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1 Abstract

Recent advance on symbolic language in neural network based multi-agent systems have
shown great progress in compositionality, which is taken as a distinguished feature of human
language different from animal language. However, these efforts only explored environmental
pressures, without realizing the importance of characterization capacity of agents.

In the work, we explore the relationship between the characterization capacity of agents and
the compositionality of symbolic languages. By both proving with mutual information theory
and verifying with extensive experiments, we made the counter-intuitive conclusion that lower
characterization capacity facilitates the emergence of symbolic language with higher composi-

tionality.

2 Introduction

The emergence and evolution of human language has always been an important and contro-
versial issue. The problem covers many fields, including artificial intelligence in computer science.
Computer scientists induce the emergence and evolution of languages in multi-agent systems by
setting up pure communication scenarios, such as referential games and communication-action
policies.

Researchers have confirmed that agents can master a symbolic language to complete ap-
pointed tasks. Such symbolic language is a communication protocol using symbols or characters
to represent concepts.

people try to make the emergent language similar to human natural language.

Compositionality is a widely accepted metric used to measure the hierarchical complexity of
language structure, and it is also a key feature to distinguish human language from animal lan-
guage. Syntactic languages with high compositionality, such as human natural language, are able
to express complex concepts through the combination of symbols and to produce certain syntax.
In contrast, non-syntactic languages with low compositionality, such as animal languages, are
almost impossible to extract specific concepts (i.e. attributes of objects) from a single symbol.

Researchers have found that various environmental pressures would affect compositionality.
e.g. small vocabulary sizes, memoryless, carefully constructed distractors, ease-of-teaching.

B2, MATES W TE ISR compotionality RSZM. FATA B T HIZUA BBXF compostion-
ality 45 5.

Besides environmental pressures, we suggest that the impact of internal factors from agents
themselves on compositionality is equally significant.

Many people believe that the cranial capacity of animals is not big enough to master lan-
guages with high compositionality. In neuron network based multi-agent systems, this hypothesis
corresponds to a point of view that it’ s difficult for agents with insufficient characterization

capacity (i.e. number of neural nodes) to master languages with high compositionality.



However, we found that lower characterization capacity facilitates the emergence of symbolic
language with higher compositionality, within the range afforded by the need for successful
communication. We prove the point with mutual information theory and experiments.

From theoretical analysis, we define bilaterality as the quantitative metrics for composition-
ality. The bilaterality is the similarity between an identity matrix and the mutual information
matrix of concepts and symbols (after normalization). We use the MSC (Markov Series Chan-
nel) to model the language transmission process and use the probability distribution of symbols
and concepts to model policies of agents. Combining the MSC model with mutual information
theory, we prove that (the complexity of the mutual information between original concepts re-
ceived by the speaker and predicted concepts outputted by the listener is anti-correlated with
the compositionality of the emergent language, which can be characterized by the definition of
bilaterality.)

Then with experiments we show that a low-bilateral (i.e. low-compositionality) language
needs higher capacity of the model to emerge. We build a listener-speaker referential game
as experimental framework, and train agents with the correctness of forecast output from the
listener as the only criterion. (The criterion does not imply any environmental pressures on
the agents) i) i3 IR B 2 A K UER, K “A 475 i environmental pressures” [ A &
correctness X~ criterion 4~ &, i s2 A1 AL i F§ correctness Il 2 agents. Therefore, we
can study the impact of capacity on the compositionality without any environmental pressures’
affection (R NHTTHIRTESE environmental pressures, X HEIRE T A S 28T0, FTPABGE =AM

JG BB R4 environmental pressures Y~FE). Moreover, to study the impact of capacity on
the compositionality under a more ‘natural’ environment, the speaker and listener are individual
agents, i.e. disconnected models without sharing parameters (#2445 individual [ X F—~
CRRBURAHIE” | X — b2 LR B, QiR M IR 21> auto-encoder T, auto-encoder B
HI 4R S A REFRAE emergent language). The conclusion suggests that by restricting the number
of neurons in a model the emerging languages attend to have higher bilaterality, thus higher
compositionality.

