew );
if ( vRefine == NULL ) // real CEX
{
Abc_CexFree( pCex ); // return CEX in the future
Pdr_ManStop( pPdr );
Aig_ManStop( pAig );
break;
}
// spurious CEX, continue solving
vClauses = IPdr_ManSaveClauses( pPdr, 0 );
if ( vClauses && pPars->fVerbose )
{
int i;
Vec_Ptr_t * vVec;
Vec_VecForEachLevel( vClauses, vVec, i )
nTotalCla += Vec_PtrSize( vVec );
}
Pdr_ManStop( pPdr );
// update the set of objects to be un-abstracted
clk2 = Abc_Clock();
if ( pPars->fMFFC )
{
nNodes = Wlc_NtkRemoveFromAbstraction( p, vRefine, vUnmark );
if ( pPars->fVerbose )
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pCex->iFrame, Vec_IntSize(vRefine), nNodes );
}
else
{
nNodes = Wlc_NtkUnmarkRefinement( p, vRefine, vUnmark );
if ( pPars->fVerbose )
printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs.\n", pCex->iFrame, Vec_IntSize(vRefine) );
}
Wlc_NtkAbsAnalyzeRefine( p, vBlacks, vUnmark, &nDisj, &nNDisj );
if ( pPars->fVerbose )
Abc_Print( 1, "Refine analysis (total): %d disjoint PPIs and %d non-disjoint PPIs\n", nDisj, nNDisj );
tCbr += Abc_Clock() - clk2;
Vec_IntFree( vRefine );
Abc_CexFree( pCex );
Aig_ManStop( pAig );
}
if ( vBlacks )
Vec_IntFree( vBlacks );
Vec_IntFreeP( &vFfOld );
Vec_BitFree( vUnmark );
// report the result
if ( pPars->fVerbose )
printf( "\n" );
printf( "Abstraction " );
if ( RetValue == 0 )
printf( "resulted in a real CEX" );
else if ( RetValue == 1 )
printf( "is successfully proved" );
else
printf( "timed out" );
printf( " after %d iterations. ", nIters );
tTotal = Abc_Clock() - clk;
Abc_PrintTime( 1, "Time", tTotal );
if ( pPars->fVerbose )
Abc_Print( 1, "PDRA reused %d clauses.\n", nTotalCla );
if ( pPars->fVerbose )
{
ABC_PRTP( "PDR ", tPdr, tTotal );
ABC_PRTP( "CEX Refine ", tCbr, tTotal );
ABC_PRTP( "Proof Refine ", tPbr, tTotal );
ABC_PRTP( "Misc. ", tTotal - tPdr - tCbr - tPbr, tTotal );
ABC_PRTP( "Total ", tTotal, tTotal );
}
return RetValue;
}
*/
/**Function*************************************************************
Synopsis [Performs abstraction.]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment