
Enabling the Emergence of Symbolic Language without Handcrafted Inductions

Abstract

The emergence of symbolic languages with high composi-1

tionality has attracted extensive attention from a broad range2

of communities. Existing studies achieve high composition-3

ality through deliberately handcrafted inductions (e.g., addi-4

tional rewards, constructed loss functions and structural in-5

put data) in multi-agent learning, which are unnatural. Yet,6

few studies investigate the emergence of symbolic language7

with high compositionality naturally, i.e., without deliber-8

ately handcrafted inductions.9

In this paper, we are the first to successfully achieve high10

compositional symbolic language in a natural manner with-11

out handcrafted inductions. Initially, by investigating the12

emergent language after removing the deliberately hand-13

crafted inductions, we observe the difficulty in naturally gen-14

erating high compositional language. Further, we reveal and15

characterize the quantitative relationship between the agent16

capacity and the compositionality of emergent language, with17

a novel mutual information-based metric for more reason-18

able measuring the compositionality. The experimental re-19

sults lead to a counter-intuitive conclusion that lower agent20

capacity facilitates the emergence of language with higher21

compositionality. Based on our conclusion, we can get a more22

compositional language with a higher probability.23

Introduction24

The emergence of language has always been an important25

issue, which attracts attention from a broad range of com-26

munities, including philology, biology, and computer sci-27

ence. Especially in computer science, efforts in recent years28

trying to explore the emergent language in virtual multi-29

agent environments, where agents are trained to communi-30

cate with neural-network-based methods such as deep re-31

inforcement learning (Kottur et al. 2017; Bogin, Geva, and32

Berant 2018; Lazaridou et al. 2018; Choi, Lazaridou, and33

de Freitas 2018; Jaques et al. 2019; Mul, Bouchacourt, and34

Bruni 2019; Kharitonov et al. 2019; Labash et al. 2020;35

Chaabouni et al. 2020).36

The quality of emergent language is typically measured37

by its compositionality. Compositionality is a principle that38

determines whether the meaning of a complex expression39

(e.g, phrase), which is assembled out of a given set of simple40
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Figure 1: The distribution of compositionality for 100
emerged symbolic languages without any induction. It can
be observed that high compositional symbolic language sel-
dom emerged (e.g., < 5% for compositionality > 0.99).
Moreover, varying the vocabulary size does not affect the
compositionality notably.

components (e.g., symbols), can be determined by its con- 41

stituent components and the rule combining them (Andreas 42

2018; Chaabouni et al. 2020). For example, the expression 43

“AAAI is a conference” consists of two meaningful words 44

“AAAI” and “conference”, and a rule for definition (“is”). 45

Compositionality is considered to be a source of productiv- 46

ity, systematicity, and learnability of language, and the rea- 47

son why a language with finite vocabulary can express al- 48

most infinite concepts. 49

Prior studies focus on achieving high compositional sym- 50

bolic language through deliberately handcrafted inductions, 51

e.g., additional rewards (Mordatch and Abbeel 2017), con- 52

structed loss functions (Kharitonov et al. 2019), structural 53

input data (Lazaridou et al. 2018; Evtimova et al. 2018), 54

memoryless (Kottur et al. 2017; Li and Bowling 2019), and 55

ease-of-teaching (Li and Bowling 2019). Such optimiza- 56

tion methodologies are driven by the challenges to generate 57

high compositional symbolic without induction in an exist- 58

ing multi-agent environment. 59

Figure 1 reports the compositionality when training 60

two agents in the widely-used listener-speaker referential 61



Table 1: Handcrafted inductions in related works.

Works Handcrafted induction Compositionality

(Kirby et al. 2015) Expressivity and compressibility Not quantitative, Speaker
(Kottur et al. 2017) Listener’s memory Not quantitative, Speaker
(Choi, Lazaridou, and de Freitas 2018) Maximum message length Not quantitative, Speaker+Listener
(Lazaridou et al. 2018) Structure of input data Quantitative, Speaker
(Evtimova et al. 2018) Multi-modal scenarios Quantitative, Speaker
(Li and Bowling 2019) Population size, resetting all listeners Quantitative, Speaker
(Chaabouni et al. 2019) Word-order constraints Not quantitative, Speaker
(Chaabouni et al. 2020) Easier to decode Quantitative, Speaker
Ours None Quantitative, Speaker+Listener