To sum up, our contributions are as follows:

a) We propose a novel metric, namely bilaterality, to quantitatively measure the compositionality

of the emerging language.

b) With experiments we found that the capacity of model is anti-correlated with the bilaterality,
showing that restricting the number of neurons in a model attends to emerging a language

with higher compositionality.

3 Related Work

—BTHERETENELERWHHE, #2134 environmental pressure X} compositionality
2. XXX #2177 small vocabulary sizes; XXX #H T memoryless; XXX $2£H T carefully



constructed distractors; XXX #2H T ease-of-teaching. fhfiTHRZME T — U TALALAR Sy B2
A 2 characterization capacity.

AL, naturally’ emergent communication g —MEAF KR . H TAE
i ] T K504 385 7 scenarios, models, reward, loss function. XXX il T XXX+ - % Ay
ST AE R T agents AN T &AM AN 5T, AOUHISS T naturally emergent compostional
language’ HYAHRE5IE, 1M H AL 7HL/BM/FE T BNAEXT compositionality F S M.

AR, T metrics to measure communication 4 WM KSR, 42 TEEERE T 1T
J# & compositionality and the degree of alignment between symbols and concepts HY metrics.
On the Pitfalls of Measuring Emergent Communication iX f SCE B P T i 4F 58 H B widely
accepted metrics, H-¥F A1/ N JS: those that measure positive signaling, X2 metrics J&
U TE speaker [, T4 speaker it 1) symbols FIHFZYLIY) concepts Z ] 3 &, il 4N
XXX; and those that measure positive listening, X2 metrics Z357E listener fMFH, I Ti%E
listener Y E[¥) symbols AT concepts 2 [B]AY K FR, HlUn XXX, G UL, X 28 metrics 4
#RZ’ unilateral * metrics, [HEIEG/D—NAEE EEER)’ bilateral” $FfE: speaker fil listener
I T HEREE, 1.e. 7 concepts Al symbols [ R._EAY—Z .

gi b, XS TAEAN IO I 2P FE— AN A FE” natural’ FEEH, BB characterization
capacity X} compositionality of emergent language 5 /EFEHIREINT X 21X fom SCEETEAR e 19 7]
i WAE SIS MDA S seug gE ) H T —Fp AR’ bilateral’ metrics, so that we can
quantificationally measure characterization capacity’ s impact on compositionality of emergent

language.

4 Experimental Framework

FATLE referential game FEHESCIGHELE. referential game J&—F) speaker 1 listener J# i3
RRIEAETER A 5. F 2 TAE, filin XXX, #3{# [ referential game fiff 5% emergent language.
N, AT BN IR set up, agent FYBIBLEEHY, YIGREEFNPRAL 7.

4.1 Set up

TEFATEEI W referential game A, FE U RGARELST A0 B Af R -

a) speaker agent S fR#fi input object ¢ %iH! symbol sequence s
b) listener agent L #R¥E symbol sequence s #ijH predict result i

c) 4 t =t i, AN agents TEARMEEIT, S Al L 4> 3515 rewardR(¢, 1) = 1. 750 agents
20, FAI3S reward R(¢, 1) = —1

object ¢t [l & & £ ) concept sequence (co,c1) W, it H t = (co,c1). HH concept
co(shape) Fil ¢q(color) 43 5IH H CHBUESE S Mo F1 My, L H, we let [M;[(i = 0,1) range
from 3 to 8. FATHKE R |Mo| ) one-hot vector Fi shape co, H KR |Mi] 1Y one-hot
vector F~ color ¢1. X4~ one-hot vector concatenate B—A~K R |Mo| + |M1| B vector, ¢
Hi% vector ZE7~.



s & [8 72 K B symbol sequence (sg,s1). H 44 symbol s;(i = 0,1) HEHRE T
vocabulary set V. SZEH ) we let |V| range from 3 to 10. Ff HARIE |v]? > [Mo| x |My|, EMFIE
symbol sequence (so,s1) 7> HIFIR ALY object t. AP (V] [ one-hot
vector 43 HIFRR so F s1. XIS one-hot vector concatenate ii— MK E K 2 x |V| #) vector, s

% vector R,

predict result £ fH—MEREER | M| x | M| ) one-hot vector 37i. % one-hot vector H ()4
A bit %R —A~ object, Bl—> shape il color FIZH &, iCH £ = (¢o, ¢1). BAkHb, t[ix | M| +j] =1
correspond to élfi] = 1 and &[j] = 10 =0,...,|Mo| = 1;j = 0,...,[My] — 1).

