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Enabling the Emergence of Symbolic Language without Handcrafted Inductions

Abstract

The emergence of symbolic languages with high composi-
tionality has attracted extensive attention from a broad range
of communities. Existing studies achieve high composition-
ality through deliberately handcrafted inductions (e.g., addi-
tional rewards, constructed loss functions and structural in-
put data) in multi-agent learning, which are unnatural. Yet,
few studies investigate the emergence of symbolic language
with high compositionality naturally, i.e., without deliber-
ately handcrafted inductions.

In this paper, we are the first to successfully achieve high
compositional symbolic language in a natural manner with-
out handcrafted inductions. Initially, by investigating the
emergent language after removing the deliberately hand-
crafted inductions, we observe the difficulty in naturally gen-
erating high compositional language. Further, we reveal and
characterize the quantitative relationship between the agent
capacity and the compositionality of emergent language, with
a novel mutual information-based metric for more reason-
able measuring the compositionality. The experimental re-
sults lead to a counter-intuitive conclusion that lower agent
capacity facilitates the emergence of language with higher
compositionality. Based on our conclusion, we can get a more
compositional language with a higher probability.

Introduction

The emergence of language has always been an important
issue, which attracts attention from a broad range of com-
munities, including philology, biology, and computer sci-
ence. Especially in computer science, efforts in recent years
trying to explore the emergent language in virtual multi-
agent environments, where agents are trained to communi-
cate with neural-network-based methods such as deep re-
inforcement learning (Kottur et al. 2017; Bogin, Geva, and
Berant 2018; Lazaridou et al. 2018; Choi, Lazaridou, and
de Freitas 2018; Jaques et al. 2019; Mul, Bouchacourt, and
Bruni 2019; Kharitonov et al. 2019; Labash et al. 2020;
Chaabouni et al. 2020).

The quality of emergent language is typically measured
by its compositionality. Compositionality is a principle that
determines whether the meaning of a complex expression
(e.g, phrase), which is assembled out of a given set of simple

Copyright (© 2021, Association for the Advancement of Artificial
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Figure 1: The distribution of compositionality for 100
emerged symbolic languages without any induction. It can
be observed that high compositional symbolic language sel-
dom emerged (e.g., < 5% for compositionality > 0.99).
Moreover, varying the vocabulary size does not affect the
compositionality notably.

components (e.g., symbols), can be determined by its con-
stituent components and the rule combining them (Andreas
2018; Chaabouni et al. 2020). For example, the expression
“AAAI is a conference” consists of two meaningful words
“AAAI” and “conference”, and a rule for definition (“is”).
Compositionality is considered to be a source of productiv-
ity, systematicity, and learnability of language, and the rea-
son why a language with finite vocabulary can express al-
most infinite concepts.

Prior studies focus on achieving high compositional sym-
bolic language through deliberately handcrafted inductions,
e.g., additional rewards (Mordatch and Abbeel 2017), con-
structed loss functions (Kharitonov et al. 2019), structural
input data (Lazaridou et al. 2018; Evtimova et al. 2018),
memoryless (Kottur et al. 2017; Li and Bowling 2019), and
ease-of-teaching (Li and Bowling 2019). Such optimiza-
tion methodologies are driven by the challenges to generate
high compositional symbolic without induction in an exist-
ing multi-agent environment.

Figure 1 reports the compositionality when training
two agents in the widely-used listener-speaker referential
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Table 1: Handcrafted inductions in related works.

Works

Handcrafted induction

Compositionality

(Kirby et al. 2015)

(Kottur et al. 2017)

(Choi, Lazaridou, and de Freitas 2018)
(Lazaridou et al. 2018)

(Evtimova et al. 2018)

(Li and Bowling 2019)

(Chaabouni et al. 2019)

(Chaabouni et al. 2020)

Ours None

Expressivity and compressibility
Listener’s memory

Maximum message length

Structure of input data

Multi-modal scenarios

Population size, resetting all listeners
Word-order constraints

Easier to decode

Not quantitative, Speaker

Not quantitative, Speaker

Not quantitative, Speaker+Listener
Quantitative, Speaker
Quantitative, Speaker
Quantitative, Speaker