game (David 1969) for emerging 100 languages, and it can62

be observed that the compositionality of emergent language63

is seldom high (e.g., < 5% for compositionality > 0.99)64

without any induction. Moreover, varying the vocabulary65

size does not affect the compositionality notably. Though66

such unnatural inductions are useful, they prevent us from67

better understanding the mystery of the emergence of lan-68

guage and even intelligence among our pre-human ances-69

tors. Yet, few works investigate the emergence of high com-70

positional symbolic language naturally, i.e., without hand-71

crafted inductions. In other words, it is never clear whether72

natural environment and agents are sufficient for achieving73

high compositionality.74

This paper is the first one to achieve high compositional75

language without any deliberately handcrafted induction.76

The key observation is that the internal agent capacity plays77

a crucial role in the compositionality of emergent language.78

Concretely, the relationship between the agent capacity and79

the compositionality of emergent language is characterized,80

with a novel mutual information-based metric for the com-81

positionality. Regarding the theoretical analysis, we propose82

a novel mutual information-based metric to measure the83

compositionality quantitatively. Regarding the experimen-84

tal validation, we exploit the relationship between agent ca-85

pacity and the compositionality of symbolic language that86

emerged naturally in our experiments. Both the theoretical87

analysis and experimental results lead to a counter-intuitive88

conclusion that lower agent capacity facilitates the emer-89

gence of language with higher compositionality. Therefore,90

by only reducing the agent capacity in such a natural envi-91

ronment, we can generate a more compositional language92

with a higher probability.93

In this paper, we made the following contributions:94

• To our best knowledge, we are the first work to success-95

fully achieve high compositional symbolic language nat-96

urally, without any deliberately handcrafted induction.97

• We analyze the compositionality of emerged symbolic98

language after removing deliberately handcrafted induc-99

tions.100

• We propose a novel mutual information-based metric101

to measure the compositionality quantitatively, which is102

more reasonable.103

• We experimentally exploited the relationship between104

agent capacity. Both theoretical analysis and experimen-105

tal results lead to a counter-intuitive conclusion that lower 106

agent capacity facilitates the emergence of symbolic lan- 107

guage with higher compositionality. 108

The rest of this paper is arranged as follows. Section sum- 109

marizes the related works. Section introduces the experi- 110

mental setup used in this study. Section describes our pro- 111

posed novel mutual-information-based metric for measuring 112

the compositionality of symbolic language. Section gives 113

the experimental results of the exploration for the relation- 114

ship between agent capacity and compositionality. Section 115

concludes this paper. 116

Related Works 117

Previous works focus on the deliberately handcrafted induc- 118

tions that affect the compositionality of emergent language. 119

Some significant works on studying the environmental in- 120

ductions on the compositionality of emergent language are 121

summarized in Table 1. For example, Kirby et al. (2015) 122

explored how the pressures for expressivity and compress- 123

ibility lead the structured language. Kottur et al. (2017) 124

constrained the vocabulary size and whether the listener has 125

memory to coax the compositionality of the emergent lan- 126

guage. Lazaridou et al. (2018) showed that the degree of 127

structure found in the input data affects the emergence of 128

the symbolic language. Li and Bowling (2019) studied how 129

the pressure, ease of teaching, impact on the iterative lan- 130

guage of the population regime. Evtimova et al. (2018) de- 131

signed novel multi-modal scenarios, which the speaker and 132

the listener should access to different modalities of the input 133

object, to explore the language emergence. These inductions 134

are deliberately designed, which are too ideal to be true in 135

the real world. In this paper, these handcrafted inductions 136

above are all removed, and the high compositional language 137

is learned only by the agent capacity. 138

To measure the compositionality of emergent language, 139

metrics are proposed (Kottur et al. 2017; Choi, Lazaridou, 140

and de Freitas 2018; Lazaridou et al. 2018; Evtimova et al. 141

2018; Chaabouni et al. 2020). At the initial stage, many 142

studies only analyzed the language compositionality quali- 143

tatively (i.e. not quantitatively). For example, Choi, Lazari- 144

dou, and de Freitas (2018) printed the agent messages with 145

the letter ‘abcd’ at some training round, and directly ana- 146

lyzed the compositionality on these messages. Kottur et al. 147

(2017) introduced the dialog tree to show the evolution of 148

language compositionality during the training process. Lat- 149
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Figure 2: The referential game in this paper.