RATE X £ =t 235t F1 43 BIXF Y object AH[E, i.e. R (co,c1) = (o, ¢1)-

4.2 Agent architecture

Agents DA% H 54k > B SIE EAT _F3REY referential game. ¥ speaker agent S Fl listener
agent L [ policy 43 5lich ms Fll mr. ms FIRAE A object t, speaker i symbol s Fl s1
M AP P(solt) Il P(si]f). speaker S 4 SIS P(solt) A1 P(salt) BEHLR LRIt
so Fl s1. 7L FRLEEHIA symbol sequence s = (s, s1), listener it predict result {1 AR
# P(t]so,s1). listener L ARIEAPEERZ T P(E]s0, 1) MIBEHLRF S £ Agent 435I f—4
22 48 EAA HL IR policy [ AF% . ALY architecture 41E 1 k.

Figure 1: %[ architecture 775 [

X T speaker PIZE LAY, SN ¢ Ll —AAIEREIFIETE] hidden layer h®, hS 1y
T2 TCHT EECH hsize x 2. Splitting hs equally 35| PR hgize B neural vectors hy F
h? (i =0,1) & HKIR Gt — D2 EREEFI—A softmax 133 output layer of. 0 (i = 0,1) &—
AKEEH V] 1) vector, HEAMIFR, SEHA ¢ 1, S5 M MTUEHREE, B P(si]t).

FF listener A4 WM 2GR 5 A symbol sequence s = (sg,s1) 1, s;(i =0,1) HFHZ
A A M A hiddon Tayer hE, hE HOMESE45 (THCULIE husse. Concatenating b
AL AFNKBEH hgize x 2 [ neural vector hZ. hE MRIK &5t — 41582 R—4 softmax 15
#| output layer ol ol FE—AKJFR |Mo| x |My| i) vector, HAG A EFR, 4 EH A symbol
sequence s = (so, 51),  HAEHUAAIIEER, B P(ils0, 51).

TESLIH, haize BU—HEHIEUE, T & EHF0R agents ALY capacity.



4.3 Training Algorithm

TEFRATRYSEE H, Fo AT 148 ] Stochastic Policy Gradient Methodology Al Z: speaker agent
S Fl listener agent L. FXA1H 0° F1 0L 435|327~ speaker il listener [#] policy 7% #1 7l (143
S0 Y%k speaker I, [ policy 7% ZEL 07, YIZH AR I SEL 0°, HET g «° 3%
IR J(65,0%) = Ex, 2, [R(6,D)] Bk, WY, %9 THIRIABIAZR, R BMEARHS
Xf emergent language S, FATL] listener FSE R A IERH1E A 2L, 733X listener
agent L Fl speaker agent S 1 illZHFR J(0°,00) 1y gradients.

VosJ =Eqs oo [R(E,t) - Vs log 7 (s0, 51t)] (1)

Vord =Egs oo [R(E,t) - Vor log 7° (£]s0, 51)] (2)

agents PRBEAURT TN, AN S AT AT SR AT 4540 _E R ELHANTE, B8 Al I R X
AR L% symbol sequence s = (so, s1). YRR 2 fron. e, M agents F5i24
SR I B FAT I 2 M 2 R AT old parameters, 124 45 5 W1 2405 S Br
W25 B ZHLIF A, TR policy Y HBNIEZ, Ml g R s E .

Figure 2: agents ) Training Algorithm {5 &

4.4 Evaluation

FATH B AR A SRR B SO T 32 N, DFFEA ALY capacity 1 emergent language 1
compositionality [t 9¢ &. 24 Listener agent L [ IERfHEICER] 100% B, FATIA M TS,
PO, A, TESE I — RS, FRATA 2 AT TR AL #EA T PRAl: B capacity;
emergent language H{ compositionality.