Not quantitative, Speaker
Quantitative, Speaker
Quantitative, Speaker+Listener

game (David 1969) for emerging 100 languages, and it can
be observed that the compositionality of emergent language
is seldom high (e.g., < 5% for compositionality > 0.99)
without any induction. Moreover, varying the vocabulary
size does not affect the compositionality notably. Though
such unnatural inductions are useful, they prevent us from
better understanding the mystery of the emergence of lan-
guage and even intelligence among our pre-human ances-
tors. Yet, few works investigate the emergence of high com-
positional symbolic language naturally, i.e., without hand-
crafted inductions. In other words, it is never clear whether
natural environment and agents are sufficient for achieving
high compositionality.

This paper is the first one to achieve high compositional
language without any deliberately handcrafted induction.
The key observation is that the internal agent capacity plays
a crucial role in the compositionality of emergent language.
Concretely, the relationship between the agent capacity and
the compositionality of emergent language is characterized,
with a novel mutual information-based metric for the com-
positionality. Regarding the theoretical analysis, we propose
a novel mutual information-based metric to measure the
compositionality quantitatively. Regarding the experimen-
tal validation, we exploit the relationship between agent ca-
pacity and the compositionality of symbolic language that
emerged naturally in our experiments. Both the theoretical
analysis and experimental results lead to a counter-intuitive
conclusion that lower agent capacity facilitates the emer-
gence of language with higher compositionality. Therefore,
by only reducing the agent capacity in such a natural envi-
ronment, we can generate a more compositional language
with a higher probability.

In this paper, we made the following contributions:

e To our best knowledge, we are the first work to success-
fully achieve high compositional symbolic language nat-
urally, without any deliberately handcrafted induction.

e We analyze the compositionality of emerged symbolic
language after removing deliberately handcrafted induc-
tions.

e We propose a novel mutual information-based metric
to measure the compositionality quantitatively, which is
more reasonable.

e We experimentally exploited the relationship between
agent capacity. Both theoretical analysis and experimen-

tal results lead to a counter-intuitive conclusion that lower

agent capacity facilitates the emergence of symbolic lan-

guage with higher compositionality.

The rest of this paper is arranged as follows. Section sum-
marizes the related works. Section introduces the experi-
mental setup used in this study. Section describes our pro-
posed novel mutual-information-based metric for measuring
the compositionality of symbolic language. Section gives
the experimental results of the exploration for the relation-
ship between agent capacity and compositionality. Section
concludes this paper.

Related Works

Previous works focus on the deliberately handcrafted induc-
tions that affect the compositionality of emergent language.
Some significant works on studying the environmental in-
ductions on the compositionality of emergent language are
summarized in Table 1. For example, Kirby et al. (2015)
explored how the pressures for expressivity and compress-
ibility lead the structured language. Kottur et al. (2017)
constrained the vocabulary size and whether the listener has
memory to coax the compositionality of the emergent lan-
guage. Lazaridou et al. (2018) showed that the degree of
structure found in the input data affects the emergence of
the symbolic language. Li and Bowling (2019) studied how
the pressure, ease of teaching, impact on the iterative lan-
guage of the population regime. Evtimova et al. (2018) de-
signed novel multi-modal scenarios, which the speaker and
the listener should access to different modalities of the input
object, to explore the language emergence. These inductions
are deliberately designed, which are too ideal to be true in
the real world. In this paper, these handcrafted inductions
above are all removed, and the high compositional language
is learned only by the agent capacity.