ter, some quantitative metrics are explored. The topographic150

similarity(Lazaridou et al. 2018) is introduced to measure151

the distances between all the possible pairs of meanings and152

the corresponding pairs of signals. Chaabouni et al. (2020)153

proposed the positional disentanglement, which measures154

whether symbols in a specific position relate to the specific155

attribute of the input object. From Table 1, most metrics are156

proposed on the sight of speaker. In our view, human beings157

developed the language based on a bilateral communication158

between the speaker and the listener. One research (Choi,159

Lazaridou, and de Freitas 2018) considered the metric bilat-160

erally, but it is not a quantitative metric. In this paper, we161

propose a novel quantitative metric from both the speaker162

and the listener’s perspective.163

In conclusion, the previous works induced the composi-164

tional language based on some deliberately handcrafted in-165

ductions, and the quantitative metric from the sight of both166

the speaker and the listener is still lacking. In this paper, we167

remove all the handcrafted inductions as shown in Table 1168

and get a high compositional language through the internal169

agent capacity. Moreover, we propose a quantitative metric170

which take both the speaker and the listener into account.171

Framework of Language Emerging172

Before going to the detail of the training algorithms, we173

first introduce the environment, gaming rules, and agent ar-174

chitecture for enabling the emergence of symbolic language.175

Environment setup176

Figure 2 shows the entire environment used in this study, i.e.,177

a commonly used referential game. Roughly, the referential178

game requires the speaker and listener to work cooperatively179

to accomplish a certain task. In this paper, the task is to have180

the listener agent reconstruct the object what the speaker181

claims it has seen, only through their emerged communica-182

tion protocol. The consistent success in this game indicates183

that language has emerged between speaker and listener.184

Game rules In our referential game, agents follow the185

following rules to finish the game in a cooperative man-186

ner. In each round, once received an input object t, Speaker187

S speaks symbols s to Listener L ; Listener L reconstruct188

the predicted result t̂ based on the listened symbols s; if189

t = t̂, agents win this game and receive positive rewards190

(r(t, t̂) = 1); otherwise agents fail this game and receive191

Algorithm 1 Learning Algorithm(t, t̂)

1: if Training the speaker agent S then
2: for Batch T randomly selected from M0 ×M1 do
3: for t = (c0, c1) in T do
4: P (s0|t), P (s1|t) = πSold(s = (s0, s1)|t)
5: Sample s0 with P (s0|t), s1 with P (s1|t)
6: P (t̂|s) = πL(t̂|s)
7: Sample t̂ with P (t̂|s)
8: Get reward r(t̂, t)
9: J(θS , θL) = EπS

old
,πL [r(t̂, t) · π

S(s|t)
πS
old

(s|t) ]

10: Update θS by5θSJ
11: end for
12: πSold ← πS

13: end for
14: end if
15: if Training the listener agent L then
16: for Batch T randomly selected from M0 ×M1 do
17: for t = (c0, c1) in T do
18: P (s0|t), P (s1|t) = πS(s = (s0, s1)|t)
19: Sample s0 with P (s0|t), s1 with P (s1|t)
20: P (t̂|s) = πLold(t̂|s)
21: Sample t̂ with P (t̂|s)
22: Get reward r(t̂, t)
23: J(θS , θL) = EπS ,πL

old
[r(t̂, t) · π

L(s|t)
πL
old

(s|t) ]