Agents Y capacity FJ DA HIH 48 45 B B U2 T R (e hsize) BEALET . X T com-
positionality, #FA1 AT %1, B Bl A —A% — M E EiridE. Topographic similarity ' j2—4>
Iz 352 1) compositionality [ & 34. Topographic similarity 1%/ 2 symbol sequence [
minimum edit distance F object 257 E 2 [E]f1 spearman correlation. In our case, symbol se-

quence s = (sg, s1), object t = (co, ¢1), higher topographic similarity means similar objects have
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Figure 3: —~* language 2l

more similar symbol sequences in context. Compositionality and Generalization in Emergent
Languages? iX /5215 ) topographic similarity is agnostic about the type of similarity as long
as it is captured by minimum edit distance. 3 H4&H T—> metric posdis. {H&Z posdis # topo
—#E, #LHE DA speaker [ policy A A5 compositionality, - AEEALIE speaker I listener X
symbol F1 concept BYXT N ANEEAHF RGN, 8 3 fi7~, 1E1Z language 1, speaker TODO:
XXXX. FATHE T mutual information theory #%H —Fff#se Fid b B compositionality [
bilateral metric MID, 45 J54E) theoretical analysis HAETEA AN 4H.

4.5 Compositionality and Capacity in Artificial Language teaching

Ease-of-Teaching and Language Structure from Emergent Communication® X fa SC 2545 i,
languages with higher compositionality are easier-to-teach. X —%518H— NS TR AR &
agents have same capacity. & T W %Z capacity %f compositionality fF50H, FRATEGYE TiX—2H
and teach artificial languages with different compositionality to agents with different capacity.

ST E AT

object t = concept sequence(cy, ¢1), concept size |My| = |My| = 3, shape ¢y ={triangle,
circle, square}, color ¢; ={red, blue, green};

symbol sequence s = (sg, s1), vocabulary size |V| =9,s;(i =0,1) = {a,b,¢,d,e, f, g, h,i};

Count of neural nodes in the hidden layer hg;.. = {1,2,3,4,5,6,7,8}.

Specifically, we generate 3 different languages, 7> BN 4 Fr~. K 4(a) fXFE—Fh perfect
compositional language LA with maximum compositionality, symbol sequence s = (sg,s1) H,
so fU3K shape, s1 U3 color. & 4(b) LB Jg—FBENLA IIET, so il s1 M GEARAE
fa] concept (shape or color). K 4(c) F7/R—F non-compositional language LC with minimum
compositionality, so Jill H %/~ shape F1 color fJZH 4. We teach LA, LB and LC respectively to
a Listener agent and change its capacity by adjusting hg;.e, 15%] accuracy [l iteration [
A& 5 .

ZEREIR, TE hsize = 1 I}, agent [ capacity AU, LA, LB #l LC #RTCIAESR. hsize = 2 I,
agent W] PAESE LA, HIGEEYE LB Fl LC. hgze > X B, agent W] PA%ESE LA A1 LB, HIKIA TS
EEYR LC. hgize > Y B, agent [¥) capacity 055 4RIX = fifE. Z5 L, we get an observation
that languages with higher compositionality require lower capacity of agents. i, Fe{/ T o4 FH
WO IRROLER E R IS S A



LA circle  square triangle LE circle  square triangle LC circle  square triangle
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5 Theoretical Analysis

WS BREE S 3 4
a) ] MSC model %} listener-speaker F{if 5 1% 1515 A
b) analyze why languages with higher compositionality require lower capacity of agents

¢) propose a metric MIS to measure compositionality based on the MSC model

5.1 the MSC model

We use the MSC (Markov Series Channel) to model a speaker-listener combination. MSC
M2 TEESHRIPI, HHAG BT P &8 B A BRI, B TE ST s p (5 i
—I5 EWIM{EA 4. In our case, speaker agent S A EME—AT1F1E, Hi A~ concept sequence
(co,c1), %i i symbol sequence (sg, s1); listener agent L R FE/E N5 — 4 F518E, HEA RN
symbol sequence (sq, s1), it 4 predict result £ = (&g, é1). BEARBEAILERIGIE 6 Fr7R. Speaker
#y policy T AR MR P(solt = (co,c1)) Fll P(s1]t = (co,¢1)); Listener ) policy R /R
IS P(E = (G0, é1)ls0,51)-

F=(cg8) Spealior 5 ii,,.f]*{ Listene: i (€58

Pl 8=l )) Pi=(5.4) -
Pls |0 ={60.5))