To measure the compositionality of emergent language,
metrics are proposed (Kottur et al. 2017; Choi, Lazaridou,
and de Freitas 2018; Lazaridou et al. 2018; Evtimova et al.
2018; Chaabouni et al. 2020). At the initial stage, many
studies only analyzed the language compositionality quali-
tatively (i.e. not quantitatively). For example, Choi, Lazari-
dou, and de Freitas (2018) printed the agent messages with
the letter ‘abcd’ at some training round, and directly ana-
lyzed the compositionality on these messages. Kottur et al.
(2017) introduced the dialog tree to show the evolution of
language compositionality during the training process. Lat-
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Figure 2: The referential game in this paper.

ter, some quantitative metrics are explored. The topographic
similarity(Lazaridou et al. 2018) is introduced to measure
the distances between all the possible pairs of meanings and
the corresponding pairs of signals. Chaabouni et al. (2020)
proposed the positional disentanglement, which measures
whether symbols in a specific position relate to the specific
attribute of the input object. From Table 1, most metrics are
proposed on the sight of speaker. In our view, human beings
developed the language based on a bilateral communication
between the speaker and the listener. One research (Choi,
Lazaridou, and de Freitas 2018) considered the metric bilat-
erally, but it is not a quantitative metric. In this paper, we
propose a novel quantitative metric from both the speaker
and the listener’s perspective.

In conclusion, the previous works induced the composi-
tional language based on some deliberately handcrafted in-
ductions, and the quantitative metric from the sight of both
the speaker and the listener is still lacking. In this paper, we
remove all the handcrafted inductions as shown in Table 1
and get a high compositional language through the internal
agent capacity. Moreover, we propose a quantitative metric
which take both the speaker and the listener into account.

Framework of Language Emerging

Before going to the detail of the training algorithms, we
first introduce the environment, gaming rules, and agent ar-
chitecture for enabling the emergence of symbolic language.

Environment setup

Figure 2 shows the entire environment used in this study, i.e.,
a commonly used referential game. Roughly, the referential
game requires the speaker and listener to work cooperatively
to accomplish a certain task. In this paper, the task is to have
the listener agent reconstruct the object what the speaker
claims it has seen, only through their emerged communica-
tion protocol. The consistent success in this game indicates
that language has emerged between speaker and listener.
Game rules In our referential game, agents follow the
following rules to finish the game in a cooperative man-
ner. In each round, once received an input object ¢, Speaker
S speaks symbols s to Listener L ; Listener L reconstruct
the predicted result ¢ based on the listened symbols s; if
t = i, agents win this game and receive positive rewards
(r(t,t) = 1); otherwise agents fail this game and receive

Algorithm 1 Learning Algorithm(t, )

1: if Training the speaker agent S then

2:  for Batch T randomly selected from Mo x M; do
3 for ¢t = (co,c1) in T do

4 P(solt), P(s1t) = m5a(s = (s0,51)[¢)

5 Sample so with P(solt), s1 with P(s1]¢)

6: P(t]s) = nt(f]s)

7: Sample £ with P(£|s)

8 Get reward (i, t)

9: J(O5,0%) = Bps ulr(ib) - ZCI0
old’ o (slt)

10: Update 8° by s .J

11: end for

12: o,

13: end for

14: end if

15: if Training the listener agent L then
16:  for Batch T randomly selected from My x M; do

17: for ¢t = (co,c1) in T do

18: P(solt), P(s1]t) = (s = (s0, 51)|t)

19: Sample so with P(solt), s1 with P(s1]t)

20: P(t]s) = w5, (f]s)

21: Sample £ with P(£|s)

22: Get reward r (£, t)

23: J(05,0%) = B o [r(ft) - et
T ol mrq(slt)

24: Update 0 by 7oz J

25: end for

26: b, —nt

27:  end for

28: end if

negative rewards (r(t, %) = —1).

Precisely, during the game, Speaker S receives an input
objectt, which is a concept-pair with two concepts from the
concept set My and M, i.e., two one-hot vectors represent-
ing shape and color, respectively. Based on the ¢, Speaker S
speaks a symbol sequence s, which similarly contains two
words from V. The Listener L receives s and output pre-
dicted result £, a single word (one-hot vector) corresponded
with a concept-pair from the Cartesian product of My x M,
which represents all the meanings of two combined words
from My and M;. Please note that since ¢ and ¢ have differ-
ent length, we say t = 7 if ¢ expresses the same concept-pair
as 7, e.g., “red circle”.

Agent architecture

Figure 3 shows the architecture of the constructed agents,
including the Speaker S and Listener L.