24: Update θL by5θLJ
25: end for
26: πLold ← πL

27: end for
28: end if

negative rewards (r(t, t̂) = −1). 192

Precisely, during the game, Speaker S receives an input 193

objectt, which is a concept-pair with two concepts from the 194

concept set M0 and M1, i.e., two one-hot vectors represent- 195

ing shape and color, respectively. Based on the t, Speaker S 196

speaks a symbol sequence s, which similarly contains two 197

words from V . The Listener L receives s and output pre- 198

dicted result t̂, a single word (one-hot vector) corresponded 199

with a concept-pair from the Cartesian product ofM0×M1, 200

which represents all the meanings of two combined words 201

from M0 and M1. Please note that since t and t̂ have differ- 202

ent length, we say t = t̂ if t expresses the same concept-pair 203

as t̂, e.g., “red circle”. 204

Agent architecture 205

Figure 3 shows the architecture of the constructed agents, 206

including the Speaker S and Listener L. 207

Speaker. Regarding the Speaker S, it is constructed as a 208

three-layer neural network. The Speaker S processes the in- 209

put object twith a fully-connected layer to obtain the hidden 210

layer hs, which is further processed with fully-connected 211

layers to obtain the output layer. The output layer results 212

indicate the probability distribution of symbols with given 213

input object t, i.e., osi = P (si|t) i ∈ 0, 1. The final readout 214

symbols are sampled based on such probability distribution. 215

Listener. Regarding the Listener L, it is constructed as 216

a three-layer neural network, too. Different from Speaker 217
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Figure 3: The architecture of agents. Left: speaker. Right: listener.

S that tries to separate input object into words, L tries to218

concatenates words to understand the combined meaning.219

The output layer results are also the probability distribu-220

tion of symbols t̂ with given input sequence s, i.e, oL =221

P (t̂|s0, s1).222

Learning algorithm223

To remove all the handcrafted induction as well as for a more224

realistic scenario, agents for this referential game are inde-225

pendent of each other, with no shared model parameters or226

architectural connections. As shown in Algorithm 1, we train227

the separate Speaker S and Listener L with Stochastic Pol-228

icy Gradient methodology in a tick-tock manner, i.e, train-229

ing one agent while keeping the other one. Roughly, when230

training the Speaker, the target is set to maximize the ex-231

pected reward J(θS , θL) = EπS ,πL
[r(t, t̂)] by adjusting the232

parameter θS , where θS is the neural network parameters of233

Speaker S with learned output probability distribution πS ,234

and θL is the neural network parameters of Listener with235

learned probability distribution πL. Similarly, when train-236

ing the Listener, the target is set to maximize the expected237

rewardJ(θS , θL) by fixing the parameter θS and adjusting238

the parameter θL.239

Additionally, to avoid the handcrafted induction on emer-
gent language, we only use the predicted result t̂ of the lis-
tener agent as the evidence of whether giving positive re-
wards. Then, the gradients of the expected reward J(θS , θL)
can be calculated as follows:

∇θSJ = EπS ,πL

[
r(t̂, t) · ∇θSπ

S(s0, s1|t)
πSold(s0, s1|t)

]
(1)

∇θLJ = EπS ,πL

[
r(t̂, t) · ∇θLπ

L(t̂|s0, s1)
πLold(t̂|s0, s1)

]
(2)

Mutual Information Similarity (MIS)240

In this section, we propose the Mutual Information Similar-241

ity (MIS) as a metric of compositionality and give a thorough242

theoretical analysis. MIS is the similarity between an iden-243

tity matrix and the mutual information matrix of concepts244

and symbols.245

Before giving the definition of MIS, we first model the246

agents in the referential games. As shown in Figure 4, the247

Speaker Listener( )0 1,t c c= ( )0 1,s s s= ( )0 1
ˆ ˆ ˆ,t c c=

( ) ( )( )0 1 0 1
ˆ ˆ ˆ, | ,P t c c s s s= =( ) ( )( )0 1 0 1, | ,P s s s t c c= =

Figure 4: The information channel modeling of the agents in
the referential game.

a b c

a

b

c

ac

aa

bc

ba

0s
1s( )0 1,c c ( )0 1,s s

Speaker Listener

Figure 5: An emergent language that the unilateral metrics
cannot measure its non-compositionality. Notice that given
s1 = a, the listener can neither determine the shape nor the
color without the knowledge about s0.

listener and speaker in the referential game are connected 248

in tandem. The speaker agent can be regard as a channel, 249

whose input is a concept c = (c0, c1) and output is a sym- 250

bol s = (s0, s1). The listener agent can be regard as an- 251

other channel, whose input is a symbol s = (s0, s1) and 252

output is a predict result t̂ = (ĉ0, ĉ1). Since the output of 253

the listener only depends on the symbol s, we can model 254

the policy of the speaker agent and the listener agent by the 255

probability distribution P (s = (s0, s1)|t = (c0, c1)) and 256

P (t̂ = (ĉ0, ĉ1)|s0, s1), respectively. 257

Now we can analyse the information of the concepts pre- 258

served in the transmission process given the symbol trans- 259

mitted, i.e. the conditional mutual information I
(
t, t̂|s

)
. 260

Whenever a stable language emerged, the speaker and the 261

listener consistently use a specific symbol s to refer to a 262
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Figure 6: Compositionality of symbolic language under dif-
ferent parameters ([µ−σ, µ+σ], where µ is the mean value
and σ is the standard deviation).