Figure 6: MSC g5f4/R &K

5.2 analysis on the basis of mutual information theory

24 MSC A mutual information theory, FEATHE T 3 X B A& 3 )i B 3E T 04
1 Mutual information theory #, HAFH I(X,Y) FxifizE Y WEBER G X THEEE X
HIATE LD B, BIA Y A5 X TE IR X pfE R+

=3 v ()

YeY XeX
Hr P(X,Y) 72 X MY WHGHER TR AL, 0 P(X) M PY) 7350 X MY 1l gfs
SrAeR AL (F R X AR REN R H(X), iTRAl X SR P(X) HEERE

— > P(X)log P(x)

zeX
MASER I(X,Y) = H(X) - HX|Y) < H(X), BITEXL Y £ X MFEEH

I(X,Y)

RI(X,Y) = — o)

JRI(X,Y) € [0,1]



In our case, speaker 7£ MSC H [ (s, s1) f£i# (co,c1) BI5 B45 listener. M speaker ]
policy, BIMEZE4315 P(solt = (co,c1)) Fl P(s1]t = (co,c1)), FTPAZFHIFHEEH symbol s;(j = 0,1)
f£1% concept c;(i = 0,1) IfFE RITC0%) . Hrp ¢;(i = 0,1) WIZAME Ple) HEEUSSI5
i, B ¢ B M; PEEAMEREEET g, Hoco fl e 2057

[(Ci, Sj)

R — A (3)
P(Ci,Sj)
f(eirss) ;4 ZG:V (60,85) log <P(Ci)P(8g‘)> @
H(ci) == Y Ple;)-log Pe;) = log|M;| (5)
c;, €M,
Pleis)) = Y Plsjl(cier-i) - Plei) Pler—s) (6)
c1—iEMy_;
P(s;) = > Pleis;) (7)
c;€M;
1
P(e;) = 1| (8)

T R4S B BT, speaker FU4E84Z BHLEE G MRI®:

MRIS— R[S(Co,SQ) RIS(Co,Sl)
RIS(ClaSO) RIS(C1,81)

[FIEL, listener 7£ MSC H1DA (¢o, 1) $2HL (s0,51) HHEYME . M listener f) policy, RIHE3
437 P(E = (¢0,¢1)|50,51), AIPATHE Y listener (%3815 H LA M MRI®. Hr s;(j = 0,1)
WG P(s;) CALEVSE MRI® IR speaker [ policy SRf5.

(s.00) _ L(55,¢)
RI H(s,) (9)
S C S C O, 713(5']’61)
e ZM Zv ) 1g<P<sj>P(éi>> (10)
H(¢;) = Z P(s;) -log P(s;) (11)
s; eV
P(sj,é)= > Y P(ééiilsj,s1-5) - P(s;)P(s1-4) (12)
C1—E€EMi_; s1-;EV
P(&) =Y P(sj. &) (13)
s;EV

MRIL . RIS(S(), éo) RIS(Sl, éo)
RI®(s0,61) RI®(s1,¢é1)

¥ MRI® #1 MRI*™ f element-wise HIT, FeAM17] ASEE B (co,c1) T BTES T

10



speaker Fl listener 21§ MSC J5, {56015 B AR MRIP:
MRI® = MRI® ® MRI*

MRI®[i,5](i=0,1;j = 0,1) FIRAE speaker I listener 2 [f], i symbol s; {5 concept
ci PHEE RS BRYELHRI. For a perfect compositional language, like LA in & 4(a), —4> symbol
A% 33—~ concept B B, I HAZBL L HIH 1, B MRIP[i, 5] #)4F—5#5-2—1 one-hot
vector.

e 3 — B o, BEZ A4~ symbol s;(j = 0,1,...,M — 1) X} £ 4~ concept ¢;(i =
0,1,...,N —1), NXM #4fy%ike MRI® {955 j 5115 2oR symbol s; {25 M 4~ concepts
{5 R . Z%F 4 5 one-hot vector FYFILBEBAIR, #7R symbol s; B ] T 43 AL 4 5H 2
concepts {5 EL (i.e. compositionality #%), Al symbol s; #H7H{E BE M, &S5
agents F i symbol s, thilgf5 B F A capacity MK, REEIAIE 7 B, 5 M7 74 4 o
3|1 observation —Z%§.

high compositionality low compositionality
(a) (b)

Figure 7: 437~ = &

5.3 ‘bilateral‘ metrics for communication

LAk, FATHER R BS115 MRIP 9515 one-hot vector IR, IH—fb2 JG55]—

/> compositionality [ metric MIS:

MIS=1-——~ VR
M(N —1)
M-—1 2 N-1 2
K — _ Br. - Br; 1\2 _ Br. -
2 Kl gmex BRI [m]) +§(RI [i,]) (i_O{?§§_1RI [m]) 1

11



In our case, M = N = 2.