Speaker. Regarding the Speaker .S, it is constructed as a
three-layer neural network. The Speaker .S processes the in-
put object ¢ with a fully-connected layer to obtain the hidden
layer h®, which is further processed with fully-connected
layers to obtain the output layer. The output layer results
indicate the probability distribution of symbols with given
input object ¢, i.e., 0§ = P(s;|t) i € 0, 1. The final readout
symbols are sampled based on such probability distribution.

Listener. Regarding the Listener L, it is constructed as
a three-layer neural network, too. Different from Speaker
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Figure 3: The architecture of agents. Left: speaker. Right: listener.

S that tries to separate input object into words, L tries to
concatenates words to understand the combined meaning.
The output layer results are also the probability distribu-
tion of symbols ¢ with given input sequence s, i.e, 0¥ =

P(£|30, 81).

Learning algorithm

To remove all the handcrafted induction as well as for a more
realistic scenario, agents for this referential game are inde-
pendent of each other, with no shared model parameters or
architectural connections. As shown in Algorithm 1, we train
the separate Speaker S and Listener L with Stochastic Pol-
icy Gradient methodology in a tick-tock manner, i.e, train-
ing one agent while keeping the other one. Roughly, when
training the Speaker, the target is set to maximize the ex-
pected reward J(0s,01) = Erg . [r(t,1)] by adjusting the
parameter 6g, where 0g is the neural network parameters of
Speaker S with learned output probability distribution 7g,
and 6y, is the neural network parameters of Listener with
learned probability distribution 7z,. Similarly, when train-
ing the Listener, the target is set to maximize the expected
rewardJ (0g,0;) by fixing the parameter 65 and adjusting
the parameter 6.

Additionally, to avoid the handcrafted induction on emer-
gent language, we only use the predicted result ¢ of the lis-
tener agent as the evidence of whether giving positive re-
wards. Then, the gradients of the expected reward J (g, 1,)
can be calculated as follows:

. S ¢

VgSJ = Eﬂ's,ﬂ'L |:’I‘(t,t) . VQZ7T‘(<9()751|):| (1)
7480, 51(t)

Vo " ({s0,51)

W(fld(ﬂso,sl)

Mutual Information Similarity (MIS)

In this section, we propose the Mutual Information Similar-
ity (MIS) as a metric of compositionality and give a thorough
theoretical analysis. MIS is the similarity between an iden-
tity matrix and the mutual information matrix of concepts
and symbols.

Before giving the definition of MIS, we first model the
agents in the referential games. As shown in Figure 4, the

Vord =Eps o [r(t,t) -

} @

t=(cy,C,)—»| Speaker —» S=(S,,5,) —»{ Listener —» f=(¢,.¢,)
P(s=(50,5)It=(.¢,)) P(E=(66)Is=(55))

Figure 4: The information channel modeling of the agents in
the referential game.

Speaker Listener
(@ )(53) NERRRE
® | ac -l EN BN
® |bc NN BN BN )
H | aa c | |H |
M | ba

Figure 5: An emergent language that the unilateral metrics
cannot measure its non-compositionality. Notice that given
s1 = a, the listener can neither determine the shape nor the
color without the knowledge about sg.

listener and speaker in the referential game are connected
in tandem. The speaker agent can be regard as a channel,
whose input is a concept ¢ = (cg, ¢1) and output is a sym-
bol s = (sp,s1). The listener agent can be regard as an-
other channel, whose input is a symbol s = (sg,s1) and
output is a predict result { = (&, é;). Since the output of
the listener only depends on the symbol s, we can model
the policy of the speaker agent and the listener agent by the
probability distribution P(s = (sg,s1)[t = (co,c1)) and
P(t = (o, ¢1)|50, 51), respectively.

Now we can analyse the information of the concepts pre-
served in the transmission process given the symbol trans-
mitted, i.e. the conditional mutual information [ (t,ﬂs).
Whenever a stable language emerged, the speaker and the
listener consistently use a specific symbol s to refer to a
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Figure 6: Compositionality of symbolic language under dif-
ferent parameters ([u — o, pu + o], where p is the mean value
and o is the standard deviation).

specific object t. Therefore we can safely say [ (t, ﬂs) =
I (t,t[s, ;) where s, ; = max, { P (f|s) P (s|t)}. This con-
ditional mutual information can be obtained by Equation 3.

t t|stt

P (t,1]s, ;)
ZZP (. tls, ) IOgP(t) P ({ls,0) 3)

We define the ratio of preserved information R(t,s) as
Equation 4, where H (t) denotes the information entropy of
t. R(t,s) measures the degree of alignment between sym-
bols and objects.