specific object t. Therefore we can safely say I
(
t, t̂|s

)
=263

I
(
t, t̂|st,t̂

)
where st,t̂ = maxs

{
P
(
t̂|s
)
P (s|t)

}
. This con-264

ditional mutual information can be obtained by Equation 3.265

I
(
t, t̂|st,t̂

)
=
∑
t

∑
t̂

P
(
t, t̂|st,t̂

)
log

P
(
t, t̂|st,t̂

)
P (t)P

(
t̂|st,t̂

) (3)

We define the ratio of preserved information R(t, s) as266

Equation 4, where H(t) denotes the information entropy of267

t. R(t, s) measures the degree of alignment between sym-268

bols and objects.269

R (t, s) =
I
(
t, t̂|s = st,t̂

)
H (t)

(4)

Following the Equation 4 we can obtain the normalized mu-270

tual information matrixM by collectingR(ci, sj) for all i, j,271

as Equation 5.272

M =

(
R (c0, s0) R (c0, s0)
R (c0, s0) R (c0, s0)

)
(5)

Each column of M corresponds to the semantic informa-273

tion carried by one symbol. In a perfectly compositional274

language, each symbol represents one specific concept ex-275

clusively. Therefore, the similarity between the columns of276

M and a one-hot vector is aligned with the compositionality277

of the emergent language.278

Finally, we define raw mutual information similarity279

(MIS 0) as the average cosine similarity of M columns and280

one-hot vectors, as Equation 7. Furthermore, MIS is the nor-281

malized mutual information similarity into the [0, 1] value282

range, which can be computed with following formula:283

MIS 0 =
1

2

1∑
j=0

maxi=0,1R (ci, sj)

ε+
√∑1

i=0R
2 (ci, sj)

, ε > 0

MIS = 2MIS 0 − 1

(6)

Generalized to m symbols and n objects, MIS can be com-284
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Figure 7: The ratio of high compositional language. (a)
MIS > 0.99. (b) MIS > 0.9.

puted with following formula: 285

MIS 0 =
1

m

m−1∑
j=0

maxi∈[0,n−1]R (ci, sj)

ε+
√∑n−1

i=0 R
2 (ci, sj)

, ε > 0

MIS =
n ·MIS 0 − 1

n− 1

(7)

MIS is a bilateral metric. Unilateral metrics, e.g. topo- 286

graphic similarity (topo)() and posdis(), only take the policy 287

of the speaker into consideration. We provide an example to 288

illustrate the inadequacy of unilateral metrics, shown in Fig- 289

ure 5. In this example, the speaker only uses s1 to represent 290

the shape. From the perspective of the speaker, the language 291

is perfectly compositional (i.e. both topo and posdis are 1). 292

However, the listener cannot distinguish the shape depend 293

only on s1, showing the non-compositionality in this lan- 294

guage. The bilateral metric MIS addresses such defects by 295

taking the policy of the listener into account, thus MIS < 1. 296

Experiments 297

We exploit the relationship between agent capacity and the 298

compositionality of symbolic language that emerged in our 299

Table 2: The Chi-square test between high-compositionality
and agent capacity.

H0: MIS > 0.90 is independent with hsize

Vocabulary size χ2 df p-value

4 22.20 10 1.41× 10−2

6 27.52 10 2.16× 10−3

10 64.46 10 5.14× 10−10

H0: MIS > 0.99 is independent with hsize

Vocabulary size χ2 df p-value

4 30.19 10 7.97× 10−4

6 25.96 10 3.80× 10−3

10 33.80 10 2.00× 10−4
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Figure 8: Accuracy of Listeners when varying hsize from 1 to 8. Each curve represents an average accuracy trend from 50
repeated training, with the range of [µ− σ, µ+ σ], where µ is the average accuracy and σ is the standard deviation.