MIS=1- \g\l 21: [(1 — max R[B[z‘,j]>2 n (i@(iﬁ RIB[i,j])2‘|
§=0
MIS captures the view that a single symbol of emergent languages with higher composition-
ality should be used to ground or transmit a certain concept ‘bilaterally’ and more exclusively
between listener and speaker. 5 At metric A&, B4l topo F posdis, MIS [&] &% & T
listener Fl speaker i SL—E, X1 speaker il listener 15 ANE A& — WO, HlUnE 3
A, BESELFIYFIIBT compositionality.

6 Emergent Language Experiments

We get an observation that teach languages with higher compositionality to a listener agent
require lower capacity of model, f H¥E _—> section il i #RIG /0 A fidRe T H & 3. i
—H, AR B — 154 lower capacity facilitates the emergence of language with higher
compositionality. T IHIFATE i L UEX — 45 AE.

SEICORTR TS E artificial languages, 1213 3212k speaker # listener H R "4 1EE.
Agent RRIREEH, YLK, FIIPA 745 Experimental Framework Hfrid—8. SiBiki 5
ZH concept size F vocabulary size BJECEUNTF

(a) Concept size |My| = 3, |M 1] = 3, vocabulary size |V| = 4;
(b) Concept size |Mp| = 3, |M1| = 3, vocabulary size |V| = 6;
(¢) Concept size |Mp| = 3, |M1| = 3, vocabulary size |V| = 10;
(d) Concept size |Myp| = 3, |M1| = 6, vocabulary size |V| = 10;

(e) Concept size |My| = 8, |M1| = 4, vocabulary size |V| = 10;

Eiﬂﬁﬂﬁtﬁ E&%*ﬁﬂﬂg capacity (i-e- hsize)y #X‘_‘r/l\ Psize E/‘J agents U”%%‘{ﬁ(ﬁlﬁ@ly
EU%%’JFﬁig/ﬁgg hsize EI/‘JE;UE?D—F

hsire = 2,4,6,8, 10,15, 20, 30,40, . . ., 100

NGET R ETE S B compostionality (measured by MID) I FIFREZE.

REME (a) BSCERE RN 8 Fron. & 8(a) s AF hsize T, PEHEFH MID {HH73
E-PREZ M. WA AR I, BEE hsize FEAR, MID BEZHIEK ETHES, FrMEER
PO hsize AHIE. & 8(b) J& MID- hgize RUHUSE, SRR A hsize TP ER—H
Y compositionality. M HFRIAE H, X T hize BRITEIL, BIA hsize = 100, MID HL1H
IRAT AT 1, (H 2500 XX 3] XX ZEFEEN R T hsize BN, BN hsize = 2, MID 3H
T XX. XFE/R agents with lower capacity FF9G0 SR H A A TERIE S, FNIXLE agents o

12



EFAARA A EETE S 1Y symbols T & 1= AT E B X EE T HRATZ A sEAE: lower
capacity facilitates the emergence of language with higher compositionality.

FrABLE (a)(b)(c)(d)(e) MYSEER LRI EAEIE 9, P45 KM, XA concept size
F1 vocabulary size, capacity X compositionality [ 5 0i#a ¥ —2, G FLiARSGAH.

(a) kA (b) s

Figure 8: 2 5K &4 HIMACE (a) F compositionality - hg;.. SIE-FrIE2E I 2 B RIHUS E

13



(a) 1 (b) 2
()3 (d) 4

() 5

Figure 9: 5 5k &4 H|H A [F] concept size Fl vocabulary size Bl F composionality - hge ¥
{H-Fr it 2= Hh 2 &
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