I(t,ts=s,;)

0 “

R(t,s) =
Following the Equation 4 we can obtain the normalized mu-
tual information matrix M by collecting R(c;, s,) for all ¢, 7,
as Equation 5.

M= <R(00750)

R (Co, So) R (Co, 80)

R (007 50)) (5)
Each column of M corresponds to the semantic informa-
tion carried by one symbol. In a perfectly compositional
language, each symbol represents one specific concept ex-
clusively. Therefore, the similarity between the columns of
M and a one-hot vector is aligned with the compositionality
of the emergent language.

Finally, we define raw mutual information similarity
(MIS ) as the average cosine similarity of M columns and
one-hot vectors, as Equation 7. Furthermore, MIS is the nor-
malized mutual information similarity into the [0, 1] value
range, which can be computed with following formula:

1
1 max;—=0,1 R (Ci7 Sj)

MISo = 2> e>0

2j:06+ \/23:()32 (Ci78j)’ (6)

MIS = 2MISy — 1

Generalized to m symbols and n objects, MIS can be com-

MIS threshold = 0.99 MIS threshold = 0.9
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Figure 7: The ratio of high compositional language. (a)
MIS > 0.99.(b) MIS > 0.9.

puted with following formula:

1 mz_l max;e(o,n—1] R (ci, 55)

MISo = — - €>0

j=0 € + Z?;o R? (Cia Sj) (7N
mis = o MISo—1

n—1

MIS is a bilateral metric. Unilateral metrics, e.g. fopo-
graphic similarity (topo)() and posdis(), only take the policy
of the speaker into consideration. We provide an example to
illustrate the inadequacy of unilateral metrics, shown in Fig-
ure 5. In this example, the speaker only uses s; to represent
the shape. From the perspective of the speaker, the language
is perfectly compositional (i.e. both topo and posdis are 1).
However, the listener cannot distinguish the shape depend
only on sj, showing the non-compositionality in this lan-
guage. The bilateral metric MIS addresses such defects by
taking the policy of the listener into account, thus MIS < 1.

Experiments

We exploit the relationship between agent capacity and the
compositionality of symbolic language that emerged in our

Table 2: The Chi-square test between high-compositionality
and agent capacity.

Ho: MIS > 0.90 is independent with hs;..

Vocabulary size X2 df p-value
4 2220 10 1.41 x 1072
6 2752 10 2.16 x 1073
10 6446 10 5.14 x 1071'°

Ho: MIS > 0.99 is independent with A,

Vocabulary size X2 df p-value
4 30.19 10 7.97x107*
6 2596 10 3.80x 1073
10 3380 10 2.00 x 107*
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Figure 8: Accuracy of Listeners when varying hg;,. from 1 to 8. Each curve represents an average accuracy trend from 50
repeated training, with the range of [© — o, i + o], where p is the average accuracy and o is the standard deviation.

natural referential game. For various configuration of vocab-
ulary size, we fix |[My| = |M1| = 3 and train the speaker-
listener agents to emerge symbolic language when varying
the agent capacities, i.e., hidden layer size (hs;,.), from 6 to
100.

Figure 6 reports the experimental results. It can be ob-
served that the mean value of MIS decreases as the value of
hsize increases. Taking the configuration of vocabulary size
|[V| = 10 as an example, the mean value of MIS is around
0.8 when hg;.. < 20; MIS significantly decreases to 0.75
when hg;.. increases from 20 to 40; MIS further reduces
to 0.7 when hg;,. increases from 40 to 100. For different
vocabulary sizes, the MIS shares the similar behavior. It is
because symbols in low-compositional languages carry se-
mantic information about more concepts. As a result, higher
capacity is required to characterize the complex semantic
information for low-compositional language to emerge. In
summary, lower agent capacity improves the possibility of
emerging high compositional symbolic language.