natural referential game. For various configuration of vocab-300

ulary size, we fix |M0| = |M1| = 3 and train the speaker-301

listener agents to emerge symbolic language when varying302

the agent capacities, i.e., hidden layer size (hsize), from 6 to303

100.304

Figure 6 reports the experimental results. It can be ob-305

served that the mean value of MIS decreases as the value of306

hsize increases. Taking the configuration of vocabulary size307

|V | = 10 as an example, the mean value of MIS is around308

0.8 when hsize ≤ 20; MIS significantly decreases to 0.75309

when hsize increases from 20 to 40; MIS further reduces310

to 0.7 when hsize increases from 40 to 100. For different311

vocabulary sizes, the MIS shares the similar behavior. It is312

because symbols in low-compositional languages carry se-313

mantic information about more concepts. As a result, higher314

capacity is required to characterize the complex semantic315

information for low-compositional language to emerge. In316

summary, lower agent capacity improves the possibility of317

emerging high compositional symbolic language.318

Ratio of high compositional language.319

We further breakdown our results to investigate the impor-320

tance of agent capacity to the compositionality of symbolic321

language. Figure 7 reports the ratio of high compositional322

symbolic language in all emerged languages, Figure 7 (a)323

and (b) for MIS > 0.99 and MIS > 0.9, respectively. It324

can be observed that the ratio of high compositional sym-325

bolic languages decreases drastically with the increase of 326

hsize. Taking vocabulary size |V | = 4 as an example, sym- 327

bolic languages with compositionality MIS > 0.99 take 328

>10% mainly over all the emerged symbolic languages, 329

when hsize < 20; the ratio reduces to 0%∼5% when hsize 330

increases to 40; the ratio reduces around 3% when hsize 331

goes beyond 40. MIS > 0.9 reports similar results. Notably, 332

when hsize is large enough (e.g., > 40), high compositional 333

symbolic language is hard to emerge in a natural referential 334

game, for easy-to-emerge low compositional symbolic lan- 335

guage is sufficient in scenarios of referential game. On the 336

other side, agents are enforced to use compositionality to ex- 337

press more meanings, for the constraint from low capacity. 338

Additionally, we also perform χ2 test to check the statisti- 339

cal significance between the high compositionality and agent 340

capacity. Table 2 reports the χ2 test results for MIS > 0.99 341

and MIS > 0.9, respectively. It can be observed that for dif- 342

ferent vocabulary sizes, the p-value is always less than 0.05, 343

which means the high compositionality has a statistical sig- 344

nificance related to agent capacity. 345

Breakdown into language teaching. 346

We further breakdown the learning process to investigate the 347

language teaching scenario, where the Speaker teaches the 348

Listener its fixed symbolic language. We define three sym- 349

bolic languages in different compositionality for Speaker to 350

teach, i.e., high (LA, MIS = 1), mediate (LB, MIS = 0.83), 351



Figure 9: Three pre-defined language for teaching. (a) LA:
high compositionality (MIS = 1). (b) LB: mediate com-
positionality (MIS = 0.83). (c) LC: low compositionality
(MIS = 0.41).

low (LC, MIS = 0.41), see Figure 9.352

Figure 8 reports the accuracy of Listener, i.e., the ra-353

tio of the correctly predicted symbols spoke by Speaker354

(t = (̂t)), which varies with the training iterations under dif-355

ferent agent capacities. Figure 8 (a) shows that when hsize356

equals to 1, the agent capacity is too low to handle lan-357

guages. Figure 8 (b) shows that when hsize equals to 2, agent358

can only learnLAwhose compositionality (i.e. MIS) is high-359

est in all three languages. Combing these two observations,360

we can infer that language with lower compositionality re-361

quires higher agent capacity to ensure communicating suc-362

cessfully (i.e., hsize). Additionally, Figure 8 (c)∼(h) shows363

that the higher agent capacity causes a faster training pro-364

cess for all three languages, but the improvement for differ-365

ent languages is quite different. It is obvious that language366

with lower compositionality also requires higher agent ca-367

pacity to train faster.368

Conclusion369

In this paper, we are the first work to achieve high compo-370

sitional symbolic language without any deliberately hand-371

crafted induction. We made the key observation that the in-372

ternal agent capacity plays a crucial role in the composi-373

tionality of symbolic language. Together with the theoretical374

analysis, experimental results led to a counter-intuitive con-375

clusion that lower agent capacity facilitates the emergence376

of symbolic language with higher compositionality. There-377

fore, by only reducing the agent capacity in such a natural378

environment, we generated a higher compositional symbolic379

language with a higher probability.380
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