Ratio of high compositional language.

We further breakdown our results to investigate the impor-
tance of agent capacity to the compositionality of symbolic
language. Figure 7 reports the ratio of high compositional
symbolic language in all emerged languages, Figure 7 (a)
and (b) for MIS > 0.99 and MIS > 0.9, respectively. It
can be observed that the ratio of high compositional sym-

bolic languages decreases drastically with the increase of
hsize- Taking vocabulary size |V'| = 4 as an example, sym-
bolic languages with compositionality MIS > 0.99 take
>10% mainly over all the emerged symbolic languages,
when hg;.. < 20; the ratio reduces to 0%~5% when hy;
increases to 40; the ratio reduces around 3% when hg;..
goes beyond 40. MIS > 0.9 reports similar results. Notably,
when hg; .. is large enough (e.g., > 40), high compositional
symbolic language is hard to emerge in a natural referential
game, for easy-to-emerge low compositional symbolic lan-
guage is sufficient in scenarios of referential game. On the
other side, agents are enforced to use compositionality to ex-
press more meanings, for the constraint from low capacity.

Additionally, we also perform x? test to check the statisti-
cal significance between the high compositionality and agent
capacity. Table 2 reports the x? test results for MIS > 0.99
and MIS > 0.9, respectively. It can be observed that for dif-
ferent vocabulary sizes, the p-value is always less than 0.05,
which means the high compositionality has a statistical sig-
nificance related to agent capacity.

Breakdown into language teaching.

We further breakdown the learning process to investigate the
language teaching scenario, where the Speaker teaches the
Listener its fixed symbolic language. We define three sym-
bolic languages in different compositionality for Speaker to
teach, i.e., high (LA, MIS = 1), mediate (LB, MIS = 0.83),

326
327
328
329
330
331
332
333

335
336
337
338
339
340
341
342
343
344
345

346

347
348
349
350
351



352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368

369

371
372
373
374
375
376
377
378

380

382
383
384

LA circle square triangle
red (a,a) (a, b) (a, c)
blue (b, a) (b, ) (b, ¢)
green (c,a) (c, ) (c, )
LB circle square triangle
red (a, a) (a, b) (a, c)
hlue (a, d) (a, e) (a, f)
green (b, a) (b, b) (b, c)
LC circle square triangle
red (a, a) (b, &) (c,a)
blue (d, a) (e, a) (f, a)
green (g, a) (h, a) (i, a)

Figure 9: Three pre-defined language for teaching. (a) LA:
high compositionality (M 1S = 1). (b) LB: mediate com-
positionality (M 1S = 0.83). (c) LC: low compositionality
(MIS =0.41).

low (LC, MIS = 0.41), see Figure 9.
Figure 8 reports the accuracy of Listener, i.e., the ra-
tio of the correctly predicted symbols spoke by Speaker

(t = (t)), which varies with the training iterations under dif-
ferent agent capacities. Figure 8 (a) shows that when hg; ..
equals to 1, the agent capacity is too low to handle lan-
guages. Figure 8 (b) shows that when h;,. equals to 2, agent
can only learn LA whose compositionality (i.e. MIS) is high-
est in all three languages. Combing these two observations,
we can infer that language with lower compositionality re-
quires higher agent capacity to ensure communicating suc-
cessfully (i.e., hg;.). Additionally, Figure 8 (c)~(h) shows
that the higher agent capacity causes a faster training pro-
cess for all three languages, but the improvement for differ-
ent languages is quite different. It is obvious that language
with lower compositionality also requires higher agent ca-
pacity to train faster.

Conclusion

In this paper, we are the first work to achieve high compo-
sitional symbolic language without any deliberately hand-
crafted induction. We made the key observation that the in-
ternal agent capacity plays a crucial role in the composi-
tionality of symbolic language. Together with the theoretical
analysis, experimental results led to a counter-intuitive con-
clusion that lower agent capacity facilitates the emergence
of symbolic language with higher compositionality. There-
fore, by only reducing the agent capacity in such a natural
environment, we generated a higher compositional symbolic
language with a higher probability.
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